
Mathematical Programming
https://doi.org/10.1007/s10107-023-01962-4

FULL LENGTH PAPER

Series B

Faster goal-oriented shortest path search for bulk
and incremental detailed routing

Markus Ahrens1 · Dorothee Henke2 · Stefan Rabenstein3 · Jens Vygen3

Received: 11 July 2022 / Accepted: 12 April 2023
© The Author(s) 2023

Abstract
We develop new algorithmic techniques for VLSI detailed routing. First, we improve
the goal-oriented version of Dijkstra’s algorithm to find shortest paths in huge incom-
plete grid graphswith edge costs depending on the direction and the layer, and possibly
on rectangular regions. We devise estimates of the distance to the targets that offer
better trade-offs between running time and quality than previously known methods,
leading to an overall speed-up. Second, we combine the advantages of the two classical
detailed routing approaches—global shortest path search and track assignment with
local corrections—by treating input wires (such as the output of track assignment)
as reservations that can be used at a discount by the respective net. We show how to
implement this new approach efficiently.

Mathematics Subject Classification 90C90 · 90C27 · 68U05 · 51-08 · 90C35

1 Introduction

The task of VLSI routing [3, 21] is to connect the set of pins of every net on a chip
by wires so that wires of different nets are sufficiently far apart and various other

B Stefan Rabenstein
rabenstein@dm.uni-bonn.de

Markus Ahrens
markus.johannes.ahrens@ibm.com

Dorothee Henke
dorothee.henke@math.tu-dortmund.de

Jens Vygen
vygen@dm.uni-bonn.de

1 IBM Deutschland Research & Development GmbH, Böblingen, Germany

2 Department of Mathematics, TU Dortmund University, Dortmund, Germany

3 Research Institute for Discrete Mathematics, Hausdorff Center for Mathematics, University of Bonn,
Bonn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-01962-4&domain=pdf
http://orcid.org/0000-0001-9190-642X
http://orcid.org/0000-0002-9204-3010

M. Ahrens et al.

Fig. 1 Left: tiny part of a routed chip with two layers. The blue wires connect the two dark blue pins and
the red wires connect the three dark red pins. Pins of the same color belong to the same net. The gray wires
are part of the connections of multiple other nets with pins outside of the visible region. Right: the relevant
part of the detailed routing graph before routing the blue and the red net. Steiner trees for the red net and
the blue net (color figure online)

constraints are met. See Fig. 1(left) for an example. In a simple but useful model,
we have a huge 3-dimensional grid graph (the detailed routing graph), and the pins
are vertices in this graph. Each net is a set of pins and needs to be connected by a
Steiner tree in the detailed routing graph. The Steiner trees of distinct nets must be
vertex-disjoint. The detailed routing graph is induced by routing tracks, which are
pre-computed parallel lines on each layer. Every two routing tracks on adjacent layers
are orthogonal to each other and induce one vertex on each of these tracks. These two
vertices are connected by an edge; metal connections along those edges (connecting
adjacent layers) are called vias. Depending on the manufacturing process, vertices on
adjacent tracks of the same layer may also be connected by an edge.

Typically, one first computes a global routing, a rough packing of wires that ignores
all local constraints but guarantees that the wires in certain areas do not require more
space than available. Global routing allows for globally optimizing objectives such as
power consumption and timing constraints [9, 15].

The output of global routing then restricts the search space for every net in detailed
routing, where many complicated rules need to be obeyed and one essentially routes
one net at a time.While the detailed routing graph formed by routing tracks on an entire
chip can contain about 1013 vertices on 10–20 layers, the restricted area corresponding
to the global routing solution for a net results in a much smaller detailed routing graph,
with rarely more than 108 vertices. Nevertheless, these subgraphs are still huge, and
there are millions of nets to connect. Two general strategies have been proposed (cf.
[21]).

The first approach is based on a fast subroutine to find a shortest path that connects
two metal components, each of which can consist of a pin or a set of previously
computed wires connecting a subset of the pins of that net. The subgraph is given by
the global routing solution, excluding vertices and edges that would result in a conflict
to previously routed wires. For an example of the resulting graph, see Fig. 1(right).
To allow for an efficient packing of wires and to model various aspects such as signal
delays, one uses different costs for horizontal and for vertical edges on each layer as
well as for vias connecting two adjacent layers.

123

Faster goal-oriented shortest path search for bulk and…

The second approach first considers the layers one after the other and assigns wires
to routing tracks so that the most important detailed routing rules are satisfied, at least
formost wires. This is often called track assignment [4, 20]. Then detailed routing tries
to correct violations locally. A very similar detailed routing problem occurs when a
detailed routing has already been computed, but a few changes to the input have been
made (for example corrections of the logical behavior or to speed up signals that
arrived too late). In both cases, one asks for an incremental detailed routing, largely
following the input but deviatingwhere necessary. However, local corrections are often
not possible if the routing is very dense.

Goal-oriented path search (sometimes called A∗) is a classical speed-up technique
ofDijkstra’s shortest path algorithm [5]. It is based on a feasible potential that estimates
the distance to the targets [8, 13, 18]. Instead of the undirected graph with the original
edge cost c(e), we orient each edge in both ways and run Dijkstra’s algorithm with
the reduced cost cπ (e):=c(e) − π(v) + π(w) for every edge e directed from v to
w, where the vertex potentials π are chosen so that cπ is nonnegative and π(t) = 0
for every target t . These conditions imply that π(v) is a lower bound on the distance
between v and the closest target. The better this lower bound is, the fewer vertices
this goal-oriented version of Dijkstra’s algorithmmust label before it knows a shortest
path to a target.

Hence, there is a trade-off between a possible preprocessing time, the query time
to compute the potential of a vertex, and the quality of the lower bound. For example,
in subgraphs of unweighted grid graphs, the �1-distance to the nearest target can be
a reasonable choice for π [10]. A better estimate, which however requires substantial
preprocessing, was suggested by [16]. In this paper, we propose new methods with
better trade-offs than previously known.

Moreover, we combine the advantages of the two classical detailed routing
approaches mentioned above. Our new, more global approach treats given input wires
(e.g., the output of track assignment) as so-called reservations. A reservation for a net
N is a set of edges reserved for N until N is routed: no other net must use these edges.
We encourage, but not force, the detailed router to follow the reservations where fea-
sible. This is achieved by finding a shortest path where reservations of the currently
routed net can be used at a discount (so we reduce the cost of reserved edges by a fixed
factor smaller than 1).

However, this does not work well together with the classical goal-oriented tech-
niques. For example, if there are some reservations (edges) that can be used at a 50%
discount, the �1-distance would have to be divided by 2 in order to induce a feasi-
ble potential. This would often be a very inaccurate estimate, leading to an increased
number of labels in Dijkstra’s algorithm and hence larger running time. We show that
our better potentials make goal-oriented Dijkstra not only as fast as without reserva-
tions, but in fact faster. Overall, this yields a new efficient incremental detailed routing
algorithm.

123

M. Ahrens et al.

1.1 Problem statement

Our core problem will consist of computing distances in a weighted grid graph with
a simple structure. To define the grid graph, we number the layers 1, . . . , l and let
V = Z × Z × {1, . . . , l} and

E =
{
{(x, y, z), (x ′, y′, z′)} ∈ (V

2

) | |x − x ′| + |y − y′| + |z − z′| = 1
}

be the vertex set and edge set of an infinite grid with l layers. Edges connecting
adjacent layers are called vias, edges in x-direction are horizontal and edges in y-
direction vertical. We will consider finite subgraphs of G = (V , E). These subgraphs
correspond to the area defined by the global routing solution and to the restriction to
the routing tracks that can be used for the current net. Often, many vertices of these
subgraphs will have degree 2 and will not be considered explicitly, but we ignore this
here for the sake of a simpler exposition.

Every layer has a preference direction (↔ or �, the direction of its tracks); edges in
the other direction are more expensive or sometimes even forbidden, depending on the
manufacturing process. Horizontal and vertical layers alternate. Moreover, the layers
have very different electrical properties, which is reflected by appropriate edge costs.
In the simplest model, the cost of an edge depends only on its direction and the layer:
let c↔

z , c�
z > 0 for z ∈ {1, . . . , l} and cz,z+1 > 0 for z ∈ {1, . . . , l − 1}; then

c({(x, y, z), (x ′, y′, z′)}) =

⎧
⎪⎪⎨
⎪⎪⎩

c↔
z if x ′ = x + 1

c�
z if y′ = y + 1

cz,z′ if z′ = z + 1

.

In a more general model, a rectilinear grid induces rectangular regions, called tiles,
and the cost also depends on the tile. Let

−∞ = ξ0 < ξ1 ≤ . . . ≤ ξ p < ξ p+1 = ∞,

−∞ = υ0 < υ1≤ · · · ≤υq < υq+1 = ∞

be integer coordinates that define the rectangular tiles

V i j
z =

{
(x, y, z) ∈ V | ξ i ≤ x ≤ ξ i+1, υ j ≤ y ≤ υ j+1

}
,

and set

Ei j
z =

{
{(x, y, z), (x ′, y′, z′)} ∈ E | ξ i≤x≤x ′≤ξ i+1, υ j≤y≤y′ ≤ υ j+1, z ≤ z′

}
.

Now we have costs ci j↔z , ci j�z , ci jz,z+1 > 0 that also depend on the tile and define
the edge costs accordingly. If an edge belongs to more than one tile, the minimum
cost applies. See Fig. 2 for an example. We allow that two (but not three) consecutive

123

Faster goal-oriented shortest path search for bulk and…

Fig. 2 Example of the general cost model with p = 3, q = 3, and l = 2. The red edges form the set E12
1 .

The blue horizontal edges have cost c21↔1 , the blue vertical edges have cost c21�1 , and the blue via edges

have cost c211,2. The cost of the blue vertical edges on ξ2 is given by min{c11�1 , c21�1 }, which is c21�1 in this

example. The cost of the green via edges on ξ2 is min{c111,2, c211,2}, which is c111,2 here. The edges that are
not drawn have cost infinity because, in this example, they lie outside the area corresponding to the global
routing solution (color figure online)

coordinates are identical, i.e., ξ i = ξ i+1 or υ j = υ j+1, in order to model a cheap cost
at one x- or y-coordinate only.

With this more general model, one can, for example, punish wires on low layers
near the electrical source of a net (which would lead to poor delays) or implement a
discount on reservations as we will describe in detail in Sect. 5.2. Moreover, we can
set edge costs to infinity outside the area corresponding to the global routing solution
so that the distances in (G, c) reflect necessary detours that are implied by routing in
this subgraph.

Given a finite subgraph G ′ = (V ′, E ′) of G and sets S, T ⊆ V ′, we look for a
shortest (minimum-cost) path from S to T in G ′ with respect to the cost function c.
The graph G ′ does normally not contain vertices and edges whose use would result
in a conflict to nets routed previously (an exception will be described at the end of
Sect. 5.1), and it can have a very complicated structure. For a goal-oriented path search,
we define a potential π(v) for every vertex v ∈ V ′ by the distance to T in G (instead

123

M. Ahrens et al.

of G ′):

π(v):= dist(G,c)(v, T).

The idea is that distances in G are much easier to compute than in the subgraph G ′
(we will see how fast), but often still give a good lower bound. The reason is that
(G, c) has a simple structure, given by the tiles, while G ′ can be very complicated as
it does not contain vertices or edges whose use would result in a conflict to nets routed
previously.

This allows us to use Dijkstra’s algorithm with the reduced costs cπ in the
digraph resulting from G ′ by orienting every edge in both ways, since the reduced
costs are nonnegative. Indeed, we have cπ ((v,w)) = c(e) − π(v) + π(w) =
c(e)−dist(G,c)(v, T)+dist(G,c)(w, T) ≥ 0 for all e = {v,w} ∈ E . After introducing
a super-source s̄ and arcs (s̄, s) of cost 0 for all s ∈ S, with π(s̄):=min{π(s) : s ∈ S},
every path P from s̄ to T satisfies cπ (P) = c(P) − π(s̄), so shortest s̄-T -paths
with respect to cπ are shortest s̄-T -paths (and correspond to shortest S-T -paths) with
respect to c.

The better the lower boundπ on the distance to T in (G ′, c) is, the fewer verticeswill
be labeled by Dijkstra’s algorithm with reduced costs cπ ; more precisely all vertices
v with dist(G ′,c)(S, v) + π(v) < dist(G ′,c)(S, T) will be processed.

The target set T can consist of a single vertex (corresponding to a pin), but a pin
sometimes covers more than one vertex, and when constructing Steiner trees from
paths we often want to connect to a connected component that contains wires and
more than one pin. We often assume that T is represented as the union of t rectangles,
where a rectangle is a vertex set of the form {(x, y, z) ∈ V | ξ− ≤ x ≤ ξ+, υ− ≤
y ≤ υ+, z = ζ } for some ξ−, ξ+, υ−, υ+ ∈ Z and ζ ∈ {1, . . . , l}. Often t is small
in practice. While we can deal with complicated target sets, some of our algorithms
work best for simple targets (i.e., small t).

Sometimes it will be useful to assume that this representation is consistent with the
partition of V into tiles in the following sense: each of the t rectangles representing
T fits into the grid, i.e., is of the form {(x, y, z) ∈ V | ξ i

− ≤ x ≤ ξ i
+
, υ j− ≤ y ≤

υ j+ , z = ζ } for some indices i−, i+, j− and j+. This can be achieved by adding
at most 2t new x-coordinates ξ i and at most 2t new y-coordinates υi . We call this
procedure refining the grid with respect to the targets. See Fig. 3 for an example of the
empty grid (i.e., p = q = 0) refined with respect to several target rectangles.

1.2 Previous work and our results

In the simple model without regions (i.e., for p = q = 0), one can query π (i.e., evalu-
ateπ(v) for a given query location v ∈ V) easily in O(tl2) timewithout preprocessing;
see Proposition 2. We show that this can be reduced to O(tl); see Theorem 3. With
a preprocessing time polynomial in t and l, we obtain a query time of O(log(t + l));
see Theorem 7. These results will be presented in Sects. 2 and 3.

For the more general model, which is the subject of Sect. 4, Peyer et al. [16] refined
the gridwith respect to the targets and showed that then the restriction ofπ : V → R≥0

123

Faster goal-oriented shortest path search for bulk and…

Fig. 3 A target set T consisting of three target rectangles on two layers. The coarsest partition into tiles that
is consistent with T is shown by the dotted lines. The figure also shows three possible query locations (s1,
s2, and s3) for which we might be interested in the distance to the closest target. The shortest s1-T-path, the
shortest s2-T-path and the shortest s3-T-path for a cost function depending only on direction and layer are
shown. In this example, the preference directions of layer 1 and 2 are ↔ and �, respectively. Nevertheless
it is cheapest for the s3-T-path to stay on layer 1 since its vertical segment is very short

to V i j
z is the minimum of k2 affine functions for any i, j, z, where k is the number of

different horizontal and vertical edge costs, i.e.,

k:=
∣∣∣
{
ci jdz | i ∈ {0, . . . , p}, j ∈ {0, . . . , q}, d ∈ {↔,�}, z ∈ {1, . . . , l}

}∣∣∣ . (1)

They also showed that all these functions can be computed in O((p + t)(q +
t)lk4 log(p + q + l + t)) time, allowing O(k2) time queries after this preprocess-
ing (plus O(log(p + q + t)) to find the region containing the given vertex by binary
search; here and henceforth p and q refer to the original number of rows and columns,
before refining the grid).

We make multiple improvements over the approach of Peyer et al. [16]. By consid-
ering domination between affine functions with different slopes, we reduce the number
of affine functions that are needed to describe the minimum. By first computing the
distances from the edges on the boundaries of the tiles to the targets, we can compute
these affine functions faster. Finally, we use a regional query data structure to reduce
query time. For any 0 < ε ≤ 1, we can obtain an algorithm with preprocessing time
O((p + t)(q + t)min{k, (p + q + 1)l}l1+ε 1

ε
log(p + q + l + t)) and query time

O(log(p + q + t) + 1
ε
log(k + l)). See Table 1 for an overview.

Our second contribution is a new approach to incremental routing. Rather than
trying to correct a given infeasible input routing with local transformations only, we

123

M. Ahrens et al.

Table 1 Various methods to compute π(v), possibly after preprocessing

Model Preprocessing time Query time Reference

Simple – O(tl2) Proposition 2

Simple – O(tl) Theorem 3

Simple O(t2l3 log l) O(log(t + l)) Theorem 7

General O((p + t)(q + t)lk4 log(p + q + l + t)) O(log(p + q + t) + k2) [16]

General O((p + t)(q + t)min{k, (p + q + 1)l}l1+ε O(log(p + q + t) Corollary 15
1
ε log(p + q + l + t)) + 1

ε log(k + l))

The running times depend on the number t of target rectangles, the number l of layers, and in the general
model on the numbers p and q of coordinates that define the (p + 1)(q + 1) regions, and on the number k
of different horizontal and vertical edge costs (cf. (1)). Note that k ≤ 2(p + 1)(q + 1)l

compute a new routing from scratch, at least for all nets for which the input routing
does not obey all rules. However, in an incremental routing setting most wires will be
legal, i.e., do not have a conflict with any other wire. In order to compute a solution
similar to the input where reasonable, we reserve the space occupied by legal input
wires for the respective net and allow to use edges corresponding to input wires at a
discount. By letting each input wire be a separate tile V i j

z , we can model the discount
in the cost function c and work with reduced costs efficiently. When most of the input
routing can be used, we can find a shortest path much faster than without a discount.

This makes this new approach not only useful for incremental routing, but also for
bulk routing. Treating the output of a track assignment as reservations (wherever it
is legal) and then pursuing our new incremental routing approach can combine the
advantages of the two classical bulk routing approaches, successive shortest paths and
track assignment with local corrections. We explain our new approach in detail in
Sect. 5, where we also show experimental results.

2 Distances without preprocessing in the simple model

In the simple model, there is always a shortest path with a very simple structure:

Lemma 1 Let c : E → R>0 depend only on direction and layer, and let r , s ∈ V .
Then there is a shortest path P between r and s in (G, c) that consists of at most one
sequence of horizontal edges, at most one sequence of vertical edges, and hence at
most three sequences of vias.

Proof Let P be a shortest path, and let P[v,w] and P[v′,w′] be two maximal subpaths
of P in the same direction (all-horizontal or all-vertical), say from v to w and from
v′ to w′, respectively, and let P[w,v′] be the subpath in between. Suppose, without loss
of generality, that P[v,w] and P[v′,w′] are horizontal paths and that the cost of an edge
of P[v,w] is not more expensive than the cost of an edge of P[v′,w′] (note that these
paths may be on different layers). Then translating P[v′,w′] by adding w − v′ to all its
vertices, translating P[w,v′] by adding w′ − v′ to all its vertices, and swapping these
two paths in P yields a walk from r to s with one maximal horizontal subpath less

123

Faster goal-oriented shortest path search for bulk and…

and at most the same number of maximal vertical subpaths. Moreover, the cost does
not increase. If the walk is not a path, we can shortcut it to a path. By induction, the
assertion follows. �

Hence, in order to compute a shortest path, we can enumerate the layers on which
the horizontal sequence and the vertical sequence are, and which of the two comes
first:

Proposition 2 Let c : E → R>0 depend only on direction and layer. Then, without
preprocessing, one can compute dist(G,c)(s, T) for any given s ∈ V and given T ⊆ V
consisting of t rectangles in O(tl2) time.

Proof Enumerate over all t rectangles that T is composed of. For each such rectangle
R, we can determine the vertex r ∈ R that is closest to s (geometrically) in constant
time. Then, for each pair of layers z↔, z� ∈ {1, . . . , l}, we consider two paths that
connect r and s. The first one is composed of the path of vias that goes from r to layer
z↔, followed by the horizontal path that goes to the x-coordinate of s, followed by
the path of vias that goes to layer z�, followed by the vertical path that goes to the
y-coordinate of s, followed by the path of vias that goes to s. Some of these subpaths
can be empty. The second one is constructed analogously, swapping the roles of r and
s. By Lemma 1, one of these 2l2 paths must be optimal. �

We now show how to improve on this, obtaining a linear dependence on the number
of layers:

Theorem 3 Let c : E → R>0 depend only on direction and layer. Then, without
preprocessing, one can compute dist(G,c)(s, T) for any given s ∈ V and given T ⊆ V
consisting of t rectangles in O(tl) time.

Proof Again we enumerate over all t rectangles that T is composed of, and for each
such rectangle R, we determine the vertex r ∈ R that is closest to s (geometrically)
in constant time. First compute the total cost cz1,z2 of a path of vias between layer z1
and layer z2 for all z1, z2 ∈ {1, . . . , l} with {z1, z2} ∩ {zr , zs} �= ∅, where zr and zs
denote the layers of r and s, respectively. This can easily be done in O(l) time.

Now we compute the minimum cost of a path from r to s that (when traversed from
r to s) consists of a path of vias, then a horizontal path, then a path of vias, then a
vertical path, then a path of vias. We will then do the same with exchanging the roles
of r and s, and the smaller of the two is the distance between r and s by Lemma 1.

For each layer z ∈ {1, . . . , l}, consider the vertex vz on layer z whose y-coordinate
is the one of r and whose x-coordinate is the one of s. We first compute the distance d̄z
between r and vz in the subgraph of G that contains no horizontal edges on the layers
1, . . . , z − 1. By Lemma 1, a shortest path from r to vz consists of a path of vias, a
single horizontal path, and another path of vias. Hence d̄z is either the sum of czr ,z
(which we have precomputed) and c↔

z times the difference of the x-coordinates of r
and s, or d̄z+1 + cz,z+1 (if z < l), whichever is smaller. This implies that d̄1, . . . , d̄l
can be computed in reverse order in total time O(l).

Now we compute the distance dz from r to vz in G for all z ∈ {1, . . . , l}. We have
d1 = d̄1 by definition. For z ∈ {2, . . . , l}, we have dz = min{d̄z, dz−1+cz−1,z}, which
allows to compute d1, . . . , dl in total time O(l). See Fig. 4 for an illustration.

123

M. Ahrens et al.

Fig. 4 Illustration of the algorithm described in the proof of Theorem 3. The vertices correspond to values
computed during the algorithm, the edges correspond to the paths used to derive them. The two vertices in
the same gray box are at the same geometric location vz = (xs , yr , z). The algorithm starts by computing
d̄l and then derives d̄z for z ∈ {1, . . . , l−1} as the minimum of d̄z+1+cz,z+1 and the cost of the path using
layer z for the horizontal edges. Then it propagates the values from bottom to top to compute d1, . . . , dl .
For each z ∈ {1, . . . , l} we combine the resulting r -vz -path with the paths indicated on the right to get an
r -s-path. Finally, we take the cheapest of the l paths to obtain a shortest r -s-path

Next we compute the cost of a path from r to s that consists of a shortest path from
r to vz , a vertical path on layer z, and a path of vias. It is given by dz + cz,zs plus c

�
z

times the difference of the y-coordinates of r and s, and thus can now be computed in
constant time. Taking the minimum over all layers z yields a shortest path from r to s
by Lemma 1 and thus completes the proof. �

3 Logarithmic query time in the simple model

We will now show how to achieve O(log(t + l)) query time with polynomial prepro-
cessing time but did not care about the degree of the polynomial. We will show how to
do the same with only O(t2l3 log l) preprocessing time. We will need two ingredients
before we can prove this. The first ingredient is an efficient algorithm for computing
the intersection of three-dimensional half-spaces:

Theorem 4 ([17]) The intersection of a set of n half-spaces in three-dimensional
space can be computed in O(n log n) time. If the intersection is nonempty, it is a
convex polyhedron that is presented as a minimal set of inequalities, the cycle of edges
surrounding each face, and the coordinates of their endpoints.

The second ingredient is an algorithm for solving the planar point location problem,
a well-studied problem in computational geometry. In the following, we regard any
connected, closed part of a line inR2 as a line segment and any region whose boundary
consists of a finite number of line segments as a polygon.

123

Faster goal-oriented shortest path search for bulk and…

Theorem 5 ([14]) Let L be a finite set of line segments that intersect only at their
endpoints and let (Pi)i∈I be the (open polygonal) connected components ofR2 \⋃

L.
Then there is a data structure that requires O(|L| log|L|) preprocessing time and,
given any query point p ∈ R

2, can then determine an index i ∈ I such that p lies in
the closure of Pi in O(log|L|) query time.

Point location algorithms that attain the same theoretic guarantees as [14], but
successively improve practical performance and ease of implementation have been
described in [6, 11, 19].

Theorems 4 and 5 can be combined in order to obtain a data structure for stor-
ing affine functions efficiently such that their pointwise minimum can be queried in
logarithmic time:

Lemma 6 Let F be a set of affine functions f : R2 → R and R:=[x−, x+]×[y−, y+]
a closed rectangle. Then there is a data structure that requires O(|F | log|F |) pre-
processing time and, given any query point p ∈ R, can then determine the value
min f ∈F f (p) in O(log|F |) query time.
Proof We intersect the |F | half-spaces {(x, y, ϕ) ∈ R

3 | ϕ ≤ f (x, y)} for f ∈ F
using Theorem 4. After projecting the result into the plane, we obtain a subdivision of
the rectangle R into at most |F | convex polygons and a minimizing function f ∈ F
for each polygon.

Second, we initialize a data structure to solve the point location problem within
that subdivision.

By Euler’s formula, since each vertex (with possible exception of the four corners
of R) in this subdivision is incident to at least three edges, the subdivision contains at
most 3|F | + 1 line segments. Hence, this preprocessing can be implemented to run in
O(|F | log|F |) time by Theorems 4 and 5.

When given a query location p ∈ R, we look up a polygon containing the query
location in O(log|F |) time by Theorem 5, and evaluate the function attaining the
minimum on that polygon in constant time. If the query point is on the boundary of
multiple polygons, it suffices to evaluate the minimizing function of any one of these
polygons. �

We can now prove the main result of this section:

Theorem 7 Let c : E → R>0 depend only on direction and layer, and let T ⊆
V consist of t rectangles. Then there is a data structure that requires O(t2l3 log l)
preprocessing time and, for any given s ∈ V , can then determine dist(G,c)(s, T) in
O(log(t + l)) query time.

Proof We first interpret our instance as an instance of the general model by choosing
p = q = 0, and then refine the grid with respect to the targets, which yields O(t2l)
tiles V i j

z . We compute an independent data structure for each tile.
By Lemma 1, a shortest path from any s ∈ V to any r ∈ T contains at most one

sequence of horizontal and at most one sequence of vertical edges. For a fixed set of
directions and layers of these sequences, for example north on layer zn and west on
layer zw, there are at most two such paths, depending on whether we first go north and

123

M. Ahrens et al.

then west or vice versa, having possibly different via costs. Given a fixed tile V i j
z , for

every s = (xs, ys, z) ∈ V i j
z , we are interested in the cost of a shortest such path to T ,

which is given by an affine function

f (i, j,z,nw,zn,zw)(xs, ys) = c(i, j,z,nw,zn,zw) − ysc
�
zn + xsc

↔
zw

for some constant c(i, j,z,nw,zn,zw). To obtain the constant, one takes the minimum over
all r = (xr , yr , zr) ∈ T that lie northwest of V i j

z , considering the sum of yr c
�
zn −xr c↔

zw

and the via cost in the cheaper of the two cases regarding the order of the two directions.
If there is no r ∈ T northwest of V i j

z , no path of the required structure exists, and the
constant can be considered to be ∞.

Similarly, an affine function for each of the 1 + 4l + 4l2 combinations

(−), (e, ze), (n, zn), (w, zw), (s, zs), (ne, zn, ze), (nw, zn, zw), (sw, zs, zw),

(se, zs, ze)

can be defined, and f (i, j,z) : (xs, ys) �→ dist(s, T) is the pointwiseminimum of these.
Here (−) means that we go to the target only by vias (or we are already at a target).

We next show how to compute all O(t2l3) affine functions in total time O(t2l3).
We describe this for one combination (nw, zn, zw); it works analogously for the other
combinations. Here we need to compute the constants ci jz :=c(i, j,z,nw,zn,zw) for all tiles
V i j
z . For each layer z, we do this from northwest to southeast. We start with ci jz = ∞

whenever i = 0 or j = q and then set

ci jz = min
{
ci, j+1
z , ci−1, j

z , min
{
υ j+1c�

zn − ξ i c↔
zw

+min
{
cz,zn,zw,z′ , cz,zw,zn,z′

} | (ξ i , υ j+1, z′) ∈ T
}}

in increasing order of i − j , where cz1,z2,z3,z4 is the total cost of the vias to go from
layer z1 to layer z2 to layer z3 to layer z4; see Fig. 5 for an illustration. Since each of
the t target rectangles shows up O(l3) times (once for each combination and each z),
all these O(t2l3) affine functions can be computed in O(t2l3) time.

Rather than storing just a list of these 1+4l +4l2 affine functions for each V i j
z , we

now build a data structure for each tile, using Lemma 6, in order to obtain a logarithmic
query time. The total preprocessing time required to build these data structures is
O(t2l3 log l).

When given a query location s ∈ V , we find the correct tile V i j
z and hence the

correct data structure in O(log t) time by performing two binary searches. Then we
look up the distance from s to T in O(log l) time by Lemma 6. If the query point is on
the boundary of multiple tiles, it suffices to evaluate the minimizing function of any
one of these tiles. �

123

Faster goal-oriented shortest path search for bulk and…

Fig. 5 Computation of the constants ci jz for a fixed layer z in the proof of Theorem 7. The left picture
illustrates the propagation for the directions nw, the right picture for n. The constants corresponding to tiles
that have no neighboring tiles in northwest or north direction, respectively, are set to ∞. When determining
the constant c21z , the constants c22z and c11z in the nw case, and only c22z in the n case, are taken into account.
Moreover, if the marked point in the nw case or the marked line segment in the n case belongs to a target
rectangle in any layer z′, the cost of a path to this point or line contributes to the computation of c21z as well

4 The general model

In this section, we develop an algorithm to compute the potential π(v) =
dist(G,c)(v, T) for any v in the general model efficiently after preprocessing. We
will assume T to be consistent with the grid, i.e., we have already refined the
grid if it was not. Our preprocessing will work on the horizontal and vertical

line segments of the grid, i.e., the sets Hori jz :=
{
(x, y, z) ∈ V i j

z | y = υ j
}

and

Veri jz :=
{
(x, y, z) ∈ V i j

z | x = ξ i
}
. The exposition will focus on the horizontal line

segments; vertical segments can be handled analogously. Our algorithm consists of
two preprocessing steps and a query step. The first preprocessing step is a variant of
Dijkstra’s algorithm. For its correctness, the following observation about the structure
of shortest paths, similar to Lemma 1 for the simple model, is essential:

Lemma 8 Let c : E → R>0 depend on tile and direction, let T ⊆ V be consistent
with the grid, and s ∈ V \T . Then there is a shortest path P from s to T in (G, c) that
uses only one type of edges (either horizontal, vertical or via) before entering some
tile in which s does not lie.

Proof By the same argument as in Lemma 1, there is a shortest path P such that every
subpath of P that is entirely in the interior of one column {(x, y, z) ∈ V | ξ i ≤ x ≤
ξ i+1} contains at most one horizontal sequence of edges and every subpath of P that
is entirely in the interior of one row {(x, y, z) ∈ V | υ j ≤ y ≤ υ j+1} contains at most
one vertical sequence of edges. It is easy to see that such a path satisfies the claim. �

Our algorithmwill first compute dist(G,c)(s, T) for all s lying in horizontal segments
of the grid. By applying Lemma 8 inductively, we may assume that the corresponding
shortest paths never use a horizontal edge or a via in the interior of a tile.

123

M. Ahrens et al.

In the variant of Dijkstra’s algorithm that we apply, we do not mark all vertices
whose labels are guaranteed to be permanent explicitly, but the set of these vertices
at some point in the algorithm is implicitly given: it consists of all vertices that have
a smaller label than the one considered in the current iteration. In every iteration,
several vertices might be added to this set and several updates of neighboring vertices
are performed. Thiswill be useful in order to decrease the required number of iterations
significantly compared to the regularDijkstra’s algorithm,while the additional updates
in every iteration can be performed with negligible overhead. This is possible because
all horizontal edges along some horizontal segment have the same cost, and hence,
the corresponding labels can be represented by affine functions that can be stored and
updated very efficiently. Instead of vertices we will store affine functions in a heap
(priority queue), and the key of such a function will be the minimum relevant function
value.

More precisely, for each horizontal segment Hori jz , the algorithm maintains a set
Fi j
z of affine functions f : [ξ i , ξ i+1] → R≥0 such that each value f (x) corresponds

to the cost of a path between (x, υ j , z) and T . At any point during the algorithm, for
every vertex (x, υ j , z), the minimum value min{ f (x) | f ∈ Fi j

z } can be considered
to be its current label. If ξ i = ξ i+1, we simply store that value. Otherwise we keep
only those functions that are not dominated, i.e., attain the pointwise minimum in
more than one point. The key of a non-dominated function f ∈ Fi j

z is the minimum
function value in the interval in which f attains the pointwise minimum. For storing
the sets Fi j

z , we will use the following result. See Fig. 6 for an illustration.

Lemma 9 Let x−, x+ ∈ R be given with x− < x+. We can maintain a data structure
that

• stores a set F of affine functions g : R → R such that the set {x ∈ [x−, x+] :
g(x) = min f ∈F f (x)} of all points where the function attains the minimum is an
interval [x−

g , x+
g] with x−

g < x+
g ,

• stores for every function g the interval [x−
g , x+

g] and the minimum value
key(g):=min{g(x−

g), g(x+
g)} of g on this interval, and

• can be updated in O((D + 1) log(D + |F |)) time when adding a new function,
where D is the number of functions that have to be removed from F because they
are dominated.

Moreover, each update increases the key of at most one function that remains in F,
and never decreases a key.

Proof We store the set of affine functions as a binary search tree in which they are
sorted by their slopes. When a function g is added, we check whether g is dominated
and otherwise insert it into the search tree in time O(log |F |). Then, starting from g,
we iterate forward and backward, deleting all functions f that are identical to g or
dominated by g on the whole interval [x−

f , x+
f]. Each of these operations requires time

O(log |F |). If a function f is partly dominated by g, then its interval and, if necessary,
its key are updated. It can be required to shorten two intervals, left and right of the
interval of g. However, only one key can increase due to the concavity of the pointwise
minimum. �

123

Faster goal-oriented shortest path search for bulk and…

Fig. 6 Update of the data structure described in Lemma 9 when adding an affine function g to a set
F = { f1, f2, f3, f4, f5}: here f3 and f4 are deleted, x

+
f2

decreases, key(f2) increases, and x−
f5

increases

In addition to storing each set Fi j
z as specified in Lemma 9, we maintain a binary

heap representing all functions in
⋃{Fi j

z | i ∈ {0, . . . , p}, j ∈ {1, . . . , q}, z ∈
{1, . . . , l}} that have not been processed yet, using the keys defined in Lemma 9. The
functions that are added to or removed from some Fi j

z must be added to or removed
from the heap at the same time, and whenever a key changes, it must be updated also
in the heap.

The algorithm starts by initializing Fi j
z :=∅ for all i ∈ {0, . . . , p}, j ∈ {1, . . . , q},

and z ∈ {1, . . . , l}. If Hori jz ⊆ T , we add the constant function x �→ 0 to the
corresponding set Fi j

z . If not the whole segment, but one (or both) of its endpoints
lies in T , we add the affine function describing the distance to this endpoint, i.e.,
x �→ min{ci j↔z , ci(j−1)↔

z } · (x − ξ i) or x �→ min{ci j↔z , ci(j−1)↔
z } · (ξ i+1 − x).

In every iteration, a function f with minimum value key(f) is chosen and removed
from the heap. The function f describes the labels of a subset of some horizontal
segment Hori jz , corresponding to the interval [x−

f , x+
f]. We now propagate the labels

from these vertices to the neighboring horizontal segments by computing at most six
new affine functions:

(down) If z > 1, add the function x �→ f (x) + min{ci jz−1,z, c
i(j−1)
z−1,z } to Fi j

z−1.

(up) If z < l, add the function x �→ f (x) + min{ci jz,z+1, c
i(j−1)
z,z+1 } to Fi j

z+1.

(south) If j > 1, add the function x �→ f (x) + ci(j−1)�
z · (υ j − υ j−1) to Fi(j−1)

z .

(north) If j < q, add the function x �→ f (x) + ci j�z · (υ j+1 − υ j) to Fi(j+1)
z .

(west) If i > 0, add the function x �→ f (ξ i) + min{c(i−1) j↔
z , c(i−1)(j−1)↔

z }·
(ξ i − x) to F (i−1) j

z .

(east) If i < p, add the function x �→ f (ξ i+1) + min{c(i+1) j↔
z , c(i+1)(j−1)↔

z }·
(x − ξ i+1) to F (i+1) j

z .

The algorithm stops when the heap is empty. For an example run of the algorithm,
see Figure 7. Its correctness, i.e., the fact that, after termination, for all i ∈ {0, . . . , p},

123

M. Ahrens et al.

j ∈ {1, . . . , q}, z ∈ {1, . . . , l}, and (x, υ j , z) ∈ Hori jz , we have min{ f (x) | f ∈
Fi j
z } = dist(G,c)((x, υ j , z), T), follows from the following two lemmas.

Lemma 10 Let i ∈ {0, . . . , p}, j ∈ {1, . . . , q}, z ∈ {1, . . . , l}, and (x, υ j , z) ∈
Hori jz . If, at any point during the algorithm, an affine function f is added to Fi j

z ,
then there is an (x, υ j , z)-T -path of cost at most f (x). In particular, f (x) ≥
dist(G,c)((x, υ j , z), T) holds for all f ∈ Fi j

z .

Proof We prove the assertion by induction on the order in which the affine functions
are added (for all combinations of i , j , z, and x at once). If f is added during the
initialization phase, then there is a path with the desired property that only consists
of horizontal edges. Otherwise, f is added during some iteration later on and derived

from some g ∈ Fi ′ j ′
z′ . Then it suffices to build (possibly zero) edges in one of the six

possible directions until a vertex (x ′, υ j ′ , z′) ∈ Hori
′ j ′
z′ is reached. By the induction

hypothesis, there is an (x ′, υ j ′ , z′)-T -path of cost at most g(x ′). The propagation
ensures that f (x) is at least the cost of this path combined with the straight series of
edges. �
Lemma 11 Let K ∈ R≥0 be the key of a function that is chosen in some iteration of
the algorithm (or K = ∞ if the algorithm has terminated) and let i ∈ {0, . . . , p}, j ∈
{1, . . . , q}, z ∈ {1, . . . , l}, and x ∈ {ξ i , . . . , ξ i+1} such that dist(G,c)((x, υ j , z), T) <

K. Then there is a function f ∈ Fi j
z with f (x) = dist(G,c)((x, υ j , z), T).

Proof Let s = (x, υ j , z).We prove the result by induction on dist(G,c)(s, T). Note that

there can be different i and j with s ∈ Hori jz , both because x can be a grid coordinate
and because there can be two grid coordinates at υ j . Our inductive step consists of
two parts. In the first part, we will disregard the given i and j and instead show it is
possible to choose i and j such that the inductive hypothesis holds for the given point s.

If s ∈ T , then an affine function as desiredwas added to some Fi j
z in the initialization

phase. By Lemma 10, the minimum value of the functions in Fi j
z at x cannot decrease.

Because we only remove dominated functions, there will always be a function in Fi j
z

attaining this value.
If s /∈ T , then consider a shortest s-T -path P . By Lemma 8, we may assume

that P starts with a straight series of edges to the first point that lies in a tile not

containing s. Denote this point by s′. Consider i ′, j ′, and z′ with s′ ∈ Hori
′ j ′
z′ . By

the induction hypothesis, a function g with g(x ′) = dist(G,c)(s′, T) is contained

in Fi ′ j ′
z′ . Using Lemma 10, we derive that g is not strictly dominated in x ′. Hence,

key(g) ≤ g(x ′) = dist(G,c)(s′, T) < dist(G,c)(s, T) < K . Since keys never decrease
during the algorithm by Lemma 9, g was chosen and removed from the heap in a prior
iteration. Now note that it is possible to choose i , j , i ′, and j ′ such that s ∈ Hori jz and
the propagation of g adds a function f satisfying f (x) = c(P) to Fi j

z . This concludes
the first part of the inductive step.

For the second part of the inductive step, consider all i and j with s ∈ Hori jz . Note
that the possible choices of i and j are independent and consecutive. We know from

123

Faster goal-oriented shortest path search for bulk and…

Fig. 7 Example run of the algorithm computing the distance from all horizontal line segments to T . The
instance consists of two horizontally adjacent tiles (i.e., p = 3, q = 2, and l = 1). The coordinates of
these tiles are ξ1 = 0, ξ2 = 4, ξ3 = 7, υ1 = 0, and υ2 = 1. The target T = {(0, 0, 1)} consists of the
single point in the bottom left corner of the left tile. We disregard the outside tiles (by setting their costs to
infinity). All other costs are as written in the centers of the respective tiles. During the algorithm, five affine
functions are added to the four horizontal segments. The horizontal segments are colored by the function
attaining the minimum in the end of the algorithm. The incoming arrow depicts the propagation by which
that function was added and is numbered by the iteration of the algorithm (where 0 stands for initialization)
(color figure online)

the first part that there are some i1 and j1 such that there is a function f1 ∈ Fi1 j1
z with

f1(x) = dist(G,c)(s, T) < K . Since this function is not dominated in x , we conclude
key(f1) < K . This means that this function has already been propagated and has
added functions with the same value at x to all adjacent Fi j

z for which s ∈ Hori jz .
Successive application concludes the proof. �

Note that both steps are necessary in the above proof. Figure7 contains one such
situation: we are looking for a function h ∈ F12

1 that gives us the correct distance from
the top right corner of the left tile to T , i.e., with h(4) = dist(G,c)((4, 1, 1), T) = 18.
Since the vertical cost is lower in the right tile, the first step gives us the function
g : x �→ 4 + x ∈ F21

1 , which is propagated to f : x �→ 14 + x ∈ F22
1 , which in turn

is propagated to the desired function h : x �→ 26 − 2x ∈ F12
1 .

To ensure that the algorithm terminates and has the desired running time, we first
show:

Lemma 12 Let k′:=min{k, (q + 1)l}. The number of slopes of functions ever added
to Fi j

z is at most 2k′ + 1. In particular, this also bounds the cardinality of Fi j
z at any

stage.

Proof By induction, the slope of every affine function added to Fi j
z during the algo-

rithm is either zero or an element of {+ci j
′↔

z′ ,−ci j
′↔

z′ | j ′ ∈ {0, . . . , q}, z′ ∈
{1, . . . , l}}. Hence, if there were more than 2k′ + 1 functions in Fi j

z , then there would
be two different functions having the same slope. But then one of them is strictly domi-
nated by the other one and would be removed from Fi j

z , contradicting the specification
in Lemma 9. �

In order to achieve the desired running time, we bound the number of iterations
by (p + 1)q(2k′ + 1)l. Each iteration chooses and removes a function f from the
heap. Let (x, υ j , z) ∈ Hori jz such that f (x) = key(f). By Lemma 11, f (x) =
dist((x, υ j , z), T) and, by Lemma 10, each function g added to Fi j

z later on satisfies
g(x) ≥ distG,c((x, υ j , z), T). This means no other function with the same slope as f

can ever be an element of Fi j
z in the future. Since the number of slopes of functions

123

M. Ahrens et al.

in Fi ′ j ′
z′ was bounded by 2k′ + 1 in Lemma 12, we obtain the claimed bound on the

number of iterations.
Finally, we need to implement each iteration in amortized time O(log(p+ q + l)).

Since each iteration generates at most six new functions and the number of iterations is
bounded by (p+1)q(2k′ +1)l, at most 2(p+1)ql+6(p+1)q(2k′ +1)l functions are
added in total, including the initialization. This also bounds the size of the binary heap
to O(pq2l2) such that each heap operation can be performed in time O(log(p+q+l)).
By Lemma 9, each added function causes at most one increase-key operation. The total
number of deletions is clearly bounded by the total number of insertions. Thus, the
total time needed for the heap operations is given by O(pqk′l log(p + q + l)). The
same holds for the time required for the updates of the sets Fi j

z by Lemma 9. This
proves:

Theorem 13 There is an algorithm that computes for each horizontal segment Hori jz
a set Fi j

z of at most 2k′ + 1 affine functions such that min
{
f (x) | f ∈ Fi j

z

}
=

dist(G,c)((x, υ j , z), T) for all (x, υ j , z) ∈ Hori jz . The algorithm can be implemented
to run in O(pqk′l log(p + q + l)) time, where again k′ = min{k, (q + 1)l}. �

We will now consider how to implement queries. We do so for all pairs of i and
j independently. If we wanted to execute a query right after executing the algorithm
described by Theorem 13 without any further preprocessing, the best we could do is
O(log(p + q) + l log k) query time: we first compute i and j by binary search. In
each of the 4l segments Hori jz′ , Ver

(i+1) j
z′ , Hori(j+1)

z′ , and Veri jz′ (z
′ ∈ {1, . . . , l}), we

then compute the closest point r to the query location s. The distance from s to r can
be computed in amortized constant time and the distance from r to T can be looked
up in O(log k) time in the data structure storing the affine functions of that segment.

The above can be seen as an evaluation of theminimum of O(min{k, (p+q+1)l}l)
affine functions. Hence it might be worthwhile building up the data structure described
by Lemma 6 in an additional preprocessing step. This would speed up our queries to
O(log(p + q + l)) time, however at the cost of an additional O(min{k, (p + q +
1)l}l log(p + q + l)) preprocessing time per tile.

The following result will obtain a trade-off between these two alternatives. By
choosing the trade-off factor 0 < ε ≤ 1 to be a small constant, we obtain a query
time of O(log(p + q + l)) after a preprocessing time which is arbitrarly close to
O(pq min{k, (p + q + 1)l}l log(p + q + l)).

Theorem 14 Let 0 < ε ≤ 1, let c : E → R>0 depend on tile and direction, and
let T ⊆ V be consistent with the grid. Then there is a data structure that requires
O(pq min{k, (p + q + 1)l}l1+ε 1

ε
log(p + q + l)) preprocessing time and, for any

given s ∈ V , can then determine dist(G,c)(s, T) in O(log(p+q)+ 1
ε
log(k+ l)) query

time.

Proof We first apply Theorem 13 to compute dist(G,c)(v, T) for all v in some Hori jz
and (analogously) for all v in some Veri jz . Now our preprocessing will consider all
combinations of i ∈ {0, . . . , p} and j ∈ {0, . . . , q} separately. Given a query location

123

Faster goal-oriented shortest path search for bulk and…

(x, y, z) ∈ V i j
z , i and j can be determined in O(log(p + q)) time by binary search.

Hence we fix i and j from now on.
We refer to the union of the up to 4l segments Hori jz′ , Ver

(i+1) j
z′ , Hori(j+1)

z′ , and

Veri jz′ (z
′ ∈ {1, . . . , l}) as the boundary. First suppose that a shortest s-T -path does

not touch the boundary. Since T is consistent with the grid, such a path consists of
vias only. The cost of such vias-only paths can be easily precomputed in O(pql) total
preprocessing time, allowing for O(1) query time.

Now suppose that a shortest s-T -path touches the boundary at least once. Consider
a (without loss of generality) a horizontal segment H of the boundary that is touched
first by one such path. By Lemma 8, we may pick our shortest path such that it starts
with a sequence of vias to the layer of H , followed by a sequence of vertical edges
to H . Hence, we can compute the cost of the path until it first touches H as an affine
function in y, where s = (x, y, z). The rest of the path is a shortest path from some
point in H to T , so we already computed its cost as a minimum of O(min{k, (q+1)l})
affine functions in x , by Theorem 13. By iterating over each of these affine functions
for every horizontal and vertical segment in the boundary, we can express the cost of
a shortest s-T -path as a minimum of O(min{k, (p + q + 1)l}l) affine functions in x
and y. Note that the only dependence of these functions on z is the cost of the initial
via stack. We will exploit this now.

Instead of building a separate data structure for each layer, each involving all these
affine functions, we distinguish between the cases whether the shortest path from s to
T begins without vias, with vias up to a higher level, or with vias down to a lower layer.
For the first case, we build up the point location data structure just as in Lemma 6,
but each involving only the O(min{k, (p+q + 1)l}) affine functions on the boundary
segments on that layer. We call these data structures D=z for z ∈ {1, . . . , l}.

For the other two cases, we build data structures D↑[a,b] and D↓[a,b] for some
1 ≤ a ≤ b ≤ l. Here D↑[a,b] considers query locations on all layers z ∈ {1, . . . , a}
and all boundary segments in the layer range {a, . . . , b}, i.e., paths from (x, y, z) that
begin with a (possibly empty) via stack from layer z up to some layer z′ ∈ {a, . . . , b}
and then proceed via a straight horizontal or vertical path to the boundary. Similarly,
D↓[a,b] considers query locations on layers z ∈ {b, . . . , l} and boundary segments
in the layer range {a, . . . , b}. Note that such a data structure involves O((b + 1 −
a)min{k, (p+q +1)l}) affine functions, hence, by Lemma 6, it can be constructed in
O((b + 1− a)min{k, (p + q + 1)l} log(p + q + l)) time and then allows for queries
in O(log(k + l)) time.

The main advantage is that we can use the same data structure D↑[a,b] for all layers
z ∈ {1, . . . , a} because the cost of the via stack from layer z to layer a is a constant
term that depends only on z. We can design the data structures so that each affine
function on the boundary shows up only in at most 2lε (instead of l) of these data
structures.

To this end, we consider a balanced arborescence A whose leaves are the layers
1, . . . , l, such that A has maximum out-degree d = �lε� and depth � 1

ε
�, and, for

every vertex v of A, the set of leaves reachable from v in A is a consecutive range
L(v). Let parent(v) denote the parent of v (unless v is the root). For every vertex v

except for the root, let L>(v):={z ∈ L(parent(v)) | z > z′ for all z′ ∈ L(v)} and

123

M. Ahrens et al.

Fig. 8 A possible choice for the aborescence A in the proof of Theorem 14 if l = 39 and ε = 1
3 . For the

sake of clarity, the branches below the five white vertices were omitted. Below each node v, there is a gray
label describing the range L(v). If v is not the root, there are also a red label left of v describing the layer
range L<(v) and a blue label right of v describing the layer range L>(v) (color figure online)

L<(v):={z ∈ L(parent(v)) | z < z′ for all z′ ∈ L(v)}. Then we store D↑L>(v) and
D↓L<(v), unless this layer range is empty; see Fig. 8.

To answer a query for a point on layer z, we ask D=z and then traverse the path
from z to the root in the arborescence A, and for each vertex v on that path (except
for the root), we ask D↑L>(v) and D↓L<(v). We have to query at most 2� 1

ε
� + 1 data

structures, and each of these queries takes O(log(k + l)) time.
To bound the preprocessing time, we see that each layer z appears in the layer

range of only d data structures on each level of the arborescence (one per vertex
whose parent’s layer range contains z), and hence O(lε 1

ε
) overall. Hence, the total

preprocessing time is O(min{k, (p+ q + 1)l}l1+ε 1
ε
log(p+ q + l)). Since we do this

for all i and j , the theorem follows. �
Corollary 15 Let 0 < ε ≤ 1, let c : E → R>0 depend on tile and direction, and let
T ⊆ V , not necessarily consistent with the grid. Then there is a data structure that
requires O((p+ t)(q+ t)min{k, (p+q+1)l}l1+ε 1

ε
log(p+q+l+ t)) preprocessing

time and, for any given s ∈ V , can then determine dist(G,c)(s, T) in O(log(p + q +
t) + 1

ε
log(k + l)) query time.

Proof Refine the grid with respect to the targets, then apply Theorem 14 to ε and the
refined instance. Note that this refinement does not increase the number of different
costs. �

We remark that the same ideas used in this section could be applied in the simple
model to obtain a faster preprocessing time of O(t2l2+ε 1

ε
log l) at the cost of a slower

query time of O(log t + 1
ε
log l).

5 Practical aspects

5.1 Implementation

With some modifications that we will describe below, we implemented the algorithms
presented in the previous sections as part of BonnRoute [1, 2, 7, 12], a detailed router

123

Faster goal-oriented shortest path search for bulk and…

developed at the University of Bonn in joint work with IBM. BonnRoute is the main
detailed routing tool used by IBM for the design of its processor chips.

Up to parallelization and conflict resolution, BonnRoute routes one net after the
other. Each net is routed by iteratively connecting two of its components by a path
until the net is fully connected, i.e., one component remains. The path search is the
algorithmic core of BonnRoute and requires approximately 80–90% of the total run-
time.

To ensure that the layout can be manufactured, certain design rules must be obeyed.
For example, two vias must not be too close to each other even if they belong to the
same net. Shortest paths in the detailed routing graph often correspond to wirings that
violate design rules. Respecting even simple design rules is NP-hard [1]. BonnRoute
uses a framework consisting of multiple components for avoiding violations. First,
every computed path is handed to a post-processing routine, which attempts to resolve
violations locally. Second, we applymulti-labeling, i.e., we search for shortest paths in
amodified graph that can havemultiple copies of each vertex (and different edges). The
modifications are done in such a way that certain design rule violations are avoided.
Finally, we impose restrictions to avoid violations at the start and end of a path. For
further implementation details, see [1, 2].

All experiments were performed on the same AMD EPYC 7601 machine with 64
CPUs and 1024GB main memory using 64 threads. Table 2 gives an overview of our
testbed. It consists of nine real-world instances from three recent IBM processor chips
in 7nm and 5nm technology nodes. We started all experiments on the same instance
from the same snapshot, which was taken right before the detailed routing. At this
point, a (three-dimensional) global routing and possibly an allowed layer range were
already computed for each net.

We use edge costs as they have been developed for many years in real design
practice. They have three main components. The first component is called the base
cost. The base cost does not depend on the net and models the amount of routing
resources consumed by a path. Wiring against the preferred direction of a layer (if
allowed at all) is ten times as expensive as wiring in the preferred direction. Apart
from that, wires in x- and y-direction have the same base cost on all layers. The base
cost of vias is chosen such that a via bridge, i.e., a path consisting of two vias on
the same layer and a single segment of wiring in preferred direction between them, is
cheaper than the direct connection between the two endpoints if and only if it blocks
strictly fewer additional tracks. This means that the precise via costs depend heavily on
the precise design rules and track patterns of the technology. On the highest layers, the
base cost of vias can be more than ten times more expensive than on the lowest layers.
This is because the thicker wires on the high layers require a track pattern with larger
spacing. The second component of the cost function is an additive penalty, increasing
the cost of wires outside of the assigned layer range. This is a heuristic approach to
avoid timing failures due to wires on lower layers having more resistance. Finally, the
third component serves to restrict our path search to vertices that are inside of the area
corresponding to the global routing solution. In the context of our general cost model,
this can be done by setting the cost to infinity outside of this area.

Table 3 compares the performance of path searches with the original edge costs and
with the reduced costs using three feasible potentials. Each of these three potentials is

123

M. Ahrens et al.

Table 2 Testbed consisting of nine real-world instances

Chip Tech l |V | Area Wires Vias Nets Pins Calls t pql
109 mm2 m 106 106 106 106

A1 7nm 10 1.0 0.08 2.3 3.50 0.37 1.15 0.87 1.83 3018

A2 5nm 10 1.1 0.09 3.2 3.22 0.29 0.92 0.68 1.98 3180

A3 7nm 10 1.4 0.10 2.8 2.75 0.26 0.78 0.56 1.94 3074

B1 5nm 16 4.7 0.36 9.6 6.67 0.63 1.79 1.38 2.24 10868

B2 7nm 16 15.9 1.20 28.6 18.82 1.73 5.00 3.98 2.09 10410

B3 7nm 16 36.7 2.77 24.8 14.04 1.37 3.73 2.75 2.51 12123

C1 7nm 16 94.4 6.52 26.8 1.78 0.14 0.31 0.29 6.49 28739

C2 7nm 18 244.7 16.73 97.2 8.19 0.57 1.21 2.60 7.46 52052

D1 7nm 16 9615.9 601.97 178.3 10.30 0.88 1.86 1.96 5.77 19065

Tech refers to the naming of the technology nodes by the foundry. The vertex set V of the detailed routing
graph is the set of all locations that are on track with respect to at least one wire type on the current layer
and would be on track when projected to at least one adjacent layer. Both (total length of) Wires and (total
number of) Vias refer to the detailed routing computed by BonnRoute. Calls is the number of calls to our
Dijkstra implementation. Since BonnRoute may try out different side constraints to find a path with as few
design rule violations as possible, this does not match the number of computed paths. t and pql are the
arithmetic mean over all calls to the preprocessing

the distance to T in the same supergraph G of G ′, but with respect to different edge
costs c. For the simple and the general model, our implementation differs from the
description in the previous sections as described below.

• Since t is usually small (3.3 on average), we iterate over all target rectangles in
T for every query. When computing the distance from the query location to one
of the target rectangles in the simple model, we know the start and end layer. If
we guess the lowest and highest layer used by a shortest path, the distance can be
computed in constant time (Proposition 2). Due to the special structure of our cost
function, at most l combinations need to be considered. In a preprocessing step,
we compute those combinations that can be optimal for some query locations.

• The implementation of the generalmodel uses a modified version of the algorithm
used in Theorem 13. Since the distance from a single tile to T can be expressed as
a minimum of very few affine functions (on every instance, the average is below
1.2), it is more efficient to compute these functions instead of the distance from the
horizontal and vertical segments to T . On the other hand, instead of Lemma 9, we
need to use amore complicated data structure tomaintain the set of non-dominated
functions. We store the convex polygon of points on which each function attains
the minimum. This way, insertion can be implemented to run in O(|F | log |F |)
time. During each query, we find the correct tile in O(log(p + q + t)) time using
binary search and evaluate all non-dominated functions of that tile on the query
location to compute the minimum.

The results show that the general potential performs significantly better than the simple
potential, which already performs much better than the �1-distance potential. Both the
number of labels and the runtime improve on every instance, even when considering

123

Faster goal-oriented shortest path search for bulk and…

Ta
bl
e
3

Pe
rf
or
m
an
ce

of
fo
ur

di
ff
er
en
tf
ea
si
bl
e
po
te
nt
ia
ls
in

ou
r
te
st
be
d

A
ll
D
ijk

st
ra

ca
lls

St
an
da
rd

D
ijk

st
ra

ca
lls

To
ta
lB

on
nR

ou
te

C
hi
p

Po
te
nt
ia
l

Pr
ep
ro
ce
ss
in
g

R
un
tim

e
L
ab
el
s

R
un
tim

e
L
ab
el
s

W
al
lt
im

e
h:
m
m

h:
m
m

10
9

h:
m
m

10
9

h:
m
m

A
1

W
ith

ou
t

0:
00

19
:1
2

19
.7

15
:2
1

18
.2

0:
35

A
1

�
1
-d
is
ta
nc
e

0:
00

6:
05

5.
8

3:
53

4.
9

0:
22

A
1

Si
m
pl
e

0:
00

4:
28

4.
0

2:
32

3.
2

0:
21

A
1

G
en
er
al

0:
47

3:
46

2.
9

1:
49

2.
1

0:
20

A
2

W
ith

ou
t

0:
00

15
:0
4

17
.0

11
:2
0

15
.2

0:
28

A
2

�
1
-d
is
ta
nc
e

0:
00

6:
16

6.
5

3:
41

5.
2

0:
21

A
2

Si
m
pl
e

0:
00

5:
37

5.
6

3:
06

4.
4

0:
20

A
2

G
en
er
al

0:
33

4:
34

4.
0

2:
09

2.
8

0:
19

A
3

W
ith

ou
t

0:
00

15
:2
5

16
.8

12
:1
4

15
.2

0:
27

A
3

�
1
-d
is
ta
nc
e

0:
00

5:
38

5.
9

3:
39

4.
9

0:
17

A
3

Si
m
pl
e

0:
00

5:
02

5.
3

3:
10

4.
3

0:
17

A
3

G
en
er
al

0:
27

3:
58

3.
6

2:
09

2.
6

0:
19

B
1

W
ith

ou
t

0:
00

62
:4
6

59
.1

37
:1
5

44
.9

1:
42

B
1

�
1
-d
is
ta
nc
e

0:
00

37
:1
5

31
.8

16
:3
7

20
.6

1:
17

B
1

Si
m
pl
e

0:
03

31
:4
3

26
.7

13
:1
4

16
.9

1:
13

B
1

G
en
er
al

3:
12

26
:2
3

20
.1

9:
33

11
.5

1:
11

B
2

W
ith

ou
t

0:
00

19
4:
21

16
8.
5

11
9:
21

13
6.
2

5:
13

B
2

�
1
-d
is
ta
nc
e

0:
00

10
8:
31

87
.1

54
:3
3

64
.0

3:
55

B
2

Si
m
pl
e

0:
10

91
:5
6

71
.7

41
:3
5

50
.2

3:
40

B
2

G
en
er
al

9:
37

77
:5
8

54
.7

30
:3
3

35
.2

3:
38

B
3

W
ith

ou
t

0:
00

14
3:
39

14
1.
3

10
9:
28

12
1.
7

4:
08

B
3

�
1
-d
is
ta
nc
e

0:
00

78
:3
9

74
.7

50
:4
9

59
.3

3:
15

123

M. Ahrens et al.

Ta
bl
e
3

co
nt
in
ue
d

A
ll
D
ijk

st
ra

ca
lls

St
an
da
rd

D
ijk

st
ra

ca
lls

To
ta
lB

on
nR

ou
te

C
hi
p

Po
te
nt
ia
l

Pr
ep
ro
ce
ss
in
g

R
un
tim

e
L
ab
el
s

R
un
tim

e
L
ab
el
s

W
al
lt
im

e
h:
m
m

h:
m
m

10
9

h:
m
m

10
9

h:
m
m

B
3

Si
m
pl
e

0:
07

60
:1
5

56
.7

35
:3
3

43
.6

2:
57

B
3

G
en
er
al

6:
48

45
:1
8

38
.5

22
:4
8

26
.9

2:
54

C
1

W
ith

ou
t

0:
00

11
1:
55

12
9.
4

86
:2
4

11
3.
0

2:
20

C
1

�
1
-d
is
ta
nc
e

0:
00

10
2:
23

92
.0

77
:3
0

77
.9

2:
20

C
1

Si
m
pl
e

0:
00

86
:2
1

78
.9

63
:1
6

66
.1

1:
56

C
1

G
en
er
al

0:
57

68
:2
1

59
.4

45
:5
0

48
.0

1:
45

C
2

W
ith

ou
t

0:
00

23
31

:3
0

13
78

.3
29

0:
01

35
0.
9

41
:4
0

C
2

�
1
-d
is
ta
nc
e

0:
00

21
36

:2
3

11
10

.2
30

9:
56

27
4.
6

38
:3
6

C
2

Si
m
pl
e

0:
08

19
97

:0
4

10
24

.7
25

2:
46

22
9.
7

36
:3
6

C
2

G
en
er
al

16
:5
9

19
42

:0
3

93
5.
8

20
6:
34

18
0.
6

36
:0
6

D
1

W
ith

ou
t

0:
00

50
39

:0
8

33
15

.9
39

37
:4
4

28
18

.2
86

:1
4

D
1

�
1
-d
is
ta
nc
e

0:
00

29
76

:0
7

14
52

.6
20

15
:0
2

11
06

.8
53

:4
5

D
1

Si
m
pl
e

0:
06

19
09

:2
3

95
8.
0

11
02

:3
8

66
3.
5

36
:3
1

D
1

G
en
er
al

7:
16

14
35

:3
7

79
6.
8

77
3:
07

53
8.
7

29
:0
8

Su
m

W
ith

ou
t

0:
00

79
33

:0
4

52
46

.5
46

19
:1
2

36
33

.9
14

2:
52

Su
m

�
1
-d
is
ta
nc
e

0:
02

54
57

:1
9

28
67

.0
25

35
:4
5

16
18

.6
10

4:
12

Su
m

Si
m
pl
e

0:
39

41
91

:5
1

22
32

.0
15

17
:5
2

10
82

.4
83

:5
4

Su
m

G
en
er
al

46
:4
0

36
08

:0
0

19
16

.2
10

94
:3
6

84
8.
9

75
:4
4

In
th
e
ro
w
s
w
it
ho

ut
po
te
nt
ia
l,
ea
ch

qu
er
y
re
tu
rn
s
0
in

co
ns
ta
nt

tim
e.

W
he
n
us
in
g

�
1-
di
st
an

ce
,
th
e
di
st
an
ce
s
in

x-
an
d
y-
di
re
ct
io
n
ar
e
sc
al
ed

by
th
e
m
in
im

al
c↔ z

an
d
c� z

,
re
sp
ec
tiv

el
y,
ov
er
al
lz
.A

n
O

(l
)
pr
ep
ro
ce
ss
in
g
co
m
pu

te
s
th
es
e
tw
o
nu

m
be
rs
an
d
th
e
to
ta
lc
os
tc

1,
z
of

vi
as

fr
om

la
ye
r1

to
ea
ch

la
ye
r
z;
fo
rt
he

di
st
an
ce

of
tw
o
po

in
ts
on

la
ye
rs

z
<

z′ ,
w
e
th
en

us
e
c 1

,z
′−

c 1
,z
.T

he
qu

er
y
re
tu
rn
s
th
e

�
1
-d
is
ta
nc
e
to

T
in

O
(t

)
tim

e
by

ite
ra
tin

g
ov
er

th
e
ta
rg
et
s.
In

th
e
si
m
pl
e
an
d
ge
ne
ra
lr
ow

s,
th
e
sh
or
te
st
di
st
an
ce

to
T
in

th
e
re
sp
ec
tiv

e
m
od
el
s
is
re
tu
rn
ed
.H

er
e
th
e
on
ly

di
ff
er
en
ce

be
tw
ee
n
th
e
tw
o
is
th
at

th
e
ge
ne
ra
l
m
od
el

re
st
ri
ct
s
to

th
e
ar
ea

co
rr
es
po
nd
in
g
to

th
e
gl
ob

al
ro
ut
in
g
so
lu
tio

n
(o
ut
si
de

of
it,

th
e
co
st
s
ar
e
in
fin

ite
).
Im

pl
em

en
ta
tio

n
de
ta
ils

fo
r
th
e
la
st
tw
o
po
te
nt
ia
ls
ar
e
de
sc
ri
be
d
in

th
e
te
xt
.R

un
tim

es
ar
e
su
m
m
ed

ov
er

al
l6

4
th
re
ad
s
ex
ce
pt

fo
r
th
e
la
st

co
lu
m
n,
w
hi
ch

sh
ow

s
th
e
to
ta
lw

al
lt
im

e
of

th
e
ov
er
al
lB

on
nR

ou
te
ru
n

123

Faster goal-oriented shortest path search for bulk and…

the additional preprocessing time. The relative improvement differs a lot between
different instances. Most of this difference can be explained by some situations in
which we get only minor improvements by our potentials:

• If no path is found, all reachable vertices in the graph are labeled. None of the
potentials show any improvement on these instances. In fact, the path searches
without potential are the fastest since they do not need any query time, with a
total of 285 hours (summed over all instances and all 64 threads). With the three
potentials, these path searches take a total of 329, 337, and 331 hours, respectively.

• After a path search failed, BonnRoute may perform a backup path search which
allows routing through existing wires at high cost (and then would remove (rip
up) such wires and try to re-route them). Since these rip-up costs are not modeled
in any of our potentials, a large portion of the graph may be labeled regardless of
which potential is used. On such instances, the order of the potentials regarding
their performance is the same as when looking at all instances, but the relative
improvements are much smaller.

The column Standard Dijkstra calls in Table 3 excludes these situations and hence
shows an even larger gain than the column All Dijkstra calls. The question how to
model rip-up costs efficiently when computing potentials remains for future research.

5.2 Reservations and discounts for incremental routing

In chip design practice, there are two main scenarios where a detailed routing is not
computed from scratch, using just a global routing as input, but in an incremental
way, using an approximate detailed routing as input. The first scenario is when a
detailed routing has already been computed, but now a few changes have been made,
for example in order to correct the logical function of the chip or to improve its timing
behavior. The second scenario is when a step in between global and detailed routing
is used, typically called track assignment, that maps the global wires to routing tracks
in a way that obeys most—but not all—design rules.

In both scenarios of incremental routing, we get an almost feasible detailed routing
as part of the input, and the task is to compute a completely feasible detailed routing
by doing only few changes. While it is not exactly specified what “few” means, the
motivation is that the input routing has already been optimized, for example with
respect to the timing behavior of the chip; moreover, one aims at saving runtime.

The traditional approach to incremental routing is to check for violations of design
rules (e.g., wires of different nets overlapping) and to try to repair such violations
locally, in a relatively small area around that violation. While this can be parallelized
very well, many violations cannot be repaired locally, and then the overall approach
may fail or resort to global path searches as backup. Moreover, if the wiring of a net
needs to be repaired in multiple places, the final result can be quite bad, for example
with too many detours to meet timing constraints.

We suggest to repair violations globally but with a preference of using the initial
solution. To this end, we convert any detailed wire in the input to a global wire and
possibly a reservation. A reservation reserves that space for the particular net. When
other nets are routed earlier, this space is blocked. Therefore, reservations are created

123

M. Ahrens et al.

Fig. 9 Example of re-routing a net using reservations after changes to the input have been made. The green
and red wires connected pins p1, p2, and the old position of p3. Now suppose p3 has been moved and is
no longer connected. Moreover, pin q from a different net has been moved and now makes the red piece of
wire illegal. Nowwe want to connect p1, p2, and the new position of p3 and use much of the old wiring.We
convert all of the old wiring (green and red) to global wires and add a global wire (not shown) that connects
to the new position of p3. Next we create reservations. Even though all of the green wires are legal, we
may choose to create reservations only for the thick green wires, e.g., if we expect the harm of blocking
other nets to outweigh the benefit of keeping them usable for this net. When this net is being routed, we
may end up discarding the dashed part of the reservations, using the rest of the reservations and adding the
blue wires. The solid wires then constitute the new routing for this net (color figure online)

only for (parts of) detailed wires that do not conflict with other detailed wires in the
input. For an example situation, see Fig. 9.

Once a net is routed for which we have created reservations, we would like to
encourage, but not force, the net to use the reserved space. We do this by defining
a discount factor 0 < δ < 1 and multiplying all edge costs on a reservation of that
net by δ. There are two reasons for using this incentive to route nets similarly as in
the input: first, during detailed routing, we cannot do a complete timing analysis (this
would be too slow), and the input routing has already been analyzed carefully. Second,
we would hope for a speedup if the reservation serves as a useful guide how to route
a net.

However, this speedup does not come automatically. In fact, with the traditional
goal-oriented search techniques, reservationswould lead to a slow-down. For example,
if we define the potential π to be the �1-distance to the nearest target, multiplied by
the minimum edge weight in that direction, then we have to multiply it by δ if there are
any reservations in that direction (no matter how useful). Our generalized framework,
however, allows us to refine the grid not only with respect to the targets, but also
with respect to the reservations, and define individual (discounted) costs on the edges
corresponding to reservations.

123

Faster goal-oriented shortest path search for bulk and…

Table 4 Performance of different incremental routing algorithms when applied right after bulk routing on
all nets

Dijkstra Total BonnRoute

Chip Algorithm Preprocessing Runtime Labels Wall time
h:mm h:mm 109 h:mm

A1 No reservations 0:58 3:55 2.7 0:23

A1 Reservations 1:04 2:23 0.5 0:15

A2 No reservations 0:42 4:19 3.6 0:19

A2 Reservations 0:50 2:26 0.6 0:13

A3 No reservations 0:40 4:12 3.5 0:18

A3 Reservations 0:45 2:06 0.6 0:12

B1 No reservations 4:17 23:18 17.6 1:12

B1 Reservations 4:31 8:52 3.3 0:42

B2 No reservations 16:43 87:29 58.5 4:12

B2 Reservations 15:58 54:17 14.8 3:11

B3 No reservations 9:19 40:29 35.3 2:51

B3 Reservations 10:32 16:46 6.3 2:24

C1 No reservations 1:00 70:57 59.4 2:06

C1 Reservations 1:27 25:47 9.3 1:34

C2 No reservations 22:56 2114:25 902.8 39:10

C2 Reservations 21:31 1140:54 309.6 23:35

D1 No reservations 8:17 1440:19 793.2 29:09

D1 Reservations 10:54 4 32:58 142.0 14:03

Sum No reservations 64:56 3789:26 1877.1 79:44

Sum Reservations 67:34 1686:34 487.4 46:14

Both runs use the general potential. The cost of reservations is multiplied by δ = 3
4

Table 5 Testbed consisting of six snapshots taken during a physical design flow used in production

Chip Tech l |V | Area Wires Vias Nets Pins Calls t pql
109 mm2 m 106 106 106 106

b1 7nm 16 5.7 0.40 6.6 4.22 0.41 0.48 0.04 27.95 16623

b2 7nm 16 7.1 0.47 9.8 6.66 0.69 0.74 0.05 29.68 20696

b3 7nm 16 5.4 0.36 10.0 7.03 0.72 0.75 0.04 35.91 29935

b4 7nm 16 5.0 0.36 14.8 11.19 1.04 1.06 0.02 35.34 27754

b5 7nm 16 6.6 0.46 15.2 13.80 1.26 1.27 0.01 30.64 21589

b6 7nm 16 8.9 0.63 20.9 13.95 1.32 1.43 0.14 32.86 21524

Snapshots were taken after detailed routing based timing optimization, right before incremental detailed
routing. For an explanation of the columns, see Table 2. Because the input already contains many valid
connections, the number of calls to our Dijkstra implementation is often significantly smaller than the
number of nets

123

M. Ahrens et al.

Table 6 Performance of different incremental routing algorithms when applied after detailed routing based
timing optimization on all paths that contain at least one illegal wire

Dijkstra Total BonnRoute

Chip Algorithm Preprocessing Runtime Labels Wall time
h:mm h:mm 109 h:mm

b1 No reservations 0:16 4:09 3.4 0:25

b1 Reservations 0:16 2:16 1.4 0:15

b2 No reservations 0:16 4:24 3.7 0:38

b2 Reservations 0:18 3:54 2.8 0:36

b3 No reservations 0:23 4:03 3.0 1:23

b3 Reservations 0:24 3:38 2.3 1:21

b4 No reservations 0:18 11:16 4.5 0:56

b4 Reservations 0:17 6:09 2.2 0:46

b5 No reservations 0:08 5:31 2.1 0:51

b5 Reservations 0:06 2:05 0.7 0:44

b6 No reservations 0:49 21:26 12.1 1:15

b6 Reservations 0:50 16:05 7.8 1:09

Sum No reservations 2:12 50:51 29.0 5:30

Sum Reservations 2:13 34:09 17.4 4:54

Both algorithms use the general potential. The cost of reservations ismultipiled by δ = 3
4 . For an explanation

of the columns, see Table 3

If we use the output of track assignment as input, this often is a good solution on
higher layers, where we have mostly longer wires, but much less so on lower layers,
which are primarily used for pin access. (This is because long wires on low layers
have a high resistance and thus poor delay.) In this case we may define reservations
only on high layers and let the pin access and the short wires be freely determined by
the detailed router.

To evaluate the effect of reservations on incremental routing, we compare two
different algorithms. Both of them replace the same subset of the input wires by global
wires and compute a newsolution.What subset is chosen depends on the scenario and is
described below. The algorithm no reservations is our standard bulk routing algorithm,
starting from scratch using these global wires without any additional information. The
algorithm reservations creates reservations for all input wires that are legal, except for
short dangling wires that connect only to an illegal input wire. Both algorithms use
the distance in the general model as their potential. In the algorithm reservations, the
cost of reservations is multiplied by a discount factor of δ = 3

4 (i.e., 25% discount).
The general model takes this discount into account.

We compare these two algorithms on 15 instances belonging to two different sce-
narios. In the first scenario, we start from an input in which all nets are connected
and almost all wires are legal. More precisely, our input is a snapshot taken right after
those bulk routing runs in Table 3 that used the general potential. We do not keep any
part of our old solutions fixed, but replace all the detailed wires in nets we connected
by global wires. The results of this experiment can be seen in Table 4.

123

Faster goal-oriented shortest path search for bulk and…

The second scenario in which we evaluate the effect of reservations is a detailed
routing that is no longer legal due to timing optimization. Table 5 gives an overview
of this part of the testbed, consisting of six snapshots taken in a production flow just
before incremental detailed routing. Unlike in the previous scenario, we keep pin-to-
pin paths fixed if they consist only of detailed wires. Any wire not in such a path will
be replaced by a global wire. See Fig. 9 for an example. The performance of both
algorithms on these instances is shown in Table 6.

Acknowledgements We thank the many other contributors to BonnRoute, in particular Niko Klewinghaus,
Christian Roth, andNiklas Schlomberg. Thanks also to Lukas Kühne, who started the initial implementation
of the reservations concept. We also thank Niklas Schlomberg and the anonymous reviewers for carefully
reading a preliminary version of our manuscript. Dorothee Henke has partially been supported by Deutsche
Forschungsgemeinschaft (DFG) under Grant No. BU 2313/6, and the other authors under Grants EXC 59
and EXC-2047 (Hausdorff Center for Mathematics).

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ahrens, M.: Efficient algorithms for routing a net subject to VLSI design rules. Ph.D. thesis, University
of Bonn (2020)

2. Ahrens, M., Gester, M., Klewinghaus, N., Müller, D., Peyer, S., Schulte, C., Téllez, G.: Detailed
routing algorithms for advanced technology nodes. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 34(4), 563–576 (2015)

3. Alpert, C.J., Mehta, D.P., Sapatnekar, S.S.: Handbook of Algorithms for Physical Design Automation.
CRC Press (2008)

4. Batterywala, S., Shenoy, N., Nicholls, W., Zhou, H.: Track assignment: a desirable intermediate step
between global routing and detailed routing. In: Proceedings of the 2002 IEEE/ACM International
Conference on Computer-Aided Design , pp. 59–66 (2002)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)
6. Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J.

Comput. 15(2), 317–340 (1986)
7. Gester, M., Müller, D., Nieberg, T., Panten, C., Schulte, C., Vygen, J.: BonnRoute: algorithms and

data structures for fast and good VLSI routing. ACM Trans. Des. Autom. Electron. Syst. 18(2), 1–24
(2013)

8. Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost
paths. IEEE Trans. Syst. Sci. Cybern. 4, 100–107 (1968)

9. Held, S., Müller, D., Rotter, D., Scheifele, R., Traub, V., Vygen, J.: Global routing with timing con-
straints. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37(2), 406–419 (2018)

10. Hetzel, A.: A sequential detailed router for huge grid graphs. In: Proceedings of Design, Automation
and Test in Europe. IEEE, pp. 332–338 (1998)

11. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)
12. Klewinghaus, N.: Efficient Detailed Routing on Optimized Tracks. Ph.D. thesis, University of Bonn

(2022)

123

http://creativecommons.org/licenses/by/4.0/

M. Ahrens et al.

13. Lawler, E., Luby, M., Parker, B.: Finding shortest paths in very large networks. In: Nagl, M., Perl, J.,
Linz, T. (Eds), Proceedings of Graph-Theoretic Concepts in Computer Science (1983)

14. Lipton, H.J., Tarjan, R.E.: Applications of a planar separator theorem. In: 18th Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 162–170 (1977)

15. Müller, D., Radke, K., Vygen, J.: Faster min-max resource sharing in theory and practice. Math.
Program. Comput. 3(1), 1–35 (2011)

16. Peyer, S., Rautenbach, D., Vygen, J.: A generalization of Dijkstra’s shortest path algorithm with
applications to VLSI routing. J. Discrete Algorithms 7(4), 377–390 (2009)

17. Preparata, F.P., Müller, D.E.: Finding the intersection of n half-spaces in time O(n log n). Theoret.
Comput. Sci. 8(1), 45–55 (1979)

18. Rubin, F.: The Lee path connection algorithm. IEEE Trans. Comput. 23, 907–914 (1974)
19. Sarnak, N., Tarjan, R.: Planar point location using persistent search trees. Commun. ACM 29(7),

669–679 (1986)
20. Sarrafzadeh, M., Lee, D.-T.: Restricted track assignment with applications. Int. J. Comput. Geom.

Appl. 4(1), 53–68 (1994)
21. Téllez, G., Hu, J., Wei, Y.: Routing. In: Lavagno, L., Markov, I.L., Martin, G., Scheffer, L.K. (Eds),

Electronic Design Automation for IC Implementation, Circuit Design, and Process Technology. CRC
Press (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Faster goal-oriented shortest path search for bulk and incremental detailed routing
	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Previous work and our results

	2 Distances without preprocessing in the simple model
	3 Logarithmic query time in the simple model
	4 The general model
	5 Practical aspects
	5.1 Implementation
	5.2 Reservations and discounts for incremental routing

	Acknowledgements
	References

