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Abstract

We examine the effectiveness of gradient search
optimization of numeric leaf values for Genetic
Programming. Genetic search for tree-like
programs at the population level is
complemented by the optimization of terminal
values at the individual level. Local adaptation of
individuals is made easier by algorithmic
differentiation. We show how conventional
random constants are tuned by gradient descent
with minimal overhead. Several experiments
with symbolic regression problems are
performed to demonstrate the approach’s
effectiveness. Effects of local learning are clearly
manifest in both improved approximation
accuracy and selection changes when periods of
local and global search are interleaved. Special
attention is paid to the low overhead of the local
gradient descent. Finally, the inductive bias of
local learning is quantified.

1 INTRODUCTION
The quest for more efficient Genetic Programming (GP)
is an important research problem. This is due to the fact
that a high computational complexity of GP is among its
distinctive features (Poli & Page, 2000). Especially now,
when variants of GP are being used on very ambitious
projects (Thompson, 1998; Koza et al., 1997), the speed
and efficiency of evolution are very crucial for such
problems.
Numerous modifications of the basic GP paradigm (Koza,
1992) are currently known, e.g. see (Langdon, 1998) for a
review. Among them, several researchers have considered
GP augmentation by hill climbing, simulated annealing
and other stochastic techniques. In (O'Reilly & Oppacher,
1996) crossover and mutation are used as move operators
of hill climbing, while Esparcia-Alcazar & Sharman
(1997) considered optimization of extra parameters (node
gains) using simulated annealing. Terminal search was
employed in (Watson & Parmee, 1996), but due to the

associated computational expense it was limited to 2-4%
of individuals. The presence of stochasticity in local
learning makes it relatively slow, even though some
hybrid algorithms yield overall improvement. Apparently,
the full potential of local search optimization is yet to be
realized.
The focus of this paper is on a local adaptation of
individual programs during the GP process. We rely on
gradient descent for improved generation of GP
individuals. This adaptation can be performed repeatedly
during the lifetime of an individual. The results of local
learning may or may not be coded back into the genotype
(reverse transcription) based on the modified behavior,
which is reported in the literature as Lamarckian and
Baldwinian learning, respectively (Hinton & Nowlan,
1987; Whitley et al., 1994). The resulting new fitness
values affects the selection process in both cases, which in
turn changes the global optimization performance of a
GP. Such an interaction between local learning, evolution
and associated phenomena without reverse transcription
are also generally referred to as the Baldwin effect.
We were motivated by a number of successful
applications of hybridization to neural networks (Belew et
al., 1991; Zhang & Mühlenbein, 1993; Nolfi et al., 1994).
Both neural networks and GP trees perform input-output
mapping with a number of adjustable parameters. In this
respect, terminal values (leaf coefficients) in a GP
perform a similar function as weights in neural network.
A form of gradient descent is usually used to adjust
weights in a neural net architecture. In contrast, various
terminal constants are typically random within GP trees
and are rarely adjusted by gradient methods. The reasons
for this are twofold: the unavailability of
gradients/derivatives in some GP problems and the
computational expense that is assumed to exist in
computing those gradients. However, the complexity of
computing derivatives is largely overestimated. In order
to differentiate programs explicitly, algorithmic differen-
tiation (Griewank, 2000) may be adopted. Algorithmic
(computational) differentiation is a technique that
accurately determines values of derivatives with
essentially the same time complexity as found in the
execution of the evaluation function itself. In fact,



gradients may often be computed as part of the function
evaluation. This is especially true for trees and at least
potentially true for arbitrary non-tree programs.
Generalization of the method for any program is possible,
given that the generated program computes numeric
values, even in presence of loops, branches and
intermediate variables. The main requirement is that the
function be piecewise differentiable. While not always
true, this is the case for a great majority of engineering
design applications. Moreover, it is also known, that
directional derivatives can be computed with many non-
smooth functions (Griewank, 2000). Knowledge of only
gradient direction, not its value, is often enough to
optimize the values of parameters.
In this paper we empirically compare conventional GP
with a GP coupled with terminal constant learning. The
effectiveness of the approach is demonstrated on several
symbolic regression problems. Arithmetic operations have
been chosen as the primitives set in our GP
implementation for simplicity sake. While such functions
make differentiation easy, again these techniques can be
adapted to more difficult problems.
Our results indicate that inexpensive differentiation along
with Baldwin learning leads to a very fast form of GP.
Significant improvement in accuracy was also achieved
beyond that which could be achieved by either local
search or more generations of GP.
The Baldwin effect is known to change the inductive bias
of the algorithm (Turney, 1996). In the case of GP, where
functional complexity is highly variable, it is expected
that such a change of bias can be properly quantified.
Two manifestations of the learning bias were observed in
our experiments. Firstly, the selection process is affected
by local learning since the fitness of many individuals
dramatically improves during their lifetime. Secondly,
changes in the functional complexity of individuals were
observed in the experiments. Both the length (number of
nodes) of the best evolved programs and the number of
leaf coefficients were higher using local learning as
opposed to regular GP.

2 LAMARCKIAN VS BALDWIN
STRATEGY IN GP

Evolution rarely proceeds without phenotypic changes.
As we are interested in digital evolution, two dominating
strategies have been proposed which allow environmental
fitness to affect genetic features. Lamarckian evolution,
an alternative proposition to Darwinian approaches of the
time, claimed that traits acquired from individual
experience could be directly encoded into the genotype
and inherited by offspring. In contrast, Baldwin claimed
that Lamarckian effects could be observed where no
direct transfer of phenotypic characteristic to the genotype
occurred, in keeping with Darwinism. Rather, Baldwin
claimed that “innate” behaviors could be

Figure 1: Sample tree with a set of random
constants. In hybrid GP all these leaf coefficients
are subjected to training

selected for (in a Darwinian sense) which the individual
originally had to learn. In Lamarckian evolution learning
affects fitness distribution as well as the underlying
genotypic values, while the Baldwin effect is mediated
via the fitness results only. In our case, the question is
whether locally learned constants are copied back into the
genotype (Lamarckian) or whether the constants are
unmodified while the individual’s fitness value reflects
the fitness resulting from learning (Baldwin).
Real algorithmic implementations of evolution coupled
with local learning are much richer than two original
strategies. The researcher, usually guided by the total
computational expense, may arbitrarily decide both the
amount of and scheduling of learning or local adaptation
of solutions. Moreover, since local learning comes with a
price, it must be wisely traded off with genetic search
costs. Several questions must be answered:
• What aspect of the solution should be learned beyond

genetic search, as only a subset of solution
parameters may be chosen for adaptation?

• Should learning be performed at every generation or
should it be used as a form of fine-tuning when
genetic search is converged?

• How many individuals and which of those
individuals should have local learning applied to
them?

• How many iterations of local learning should be done
(really, how much computational cost are we willing
to incur)?

Accordingly, there are many ways to introduce local
learning into GP. Evolution in GP is both parametric and
structural in nature. Two important features are specific to
GP:
1. The fitness of the functional structure depends

critically on the values of local parameters. Even very
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fit structures may perform poorly due to
inappropriate numeric coefficients.

2. The fitness of the individual is highly context
sensitive. Slight changes in structure dramatically
influence fitness and may require completely new
parameters.

That is why we focus on learning numeric coefficients, so
called Ephemeral Random Constants or ERC (Koza,
1992), which are traditionally randomly generated as
shown in Figure 1. As explained below, the local learning
algorithm -- gradient descent on the error surface in the
space of the individual’s coefficients, turns out to be a
very inexpensive approach, so much so that every
individual can do local learning in every generation.
Formally we follow the Lamarckian principle of evolution
since we allow the tuned performance of individual to
directly affect the genome by modifying numeric
constants. At the same time, the choice between
Lamarckian and Baldwin strategies in our implementation
is not founded on the issue of computational complexity.
In both cases the amount of the extra work is
approximately the same. The main issue arises when
considering the fitness values of the offspring with
inherited coefficients vs. offspring with unadjusted
terminals. Our experiments indicate that there is little
difference between the two fitnesses when crossover is
the main operator. Two factors contribute to this:
1. Crossover usually generates individuals with

significantly worse fitness than their parents. The
coefficients found earlier to be good for the parents
are not appropriate for the offspring structures. The
subsequent local learning changes fitness
dramatically by updating the ERCs to more
appropriate values.

2. Newly generated offspring are equally well adjusted
starting from any values: earlier trained, not trained
or even random.

Hence, inheritance of the coefficients does not much help
the performance of the individuals created by crossover.
However, if an individual is transferred to a new
generation as a part of the elitist pool, i.e. unchanged by
crossover or mutation, then its learned coefficients are
also transferred. With respect to this structure, the use of
the Baldwin strategy would be wasteful, since it requires
relearning the same parameters. Thus, even though our
implementation formally follows the Lamarckian strategy,
we effectively observe the very same phenomena peculiar
to the Baldwin effect.

3 HYBRID GP
The organization of the hybrid GP (HGP) is basically the
same as that of the standard GP. The only extra activity
done by the algorithm is to update the values of numeric
coefficients. That is, all individuals in the population are
trained using a simple gradient algorithm in every

generation of the standard GP. Below we discuss the
exact formulation of the corresponding optimization
problem.

3.1 PROBLEM STATEMENT
The hybrid GP is intended to solve problems of a numeric
nature, which may include regression, recognition, system
identification or control.  We will assume throughout that
there are no non-differentiable nodes, such as Boolean
functions. In general, given a set of N input-output pairs
(d,x)i it is required to find a mapping f(x,c) minimizing
certain performance criteria, e.g. mean squared error
(MSE):
Here, f is scalar function (generalization to multi-trees is

trivial), x is vector of input values, c is vector of
coefficients summed over the training samples. Of course,
in GP we are interested in discovering the mapping f(x,c)
in the form of a program tree. That is, we seek  not only
coefficients c, but also the very structure of the mapping f
which is not known in advance. In our approach, finding
the coefficients is done by gradient descent during the
same time functional structures are evolved. Descriptions
of the standard GP approach can be found elsewhere (e.g.
Langdon, 1998), instead, we will focus below on details
of the local learning algorithm.

3.2 LEARNING LEAF COEFFICIENTS
Minimization of MSE is done by a few iterations of a
simple gradient descent. At each generation all numeric
coefficients are updated several times using the rule:

where α is the learning rate, and k goes over all the
coefficients at our disposal. Three important points must
be discussed: how to find the derivatives, what the value
of α should be, and how many iterations (steps) of
descent should be used.

3.2.1 Differentiation
Using both eq. 1 and 2 we obtain:

Thus, an immediate goal is to differentiate any current
program tree with respect to any of its leaves. The chain
rule significantly simplifies computing ∂f/∂c. Indeed, if
nj(⋅) denotes node functions, then:
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Therefore differentiation of the tree simply reduces to the
product of the node derivatives on the path which starts at
the given leaf and ends at the root. It is clear that each
term in the product is a derivative of a node output with
respect to its arguments (children). If paths from the
different leaves share some common part, then
corresponding sub-chains in the derivatives are also
shared.  Computation of such a product in practice
depends on the data structure used for the program tree. In
simple cases, differentiation uses single recursive
postorder traversal together with the actual function
evaluation. Derivatives of the program tree with respect to
all its leaves can be obtained simultaneously. As soon as
an entire sum in eq. 3 becomes known, i.e. derivatives in
all training points obtained, one may need an extra sweep
through the tree to update the coefficients. In total, the
incurred overhead depends on the complexity of node
derivatives and the number of leaves. For instance, in our
implementation using only an arithmetic functional set,
the cost of differentiation was equal to the cost of function
evaluation, making the overall cost twice the standard GP
cost for the same problem

3.2.2 Learning rate and number of steps
In a simple gradient descent algorithm, the proper choice
of learning rate is very important. Too large a learning
rate may increase error, while too small a rate may require
many training iterations. It is also known that the rule in
eq. 3 works better in the areas far from the vicinity of
local minima (Reklaitis, 1993).  Therefore we decided to
make the rate as large as possible without sacrificing
quality of learning. After a few trials on the test problem
of symbolic regression we fixed the learning rate to the
value α=0.5. The same learning rate was used for all other
test problems. If the algorithm resulted in an increase in
the error of an individual, the training was stopped and no
update to the individual's fitness was recorded. However,
this problem did not have any impact on overall quality of
learning since it happened rarely, approximately 1 out of
10 successful individuals. Moreover, those individuals
that had this problem showed an error rate that was
typically not reduced by any subsequent application of
gradient descent.
This simple local learning rule dramatically improved the
fitness of individuals. Figure 2 shows the decrease in
MSE for typical individuals. It is important to note that
the most significant improvements happened after only
the first few iterations of local learning. Note that some
individuals were improved by as much as 60% or more.
We decided that 3 steps of gradient descent was a good
trade off between fitness gain and effort overhead. Again,
the number of iterations was never altered afterwards and
is used in all our experiments.

Figure 2: Local learning strongly affects fitness of
individuals. Typical learning progress is illustrated
using individual from test problem f2.

4 EXPERIMENTAL DESIGN
The main goal of the empirical study is to compare the
performance of the GP with and without learning. Even
though an overall speed-up is very valuable, we are also
interested in other effects resulting from local learning.
These effects have to be properly quantified to shed light
on the internal mechanisms of the interaction between
learning and evolution. Three major issues are studied:
• Improvement in search speed
• Changes in fitness distribution and selection
• Changes in the functional structure of the programs

4.1 IMPLEMENTATION DETAILS
The driver GP program included following major steps:
1. Initialization of the population using the “grow”

method. Starting from a set of random roots, more
nodes and terminals are aggregated with equal
probability until a specified number of nodes are
generated. The total number of nodes in the initial
population was chosen to be three times greater than
the population size.

2. Fitness evaluation and training (in HGP) of each
individual. Mean squared error over the given
training set, as defined by eq. 1, serves as an inverse
fitness function since we seek to minimize error. This
stage includes parametric training in HGP given that
the individual has leaf coefficients.

3. Termination criteria check. The number of function
evaluations was the measure of computational effort.
For instance, every individual is evaluated only once
in every GP generation, but three times in every HGP
generation if its parameters are trained for three steps.
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4. Tournament selection (tournament size = 2) of
parents. Pairs are selected at random with
replacement and their number is equal to the
population size. The better of the two individuals
becomes a parent at the next step.

5. Crossover and reproduction. Standard tree crossover
is used. Each pair of parents produces two offspring.
Mutation with small probability is applied to each.  In
addition, elitism was always used and the best 10%
of the population survive unchanged.

6. Pruning the trees with the size exceeding predefined
threshold value.

7. Continue to step 2

4.2 TEST PROBLEMS
Five surface fitting problems were chosen as benchmarks.

For each problem 20 random training points (fitness
cases) were generated in the range [-3...3] along each
axis. Figure 3 shows the desired surfaces to be evolved.

5 EXPERIMENTAL RESULTS
To compare the performance we made experiments with
both hybrid and regular GP with the same effort of 30,000
function evaluations in each run. All experiments were
done with a population size of 100 and the arithmetic
operators {+,-,*,%-protected} as the function set with no
ADFs. Initial leaf coefficients were randomly generated in
the range [-1...1]. Also, the pruning threshold was set to
24 nodes. If the number of nodes in an individual grew
beyond this threshold, a sub-tree beginning at some
randomly chosen node was cut from the individual. Each
experiment was run 10 times and the MSE value was
monitored.
Our main results are shown in Figure 3 and also
summarized in Table 1. The success of the hybrid GP is
quite remarkable. For all the test problems, the average
error of the best evolved programs was significantly
smaller (1.5 to 25 times) when learning was employed.
The first 20 – 30 generations usually brought most of
these improvements. The gap in error levels is wide
enough to require the regular GP to use hundreds more
generations to achieve similar results. Certain

improvements were also observed for the average
population fitness, but with lesser magnitude. The
similarity of each population’s average fitness indicates a
high diversity and that not all offspring reach small error
values after local learning.
Another set of experiments included extra fine-tuning
iterations performed after the regular GP terminates.
Again, we run gradient optimization on the population
from the last GP generation. Each individual was tuned by
applying 100 gradient descent iterations. The results in
Table 1 show that this approach is not effective and did
not achieve the quality of result found in the HGP. This is
a strong argument for Baldwin effect, namely that another
factor affecting search speed-up is a change in fitness
distribution which directly affects selection outcome.
Learning introduces a bias that favors individuals that are
more able to adapt to local learning modifications. If we
would suppose that the selection bias does not occur, then
the hybrid GP would be only a trivial combination of
genetic search and fine tuning. However, as we see from
the results this is not the case.
We attempted to measure some properties of HGP that
would demonstrate this synergy between local learning
and evolution.

Table 1. Performance Comparison of Hybrid and
Regular GP. All data collected after 30000 f.e. and
averaged over 10 experiments.

Best MSE Ave. MSE Best MSE
Test
problem

HGP GP HGP GP GP + fine tuning

f1 0.009 0.26 0.47 0.80 0.233

f2 0.075 0.761 1.03 2.18 0.31

f3 2.32 6.22 5.98 6.59 6.21

f4 0.64 0.76 4.06 4.41 0.76

f5 0.097 0.36 0.27 0.78 0.30

First of all, a Baldwin effect in selection would mean that
the results of some tournament selections are reversed
after local learning. Indeed, local learning adaptable
individuals win their tournaments due to improved fitness
resulting from gradient descent. These individuals would
lose the same tournament in regular GP.
Figure 4 shows both the typical and average percentage of
reversed tournaments in the problem f1. A summary of
results for all the test problems is given Table 2.
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Figure 4: Comparison of Selection Process in
HGP and GP. Local learning changes outcome of
some tournaments used to select a mating pool.

It was found that the average percentage of selection
changes remains the same during the course of search for
all test problems. Such a behavior would be expected if
selection pressure pushes offspring that are very
adaptable, even when older elite members are almost
converged. An empirical measure of this degree of
adaptability is provided by the average gain in fitness
achieved by newly generated offspring. The values are
given in Table 2. We do not include elite members in this
statistic to emphasize magnitude of learning from scratch.
The average observed drop of MSE is between 12% and
19% on all the test problems.

Figure 5: Typical dynamic of number of
terminals (numeric coefficients) used by the best
program as a function of GP generations (for the
test function f1).

What exactly makes one program more adaptable than the
other? Clearly, it is the functional structure of the
program. For example, a program with no numeric leaves
cannot learn at all using the gradient local learning
method described above.  Furthermore, a tree with no
terminal arguments (inputs) containing only terminal
constants will always produce the same output and will
not benefit from local learning. Instead we have tried to
understand what characteristics of adaptable programs are
unique.

Table 2: Effects of local learning

Complexity of the best programs,
#coefficients / #nodes after the same effort (30000 f.e.)Test problems

Difference in HGP
selection vs. GP in each

generation on average, %

Ave. MSE gain for
newly generated

offspring, % HGP GP

f1 7.7 16.5 16.0 / 22.4 12.2 / 21.2

f2 7.1 12.7 16.6 / 23.0 13.7 / 21.8

f3 8.4 15.1 17.5 / 23.5 11.8 / 20.4

f4 7.9 18.7 17.3 / 22.9 12.4 / 21.6

f5 7.4 15.0 17.0 / 23.1 12.9 / 21.8
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We have focused on the length (number of
nodes) and on the number of coefficients in the
best evolved programs (remember, that length
had an upper limit too). As Table 2 illustrates
both values are noticeably greater for the
programs evolved by HGP. This is one
illustration of the inductive bias of the hybrid
algorithm. More adaptive programs use more
coefficients and consequently have lengthier
representations. Also, the number of the terminal
inputs in HGP results is slightly less, therefore
such programs are easier to compute once they
are extracted and simplified. Figure 5 shows
typical changes in the number of coefficients for
a “best” individual on a generational scale for
both GP and HGP.

6 CONCLUSIONS
This paper has shown a number of important
points. First, that local learning in the form of
gradient descent can be efficiently included into
GP search. Second, that this learning provides a
substantial improvement in both final fitness and
speed in reaching this fitness. Finally, the use of
local learning creates a bias in the structure of
the solutions, namely it prefers structures that are
more readily adaptable by local learning. We feel
that this approach could have significant impact
on practical, engineering problems that are
addressed by GP.
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Figure 3: Surface fitting test problems and respective learning curves


