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Gas fermentation offers both fossil carbon-free sustainable production of fuels and
chemicals and recycling of gaseous and solid waste using gas-fermenting microbes.
Bioprocess development, systems-level analysis of biocatalyst metabolism, and
engineering of cell factories are advancing the widespread deployment of the
commercialised technology. Acetogens are particularly attractive biocatalysts but
effects of the key physiological parameter–specific growth rate (μ)—on acetogen
metabolism and the gas fermentation bioprocess have not been established yet. Here,
we investigate the μ-dependent bioprocess performance of the model-acetogen
Clostridium autoethanogenum in CO and syngas (CO + CO2+H2) grown chemostat
cultures and assess systems-level metabolic responses using gas analysis,
metabolomics, transcriptomics, and metabolic modelling. We were able to obtain
steady-states up to μ ~2.8 day−1 (~0.12 h−1) and show that faster growth supports
both higher yields and productivities for reduced by-products ethanol and 2,3-
butanediol. Transcriptomics data revealed differential expression of 1,337 genes with
increasing μ and suggest that C. autoethanogenum uses transcriptional regulation to a
large extent for facilitating faster growth. Metabolic modelling showed significantly
increased fluxes for faster growing cells that were, however, not accompanied by gene
expression changes in key catabolic pathways for CO and H2metabolism. Cells thus seem
to maintain sufficient “baseline” gene expression to rapidly respond to CO and H2

availability without delays to kick-start metabolism. Our work advances understanding
of transcriptional regulation in acetogens and shows that faster growth of the biocatalyst
improves the gas fermentation bioprocess.
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INTRODUCTION

Climate change is causing alarming detrimental degradation to the environment. The world thus needs to
decarbonize energy production (e.g., solar, wind) and move away from producing fuels and chemicals
from fossil carbon. Furthermore, improved recycling of solid waste (e.g., municipal solid waste [MSW],
plastic waste) is becoming increasingly important to maintain biosustainability. Gas fermentation offers a
sustainable route for the production of renewable chemicals and fuels by recycling gaseous one-carbon
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(C1) waste feedstocks using gas-fermenting organisms [e.g.,
industrial waste gases, syngas from gasified MSW or biomass
(CO + H2+CO2)] (Liew et al., 2016; Redl et al., 2017; Fackler
et al., 2021; Pavan et al., 2022). Acetogen bacteria are particularly
attractive for gas fermentation as they can accept gas (CO) as their
sole energy and carbon source (Wood 1991) and use the most
efficient pathway to fix CO2 (Drake et al., 2006; Fast and Papoutsakis
2012; Cotton et al., 2018), the Wood-Ljungdahl pathway (WLP)
(Wood 1991; Ragsdale and Pierce, 2008). Acetogens can natively
convert carbon into acetic acid, ethanol, or 2,3-butanediol among
other products while metabolic engineering for expanding their
product spectrum is advancing rapidly (Köpke and Simpson 2020;
Bourgade et al., 2021; Fackler et al., 2021; Pavan et al., 2022).
Notably, the acetogen Clostridium autoethanogenum is used as a
commercial-scale gas fermentation cell factory (Köpke and Simpson,
2020).

A better understanding of acetogen metabolism and the gas
fermentation bioprocess can contribute to the widespread
deployment of the technology. Recent systems-level studies
have improved the much-needed quantitative understanding of
the energy-limited metabolism of acetogens (Schuchmann and
Müller, 2014; Molitor et al., 2017) to advance their rational
metabolic engineering. For example, regulatory principles
behind metabolic shifts in carbon, energy, and redox balances
(Richter et al., 2016; Valgepea et al., 2017a, 2018; Mahamkali
et al., 2020), metabolic robustness (Mahamkali et al., 2020), and
transcriptional and translational regulation (Song et al., 2017; Al-
bassam et al., 2018; Song et al., 2018; Lemgruber et al., 2019; Shin
et al., 2021) have been quantified. At the same time,
understanding of the gas fermentation bioprocess has also
improved with the characterisation of the effects of gas-liquid
mass transfer, feed gas and media composition, pH shifts, and
mixed cultures on the biocatalyst and fermentation performance,
e.g. gas uptake, biomass level, product profile, yields, and rates
(Cotter et al., 2009; Abubackar et al., 2012; Abubackar et al., 2015;
Valgepea et al., 2017b, 2018; Esquivel-Elizondo et al., 2017;
Diender et al., 2019; Park et al., 2019; Heffernan et al., 2020).
However, the effects of the specific growth rate (μ) of the cells on
acetogen metabolism and on the gas fermentation bioprocess
have not yet been established.

Characterisation of μ-dependent acetogen growth is important
for three reasons. Firstly, it could reveal important insights into
the energy-limited metabolism of acetogens (Schuchmann and
Müller, 2014; Molitor et al., 2017) as faster growth demands more
energy. Secondly, studies of the impact of μ on cell metabolism in
other microorganisms have, for instance, revealed profound
effects on product distribution and energy balance (Van Hoek
et al., 1998; Valgepea et al., 2010), transcript and protein
expression (Ishii et al., 2007; Valgepea et al., 2010, 2013;
Peebo et al., 2015; Hackett et al., 2016), and stress responses
(Regenberg et al., 2006). Thirdly, μ of the cell culture is an
important bioprocess parameter affecting metabolic activity of
cells, process rates, and economics (Lipson 2015). This is
especially relevant for acetogen gas fermentation as the process
is operated as a continuous culture at industrial-scale (Köpke and
Simpson, 2020; Fackler et al., 2021). Thus, the selection of culture

dilution rate (i.e., μ at steady-state) is critical for optimal
bioprocess performance (e.g. titre, rate, yield).

In this work, we investigate the μ-dependent bioprocess
performance of the acetogen C. autoethanogenum in CO- and
syngas-grown chemostat cultures and assess systems-level
metabolic responses using gas analysis, metabolomics,
transcriptomics, and metabolic modelling. We obtained
steady-states up to μ ~2.8 day−1 (~0.12 h−1) and show that
faster growth supports both higher yields and productivities
for reduced by-products ethanol and 2,3-butanediol (2,3-
BDO), thereby benefitting the gas fermentation bioprocess.
Transcriptomics data suggest that C. autoethanogenum uses
transcriptional regulation to a large extent for facilitating faster
growth and emphasise the need for mapping genotype-
phenotype links and improving gene annotations in acetogens
for advancing understanding of metabolism and engineering of
cell factories.

MATERIAL AND METHODS

Bacterial Strain, Growth Medium, and
Continuous Culture Conditions
A derivate of Clostridium autoethanogenum DSM 10061
strain–DSM 23693—deposited in the German Collection of
Microorganisms and Cell Cultures (DSMZ) was used in all
experiments and stored as a glycerol stock at -80°C. Cells were
grown either on CO (60% CO and 40% Ar; AS Eesti AGA) or
syngas (50% CO, 20% H2, 20% CO2, and 10% Ar; AS Eesti AGA)
in a chemically defined medium without yeast extract described
before (Valgepea et al., 2017a). Cells were grown under strictly
anaerobic conditions at 37°C and at pH 5 maintained by 5M
NH4OH. Chemostat continuous cultures were performed in 1.4 L
Multifors bioreactors (Infors AG) at a working volume of 750 mL
connected to a Hiden HPR-20-QIC mass spectrometer (Hiden
Analytical) for online high-resolution off-gas analysis. The
system was equipped with peristaltic pumps; mass flow
controllers (MFCs); pH, oxidation-reduction potential (ORP),
and temperature sensors. Antifoam (435530; Sigma-Aldrich) was
continuously added to the bioreactor at a rate of 10 μL/h to avoid
foaming. Chemostat cultures were run at three dilution rates:
~1.0, ~2.0, and ~2.8 day−1 (µ ~0.04, 0.08, and 0.12 h−1,
respectively) with variable gas-liquid mass transfer conditions
(gas flow rate and agitation) to maintain similar steady-state
biomass concentrations (Table 1). All steady-state results
reported here were collected after optical density (OD), gas
uptake, and production rates had been stable for at least 3‒5
working volumes.

Biomass Concentration Analysis
Biomass concentration in gram of dry cell weight per litre of broth
(gDCW/L) was determined by measuring the OD of the culture at
600 nm after the correlation coefficient (K) between culture OD
and DCW was established at 0.23, using the methodology
described in Peebo et al., 2014.
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Extracellular Metabolome Analysis
Analysis of exo-metabolome was performed using filtered broth
samples stored at -20°C until analysis. Organic acids and alcohols
were analysed by HPLC (Shimadzu Prominence-I LC-2030 plus
system) using a Rezex™ ROA-Organic Acids H+ (8%) 300 ×
7.8 mm column (00H-0138-K0; Phenomenex) and a guard
column (03B-0138-K0; Phenomenex). Twenty microlitres of
the sample were injected using an auto-sampler and eluted
isocratically with 0.5 mM H2SO4 at 0.6 mL/min for 30 min at
45°C. Compounds were detected by a refractive index detector
(RID-20A; Shimadzu) and identified and quantified using
relevant standards using the software LabSolution (Shimadzu).
We note that cells produced 2R,3R-butanediol.

Bioreactor Off-Gas Analysis
Bioreactor off-gas analysis for determination of specific gas
uptake (CO and H2) and production rates (CO2, ethanol)
(mmol/gDCW/h) has been described before (Valgepea et al.,
2017a). The Faraday Cup detector monitored the intensities of
H2, CO, ethanol, H2S, Ar, and CO2 at 2, 14, 31, 34, 40, and
44 amu, respectively. Argon was used as the inert gas component
in the feed gases instead of nitrogen as the latter interferes with
the mass-spectrometer signal for CO.

Carbon Balance Analysis
Carbon recoveries and balances were determined as described
before (Valgepea et al., 2017a). Briefly, carbon balancing of
substrate carbon (CO, cysteine) between growth products
(acetate, ethanol, 2,3-BDO, CO2, biomass) was calculated as
C-mol fraction of each product from total C-mol carbon
uptake. Carbon recoveries were calculated as the fraction of
summed C-mol products from total C-mol substrates. Ethanol
stripping and the total soluble CO2 fraction in culture broth were
also taken into account to achieve more accurate carbon
balancing.

Transcriptome Analysis
Transcriptome analysis of 20 chemostat cultures was conducted
using RNA sequencing (two and one bio-replicate of syngas
cultures at ~1 and ~2.8 day−1, respectively, indicated in
Table 1 were excluded due to experimental constraints). Ten
millilitres of culture were pelleted by immediate centrifugation
(5,000 × g for 3 min at 4°C) and resuspended in 5 mL of RNAlater

(76106; Qiagen). Samples were stored at 4°C overnight,
centrifuged (4,000 × g for 10 min at 4°C), and pellets stored at
−80°C until RNA extraction.

Thawed cell pellets were resuspended in 800 µL of RLT buffer
(74104; Qiagen) containing 10 µL of β-mercaptoethanol and
lysed with acid-washed glass beads (G4649; Merck) using the
Precellys® 24 instrument with liquid nitrogen cooling (Bertin
Technologies). Total RNA was extracted using the RNeasy mini
kit (74104, Qiagen) with off-column TURBO™ DNase treatment
(AM2239; Invitrogen), followed by purification and enrichment
using the RNAClean and Concentrator™ kit (R1018, Zymo). The
efficiency of the total RNA purification and DNA removal was
verified using the NanoDrop™ 1,000 instrument (Thermo
Scientific) and the quality of RNA extracts was checked using
the TapeStation 2200 equipment (Agilent Technologies). Total
RNA concentration was determined using the Qubit 2.0
instrument (Q32866; Invitrogen). Next, ribosomal RNA
(rRNA) was removed using the QIAseq FastSelect –5S/16S/23S
Kit (335925; Qiagen) and stranded mRNA libraries were
prepared using the QIAseq Stranded RNA Lib Kit (180743;
Qiagen). RNA sequencing was performed using the NextSeq
MID150 sequencing kit (20024904; Illumina) on the
NextSeq500 sequencer (Ilumina) with 2 × 75 bp paired-end
dual indexed (2 × 8 bp) reads, which produced eight fastq files
per sample (160 files in total).

RNA Sequencing Data Analysis
The R-scripts used for the analysis of RNA sequencing data after
read trimming includes complete details of the methodology and
can be downloaded as Supplementary Files S1, S2.

Mapping and Assignment of Genome Features From
RNA Sequencing Raw Data
The quality of raw NextSeq reads was verified using MultiQC
(Ewels et al., 2016) and adapter sequences were trimmed using
the Cutadapt Python package (version 2.10; Martin 2011)
allowing a minimum read length of 35 nucleotides. The
resulting high-quality paired-end reads were mapped to the
NCBI reference genome NC_022592.1 (Brown et al., 2014)
using the align function within Rsubread package (version
2.4.2; Liao et al., 2019). Thereafter, four. bam files per sample
were merged using Samtools (version 1.10; Li et al., 2009) and
genomic features were assigned using the featureCounts

TABLE 1 | Variable operational parameters of 23 steady-state chemostat cultures of C. autoethanogenum.

Feed gas Gas flow
rate (mL/min)

Agitation (RPM) µ (day−1) Biomass concentration
(gDCW/L)

Number of
bioreplicates

CO 50 690 1.02 ± 0.01 1.58 ± 0.06 4
72 815 2.03 ± 0.06 1.65 ± 0.01 3
72 1175 2.79 ± 0.03 1.65 ± 0.02 3

Syngas 50 675 1.01 ± 0.02 1.59 ± 0.03 6
72 800 2.01 ± 0.07 1.57 ± 0.08 3
72 1160 2.79 ± 0.07 1.43 ± 0.03 4

μ, specific growth rate; gDCW, gram of dry cell weight.
Data are average ± standard deviation between bioreplicates.
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functions within Rsubread. Samples had 5.6–9.3 million reads
with an average mapping rate of 99% and this generated 4.3–6.4
million feature counts across samples (Supplementary Table S1).
The NCBI annotation NC_022592.1 of the C. autoethanogenum
sequence (Brown et al., 2014) was used as the annotation genome,
including only coding (CDS) and non-coding (ncRNA)
sequences. Additionally, CAETHG_RS07860 was removed
from the annotation and replaced with the carbon monoxide
dehydrogenase genes with initial IDs of CAETHG_1620 and 1621
(Brown et al., 2014) which were given the IDs
CAETHG_RS07861 and RS07862, respectively.

Determination of Transcript Abundances and
Differentially Expressed Genes
Transcript abundances and DEGs were determined as described
before (Valgepea et al., 2017a). In short, raw library sizes were
normalised and transcript abundances in reads per kilobase of
transcript per million mapped reads (RPKM) were estimated
from feature counts and gene lengths using edgeR (version 3.32.1;
Robinson et al., 2010). Transcripts with abundances >10 RPKMs
in at least two samples were subject to differential expression
analysis using limma (version 3.46.0; Ritchie et al., 2015) between
bio-replicate cultures of different μ values within one gas mixture
(i.e., gas mixes at same μ were not compared). DEGs were
determined by fold-change > 1.5 and q-value < 0.05 after false
discovery rate (FDR) correction (Benjamini and Hochberg,
1995). Transcript abundances and DEGs are presented in
Supplementary Tables S2–S5, respectively. Proposed gene
names were obtained from Valgepea et al., 2021. RNA
sequencing data (NextSeq) has been deposited in the NCBI
Gene Expression Omnibus repository under accession number
GSE196640.

Functional Data Analysis
Mapping of gene IDs to Cluster of Orthologous Groups (COGs)
was performed using the eggNOG 5.0 database (Huerta-Cepas
et al., 2019) that resulted in COG assignment for 1,190 genes
(Supplementary Table S6). The Gene Ontology (GO) terms list
was assembled using Pannzer2 (Törönen et al., 2018),
InterProScan5 (Jones et al., 2014), and eggNOG 5.0 databases
that resulted in GO term assignment for 3,001 genes
(Supplementary Table S7). Clustering of transcript expression
profiles across μ values and gas mixes in Figure 5B was
performed and visualised using the dendextend (version
1.14.0; Galili 2015) and ComplexHeatmap (version 2.10.0; Gu
et al., 2016) packages in R using Ward’s ward. D2 hierarchical
clustering algorithm. Six clusters were identified based on the
sharp decline of the dendrogram height parameter for other
clusters. Functional enrichment analysis of GO terms was
performed using the topGO package in R (version 2.40.0;
Alexa and Rahnenfuhrer, 2020) and a custom-made script
(Supplementary File S2) with significant enrichment indicated
by q-Fisher < 0.05 for FDR-corrected Fisher’s exact test. The 245
genes that quantitatively showed the same expression trend with
increasing μ on both gas mixes (Figure 5C) were determined by a
t-test (p-value < 0.05) between the slopes of linear regression of
gene expression change on the two gas mixes for genes that

showed a continuously increasing or decreasing differential
expression (i.e., DEGs for both μ = 2.0 vs. 1.0 and 2.8 vs.
2.0 day−1) with increasing μ on both gases.

Genome-Scale Metabolic Modelling
Metabolic model simulations were performed using the genome-
scale model iCLAU786 of C. autoethanogenum (Valgepea et al.,
2018) and flux balance analysis (FBA) (Orth et al., 2010) as
specified in Valgepea et al. (2018). We used the COBRA Toolbox
(Schellenberger et al., 2011) as the programming platform for
FBA with Gurobi (Gurobi Optimization Inc.) as the linear
programming solver. We note three characteristics of our
model network: a) methylene-THF reductase is NADH-
specific and reducing ferredoxin (Fd); b) membrane-bound
Fd-NAD+ oxidoreductase Rnf complex translocates 2H+/
reduced Fd and c) 4H+/ATP stoichiometry for the ATP
synthase. We estimated intracellular metabolic flux rates
(SIM1‒23 in Supplementary Tables S8, S9) using
experimentally measured constraints [e.g., μ, substrate
consumption and product production rates (CO, H2, CO2,
cysteine, acetate, ethanol, and 2,3-BDO)] and maximisation of
ATP dissipation as the objective function in FBA. Prediction of
optimal growth phenotypes for μ and products (SIM24‒46) was
performed using experimental substrate uptake rates (CO,
cysteine, and H2 for syngas), the ATP dissipation flux
calculated above, and maximisation of biomass yield as the
objective function. Accuracy of growth phenotype prediction
was improved (SIM47‒59) by additionally zeroing CO2

reduction with the redox-consuming FdhA activity (reaction
rxn00103_c0) and fixing the ratio between H2 utilisation for
direct CO2 reduction (reaction rxn08518_c0), and Fdred and
NADPH generation (reaction leq000001) by the HytA-E/FdhA
complex at a value corresponding to the respective experiment’s
qH2/qCO ratio (see Valgepea et al., 2018 for details). Simulation
results identified as SIMx (e.g., SIM1) in the text are reported in
Supplementary Tables S8, S9, while the SBML model file of
iCLAU786 is supplied in Valgepea et al. (2018).

RESULTS

Steady-State Gas-Fermenting Chemostat
Cultures of Clostridium autoethanogenum
We used continuous cultures for controlling the µ of cells as this
allows to unequivocally quantify the effects of µ on cell growth
compared to batch cultures where genetically modified strains
(e.g., titratable substrate uptake) or variable culture parameters
(e.g., growth media) need to be used to adjust µ of cells that might
confound results (Adamberg et al., 2015). Here, the acetogen
Clostridium autoethanogenumwas grown in 23 chemostats where
cells reached steady-states on CO or syngas (CO + CO2+H2)
using a chemically defined medium in biological triplicates or
quadruplicates at dilution rates ~1.0, ~2.0, and ~2.8 day−1

(µ~0.04, 0.08, and 0.12 h−1, respectively) (Table 1). In addition
to continuous quantification of gas uptake and production rates,
cultures were sampled for extracellular metabolome and
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transcriptome analysis. We also used genome-scale metabolic
modelling to estimate intracellular flux rates.

Elevated Ethanol Productivity With Faster
Growth
We adjusted gas-liquid mass transfer conditions (gas flow rate
and agitation) between different dilution rates to maintain similar
steady-state biomass concentrations (~1.6 ± 0.1 gDCW/L;
average ± standard deviation) (Table 1; Figure 1A) as it can
affect acetogen carbon distribution (Valgepea et al., 2017a). We
detected secretion of acetate, ethanol, and 2,3-BDO by the cells
(Figure 1A). While specific acetate production rate (qace; mmol/
gDCW/h) profiles with increasing µ varied between the two gases,
specific ethanol production rates (qEtOH) more than doubled on
both gases (Figure 1B). This also means higher productivity (g/L/
h) due to similar biomass levels. Increasing trends for specific 2,3-
BDO production rates (q2,3-BDO) were also seen with higher µ.
Notably, faster growth led to molar acetate/ethanol ratios
dropping from ~1.5 to 0.9 and 0.6 for CO and syngas,
respectively, due to a strong decrease of acetate levels at
similar ethanol values (Figure 1A). These trends are beneficial
for an industrial ethanol production process as higher
productivity is not comprised with lower selectivity.

Gas Analysis Indicates Metabolic
Rearrangements
CO limited our chemostats since we could maintain similar steady-
state biomass concentrations across dilution rates by changing gas-

liquid mass transfer (Table 1). One could thus expect the specific CO
uptake rate (qCO; mmol/gDCW/h) to increase proportionally with µ.
We detected qCO to increase ~2.2- (32 ± 1 to 70 ± 1) and ~2.9-fold
(25± 1 to 73± 2) forCOand syngas cultures, respectively, with 2.8-fold
faster growth (Figure 1C). The non-proportional change for CO
cultures means a higher biomass yield (gDCW/mmol of CO
consumed) at higher µ. As expected for CO-limited chemostats
(Richter et al., 2013; Martin et al., 2015; Valgepea et al., 2018),
simultaneous uptake of CO and H2 were observed for syngas
cultures (Figure 1C). Interestingly, while the specific H2 uptake rate
(qH2; mmol/gDCW/h) increased ~2.9-fold (7 ± 1 to 21 ± 1) between µ
= 1.0 and 2.0 day−1 on syngas, no further change was seen with faster
growth, despite gas-liquid mass transfer (gas flow rate and agitation)
being increasedwith dilution rate. Specific CO2 production rates (qCO2;
mmol/gDCW/h) increased by ~1.8- (24 ± 1 to 43 ± 1) and ~3.4-fold
(10 ± 2 to 34 ± 1) for the CO and syngas cultures, respectively
(Figure 1C), indicating a strong effect ofH2 uptake onCOoxidation as
seen before for C. autoethanogenum growing on various gas mixes
(Valgepea et al., 2018).

Faster Growth Leads to Carbon Diversion
Away From Acetate
Product ratios show the distribution of carbon between products but
carbon balancing is necessary to quantify carbon flows from
substrates to products (i.e. yields). Notably, carbon flux to acetate
dropped with faster growth by 24% (19.2 ± 2.2% to 14.6 ± 1.3%) on
CO and by 57% (32.3 ± 2.5% to 13.9 ± 1.1%) on syngas (Figure 2).
While no clear µ-dependent trend for carbon flow to 2,3-BDO was
detected onCO, cells diverted up to 141%more carbon into 2,3-BDO

FIGURE 1 | Specific growth rate-dependent growth characteristics in CO (top) and syngas (bottom) grownC. autoethanogenum chemostats. (A)Biomass and by-
product concentrations. (B) Specific by-product production rates. (C) Specific gas uptake and production rates. Data are average ± standard deviation between bio-
replicates (see Table 1). Asterisk denotes values statistically not different according to t-test (p-value < 0.05). μ, specific growth rate; gDCW, gram of dry cell weight;
EtOH, ethanol; 2,3-BDO, 2,3-butanediol; Ace, acetate; q, specific rate; qCO2, specific CO2 production rate; qCO and qH2, specific CO and H2 uptake rates,
respectively.
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in syngas cultures (1.5 ± 0.3% to 3.6 ± 0.4%). The aforementioned
doubling of qEtOH with faster growth (Figure 1B) was supported by
up to ~21% elevated carbon flux to ethanol (Figure 2). These
observations are not trivial as faster growth demands more energy
while reduced products like ethanol and 2,3-BDO consume redox co-
factors that acetogens could otherwise use for ATP generation
(Schuchmann and Müller, 2014). In fact, cells were even able to
channel more carbon into biomass formation simultaneously
(increase of ~48 and ~24% for CO and syngas, respectively;
Figure 2). The ~60 and ~50% losses of substrate carbon as CO2

for the CO and syngas cultures, respectively, are close to theoretical
stoichiometric and thermodynamic calculations for CO2 dissipation
with ethanol production from CO (~67%) or from a gas mix with a
CO-to-H2 ratio around two (50%) (Wilkins and Atiyeh, 2011;
Molitor et al., 2016).

Analysis of Metabolic Fluxes Using a
Genome-Scale Metabolic Model
We took advantage of the quantitative steady-state data collected
above on carbon and redox flows entering and leaving the cells to

estimate intracellular metabolic fluxes using the genome-scale
metabolic model (GEM) iCLAU786 of C. autoethanogenum
(Valgepea et al., 2018) and flux balance analysis (FBA) (Orth
et al., 2010). Steady-state intracellular flux patterns for our CO
and syngas chemostats were estimated by constraining the GEM
with experimental data (exchange rates and μ) and maximising
ATP dissipation as the objective function in FBA (SIM1‒23 in
Supplementary Tables S8, S9).

Flux through the WLP was significantly increased as expected
with faster growth, although less than the increase in CO uptake
for syngas cultures as more of the fixed CO was oxidised and
dissipated as CO2 (Figure 3; Supplementary Tables S8, S9). Faster
growth was also supported with elevated ATP production through
the ATPase (by 82 and 125% on CO and syngas, respectively;
Figure 3; Supplementary Tables S8, S9). Interestingly, the ratio
between the ATP production fluxes of the ATPase and the acetate
kinase (acetyl-P → acetate) changed minimally (9% in average;
Supplementary Tables S8), despite significantly altered product
distributions (Figure 2). At the same time, maintenance ATP costs
increased by 80 and 66% to 9.9 ± 0.5 and 11.7 ± 1.9 mmol/gDCW/
h on CO and syngas, respectively (Figure 3; Supplementary
Tables S8, S9). The average ~30% fraction of maintenance
costs from total ATP production (Supplementary Table S8) is
similar to previously studied autotrophic C. autoethanogenum
cultures (Valgepea et al., 2017a, 2018). In addition to ATP,
biomass synthesis during faster growth also demands an
elevated supply of NADPH. Notably for C. autoethanogenum,
extra NADPH was provided by increased flux through the Nfn
transhydrogenase (by 66 and 190% to 12.0 ± 0.2 and 8.8 ±
0.5 mmol/gDCW/h on CO and syngas, respectively), and not
by higher flux through the electron-bifurcating hydrogenase
HytA-E complex on syngas (Figure 3). No increase in flux
through HytA-E with faster growth on syngas suggested that
production of the critical reducing power co-factor, reduced
ferredoxin (Fdred), was possibly supported by CO oxidation.
Indeed, the model demonstrated an increase of the fraction of
Fdred generated by CO oxidation from 63 ± 2% to 74 ± 1% with
increasing μ (Supplementary Table S8). As seen for previous CO
+ H2 or CO2+H2-fermenting C. autoethanogenum steady-state
cultures (Valgepea et al., 2017a, 2018; Heffernan et al., 2020), all
the CO2 in the WLP was reduced to formate directly using H2

through the formate-H2 lyase activity of the HytA-E/formate
dehydrogenase (FdhA) complex (Wang et al., 2013). This saves
valuable redox for the cells compared to growth on CO only and
allows higher production of reduced products when H2 is available
(Figure 2). Regarding ethanol production, our simulations are
consistent with the aforementioned C. autoethanogenum datasets
and gene knockout experiments (Liew et al., 2017) showing that
ethanol was synthesised using the aldehyde:Fd oxidoreductase
(AOR) activity through acetate to couple it with ATP
production (Figure 3).

GEMs can also be used for predicting growth phenotypes
(O’Brien et al., 2015) and the accuracy of the model can be
evaluated beforehand, for example, by comparing experimental
product profiles with predicted ones if constraining only substrate
uptake rates, maintenance ATP costs, and maximising biomass

FIGURE 2 | Specific growth rate-dependent carbon balances in CO
(top) and syngas (bottom) grown C. autoethanogenum chemostats. Carbon
recoveries were 110 ± 16%, 103 ± 6%, 92 ± 1% for CO and 122 ± 6%, 107 ±
3%, 101 ± 3% for syngas at μ = 1.0, 2.0, 2.8 day−1, respectively. Carbon
recoveries were normalised to 100% to have a fair comparison of carbon
distributions between different conditions. Data are average ± standard
deviation between bioreplicates (see Table 1). μ, specific growth rate; 2,3-
BDO, 2,3-butanediol.
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yield in FBA. We initially failed to predict ethanol and 2,3-BDO
production (SIM24‒46 in Supplementary Tables S8, S9), as seen
before (Valgepea et al., 2017a, 2018). However, when additionally
constraining the model by coupling carbon and redox
metabolism from H2 utilisation for syngas cultures (see
Materials and Methods), predictions improved as ethanol
production became on average 28% off from experimental
values (SIM47‒59 in Supplementary Tables S8, S9).
Prediction of acetogen phenotypes can be further improved by
considering thermodynamics and kinetics (Greene et al., 2019;
Mahamkali et al., 2020), which are important for accounting for
the effects from high extracellular product levels (e.g. acetate,
ethanol).

Global Transcriptome Trends With Faster
Growth
Next, we performed transcriptome analysis using RNA
sequencing (RNA-seq) to quantify μ-dependent gene
expression changes on both gas mixes. High reproducibility of
the data was demonstrated by clear clustering of bio-replicates
(Figures 4A,B) and an average Pearson correlation coefficient of
R = 0.96 between bio-replicates across μ values (Figure 4C). Also,

significant μ-dependent expression differences for many genes
could be seen for both gases (Figure 4B). Indeed, we determined
1,337 differentially expressed genes (DEGs) in total with a fold-
change (FC) > 1.5 (up- or down-regulation) and a q-value < 0.05
after FDR correction in at least one pairwise comparison within
the three pairwise μ-dependent comparisons (μ = 2.0 vs. 1.0,
2.8 vs. 1.0, and 2.8 vs. 2.0 day−1) of both gas mixes
(Supplementary Tables S4, S5). Expectedly, the bigger the
difference between compared μ values, the higher the number
of DEGs (Figure 4D). Also, many DEGs were shared between
comparisons within both gas mixes. Interestingly, while 442
DEGs were shared between CO and syngas comparisons of μ
= 2.8 vs. 1.0 day−1, hundreds of unique DEGs were also detected,
demonstrating the effect of the feed gas mix on μ-dependent gene
expression patterns.

To understand global transcriptome changes that facilitate
faster growth, we assessed DEGs through functional gene
classifications. Firstly, analysis of DEGs of μ = 2.8 vs.
1.0 day−1 using Cluster of Orthologous Groups (COG)
classification (Tatusov et al., 2003) showed that most DEGs
were classified as “Function unknown” (S) (Figure 5A;
Supplementary Table S6). This highlights the need for
genotype-phenotype mapping and improving gene

FIGURE 3 | Specific growth rate-dependent central metabolism flux levels in CO and syngas grown C. autoethanogenum chemostats. See dashed inset for bar
chart details. Fluxes (mmol/gDCW/h) are represented as average ± standard deviation between bioreplicates (see Table 1). Arrows show direction of calculated fluxes;
red arrows denote uptake or secretion; dashed arrows denote a series of reactions. Cofactors used in the GEM iCLAU786 are shown. Flux into PEP from oxaloacetate
and pyruvate is merged. gDCW, gram of dry cell weight; μ, specific growth rate; OAA, oxaloacetate; PEP, phosphoenolpyruvate; THF, tetrahydrofolate; 2 PG, 2-
phosphoglycerate; 2,3-BDO, 2,3-butanediol. See SIM1‒23 in Supplementary Tables S8, S9 for data and co-factor abbreviations.
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annotations for acetogens. Genes involved in energy, amino
acid, and nucleotide metabolism (C, E, and F) and replication,
transcription, and translation (J, K, and L) were also abundant
among DEGs and all these processes are vital for faster growth.
Secondly, we used Gene Ontology (GO) terms (Ashburner
et al., 2000) to attain finer resolution behind global gene
expression trends. Clustering of all 1,337 DEGs across μ
comparisons and gas mixes resulted in six significant
expression clusters (Figure 5B). GO enrichment analysis
(q-Fisher < 0.05) of the genes within the identified clusters
was consistent with COG analysis as several GO terms related
to translation (0003735, 0019843, 0005840, and 0044391) and
metabolism (0006096, 0016051, 0043603, 0009150, 00505996,
and 0006790) were enriched in cluster 3 that includes up-
regulated genes with faster growth. Enrichment of GO terms
within clusters 2 and 5 was detected, including genes down-
regulated with faster growth. Lastly, we aimed to identify genes
and GO terms whose expression was tightly controlled with
changing μ, indicated by the same expression trend on both gas
mixes. We identified 245 such genes that showed either
continuously increasing or decreasing differential expression
(DEGs, i.e., FC > 1.5 and q < 0.05) with increasing μ on both
gases with the same magnitude of expression change between
the two gas mixes (Figure 5C). Enrichment analysis of these
genes confirmed the aforementioned results by identifying

enrichment of genes (q-Fisher < 0.05) associated with
translation (0003735 and 0019843), but also of the GO term
0032787 “monocarboxylic acid metabolic process” (coloured
lines on Figure 5C).

Transcriptional Changes Linked to
Metabolic Rearrangements
Previous transcriptomics and proteomics studies have suggested
that autotrophic metabolism of acetogens is not controlled
through hierarchical regulation of gene expression (Richter
et al., 2016; Valgepea et al., 2017a, 2018; Al-bassam et al.,
2018; Mahamkali et al., 2020). We thus analysed DEGs in
terms of individual genes linked to activities specifically
relevant to acetogens or with high expression changes.
Surprisingly, we found numerous DEGs in central metabolism,
some of which can explain the metabolic rearrangements
described above (Figure 6; Supplementary Figures S1, S2).
For instance, increased carbon flux to 2,3-BDO with faster
growth on syngas (Figure 2) was supported by 18.5-fold (q <
0.01) (all μ = 2.8 vs. 1.0 day−1 unless otherwise noted) up-
regulation of the 2,3-BDO dehydrogenase
(CAETHG_RS01830; BDH) that reduces acetoin to 2,3-BDO
and by 2.3-fold (q < 0.01) up-regulation of the pyruvate:Fd
(flavodoxin) oxidoreductase (RS14890; PFOR) that converts

FIGURE 4 | Specific growth rate-dependent transcriptome characteristics in CO- and syngas-grown C. autoethanogenum chemostats. (A) Multidimensional
scaling (MDS) of bioreplicate transcript abundances (RPKM). (B) Hierarchical clustering of bioreplicate transcript abundances (Z-scores based on RPKMs). (C)
Correlation of bioreplicate transcript abundances (RPKM) (D) Venn diagrams showing overlap of DEGs (number of DEGs for each comparison in brackets).RPKM, reads
per kilobase of transcript per million mapped reads; DEG, differentially expressed gene (fold-change > 1.5 with q-value < 0.05); μ, specific growth rate. See
Supplementary Tables S2–S5 for RPKM and DEG data, respectively.
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acetyl-CoA to pyruvate (Figure 6). At the same time, elevated
production of ethanol (Figure 2) could be linked to increased
expression (2.1- to 2.8-fold, q < 0.01) of several alcohol
dehydrogenases (RS02620 and RS02630; Adh and Adh3),
including the most abundant–RS08920; Adh4—in C.
autoethanogenum (Supplementary Table S4) (Valgepea et al.,
2017a, 2021) on syngas (Figure 6). Acetaldehyde for the alcohol
dehydrogenases was likely not supplied directly from acetyl-CoA
as we quantified strong repression of two putative acetaldehyde
dehydrogenases (RS08810 and RS08865; 11.5- and 17.0-fold, q <
0.01), which interestingly seem to be the result of the uniformly
strong repression of a cluster of 21 genes (RS08795‒08895) linked
to bacterial microcompartments (BMCs) (Supplementary
Figure S1). Despite the 4.8-fold (q < 0.01) upregulation of one
of the bifunctional aldehyde/alcohol dehydrogenases (RS18395;
AdhE1) which catalyses ethanol production directly from acetyl-
CoA, ethanol was still most likely produced through acetate using
the AOR activity as AOR1 transcripts were ~160-fold more
abundant (RPKM) compared to AdhE1 (Supplementary
Tables S2, S3) across all experiments and AOR2 (RS00490)

was up-regulated 2.5-fold (q < 0.01) (Supplementary Tables
S4, S5). This is consistent with metabolic flux data (Figure 3) and
previous–omics and knockout experiments in acetogens (see
above).

Faster growth demands more energy and this was supported
by increased expression (1.5- to 2.2-fold, q < 0.01) of genes of the
multi-subunit Fd-NAD+ oxidoreductase Rnf complex (RS15845-
65) across the studied range of µ (Figure 6), as the Rnf complex
generates the proton motive force to drive the ATPase in C.
autoethanogenum (Hess et al., 2016; Tremblay et al., 2012).
Notably, up-regulation of NAD(P)- (RS02275) and FAD-
dependent (RS04920) oxidoreductases was also detected (7.9-
to 32.9-fold and 2.0- to 3.4-fold, respectively, q < 0.01) on both
gases that might play a role in the maintenance of redox
homeostasis (Supplementary Figure S2). Intriguingly, despite
the elevated H2 uptake with faster growth on syngas (Figure 1C),
~1.5-fold (q < 0.01) repression of the main H2 oxidiser–the HytA-
E complex (RS13745‒70)—(Wang et al., 2013; Mock et al., 2015;
Valgepea et al., 2021) components was seen (Figure 6). Moreover,
similar down-regulation was observed in CO cultures, potentially

FIGURE 5 |Global transcriptome changes assessed through functional gene classifications in CO- and syngas-grownC. autoethanogenum chemostats. (A)COG
classification of DEGs for μ = 2.8 vs. 1.0 day−1 (see Supplementary Table S6 for COG descriptions). (B) Hierarchical clustering and GO enrichment of expression
changes of all 1,337 DEGs. Six identified expression clusters are illustrated with the coloured dendrogram with three clusters showing GO enrichment (clusters 2, 3, and
5). (C)Genes and GO terms with tightly controlled expression with faster growth. All 245 genes showing the same quantitative expression trend on both gas mixes
are shown with 13 genes within the enriched GO terms denoted by coloured lines (CO, dashed; syngas, solid). GO:0032787, monocarboxylic acid metabolic process.
See (B) for other GO terms. Gene IDs are preceded with CAETHG_. COG, Cluster of Orthologous Groups; DEG, differentially expressed gene (fold-change > 1.5 with
q-value < 0.05); μ, specific growth rate; GO, Gene Ontology; q-Fisher, FDR-corrected p-value of Fisher’s exact test; AveExp, average of bioreplicates log2 counts per
million mapped reads (CPM; see Ritchie et al., 2015). See Supplementary Tables S4, S5, S7 for DEG data and GO terms list, respectively.
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indicating µ-dependent regulation of the HytA-E complex.
Repression of HytA-E also means that gene expression levels
at μ = 1.0 day−1 were sufficient to realise higher H2 uptake with
faster growth, which was also the case for higher CO fixation as
WLP genes were not detected as DEGs (Supplementary Tables
S4, S5). In contrast, increased flux throughput for biomass
synthesis with faster growth was supported by elevated
expression of gluconeogenesis genes (RS08495‒08515,
RS12015, and RS12020) (Figure 6B). In the future, further
work using genetically modified strains is needed to determine
whether any of the putative transcription factors that were up-
regulated with faster growth (Supplementary Figure S2) are
responsible for increased gene expression in any of the
cases above.

DISCUSSION

Exploring the physiological boundaries of acetogens has been
informative for understanding regulation of their energy-limited
metabolism (Valgepea et al., 2017a; Klask et al., 2020; Mahamkali
et al., 2020; Jin et al., 2021). Additionally, various bioprocess
approaches, multi-omics analysis, construction of metabolic
models, and development of genetic tools are being pursued
for development of cell factories with enhanced substrate
conversion, product distribution, and expanded product
spectrum (Valgepea et al., 2018; Lemgruber et al., 2019;

Molitor et al., 2019; Heffernan et al., 2020; Smith et al., 2020;
Bourgade et al., 2021; Diender et al., 2021; Fackler et al., 2021; Jin
et al., 2021; Pavan et al., 2022). Notably, the effects of μ on
acetogen metabolism and the gas fermentation bioprocess have
not been established. Here, we investigated the μ-dependent
bioprocess performance of the acetogen C. autoethanogenum
in CO- and syngas-grown steady-state chemostat cultures and
assessed metabolic responses using gas analysis, metabolomics,
transcriptomics, and metabolic modelling.

We observed higher carbon flux towards ethanol and 2,3-BDO
production with faster growth on syngas (Figure 2). Increased
carbon flux to the same reduced products is also seen with higher
steady-state biomass concentrations for syngas-fermenting C.
autoethanogenum cultures (Valgepea et al., 2017a).
Furthermore, we also measured significantly increased specific
productivities of ethanol (qEtOH) and 2,3-BDO (q2,3-BDO) with
faster growth (Figure 1B). These trends are beneficial for an
industrial gas fermentation process as faster growth and higher
biomass levels complimentary lead to higher product yields and
volumetric productivities (g/L/h). The fact that no clear trend
between µ and carbon flux to 2,3-BDO was seen for CO-grown
cultures (Figure 2) confirms that feed gas composition has a
substantial effect on acetogen product distribution (Diender et al.,
2016; Xu et al., 2017; Valgepea et al., 2018; Jack et al., 2019;
Heffernan et al., 2020). While cells used the majority of the H2

supplied within syngas to directly reduce CO2 to formate in the
WLP (Figure 3), H2 supply also had a direct effect on intracellular

FIGURE 6 | Individual gene expression changes in CO- and syngas-grown C. autoethanogenum chemostats. (A) Volcano plots showing up-(red) and down-
regulated (blue) transcripts for μ = 2.8 vs. 1.0 day−1. Genes in (B) are indicated by gene ID. Grey lines denote DEG thresholds (fold-change > 1.5 with q-value < 0.05) (B)
μ-dependent expression profiles for DEGs linked to activities specifically relevant to acetogens (CO, dashed; syngas, solid). DEG, differentially expressed gene (fold-
change > 1.5 with q-value < 0.05); μ, specific growth rate; AveExp, average of bioreplicates log2 counts per million mapped reads (CPM; see Ritchie et al., 2015).
Gene IDs are preceded with CAETHG_. SeeSupplementary Tables S4, S5 for DEG data. Volcano plot built using Enhanced Volcano package in R (Blighe et al., 2018).

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 87957810

de Lima et al. Faster Growth of Gas-Fermenting Acetogen

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


redox homeostasis as H2 oxidation provided up to 10% of the
total Fdred generated by the cells (Supplementary Table S8),
which is consistent with previous observations in C.
autoethanogenum (Valgepea et al., 2017a, 2018).

Our transcriptomics data revealed differential expression for
more than a thousand genes (DEGs) with increasing μ
(Supplementary Tables S4, S5). This means that the acetogen
C. autoethanogenum uses transcriptional regulation to a large
extent at least for facilitating faster growth, compared to previous
omics studies that suggest a limited role for hierarchical
regulation of gene expression in autotrophic metabolism
(Richter et al., 2016; Valgepea et al., 2017a, 2018; Al-bassam
et al., 2018; Mahamkali et al., 2020). In addition to DEGs linked to
activities specifically relevant to acetogens (e.g., oxidoreductases,
hydrogenases, alcohol/aldehyde dehydrogenases), the functional
classification analysis identified genes related to translation
within DEGs up-regulated with faster growth (Figure 5). This
indicates that the well-known positive correlation between μ and
total RNA content of biomass (Schaechter et al., 1958) is not
sufficient for ensuring faster growth of acetogens either, similarly
to μ-dependent datasets for other microbes (Regenberg et al.,
2006; Ishii et al., 2007; Valgepea et al., 2010; Lahtvee et al., 2011).
Notably, COG classification of DEGs identifiedmost genes within
the group “Function unknown” (S) (Figure 5A), while DEGs also
included many genes with unclear functions for autotrophic
growth, e.g., sugar, amino acid, and other transporters,
hypothetical proteins, BMC-related genes (Supplementary
Tables S4, S5). This highlights the need for mapping
genotype-phenotype links and improving gene annotations for
advancing understanding of acetogen metabolism and
engineering of cell factories.

Though our chemostat cultures were CO-limited and thus
the residual CO concentration in the liquid phase was low,
elevated CO feeding could still inhibit cellular hydrogenases
and hence H2 uptake for syngas cultures (Thauer et al., 1974;
Wang et al., 2013; Mahamkali et al., 2020). Higher syngas,
and thus also CO, feeding rates to support faster growth did
not, however, prevent elevated H2 uptake (Figure 1C).
Interestingly, expression of genes responsible for realising
higher H2 uptake–HytA-E for H2 oxidation and its complex
partner FdhA for direct CO2 reduction to formate using
H2–was not increased at the same time (Figure 6). This is
consistent with proteomics data showing no expression
change of hydrogenase proteins even when C.
autoethanogenum increases its H2 uptake from near-zero
to ~30 mmol/gDCW/h (Valgepea et al., 2018). Similarly, we
could neither detect up-regulation of any WLP genes with
substantially increased flux through the pathway with faster
growth. However, the expression of gluconeogenesis genes
was increased to support faster biomass synthesis (Figure 6).
These observations suggest evolutionary prioritisation of
pathways in C. autoethanogenum to ensure sufficient
“baseline” enzymatic capacity for increasing flux
throughput through key catabolic pathways for CO and
H2 metabolism, consistent with integrative analysis in C.
autoethanogenum (Valgepea et al., 2021) and other microbes
(Daran-Lapujade et al., 2007; Adamberg et al., 2012;

Valgepea et al., 2013). This would also provide acetogens
an advantage in their natural environments as cells could
rapidly respond to CO and H2 availability without delays to
kick-start metabolism.

Our transcriptomics data are also informative regarding by-
product synthesis. In a closely related acetogen–C.
ljungdahlii–gene expression of all 2,3-BDO production pathway
genes is increased prior to 2,3-BDO production in autotrophic batch
cultures (Köpke et al., 2011). We, however, detected strong up-
regulation (18.5-fold) of only BDH (RS01830; reduces acetoin to 2,3-
BDO) with substantially increased carbon flux to 2,3-BDO with
faster growth on syngas despite the 2,3-BDO production pathway
genes being nearly identical between the two species (Brown et al.,
2014). This potentially suggests that there is no transcriptional
limitation for channelling carbon from pyruvate to acetoin and
makes BDH a protein and metabolic engineering target for
improving 2,3-BDO production in C. autoethanogenum. While
our transcriptomics and metabolic modelling results confirmed
the dominant role of AOR activities for ethanol biosynthesis in
acetogens (Marcellin et al., 2016; Valgepea et al., 2018; Heffernan
et al., 2020; Liew et al., 2017; Richter et al., 2016), strong repression of
a cluster of 21 genes (RS08795‒08895) linked to BMCs including
two putative acetaldehyde dehydrogenases (RS08810 and RS08865)
was detected (Supplementary Figure S1). Clustering of putative
alcohol and acetaldehyde dehydrogenases within BMC-encoding
genes in C. autoethanogenum has been noted before (Mock et al.,
2015). Cells use BMCs to optimise metabolic pathways by
encapsulating enzymes within a protein shell to trap toxic
intermediates (Chowdhury et al., 2014; Kerfeld and Erbilgin,
2015). While BMCs seem to play an important role for
heterotrophic growth of the acetogen Acetobacterium woodii
(Schuchmann et al., 2015; Chowdhury et al., 2020; Chowdhury
et al., 2021), it remains to be seen how relevant are BMCs for C.
autoethanogenum autotrophy as the 21 gene cluster was expressed at
very low abundances (Supplementary Tables S2, S3).

Overall, our study provides important quantitative
information and systems-level analysis of the effects of the
key physiological parameter–μ–on acetogen metabolism and
the gas fermentation bioprocess during steady-state cultures.
We conclude that the bioprocess benefits from faster growth of
C. autoethanogenum by supporting both higher product yields
and productivities. Furthermore, our work advances
understanding of transcriptional regulation in acetogens and
supports the concept that cells maintain sufficient “baseline”
expression of key catabolic pathways for increasing flux
throughput. Finally, differential expression of genes with
unclear functions emphasises the need for mapping
genotype-phenotype links and improving gene annotations
for advancing understanding of acetogen metabolism and
engineering of cell factories.

DATA AVAILABILITY STATEMENT

RNA sequencing data have been deposited in the NCBI Gene
Expression Omnibus repository under accession number
GSE196640.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 87957811

de Lima et al. Faster Growth of Gas-Fermenting Acetogen

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


AUTHOR CONTRIBUTIONS

LAdL: Conceptualization, Methodology, Formal analysis,
Investigation, Writing–Original Draft, Writing–Review and
Editing; HI: Methodology, Formal analysis, Investigation,
Writing–Review and Editing; KB: Investigation; KR:
Methodology, Formal analysis, Writing–Review and Editing; CB:
Software, Resources, Writing–Review and Editing; AH: Resources,
Writing–Review and Editing, Project Administration; EM:
Resources, Writing–Review and Editing; MK: Conceptualisation,
Resources, Writing–Review and Editing; KV: Conceptualization,
Methodology, Formal analysis, Investigation, Resources,
Writing–Original Draft, Writing–Review and Editing;
Supervision, Project Administration, Funding Acquisition.

FUNDING

This work was funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement
N810755 and the Estonian Research Council’s grant

agreement PSG289. Australian Government funding through
its investment agency, the Australian Research Council,
towards the ARC Centre of Excellence in Synthetic Biology
(CE200100029) is gratefully acknowledged.

ACKNOWLEDGMENTS

We thank the following investors in LanzaTech’s technology:
BASF, CICC Growth Capital Fund I, CITIC Capital, Indian Oil
Company, K1W1, Khosla Ventures, the Malaysian Life Sciences,
Capital Fund, L. P., Mitsui, the New Zealand Superannuation
Fund, Novo Holdings A/S, Petronas Technology Ventures,
Primetals, Qiming Venture Partners, Softbank China, and Suncor.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbioe.2022.879578/
full#supplementary-material

REFERENCES

Abubackar, H. N., Veiga, M. C., and Kennes, C. (2012). Biological Conversion of
Carbon Monoxide to Ethanol: Effect of pH, Gas Pressure, Reducing Agent and
Yeast Extract. Bioresour. Technology 114, 518–522. doi:10.1016/j.biortech.2012.
03.027

Abubackar, H. N., Veiga, M. C., and Kennes, C. (2015). Carbon Monoxide
Fermentation to Ethanol by Clostridium autoethanogenum in a Bioreactor
with No Accumulation of Acetic Acid. Bioresour. Technology 186, 122–127.
doi:10.1016/j.biortech.2015.02.113

Adamberg, K., Seiman, A., and Vilu, R. (2012). Increased Biomass Yield of Lactococcus
lactis by Reduced Overconsumption of Amino Acids and Increased Catalytic
Activities of Enzymes. PLoS One 7, e48223. doi:10.1371/journal.pone.0048223

Adamberg, K., Valgepea, K., and Vilu, R. (2015). Advanced Continuous
Cultivation Methods for Systems Microbiology. Microbiology 161 (9),
1707–1719. doi:10.1099/mic.0.000146

Al-bassam, M. M., Kim, J.-N., Zaramela, L. S., Kellman, B. P., Zuniga, C., Wozniak,
J. M., et al. (2018). Optimization of Carbon and Energy Utilization through
Differential Translational Efficiency. Nat. Commun. 9, 4474. doi:10.1038/
s41467-018-06993-6

Alexa, A., and Rahnenfuhrer, J. (2020). topGO: Enrichment Analysis for Gene
Ontology. R package version 2.42.0.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al.
(2000). Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 25,
25–29. doi:10.1038/75556

Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate:
a Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser.
B (Methodological) 57 (1), 289–300. doi:10.1111/j.2517-6161.1995.
tb02031.x

Blighe, K., Rana, S., and Lewis, M. (2018). EnhancedVolcano: Publication-Ready
Volcano Plots with Enhanced Colouring and Labeling. Available at: https://
github.com/kevinblighe/EnhancedVolcano (Accessed March 15, 2021).

Bourgade, B., Minton, N. P., and Islam, M. A. (2021). Genetic and Metabolic
Engineering Challenges of C1-Gas Fermenting Acetogenic Chassis
Organisms. FEMS Microbiol. Rev. Fuab008 45, 1–20. doi:10.1093/femsre/
fuab008

Brown, S. D., Nagaraju, S., Utturkar, S., De Tissera, S., Segovia, S., Mitchell, W.,
et al. (2014). Comparison of Single-Molecule Sequencing and Hybrid
Approaches for Finishing the Genome of Clostridium autoethanogenum and

Analysis of CRISPR Systems in Industrial Relevant Clostridia. Biotechnol.
Biofuels. 7, 40. doi:10.1186/1754-6834-7-40

Chowdhury, C., Sinha, S., Chun, S., Yeates, T. O., and Bobik, T. A. (2014). Diverse
Bacterial Microcompartment Organelles. Microbiol. Mol. Biol. Rev. 78 (3),
438–468. doi:10.1128/mmbr.00009-14

Chowdhury, N. P., Alberti, L., Linder, M., and Müller, V. (2020). Exploring
Bacterial Microcompartments in the Acetogenic Bacterium Acetobacterium
woodii. Front. Microbiol. 11, 593467. doi:10.3389/fmicb.2020.593467

Chowdhury, N. P., Moon, J., and Müller, V. (2021). Adh4, an Alcohol
Dehydrogenase Controls Alcohol Formation within Bacterial
Microcompartments in the Acetogenic Bacterium Acetobacterium woodii.
Environ. Microbiol. 23 (1), 499–511. doi:10.1111/1462-2920.15340

Cotter, J. L., Chinn, M. S., and Grunden, A. M. (2009). Influence of Process
Parameters on Growth of Clostridium Ljungdahlii and Clostridium
autoethanogenum on Synthesis Gas. Enzyme Microb. Technology 44 (5),
281–288. doi:10.1016/j.enzmictec.2008.11.002

Cotton, C. A., Edlich-Muth, C., and Bar-Even, A. (2018). Reinforcing Carbon
Fixation: CO2 Reduction Replacing and Supporting Carboxylation. Curr. Opin.
Biotechnol. 49, 49–56. doi:10.1016/j.copbio.2017.07.014

Daran-Lapujade, P., Rossell, S., van Gulik, W. M., Luttik, M. A. H., de Groot, M.
J. L., Slijper, M., et al. (2007). The Fluxes through Glycolytic Enzymes in
Saccharomyces cerevisiae Are Predominantly Regulated at Posttranscriptional
Levels. Proc. Natl. Acad. Sci. U.S.A. 104, 15753–15758. doi:10.1073/pnas.
0707476104

de Souza Pinto Lemgruber, R., Valgepea, K., Gonzalez Garcia, R. A., de Bakker, C.,
Palfreyman, R. W., Tappel, R., et al. (2019). A TetR-Family Protein
(CAETHG_0459) Activates Transcription from a New Promoter Motif
Associated with Essential Genes for Autotrophic Growth in Acetogens.
Front. Microbiol. 10, 2549. doi:10.3389/fmicb.2019.02549

Diender, M., Parera Olm, I., Gelderloos, M., Koehorst, J. J., Schaap, P. J., Stams, A.
J. M., et al. (2019). Metabolic Shift Induced by Synthetic Co-cultivation
Promotes High Yield of Chain Elongated Acids from Syngas. Sci. Rep. 9 (1),
18081. doi:10.1038/s41598-019-54445-y

Diender, M., Parera Olm, I., and Sousa, D. Z. (2021). Synthetic Co-cultures: Novel
Avenues for Bio-Based Processes. Curr. Opin. Biotechnol. 67, 72–79. doi:10.
1016/j.copbio.2021.01.006

Diender, M., Stams, A. J. M., and Sousa, D. Z. (2016). Production of Medium-
Chain Fatty Acids and Higher Alcohols by a Synthetic Co-culture Grown on
Carbon Monoxide or Syngas. Biotechnol. Biofuels. 9 (1), 82. doi:10.1186/
s13068-016-0495-0

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 87957812

de Lima et al. Faster Growth of Gas-Fermenting Acetogen

https://www.frontiersin.org/articles/10.3389/fbioe.2022.879578/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbioe.2022.879578/full#supplementary-material
https://doi.org/10.1016/j.biortech.2012.03.027
https://doi.org/10.1016/j.biortech.2012.03.027
https://doi.org/10.1016/j.biortech.2015.02.113
https://doi.org/10.1371/journal.pone.0048223
https://doi.org/10.1099/mic.0.000146
https://doi.org/10.1038/s41467-018-06993-6
https://doi.org/10.1038/s41467-018-06993-6
https://doi.org/10.1038/75556
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://github.com/kevinblighe/EnhancedVolcano
https://github.com/kevinblighe/EnhancedVolcano
https://doi.org/10.1093/femsre/fuab008
https://doi.org/10.1093/femsre/fuab008
https://doi.org/10.1186/1754-6834-7-40
https://doi.org/10.1128/mmbr.00009-14
https://doi.org/10.3389/fmicb.2020.593467
https://doi.org/10.1111/1462-2920.15340
https://doi.org/10.1016/j.enzmictec.2008.11.002
https://doi.org/10.1016/j.copbio.2017.07.014
https://doi.org/10.1073/pnas.0707476104
https://doi.org/10.1073/pnas.0707476104
https://doi.org/10.3389/fmicb.2019.02549
https://doi.org/10.1038/s41598-019-54445-y
https://doi.org/10.1016/j.copbio.2021.01.006
https://doi.org/10.1016/j.copbio.2021.01.006
https://doi.org/10.1186/s13068-016-0495-0
https://doi.org/10.1186/s13068-016-0495-0
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Drake, H. L., Küsel, K., and Matthies, C. (2006). Acetogenic Prokaryotes.
Prokaryotes 2, 354–420. doi:10.1007/0-387-30742-7_13

Esquivel-Elizondo, S., Delgado, A. G., Rittmann, B. E., and Krajmalnik-Brown, R.
(2017). The Effects of CO2 and H2 on CO Metabolism by Pure and Mixed
Microbial Cultures. Biotechnol. Biofuels. 10 (1), 220. doi:10.1186/s13068-017-
0910-1

Ewels, P., Magnusson, M., Lundin, S., and Käller, M. (2016). MultiQC: Summarize
Analysis Results for Multiple Tools and Samples in a Single Report.
Bioinformatics 32 (19), 3047–3048. doi:10.1093/bioinformatics/btw354

Fackler, N., Heijstra, B. D., Rasor, B. J., Brown, H., Martin, J., Ni, Z., et al. (2021).
Stepping on the Gas to a Circular Economy: Accelerating Development of
Carbon-Negative Chemical Production from Gas Fermentation. Annu. Rev.
Chem. Biomol. Eng. 12 (1), 439–470. doi:10.1146/annurev-chembioeng-
120120-021122

Fast, A. G., and Papoutsakis, E. T. (2012). Stoichiometric and Energetic Analyses of
Non-photosynthetic CO2-fixation Pathways to Support Synthetic Biology
Strategies for Production of Fuels and Chemicals. Curr. Opin. Chem. Eng. 1
(4), 380–395. doi:10.1016/j.coche.2012.07.005

Galili, T. (2015). Dendextend: An R Package for Visualizing, Adjusting and
Comparing Trees of Hierarchical Clustering. Bioinformatics 31 (22),
3718–3720. doi:10.1093/bioinformatics/btv428

Greene, J., Daniell, J., Köpke, M., Broadbelt, L., and Tyo, K. E. J. (2019). Kinetic
Ensemble Model of Gas Fermenting Clostridium autoethanogenum for
Improved Ethanol Production. Biochem. Eng. J. 148, 46–56. doi:10.1016/j.
bej.2019.04.021

Gu, Z., Eils, R., and Schlesner, M. (2016). Complex Heatmaps Reveal Patterns and
Correlations in Multidimensional Genomic Data. Bioinformatics 32 (18),
2847–2849. doi:10.1093/bioinformatics/btw313

Hackett, S. R., Zanotelli, V. R. T., Xu, W., Goya, J., Park, J. O., Perlman, D. H., et al.
(2016). Systems-level Analysis of Mechanisms Regulating Yeast Metabolic Flux.
Science 354, aaf2786. doi:10.1126/science.aaf2786

Heffernan, J. K., Valgepea, K., de Souza Pinto Lemgruber, R., Casini, I., Plan, M.,
Tappel, R., et al. (2020). Enhancing CO2-Valorization Using Clostridium
autoethanogenum for Sustainable Fuel and Chemicals Production. Front.
Bioeng. Biotechnol. 8, 204. doi:10.3389/fbioe.2020.00204

Hess, V., Gallegos, R., Jones, J. A., Barquera, B., Malamy, M. H., and Müller, V.
(2016). Occurrence of ferredoxin:NAD+oxidoreductase Activity and its Ion
Specificity in Several Gram-Positive and Gram-Negative Bacteria. PeerJ 4,
e1515. doi:10.7717/peerj.1515

Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K.,
Cook, H., et al. (2019). eggNOG 5.0: a Hierarchical, Functionally and
Phylogenetically Annotated Orthology Resource Based on 5090 Organisms
and 2502 Viruses. Nucleic Acids Res. 47, D309–D314. doi:10.1093/nar/
gky1085

Ishii, N., Nakahigashi, K., Baba, T., Robert, M., Soga, T., Kanai, A., et al. (2007).
Multiple High-Throughput Analyses Monitor the Response of E. coli to
Perturbations. Science 316, 593–597. doi:10.1126/science.1132067

Jack, J., Lo, J., Maness, P.-C., and Ren, Z. J. (2019). Directing Clostridium
ljungdahlii Fermentation Products via Hydrogen to Carbon Monoxide Ratio
in Syngas. Biomass and Bioenergy 124, 95–101. doi:10.1016/j.biombioe.2019.
03.011

Jin, S., Jeon, Y., Jeon, M. S., Shin, J., Song, Y., Kang, S., et al. (2021). Acetogenic
Bacteria Utilize Light-Driven Electrons as an Energy Source for Autotrophic
Growth. Proc. Natl. Acad. Sci. U.S.A. 118 (9), e2020552118. doi:10.1073/pnas.
2020552118

Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., et al. (2014).
InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics
30 (9), 1236–1240. doi:10.1093/bioinformatics/btu031

Kerfeld, C. A., and Erbilgin, O. (2015). Bacterial Microcompartments and the
Modular Construction of Microbial Metabolism. Trends Microbiol. 23 (1),
22–34. doi:10.1016/j.tim.2014.10.003

Klask, C.-M., Kliem-Kuster, N., Molitor, B., and Angenent, L. T. (2020). Nitrate
Feed Improves Growth and Ethanol Production of Clostridium ljungdahlii with
CO2 and H2, but Results in Stochastic Inhibition Events. Front. Microbiol. 11,
724. doi:10.3389/fmicb.2020.00724

Köpke, M., Mihalcea, C., Liew, F., Tizard, J. H., Ali, M. S., Conolly, J. J., et al. (2011).
2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to

Chemical Synthesis, Using Industrial Waste Gas. Appl. Environ. Microbiol. 77
(15), 5467–5475. doi:10.1128/AEM.00355-11

Köpke, M., and Simpson, S. D. (2020). Pollution to Products: Recycling of ’above
Ground’ Carbon by Gas Fermentation. Curr. Opin. Biotechnol. 65, 180–189.
doi:10.1016/j.copbio.2020.02.017

Lahtvee, P.-J., Adamberg, K., Arike, L., Nahku, R., Aller, K., and Vilu, R. (2011).
Multi-omics Approach to Study the Growth Efficiency and Amino Acid
Metabolism in Lactococcus Lactis at Various Specific Growth Rates. Microb.
Cel Fact. 10, 1–12. doi:10.1186/1475-2859-10-12

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009).
The Sequence Alignment/Map Format and SAMtools. Bioinformatics 25 (16),
2078–2079. doi:10.1093/bioinformatics/btp352

Liao, Y., Smyth, G. K., and Shi, W. (2019). The R Package Rsubread Is
Easier, Faster, Cheaper and Better for Alignment and Quantification of
RNA Sequencing Reads. Nucleic Acids Res. 47, e47. doi:10.1093/nar/
gkz114

Liew, F., Henstra, A. M., Kӧpke, M., Winzer, K., Simpson, S. D., and Minton, N. P.
(2017). Metabolic Engineering of Clostridium autoethanogenum for Selective
Alcohol Production. Metab. Eng. 40, 104–114. doi:10.1016/j.ymben.2017.
01.007

Liew, F., Martin, M. E., Tappel, R. C., Heijstra, B. D., Mihalcea, C., and Köpke,
M. (2016). Gas Fermentation-A Flexible Platform for Commercial Scale
Production of Low-Carbon-Fuels and Chemicals from Waste and
Renewable Feedstocks. Front. Microbiol. 7, 694. doi:10.3389/fmicb.2016.
00694

Lipson, D. A. (2015). The Complex Relationship between Microbial Growth Rate
and Yield and its Implications for Ecosystem Processes. Front. Microbiol. 6
(JUN), 1–5. doi:10.3389/fmicb.2015.00615

Mahamkali, V., Valgepea, K., de Souza Pinto Lemgruber, R., Plan, M., Tappel, R.,
Köpke, M., et al. (2020). Redox Controls Metabolic Robustness in the Gas-
Fermenting Acetogen Clostridium autoethanogenum. Proc. Natl. Acad. Sci.
U.S.A. 117, 13168–13175. doi:10.1073/pnas.1919531117

Marcellin, E., Behrendorff, J. B., Nagaraju, S., DeTissera, S., Segovia, S., Palfreyman,
R. W., et al. (2016). Low Carbon Fuels and Commodity Chemicals from Waste
Gases - Systematic Approach to Understand Energy Metabolism in a Model
Acetogen. Green. Chem. 18, 3020–3028. doi:10.1039/C5GC02708J

Martin, M. (2011). Cutadapt Removes Adapter Sequences from High-Throughput
Sequencing Reads. EMBnet j. 17 (1), 10–12. doi:10.14806/ej.17.1.200

Martin, M. E., Richter, H., Saha, S., and Angenent, L. T. (2015). Traits of selected
Clostridium strains for Syngas Fermentation to Ethanol. Biotechnol. Bioeng. 113
(3), 531–539. doi:10.1002/bit.25827

Mock, J., Zheng, Y., Mueller, A. P., Ly, S., Tran, L., Segovia, S., et al. (2015). Energy
Conservation Associated with Ethanol Formation from H2 and CO2 in
Clostridium autoethanogenum Involving Electron Bifurcation. J. Bacteriol.
197 (18), 2965–2980. doi:10.1128/JB.00399-15

Molitor, B., Marcellin, E., and Angenent, L. T. (2017). Overcoming the Energetic
Limitations of Syngas Fermentation. Curr. Opin. Chem. Biol. 41, 84–92. doi:10.
1016/j.cbpa.2017.10.003

Molitor, B., Mishra, A., and Angenent, L. T. (2019). Power-to-protein: Converting
Renewable Electric Power and Carbon Dioxide into Single Cell Protein with a
Two-Stage Bioprocess. Energy Environ. Sci. 12, 3515–3521. doi:10.1039/
c9ee02381j

Molitor, B., Richter, H., Martin, M. E., Jensen, R. O., Juminaga, A., Mihalcea, C.,
et al. (2016). Carbon Recovery by Fermentation of CO-rich off Gases - Turning
Steel Mills into Biorefineries. Bioresour. Technology 215, 386–396. doi:10.1016/j.
biortech.2016.03.094

O’Brien, E. J., Monk, J. M., and Palsson, B. O. (2015). Using Genome-Scale Models
To Predict Biological Capabilities.Cell 161 (5), 971–987. doi:10.1016/j.cell.2015.
05.019

Orth, J. D., Thiele, I., and Palsson, B. O. (2010). What is Flux Balance Analysis?.
Nat. Biotechnol. 28 (3), 245–248. doi:10.1038/nbt.1614

Park, S., Ahn, B., and Kim, Y.-K. (2019). Growth Enhancement of Bioethanol-
Producing Microbe Clostridium Autoethanogenum by Changing Culture
Medium Composition. Bioresour. Technology Rep. 6, 237–240. doi:10.1016/j.
biteb.2019.03.012

Pavan, M., Reinmets, K., Garg, S., Mueller, A. P., Marcellin, E., Köpke, M., et al.
(2022). Advances in Systems Metabolic Engineering of Autotrophic Carbon

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 87957813

de Lima et al. Faster Growth of Gas-Fermenting Acetogen

https://doi.org/10.1007/0-387-30742-7_13
https://doi.org/10.1186/s13068-017-0910-1
https://doi.org/10.1186/s13068-017-0910-1
https://doi.org/10.1093/bioinformatics/btw354
https://doi.org/10.1146/annurev-chembioeng-120120-021122
https://doi.org/10.1146/annurev-chembioeng-120120-021122
https://doi.org/10.1016/j.coche.2012.07.005
https://doi.org/10.1093/bioinformatics/btv428
https://doi.org/10.1016/j.bej.2019.04.021
https://doi.org/10.1016/j.bej.2019.04.021
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1126/science.aaf2786
https://doi.org/10.3389/fbioe.2020.00204
https://doi.org/10.7717/peerj.1515
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1126/science.1132067
https://doi.org/10.1016/j.biombioe.2019.03.011
https://doi.org/10.1016/j.biombioe.2019.03.011
https://doi.org/10.1073/pnas.2020552118
https://doi.org/10.1073/pnas.2020552118
https://doi.org/10.1093/bioinformatics/btu031
https://doi.org/10.1016/j.tim.2014.10.003
https://doi.org/10.3389/fmicb.2020.00724
https://doi.org/10.1128/AEM.00355-11
https://doi.org/10.1016/j.copbio.2020.02.017
https://doi.org/10.1186/1475-2859-10-12
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/nar/gkz114
https://doi.org/10.1093/nar/gkz114
https://doi.org/10.1016/j.ymben.2017.01.007
https://doi.org/10.1016/j.ymben.2017.01.007
https://doi.org/10.3389/fmicb.2016.00694
https://doi.org/10.3389/fmicb.2016.00694
https://doi.org/10.3389/fmicb.2015.00615
https://doi.org/10.1073/pnas.1919531117
https://doi.org/10.1039/C5GC02708J
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1002/bit.25827
https://doi.org/10.1128/JB.00399-15
https://doi.org/10.1016/j.cbpa.2017.10.003
https://doi.org/10.1016/j.cbpa.2017.10.003
https://doi.org/10.1039/c9ee02381j
https://doi.org/10.1039/c9ee02381j
https://doi.org/10.1016/j.biortech.2016.03.094
https://doi.org/10.1016/j.biortech.2016.03.094
https://doi.org/10.1016/j.cell.2015.05.019
https://doi.org/10.1016/j.cell.2015.05.019
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1016/j.biteb.2019.03.012
https://doi.org/10.1016/j.biteb.2019.03.012
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Oxide-Fixing Biocatalysts towards a Circular Economy.Metab. Eng. 1, 1. doi:10.
1016/j.ymben.2022.01.015

Peebo, K., Valgepea, K., Maser, A., Nahku, R., Adamberg, K., and Vilu, R. (2015).
Proteome Reallocation in Escherichia coli with Increasing Specific Growth Rate.
Mol. Biosyst. 11 (4), 1184–1193. doi:10.1039/c4mb00721b

Peebo, K., Valgepea, K., Nahku, R., Riis, G., Õun, M., Adamberg, K., et al. (2014).
Coordinated Activation of PTA-ACS and TCA Cycles Strongly Reduces
Overflow Metabolism of Acetate in Escherichia coli. Appl. Microbiol.
Biotechnol. 98 (11), 5131–5143. doi:10.1007/s00253-014-5613-y

Ragsdale, S. W., and Pierce, E. (2008). Acetogenesis and the Wood-Ljungdahl
Pathway of CO2 Fixation. Biochim. Biophys. Acta (Bba) - Proteins Proteomics
1784 (12), 1873–1898. doi:10.1016/j.bbapap.2008.08.012

Redl, S., Diender, M., Jensen, T. Ø., Sousa, D. Z., and Nielsen, A. T. (2017).
Exploiting the Potential of Gas Fermentation. Ind. Crops Prod. 106, 21–30.
doi:10.1016/j.indcrop.2016.11.015

Regenberg, B., Grotkjær, T., Winther, O., Fausbøll, A., Åkesson, M., Bro, C., et al.
(2006). Growth-rate Regulated Genes Have Profound Impact on Interpretation
of Transcriptome Profiling in Saccharomyces cerevisiae. Genome Biol. 7 (11),
R107. doi:10.1186/gb-2006-7-11-r107

Richter, H., Martin, M., and Angenent, L. (2013). A Two-Stage Continuous
Fermentation System for Conversion of Syngas into Ethanol. Energies 6 (8),
3987–4000. doi:10.3390/en6083987

Richter, H., Molitor, B., Wei, H., Chen, W., Aristilde, L., and Angenent, L. T.
(2016). Ethanol Production in Syngas-Fermenting Clostridium Ljungdahlii Is
Controlled by Thermodynamics rather Than by Enzyme Expression. Energ.
Environ. Sci. 9 (7), 2392–2399. doi:10.1039/C6EE01108J

Ritchie, M. E., Phipson, B.,Wu, D., Hu, Y., Law, C.W., Shi, W., et al. (2015). Limma
powers Differential Expression Analyses for RNA-Sequencing and Microarray
Studies. Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor
Package for Differential Expression Analysis of Digital Gene Expression Data.
Bioinformatics 26 (1), 139–140. doi:10.1093/bioinformatics/btp616

Schaechter, M., MaalOe, O., and Kjeldgaard, N. O. (1958). Dependency on
Medium and Temperature of Cell Size and Chemical Composition during
Balanced Growth of Salmonella typhimurium. J. Gen. Microbiol. 19, 592–606.
doi:10.1099/00221287-19-3-592

Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M.,
et al. (2011). Quantitative Prediction of Cellular Metabolism with Constraint-
Based Models: the COBRA Toolbox v2.0. Nat. Protoc. 6 (9), 1290–1307. doi:10.
1038/nprot.2011.308

Schuchmann, K., and Müller, V. (2014). Autotrophy at the Thermodynamic Limit
of Life: a Model for Energy Conservation in Acetogenic Bacteria. Nat. Rev.
Microbiol. 12 (12), 809–821. doi:10.1038/nrmicro3365

Schuchmann, K., Schmidt, S., Martinez Lopez, A., Kaberline, C., Kuhns, M., Lorenzen,
W., et al. (2015). Nonacetogenic Growth of the AcetogenAcetobacteriumWoodii on
1,2-propanediol. J. Bacteriol. 197 (2), 382–391. doi:10.1128/JB.02383-14

Shin, J., Song, Y., Kang, S., Jin, S., Lee, J.-K., Kim, D. R., et al. (2021). Genome-Scale
Analysis of Acetobacterium woodii Identifies Translational Regulation of
Acetogenesis. mSystems 6, e0069621. doi:10.1128/MSYSTEMS.00696-21

Smith, N. W., Shorten, P. R., Altermann, E., Roy, N. C., andMcNabb,W. C. (2020).
Mathematical Modelling Supports the Existence of a Threshold Hydrogen
Concentration and media-dependent Yields in the Growth of a Reductive
Acetogen. Bioproc. Biosyst. Eng. 43, 885–894. doi:10.1007/s00449-020-02285-w

Song, Y., Shin, J., Jeong, Y., Jin, S., Lee, J.-K., Kim, D. R., et al. (2017).
Determination of the Genome and Primary Transcriptome of Syngas
Fermenting Eubacterium Limosum ATCC 8486. Sci. Rep. 7 (1), 13694.
doi:10.1038/s41598-017-14123-3

Song, Y., Shin, J., Jin, S., Lee, J.-K., Kim, D. R., Kim, S. C., et al. (2018). Genome-
scale Analysis of Syngas Fermenting Acetogenic Bacteria Reveals the
Translational Regulation for its Autotrophic Growth. BMC Genomics 19,
837. doi:10.1186/s12864-018-5238-0

Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E.
V., et al. (2003). The COG Database: an Updated Version Includes Eukaryotes.
BMC Bioinformatics 4, 41. doi:10.1186/1471-2105-4-41

Thauer, R. K., Kafer, B., Jungermann, K., and Zahringer, M. (1974). The Reaction of
the Iron-Sulfur Protein Hydrogenase with Carbon Monoxide. Eur. J. Biochem.
42 (2), 447–452. doi:10.1111/j.1432-1033.1974.tb03358.x

Törönen, P., Medlar, A., and Holm, L. (2018). PANNZER2: A Rapid Functional
Annotation Web Server. Nucleic Acids Res. 46 (W1), W84–W88. doi:10.1093/
nar/gky350

Tremblay, P.-L., Zhang, T., Dar, S. A., Leang, C., and Lovley, D. R. (2013). The Rnf
Complex of Clostridium ljungdahlii is a Proton-Translocating Ferredoxin:NAD
+ Oxidoreductase Essential for Autotrophic Growth. MBio 4 (1), e00406–12.
doi:10.1128/mBio.00406-12

Valgepea, K., Adamberg, K., Nahku, R., Lahtvee, P.-J., Arike, L., and Vilu, R. (2010).
Systems Biology Approach Reveals that Overflow Metabolism of Acetate in
Escherichia coli Is Triggered by Carbon Catabolite Repression of Acetyl-CoA
Synthetase. BMC Syst. Biol. 4, 1–13. doi:10.1186/1752-0509-4-166

Valgepea, K., Adamberg, K., Seiman, A., and Vilu, R. (2013). Escherichia
coli Achieves Faster Growth by Increasing Catalytic and Translation
Rates of Proteins. Mol. Biosyst. 9 (9), 2344–2358. doi:10.1039/
c3mb70119k

Valgepea, K., de Souza Pinto Lemgruber, R., Abdalla, T., Binos, S., Takemori, N.,
Takemori, A., et al. (2018). H2 Drives Metabolic Rearrangements in Gas-
Fermenting Clostridium autoethanogenum. Biotechnol. Biofuels. 11 (1), 55.
doi:10.1186/s13068-018-1052-9

Valgepea, K., de Souza Pinto Lemgruber, R., Meaghan, K., Palfreyman, R. W.,
Abdalla, T., Heijstra, B. D., et al. (2017a). Maintenance of ATP Homeostasis
Triggers Metabolic Shifts in Gas-Fermenting Acetogens. Cel Syst. 4 (5),
505–515. e5. doi:10.1016/j.cels.2017.04.008

Valgepea, K., Loi, K. Q., Behrendorff, J. B., Lemgruber, R. d. S. P., Plan, M., Hodson,
M. P., et al. (2017b). Arginine Deiminase Pathway Provides ATP and Boosts
Growth of the Gas-Fermenting Acetogen Clostridium autoethanogenum.
Metab. Eng. 41, 202–211. doi:10.1016/j.ymben.2017.04.007

Valgepea, K., Talbo, G., Takemori, N., Takemori, A., Ludwig, C., Mueller, A. P.,
et al. (2021). Absolute Proteome Quantification in the Gas-Fermenting Acetogen
Clostridium autoethanogenum. doi:10.1101/2021.05.11.443690

Van Hoek, P., Van Dijken, J. P., and Pronk, J. T. (1998). Effect of Specific Growth
Rate on Fermentative Capacity of Baker’s Yeast. Appl. Environ. Microbiol. 64
(11), 4226–4233. doi:10.1128/aem.64.11.4226-4233.1998

Wang, S., Huang, H., Kahnt, J., Mueller, A. P., Köpke, M., and Thauer, R. K. (2013).
NADP-specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional
Complex with Formate Dehydrogenase in Clostridium autoethanogenum
Grown on CO. J. Bacteriol. 195 (19), 4373–4386. doi:10.1128/JB.00678-13

Wilkins, M. R., and Atiyeh, H. K. (2011). Microbial Production of Ethanol from
Carbon Monoxide. Curr. Opin. Biotechnol. 22 (3), 326–330. doi:10.1016/j.
copbio.2011.03.005

Wood, H. G. (1991). Life with CO or CO2 and H2 as a Source of Carbon and
Energy. FASEB j. 5 (2), 156–163. doi:10.1096/fasebj.5.2.1900793

Xu, H., Liang, C., Yuan, Z., Xu, J., Hua, Q., and Guo, Y. (2017). A Study of CO/
syngas Bioconversion by Clostridium autoethanogenum with a Flexible
Gas-Cultivation System. Enzyme Microb. Technology 101, 24–29. doi:10.
1016/j.enzmictec.2017.03.002

Conflict of Interest: LanzaTech has interest in commercial gas fermentation with
C. autoethanogenum. AH and MK are employees of LanzaTech.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 de Lima, Ingelman, Brahmbhatt, Reinmets, Barry, Harris,
Marcellin, Köpke and Valgepea. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org April 2022 | Volume 10 | Article 87957814

de Lima et al. Faster Growth of Gas-Fermenting Acetogen

https://doi.org/10.1016/j.ymben.2022.01.015
https://doi.org/10.1016/j.ymben.2022.01.015
https://doi.org/10.1039/c4mb00721b
https://doi.org/10.1007/s00253-014-5613-y
https://doi.org/10.1016/j.bbapap.2008.08.012
https://doi.org/10.1016/j.indcrop.2016.11.015
https://doi.org/10.1186/gb-2006-7-11-r107
https://doi.org/10.3390/en6083987
https://doi.org/10.1039/C6EE01108J
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1099/00221287-19-3-592
https://doi.org/10.1038/nprot.2011.308
https://doi.org/10.1038/nprot.2011.308
https://doi.org/10.1038/nrmicro3365
https://doi.org/10.1128/JB.02383-14
https://doi.org/10.1128/MSYSTEMS.00696-21
https://doi.org/10.1007/s00449-020-02285-w
https://doi.org/10.1038/s41598-017-14123-3
https://doi.org/10.1186/s12864-018-5238-0
https://doi.org/10.1186/1471-2105-4-41
https://doi.org/10.1111/j.1432-1033.1974.tb03358.x
https://doi.org/10.1093/nar/gky350
https://doi.org/10.1093/nar/gky350
https://doi.org/10.1128/mBio.00406-12
https://doi.org/10.1186/1752-0509-4-166
https://doi.org/10.1039/c3mb70119k
https://doi.org/10.1039/c3mb70119k
https://doi.org/10.1186/s13068-018-1052-9
https://doi.org/10.1016/j.cels.2017.04.008
https://doi.org/10.1016/j.ymben.2017.04.007
https://doi.org/10.1101/2021.05.11.443690
https://doi.org/10.1128/aem.64.11.4226-4233.1998
https://doi.org/10.1128/JB.00678-13
https://doi.org/10.1016/j.copbio.2011.03.005
https://doi.org/10.1016/j.copbio.2011.03.005
https://doi.org/10.1096/fasebj.5.2.1900793
https://doi.org/10.1016/j.enzmictec.2017.03.002
https://doi.org/10.1016/j.enzmictec.2017.03.002
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles

	Faster Growth Enhances Low Carbon Fuel and Chemical Production Through Gas Fermentation
	Introduction
	Material and Methods
	Bacterial Strain, Growth Medium, and Continuous Culture Conditions
	Biomass Concentration Analysis
	Extracellular Metabolome Analysis
	Bioreactor Off-Gas Analysis
	Carbon Balance Analysis
	Transcriptome Analysis
	RNA Sequencing Data Analysis
	Mapping and Assignment of Genome Features From RNA Sequencing Raw Data
	Determination of Transcript Abundances and Differentially Expressed Genes
	Functional Data Analysis

	Genome-Scale Metabolic Modelling

	Results
	Steady-State Gas-Fermenting Chemostat Cultures of Clostridium autoethanogenum
	Elevated Ethanol Productivity With Faster Growth
	Gas Analysis Indicates Metabolic Rearrangements
	Faster Growth Leads to Carbon Diversion Away From Acetate
	Analysis of Metabolic Fluxes Using a Genome-Scale Metabolic Model
	Global Transcriptome Trends With Faster Growth
	Transcriptional Changes Linked to Metabolic Rearrangements

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


