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Abstract

Abductive inference derives explanations for encountered anomalies and thus embodies a natural approach for diagnostic

reasoning. Yet its computational complexity, which is inherent to the expressiveness of the underlying theory, remains a

disadvantage. Even when restricting the representation to Horn formulae the problem is NP-complete. Hence, finding

procedures that can efficiently solve abductive diagnosis problems is of particular interest from a research as well as practical

point of view. In this paper, we aim at providing guidance on choosing an algorithm or tool when confronted with the issue

of computing explanations in propositional logic-based abduction. Our focus lies on Horn representations, which provide a

suitable language to describe most diagnostic scenarios. We illustrate abduction via two contrasting problem formulations:

direct proof methods and conflict-driven techniques. While the former is based on determining logical consequences, the

later searches for suitable refutations involving possible causes. To reveal runtime performance trends we conducted a case

study, in which we compared publicly available general purpose tools, established Horn reasoning engines, as well as new

variations of known methods as a means for abduction.

Keywords Abductive reasoning · Model-based diagnosis · Abductive diagnosis

1 Introduction

Within the last decades, an extensive number of approaches

and tools for abductive reasoning have been developed

within the Artificial Intelligence community. These meth-

ods are tailored to various underlying artifacts and diverse

domains, such as plan recognition [4], test case gener-

ation [36], ontology debugging [50], or human behavior

interpretation [19]. Still, the most prominent application

area of abduction is diagnosis, i.e., identifying root causes

for a given set of observed anomalies. Model-based diag-

nosis (MBD) has been proposed as a means to locate faults

by reasoning directly on a description of the system [45].

This work has been previously published as part of the PhD thesis

[30].
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While the traditional consistency-based version of MBD

extracts conflicts from discrepancies between predicted and

observed behavior and subsequently derives diagnoses, the

abductive variant is founded in logic-based abduction [34].

Logic-based abduction is defined as the search for a set of

consistent abducible propositions that together with a back-

ground theory entail the observations. Additional restric-

tions, such as minimality, are often placed on the solutions.

Originally, abductive model-based approaches operate on

formalizations of the faulty system behavior. Such failure

knowledge can usually be expressed as Horn theories [6].

Besides being a suitable representation for diagnostic mod-

els, the complexity results for this subset of logic are less

daunting; that is, abduction for general theories is located

on the second level in the polynomial hierarchy, while for

Horn models the complexity is lowered by one level [10].

In the following example, we describe a simple diag-

nosis problem taken from the industrial wind turbine

domain. Gearbox lubrication is an essential aspect in regard

to the reliability of wind turbines as it protects the con-

tact surfaces of gears and bearings from excessive wear

and prevents overheating. In a simplified scenario, the

insufficient lubrication can be caused by various compo-

nent failures. On the one hand, a broken oil pump leads
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to reduced oil pressure. This decreased pressure dimin-

ishes the flow rate of oil through the system. On the

other hand, damages to the oil cooler eventually cause

an overheating of the oil, which in conjunction with a

blocked oil filter also negatively affects the lubrication

resulting from a reduction in the film thickness at bear-

ing and gear contacts. These relations can be described

by a set of Horn clauses: HC = {Damaged pump →

reduced pressure, reduced pressure → poor lubrication,

Broken filter ∧ overheating → poor lubrication,

Cooler leaks ∧ Cooler cracks → overheating}. Given the

interactions between component faults and their conse-

quences, we can identify two root causes of insufficient

lubrication: (1) a damaged oil pump and (2) a broken filter

in conjunction with cracks and leaks of the oil cooling

component. These causes constitute the faults we want to

identify during diagnosis. In the remainder of this paper, we

make use of this running example to illustrate the different

abductive reasoning approaches.

As abductive inference can be applied to different tasks,

various techniques for solving logic-based abduction prob-

lems have emerged. Some frame the issue of deriving

explanations as the search for logical consequences, i.e.,

diagnoses are derived deductively. Inoue [22], for example,

proposes Skipping Ordered Linear (SOL) tableau calculus

for extracting consequences of interest equivalent to abduc-

tive explanations. Another consequence finding method is

kernel resolution [49]. Similar to SOL-resolution, kernel

resolution focuses on computing consequences of clauses of

interest. This technique can be implemented efficiently with

Zero-Suppressed Binary Decision Diagrams and performs

well on large problem instances. Another classical tech-

nique regarding diagnosis is the Assumption-based Truth

Maintenance System (ATMS) [7]. The ATMS has been used

extensively in the context of consistency-based diagnosis, but

given the information it records the ATMS can further gen-

erate abductive explanations by deriving minimal logical

consequences. Abductive Logic Programming (ALP) [24]

has been introduced as a means to declaratively solve abduc-

tion problems within the framework of logic programming.

Logic programming is augmented with abducible predi-

cates, i.e., ground instances that may be part of a diagnosis,

and integrity constraints posing restrictions on what consti-

tutes an admissible solution. Besides specific tools such as

the A-System [25], ALP can be realized using Answer Set

Programming (ASP) [47].

A different framework for abductive diagnosis is

proof-tree completion-style abduction. Here the diagnosis

problem is rewritten in an entailment preserving way, such

that explanations are equivalent to conflicts [37]. Using

this notion of abduction, innovations in extracting Minimal

Unsatisfiable Subsets (MUSes) of logical formulae, which

are equivalent to conflicts, can be exploited to obtain

abductive diagnoses [32]. A common approach to MUSes

extraction is to first compute their hitting set duals Minimal

Correction Subsets (MCSes) and subsequently derive the

irreducible hitting sets [33]. Recently, inspired by the

success of implicit hitting set algorithms for MaxSAT,

Saikko et al. [46] have introduced a method that computes

one minimum-cost abductive explanation by utilizing

Integer Programming to iteratively derive hitting sets. Each

hitting set is then checked whether it constitutes a solution.

Ignatiev, Morgado, and Marques-Silva [21] report on an

improvement of this method by deriving the hitting sets

using a MaxSAT solver.

Yet contemplating the collection of approaches and

tools for abduction, the question, which strategy to follow,

remains. An analysis seeking to answer this question for

consistency-based diagnosis algorithms exists [40]. The

authors compare two strategies to derive diagnoses: on the

one hand methods that directly compute the solutions given

the system description and symptoms and on the other hand

conflict-based techniques that exploit contradictions arising

from correct behavior assumptions and the observations.

Feldman et al. [13] introduce a benchmark framework for

executing diagnosis methods for physical systems under

identical conditions. The performance evaluation presented

includes rule-based, (consistency) model-based, data driven,

and stochastic fault detection and identification approaches.

While there is research comparing the consensus among

different abduction formalizations [15, 37], assessing an

emerging tool’s performance in regard to previously

proposed mechanisms [9, 46], or applying a reasoning

system to different domains [39], a broader empirical

evaluation as available in the consistency-based case

is missing for abductive Horn diagnosis. For instance,

McIlraith [37] reviews different formal characterizations,

frameworks, techniques, and application areas for abductive

inference. While the comparison is broad and extensive,

it is only theoretic in nature. Egly et al. [9] describe a

translation of different non-monotonic reasoning tasks, such

as abduction, into the evaluation problem of quantified

boolean formulas and compare an implementation of

their method to non-monotonic reasoning solvers, such as

dlv [12] or Theorist [44], on multiple benchmark problems.

The focus of this work is to show whether non-monotonic

reasoning tasks can be solved efficiently by translation

to quantified boolean formulas; hence, only a portion of

the assessment concerns abduction. Ng and Mooney [39]

have conducted an empirical analysis comparing the general

abduction system ACCEL to a set of problems in plan

recognition as well as consistency model-based and set-

covering [43] diagnosis. While the authors could show that

a general solver can derive explanations within the two

application domains in reasonable time, their experiments

consider solely a single tool.
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Hence in this paper, we aim at providing guidance for

deciding on a procedure focusing on propositional Horn abduc-

tion. Our work is based on previous research. On the one

hand, we have assessed abductive inference on models

restricted to bijunctive Horn clauses [27, 28] and on the

other hand, we have developed a meta-approach that has

been evaluated in regard to different abduction algorithms

[31]. In this paper, we compare the performance of proposi-

tional Horn clause abduction within two general directions,

i.e., direct and conflict-driven techniques, similar to the

work by Nica et al. [40] in the consistency-based case. To

identify runtime trends, we conducted an empirical eval-

uation based on publicly available tools, implementations

of various traditional abductive reasoning algorithms, and

adaptations of recent and proven techniques. The diagno-

sis problems utilized within our analysis are taken on the

one hand from real-world domains and on the other hand

are artificially created similar to practical fault identifica-

tion scenarios. One of our goals is to discover whether

a certain approach is dominant on these reasonable sam-

ples. Besides seeking information on efficiency differences

between direct proof and conflict-driven algorithms, we aim

at showing to what extend more general off-the-shelf tools

can compete with specific Horn reasoning methods.

2 Preliminaries

Abductive inference allows us to derive possible expla-

nations for a set of given observations. In logic-based

abduction, we rely on the notion of entailment; a set of

premises ψ logically entails a conclusion φ if and only if

for any interpretation in which ψ holds φ is also true. We

write this relation as ψ |= φ and call φ a logical con-

sequence of ψ . An abductive explanation or diagnosis is

composed of a set of abducible propositions, i.e., fragments

permitted to be part of a solution, entailing the observed

symptoms together with the theory while not leading to a

contradiction. In the context of fault identification, these

abducible propositions are usually abnormality assumptions

about components, while in the medical domain diseases

represent the variables allowed to form a diagnosis.

The complexity of logic-based abduction is connected

to the characteristics of the underlying model [2, 41]. For

general propositional theories or models in clausal form

abductive reasoning is located in the second level of the

polynomial hierarchy, while for Horn theories the problem

is NP-complete [10, 17]. A Horn clause is defined as a

disjunction of literals featuring at most one positive literal

and can be represented by a rule, i.e., ¬a1 ∨ . . . ∨ ¬an ∨

an+1 is equivalent to a1 ∧ . . . ∧ an → an+1. Many

diagnostic reasoning engines restrict the model to Horn

clause sentences, which are usually expressive enough to

convey the necessary relations.

Due to the complexity results and suitability of Horn

representation in the context of diagnosis, we define a

Propositional Horn Clause Abduction Problem (PHCAP)

similarly to Friedrich, Gottlob, and Nejdl [17]. The PHCAP

relies on a formalization of the system encoded within

a propositional Horn theory Th over a finite set of

propositional variables A. Moreover, we have to state which

primitives can be abduced, i.e., variables allowed to be part

of an explanation. We refer to these abducible propositions

as hypotheses or assumptions. The set Hyp contains all

hypotheses and a model or knowledge base is formally

defined as a tuple (A,Hyp,Th).

Definition 1 (Knowledge base (KB)) A knowledge base

(KB) is a tuple (A,Hyp,Th) where A denotes the set of

propositional variables, Hyp ⊆ A the set of hypotheses, and

Th the set of Horn clause sentences over A.

Example 1 Let us again state the causal relations negatively

affecting the gearbox lubrication in an industrial wind

turbine: A damaged oil pump leads to loss of oil pressure

and flow, hence the lubricant distribution through the system

is decreased. As an alternative, a blockage of the filter in

the oil cooling system can occur which in conjunction with

overheating of the oil diminishes the lubrication of the gear

and bearing surfaces. Oil overheating arises from leaks or

cracks in the oil cooler. These circumstances can be easily

described by a KB1:

1To distinguish assumptions from ordinary propositions, they start

with a capitalized character.

A =

{

Damaged pump, Broken filter, Cooler leaks,

Cooler cracks, reduced pressure, poor lubrication, overheating

}

Hyp =
{

Damaged pump, Broken filter, Cooler leaks, Cooler cracks
}

Th =

⎧

⎨

⎩

Damaged pump → reduced pressure, reduced pressure → poor lubrication,

Broken filter ∧ overheating → poor lubrication,

Cooler leaks ∧ Cooler cracks → overheating

⎫

⎬

⎭
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Definition 2 (Propositional Horn Clause Abduc-

tion Problem (PHCAP)) Given a knowledge base

KB(A,Hyp,Th) and a set of observations Obs ⊆ A, the

tuple (A,Hyp,Th,Obs) forms a Propositional Horn Clause

Abduction Problem (PHCAP).

A diagnosis problem is formed when in addition to the

KB a set of observations is applied for which we want to

derive the root causes. In our definition, observations may

only be a conjunction of propositions and not an arbitrary

logical sentence.

Definition 3 (Diagnosis; Solution of a PHCAP) Given a

PHCAP (A,Hyp,Th,Obs). A set � ⊆ Hyp is a solution iff �

∪ Th |= Obs and � ∪ Th �|= ⊥.

Definition 4 (Parsimonious Diagnosis) A solution � to a

PHCAP is parsimonious or minimal iff no set �′ ⊂ � is a

solution to the same PHCAP.

A solution to a PHCAP, i.e., a diagnosis, must be a subset

of the abducibles, be consistent together with the theory

and logically entail the observations. Generally, we are

only interested in subset minimal explanations. Especially

considering a practical application of abductive diagnosis,

explanation supersets provide no additional information

useful in a real-world context. We define �-Set as the

set of all (minimal) diagnoses obtained from the PHCAP,

i.e., �-Set = {�|� ⊆ Hyp, � ∪ Th |= Obs}. To

determine all diagnoses for a PHCAP one can test all

subsets of hypotheses to determine whether they entail the

observations and are consistent. This procedure, however,

requires exponential runtime.

Example 2 Given the KB from the previous exam-

ple, assume we observe an insufficient greasing of the

gearbox, i.e., Obs = {poor lubrication}. There are two

parsimonious explanations; either the oil pump is dam-

aged , i.e., �1 = {Damaged pump}, or leaks and cracks

in the cooler cause oil overheating which in combina-

tion with a filter failure leads to inadequate lubrication,

i.e., �2 = {Broken filter, Cooler leaks, Cooler cracks}.

Hence, �-Set = {{Damaged pump}, {Broken filter,

Cooler leaks, Cooler cracks}}.

2.1 Proof-tree completion

Considering Definition 3, we can characterize two more

approaches for computing solutions to a PHCAP: proof-tree

completion [37] and consequence finding [35]. In proof-tree

completion, abductive diagnosis is re-framed to the search

for a refutation proof consisting of abducible propositions.

From the definition, we know that each explanation together

with the theory has to entail the observations, i.e., � ∪

Th |= Obs. By logical equivalence, we can reformulate this

relation to � ∪ Th ∪ {¬Obs} |= ⊥, where {¬Obs} is the

disjunction containing a negation of each observation, i.e.,
∨

oi∈Obs ¬oi . Thus, we can rewrite the theory in such a way

that a contradiction arises given the negated observations.

To extract explanations, the derived conflicts have to be

propositions from Hyp and again no inconsistency may arise

from the diagnoses.

Definition 5 (Conflict) Given a PHCAP(A,Hyp,Th,Obs) a

conflict CO is a set {c1, . . . , ck} ⊆ Hyp such that CO∪Th∪

{¬o1∨. . .∨¬on} is inconsistent, where {o1, . . . , on} = Obs.

A conflict is minimal iff there is no conflict CO′ such that

CO′ ⊂ CO.

Definition 6 (Conflict-Driven Diagnosis) Given a

PHCAP(A,Hyp,Th,Obs). A set � is a solution if � is a

conflict and � ∪ Th �|= ⊥. A solution is parsimonious, iff

� is a minimal conflict.

Example 3 Given our PHCAP from before, we assume suffi-

cient lubrication, i.e., ¬poor lubrication, and that all our

hypotheses are true, that is, the filter and pump are behaving

incorrectly and there are cracks and leakages in the cooler.

This leads to conflicts: for instance, according to the the-

ory given a faulty pump, we must observe poor lubrication;

thus, {Damaged pump}∪Th∪{¬poor lubrication} is incon-

sistent. Extracting only the hypotheses we retrieve the first

minimal conflict CO1 = {Damaged pump}. Since the con-

flict is consistent with the theory Th, CO1 is a minimal

diagnosis. The second parsimonious conflict and diagnosis

is CO2 = {Broken filter, Cooler leaks, Cooler cracks} and

can be extracted analogously.

2.2 Consequence finding

By further rewriting the relation stated in Definition 3, we

can construct Th ∪ {¬Obs} |= {¬�}, where {¬�} =
∨

δj ∈� ¬δj . In this scenario, abductive explanations are

obtained in a deductive manner by finding the logical

consequences of the theory and the negated observations

comprising negations of hypotheses.

Definition 7 (Consequence) Given a PHCAP

(A,Hyp,Th,Obs) a consequence C is a set {c1, . . . , ck} ⊆

Hyp such that Th∪{¬o1 ∨ . . .∨¬on} |= {¬c1 ∨ . . . ∨ ¬ck},

where {o1, . . . , on} = Obs. A consequence is minimal iff

there is no consequence C′ such that C′ ⊂ C.

Definition 8 (Consequence-Finding Diagnosis) Given a

PHCAP (A,Hyp,Th,Obs). A set � is a solution iff � is a

Faster horn diagnosis - a performance comparison of abductive reasoning algorithms 1561



consequence and � ∪ Th �|= ⊥. A solution is parsimonious,

iff � is a minimal consequence.

Example 4 Again we state sufficient greasing, i.e.,

¬poor lubrication. The pump cannot be faulty given this

observation since the relation in Th postulates that if the

pump is behaving incorrectly, then there must be inade-

quate lubrication. Looking at the entailment relation, we

can deduce that the negation of Damaged pump is a log-

ical consequence of the theory and the observation, i.e.,

Th ∧ ¬poor lubrication |= ¬Damaged pump. Hence,

{Damaged pump} is one of the consequences as defined

in Definition 7. Since the consequence is further consis-

tent with Th, {Damaged pump} is a minimal fault diagnosis.

Similarly, we can derive the second diagnosis.

3 Empirical evaluation set-up

In this section, we present our empirical evaluation

framework and report on the obtained results2. Our focus

lies on identifying runtime trends suggesting the advantage

of one approach over the other. Further, we want to

contribute to answering the questions (1) whether a general-

purpose solver can be used for an efficient diagnosis in

practice or if a specifically tailored engine is required for

achieving convincing performance and (2) whether there is

a superiority of direct or conflict driven methods.

First, we give some insights into the implementations

of the abduction methods used. Then, we report on the

benchmarks considered in the experiments. Particularly, we

utilized artificially generated diagnosis problems as well

as real world failure models. Subsequently, we discuss the

results of the experiments all obtained from a Mac Pro (Late

2013) with a 2.7 GHz 12-Core Intel Xeon ES processor and

64GB of RAM running OS X 10.10.5.

3.1 Algorithms

In previous work [31], we have described several diagnosis

algorithms which we implemented in Java as well as

exploited available tools realizing the abductive reasoning

procedures. The following implementations are used in the

empirical evaluation:

– Abduction with the ATMS (ATMS): Within our

evaluation we exploit a Java implementation of

ATMSXPLAIN based on a Java implementation of an

ATMS in its original form, i.e., restricted to Horn

2An executable for our evaluation and the benchmarks are

available on https://www.dropbox.com/sh/c6ykbm478ixmqhu/

AAD9yKYtHtTgN-YsbV5fN10 a?dl=0.

theories. Since we are dealing with Horn clauses,

we utilize LTUR as the theorem prover allowing

us to compute inferences efficiently on our models.

In particular, we exploit a Java implementation of

an assumption-based LTUR of the diagnosis engine

jdiagengine3 [42]. We refer to this entire abduction

procedure simply as ATMS within our experiments.

– Abduction as Consequence Finding via SOL-

resolution (CF): We created a consequence finding

set-up CF using a Java implementation of CONSQX-

PLAIN. To enumerate the characteristic clauses we

employ SOLAR4 [38], which is a Java implementation

of SOL-tableaux calculus for first order full clausal

theories. The tool provides various pruning methods,

which ensure, for instance, that redundant tableaux are

not generated. We invoked SOLAR with the default

setting, which executes a depth-first search within the

tableaux repeatedly, incrementing the depth limit for

each iteration.

– Conflict-Driven Search via HS-DAG: To realize

HS-DAGXPLAIN we use jdiagengine [42], which

implements a conflict-driven search via HS-DAG

coupled with an incremental assumption-based LTUR.

LTUR does not guarantee to return minimal conflicts,

hence the contradicting assumptions have to be reduced

to derive minimal explanations. We use two set-ups:

– HS-DAG: For this procedure, we simply record

all refutations returned within the search on the

HS-DAG. After the computation has finished,

all conflict supersets are removed resulting in

parsimonious diagnoses.

– HS-DAGQX : We adapted jdiagengine’s imple-

mentation to minimize refutations right away

after being returned from LTUR. In partic-

ular, we created a Java implementation of

QuickXplain to reduce each conflict to a

parsimonious one. Our version of QuickX-

plain is based on assumptions rather than

on constraints with preferences exploits the

assumption-based LTUR for its consistency

checks. Every refutation minimized by Quick-

Xplain already constitutes an abductive expla-

nation.

– Conflict-Driven Search via Power Set Exploration:

We realized XPLORER in Java. To favor unsatisfiable

cores early on in the computation, we implemented Arif

et al.’s [1] method to find maximal model seeds. In

3https://www.ist.tugraz.at/modremas/index.html
4Used version: SOLAR 2 (Build 315)
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Table 1 Sample set statistics artificial examples

Artificial samples I Artificial samples II

MIN MAX AVG MED MIN MAX AVG MED

|Hyp| 10 504 275.07 320.00 12 235 120.42 112.50

|A\Hyp| 6 6,466 1,903.23 1,668.00 13 1,055 252.74 180.00

|Th| 10 7,186 2,950.10 2,731.00 20 1,146 416.70 358.50

|Obs| 1 5 2.86 3.00 1 5 2.72 2.50

|�-Set| 1 50 2.76 1.00 1 58,520 500.71 2.00

addition, we used the SAT solver SAT4J5 [8] in order

to determine the satisfiability of the Boolean formula

representing the map. To shrink a found unsatisfiable

seed to an MUS, we use two extraction mechanisms:

– XPLorer: For our first set-up we imple-

mented the insertion-based MUS extraction

algorithm as suggested by Arif et al. [1]

using jdiagengine’s incremental assumption-

based LTUR.

– XPLorerQX : Since each unsatisfiable seed

already constitutes a conflict and the MUS

extraction merely reduces it towards a min-

imal contradiction, we again applied the

assumption-based QuickXplain implementa-

tion to minimize the unsatisfiable seed to an

MUS, i.e., abductive explanation.

– Abduction under Stable Model Semantics (ASP):

By exploiting an encoding of propositional abduction

by Saikko et al. [46]6 we compute diagnoses via the

state-of-the-art C++ ASP solver clingo 4.5.47 [18]. The

encoding generates minimum-cost solutions using the

negation of the conjunction of observations based on

a technique called saturation to determine whether the

entailment relation between diagnoses and manifesta-

tions exists [5, 11]. As we want to enumerate all subset

minimal answer sets, we remove the optimization crite-

ria included in the encoding and apply domain-specific

heuristics to the solver over the command line8. We call

this approach ASP within the evaluation.

In CF and ASP, we invoke both general-purpose solvers

using a separate process inside our implementation, even

though we could use SOLAR directly in our Java code. We

use this set-up to mimic that both tools are independent from

5https://www.sat4j.org/
6www.cs.helsinki.fi/group/coreo/abhs/
7www.potassco.org/clingo/
8clingo is invoked with --heuristic=Domain,

--enum-mod=domRec, and--dom-mod=5,16. This ensures the

computation of subset minimal answer sets.

the used programming language of the abduction procedure

and simply function as black boxes returning the diagnoses.

3.2 Data

To asses the various abductive reasoning mechanisms

presented, we chose to use two different types of models.

On the one hand, we created artificial Horn clause

models, which are similar to diagnosis knowledge used in

practice. On the other hand, we exploit knowledge on how

component-based failures affect real world systems. The

information is automatically compiled into a Horn theory

via a mapping function and subsequently used in the context

of abductive MBD.

3.2.1 Artificial benchmarks

By means of a sample generator, we constructed artificial

PHCAPs [31]. The rules contained within the theory are

based on several parameters; n is the minimum number of

literals in a rule’s body. Those literals are chosen randomly

from A. Thus, this value indirectly determines the number

of hypotheses present within the entire model. r bounds

the number of clauses generated per body, while o limits

the overlap between head literals. The head of each rule

can only contain elements from A \ Hyp, thus, we do not

have assumptions that are caused by another hypothesis.

Further, the fabricated models do not contain any cycles.

The parameter k determines the maximum number of

manifestations to be explained. Those observations are

randomly selected from A\Hyp and for simplicity comprise

only positive propositions.

The examples constructed by the generator are similar

to real world samples. Just consider, for instance, medical

diagnosis, where the knowledge mainly captures how a set

of assumptions about diseases affects a set of symptoms.

Usually, we cannot observe cycles or an excessive number

of implication levels within this type of knowledge.

For the empirical evaluation we fabricated two different

sets of artificial samples; Artificial Samples I was con-

structed with k=5, r=o=15 and n=1 and contains 166

PHCAPs. For Artificial Samples II the example generator

Faster horn diagnosis - a performance comparison of abductive reasoning algorithms 1563
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Table 2 Sample set statistics

FMEA samples FMEA Samples

MIN MAX AVG MED

|Hyp| 3 90 26.16 20.00

|A\Hyp| 5 83 26.60 21.00

|Th| 12 298 70.59 37.00

|Obs| 1 29 10.79 10.00

|�-Set| 1 2,288 67.98 6.00

was invoked with k=o=r=5 and n=1 and created 118 diag-

nosis problems. Table 1 summarizes the statistics for the

generated Horn models.

3.2.2 Real world samples

To make use of abductive inference in industrial appli-

cations, Wotawa [51] proposes to automatically extract

the required system descriptions from failure assessments

which are commonly used in practice. In particular, Failure

Mode and Effects Analysis (FMEA) provides all infor-

mation necessary to function as a basis of an abductive

diagnosis model. FMEA as a reliability analysis tool is

growing in importance as it has been established as a

mandatory task in certain industries, especially for systems

that require a detailed safety assessment [3]. An FMEA pro-

vides a systematic analysis of possible component faults and

the consequences said faults have on the system behavior

and function [20].

For our experiments, we obtained several publicly

available as well as project internal FMEAs comprising

diverse technical systems and sub-systems. Overall we

used twelve FMEAs for the evaluation, which cover for

instance electrical circuits, a connector system by Ford,

printed circuit boards, as well as components, such as

rectifier, inverter, transformer, main bearing of an industrial

wind turbine. Subsequently, we created for each analysis a

corresponding abductive knowledge base via the mapping

described by Wotawa [51]. The theories resulting from

the transformation are characterized by a set of bijunctive

definite Horn clauses, i.e., each clause features a single

hypothesis in the body and a proposition from A \ Hyp

as head. Based on the models we created 213 diagnosis

problems, where we randomly chose observations from the

set of effects described in the assessment. The statistical

information on the FMEA models is shown in Table 2.

4 Results

As mentioned, all algorithms and tools are implemented

in Java, except clingo, which is a C++ ASP solver. Each

method was invoked ten times on each PHCAP; for

instance, we collected 1,660 data points per abductive

reasoning approach in the context of Artificial Samples

I. Since we are interested in runtime trends and trade-

offs between the algorithms, our evaluation focuses on

computation times. Note here that we record the time to

extract all minimal explanations. Although we could use

some of the approaches to derive a partial set of solutions,

we are not considering this possibility in the evaluation.

In addition, we disregarded the rewriting of the model, the

creation of the different input formats as well as the time it

required to communicate with the solvers. In case of SOLAR

and clingo we parsed the execution times recorded by the

tools themselves which were available in the output9.

Table 3 gives an overview of the evaluation results on all

sample sets for our seven abduction methods. For clarity,

we put the best values per category in bold face. Each

computation faced a runtime limit of twenty minutes. In

the rows categorized Runtimes we provide the performance

statistics based on the samples that were computed in time,

i.e., all executions where the approach exceeded the limit

are not considered within these numbers. The number of

samples completed in time is reported in Table 3 in row #

solved. For example, for Artificial Samples I only ATMS

managed to derive all solutions for all executions within the

given time frame. Additionally, we report the number of

samples an approach has computed the diagnoses the fastest

in row # fastest. In contrast to Runtimes, Runtimesθ contains

results where each timed out execution is penalized with

θ = 40minutes10. We do not report on the minimal result

values in Runtimesθ , as they are equivalent to Runtimes, nor

on the maximum execution times which are either the same

as for Runtimes or the penalized runtime.

4.1 Artificial benchmarks

To illustrate the runtimes of the algorithms, we ordered all

successful sample runs according to their execution time. In

Fig. 1 a and b we report on the number of samples solved

9Since their runtime performance was measured in seconds, we

converted the values to milliseconds for our analysis.
10We set θ to twice the runtime threshold value. Of course, this number

is somewhat arbitrary, since we do not know the real computation time

of an approach exceeding the time limit.
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Fig. 1 Numbers of diagnosis samples solved over time for the artificially generated diagnosis problems

for growing cumulative log runtime for Artificial Samples I

and Artificial Samples II, respectively.

From the graphics in Fig. 1 we can deduce that

all algorithms experience an exponential runtime curve.

In addition, the plots show that the same technique

with different minimization algorithms, i.e., XPLorer and

XPLorerQX as well as HS-DAG and HS-DAGQX , feature

a similar performance and only diverge in regard to their

efficiency towards the more runtime expensive instances.

ATMS is capable of solving the most PHCAPs within

the given time limit for both sample sets, followed by HS-

DAGQX . In contrast, approaches based on the exploration

Fig. 2 Scatter plots comparing the penalized runtimes [10y ms] on Artificial Samples I
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of the power set fail to compute solutions for up to thirteen

percent of the examples in time. Hence, the execution times

in Runtimes in Table 3 can be deceiving since they, for

instance, might convey that XPLorerQX provides preferable

results in regard to the maximum and average runtime.

Yet considering the penalized results, we can see that the

approach is not competitive. From the penalized runtimes,

we deduce that ATMS and HS-DAGQX are superior in

comparison to the remaining techniques.

Unsurprisingly, the non-Horn reasoning tools, i.e., clingo

and SOLAR, are about two orders of magnitude slower than

the fastest approach on the artificial examples. Although the

methods are inefficient on average, the results show that the

applications are dependable methods by solving between

97 % to 99 % of the samples in time for both evaluation sets.

From Fig. 1, we can further conclude that for the simpler

examples the computation time for CF grows faster than for

the ASP solver. This situation, however, changes with more

runtime expensive diagnosis problems.

For a more in-depth comparison of the algorithms, we

created the scatter plots in Figs. 2 and 3. Each data point

symbolizes one sample run. The x and y values characterize

the penalized log runtimes of the corresponding algorithm

pair. For instance, in Fig. 2a, we compare ATMS to HS-

DAGQX on Artificial Samples I. Every point above the

diagonal represents a PHCAP execution, where ATMS was

more efficient than HS-DAGQX , while every point below the

line indicates the superiority of HS-DAGQX on a diagnosis

problem. The dashed lines mark the penalized runtime,

i.e., every execution exceeding the runtime limit is located

on the dashed lines. Consider Fig. 3a; although there

are executions where HS-DAGQX is rather inefficient on

Artificial Samples II in comparison to ATMS, the data points

accumulate on and below the diagonal close to the origin.

This suggests that for the bulk of the samples, ATMS takes

longer to compute the diagnose; this is also indicated by

the median runtime results in Table 3 under Runtimesθ .

Investigating the threshold lines, we can determine that only

a single execution led to a timeout on HS-DAGQX but not

on ATMS. All other timed-out data points are exactly at the

intersection of the threshold lines, thus representing several

instances causing both approaches to exceed the time limit.

Fig. 3 Scatter plots comparing the penalized runtimes [10y ms] on Artificial Samples II
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While HS-DAGQX provides more appealing results in

comparison to the version without QuickXplain, we cannot

observe the same for XPLorer and XPLorerQX . There both

conflict extraction methods perform rather similarly. This

is apparent from Figs. 2d and 3d, where data points are

mostly located symmetrically around the diagonal. Yet the

insertion-based extraction of the conflict as suggested by

Arif et al.’s [1] solves more samples in time. Specifically,

on Artificial Samples II only a few samples exist in which

XPLorer was penalized while XPLorerQX provided the

solutions in time.

For the two non-Horn solvers, the results on the artificial

samples are interesting. On the first set of examples, the

consequence finding procedure is preferable, i.e., more

samples are solved in time and on median consequence

finding is more efficient than using the ASP solver. This

is also apparent from Fig. 2f. On Artificial Samples II, yet,

the situation changes slightly since ASP can solve more

samples in time than the CF method and provides better

average results. Examining the minimum runtimes, we can

deduce that the two approaches using off-the-shelfs solvers

suffer from a computational overhead. Particularly, there

seems to be even more set-up effort required for SOLAR11

in comparison to clingo.

4.2 Real world samples

Reviewing the computation results for the FMEA-based

examples the consequence finding approach is the only

method solving all 2,130 executions within the given time

frame. This subsequently causes it to provide good results

within Runtimesθ since no additional penalty is added.

Figure 4, which displays the cumulative runtimes based on

the number of dignosis problem solved without penalty,

shows that the method is not competitive in comparison

to the faster procedures such as abduction with the ATMS

or the HS-DAG approaches. On the FMEA samples, the

superiority of ATMS in comparison to HS-DAGQX and

the remaining approaches is more noticeable than on the

artificial benchmarks.

In addition, we can observe in Fig. 5c and d that

the computation times of the variations of HS-DAG and

power lattice exploration diverge more in comparison to the

artificial samples. Given the runtime plot in Fig. 4 we can

determine that the divergence mainly occurs in the last third

of samples solved.

Regarding this portion of the graph, we can further

discover that ASP’s and CF’s execution times do not

grow as steeply at the end as for the other approaches.

Further, in Fig. 5f the bulk of data points is located above

11We extract the execution times directly from the solvers’ output

themselves.

Fig. 4 Numbers of diagnosis samples solved over time for the FMEA

diagnosis problems

the diagonal, indicating more samples in which ASP was

superior. However, several examples could not be solved by

ASP in time, hence, the less convincing results in Runtimesθ .

4.3 Discussion

Considering the experiments, two approaches seem supe-

rior: ATMS and HS-DAGQX. While ATMS shows promising

results in our set-up, it has to warrant with each added

clause all necessary vertex labels are updated, thus, labels

have to be checked for consistency9 and minimality. This

is a time-consuming operation especially given a greater

number of hypotheses and overlap, which both may lead

to larger labels. Hence, for benchmarks with a vast num-

ber of assumptions we assume less convincing results from

ATMS. Comparing the FMEA-based to the artificial sam-

ples, the ATMS has to perform more propagations within

the latter due the fact that the there might be several lev-

els within the graph, while for the FMEA examples due to

their structure it is ensured that there are at most three lev-

els with the last level only containing the explanation node

ex. In addition, the environments themselves consist of a

single element (with the exception of the node ex), due to

the bijunctive Horn clauses comprising the theory. Yet the

labels themselves can become quite large depending on the

interconnectedness of the And-or-graph, i.e., manifestations

with a large number of causes feature a large label, which

has to be considered during minimization and consistency

checks. Approaches to focus the ATMS and subsequently

avoid label explosion have been proposed [16].

9Though in our case no conflicting hypotheses were generated within

the PHCAPs.
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Fig. 5 Scatter plots comparing the penalized runtimes [10y ms] on FMEA Samples

As a side note we would like to mention that the ATMS

can also be exploited within a conflict-directed set-up.

In fact in the consistency-based variation of MBD, the

ATMS records the inconsistencies arising from the health

assumptions and observations. Thus, we could use a proof-

tree completion approach to derive contradictions recorded

within the NOGOOD node of the ATMS. However, to retain

consistency, the ATMS has to warrant that each node’s label

does not contain the conflicts stored in NOGOOD or their

supersets. Thus, more consistency checks are necessary in

a proof-tree-style abduction with the ATMS than in our

current experimental set-up where the NOGOOD node has a

small or empty label.

While showing weak runtime results on the artificial

samples, SOL-resolution with SOLAR provides solutions

for all PHCAPs within FMEA Samples. Given the simple

structure of the FMEA examples the number of inference

steps in the SOL-resolution are diminished in comparison

to the artificial models. In particular, for one tableau

the number of resolve, skip, factor and truncation steps

is proportional to the number of observations, while

for the artificial samples more reasoning steps may be

necessary. Of course the number of tableaux depends on

the number of hypotheses inferring the observations. As

already mentioned, SOLAR requires some additional set-

up time, which is unsurprising since it is not a specialized

Horn abduction solver, but designed for first-order clausal

theories. This observation relates to clingo, which is a

powerful tool suitable for normal as well as disjunctive logic

programs. Therefore, within our evaluation set-up abduction

with the ASP solver is not competitive. From our analysis

we know that the preparation (grounding) and preprocessing

time (program simplification) are not the driving factors

in the computational effort, but the true solving time is

problematic from an efficiency point of view. We assume

that we can observe particularly bad results in Artificial

Samples I due the extensive number of variables, since the

saturation technique is based on all variables within the

PHCAP.

HS-DAGXPLAIN as well as XPLORER, both restrict the

search space by ensuring that known conflicts and their

supersets are not considered again during computation.

In case of the former, the construction of a pruned

DAG already hinders redundant refutations, while blocking

Faster horn diagnosis - a performance comparison of abductive reasoning algorithms 1569



clauses are added to the encoding of the infeasibility map in

the latter. Another optimization of XPLORER is to require

the seed of the lattice traversal to be a maximal model.

This strategy favors contradictions and ensures that the

entry point of the conflict search is as “high” as possible

in the power set. In contrast in the HS-DAG approach,

LTUR generates refutations, which are located somewhere

between this maximum sized conflict, as enforced by

XPLORER, and a minimal one. Hence, the conflict-driven

search via HS-DAG requires less minimization effort than

the power set exploration since the starting point of the

traversal is “lower”. Besides the shrinking of a contradicting

set of assumptions to an MUS, which is affected by the size

of the diagnosis set, XPLORER spends considerable time

to determine the maximal model for the seed. In general,

all these factor contribute to the inefficiency of XPLORER

within our experiments. A remedy for this might be to use

an indirect MUS approach, which first computes the set of

MCSes and afterwards derives their minimal hittings sets.

These methods have been shown to be efficient for the

complete enumeration of refutations [33].

From the results, we conclude that our HS-DAGXPLAIN

approach is performing well on the samples, in particular the

version which minimizes conflicts right away. Generally,

HS-DAGXPLAIN’s performance is affected by the size of

�-Set , i.e., the number of refutations, and the size of the

conflicts. Reason being that these two features determine

the depth and breadth of the DAG; that is, the larger the

conflicts, the more outgoing edges the conflict node has

and hence the more child nodes have to be checked for

consistency to determine whether they are minimal hitting

sets or not. Considering Fig. 3c, HS-DAGQX yields more

convincing runtime results than HS-DAG. By shrinking each

contradiction before continuing with the execution on the

HS-DAG, the depth of the graph can be reduced as already

computed conflicts and their supersets are excluded from

further considerations due to the search pattern encoded

in the DAG. Thus, the DAG constructed via HS-DAG can

be larger with more conflicts than the one generated with

HS-DAGQX . Further, HS-DAGQX is advantageous in the

sense that it can provide results even though the execution

has not been concluded, since all conflicts returned

already constitute minimal abductive diagnoses given they

are consistent. However, as QuickXplain still requires

calls to a theorem prover, in our case the assumption-

based LTUR, the overall number of consistency checks

increases in comparison to HS-DAG. Particularly in the case

that theorem prover returns an already minimal conflict

invoking QuickXplain causes unnecessary consistency

checks. Utilizing an approach which already derives

minimal conflicts makes the minimization step obsolete. For

instance, instead of using LTUR as the theorem prover to

infer refutations, we could exploit QuickXplain right away,

which returns one minimal conflict [14]12. Adaptation and

improvements of QuickXplain have been proposed such as

MergeXplain [48], which returns a set of minimal conflicts.

Other possible improvements encompass to adapt HS-

DAGXPLAIN to a parallelized version, which significantly

improvements performance [23].

Given the structural characteristics of the FMEA-based

models we can easily represent the theory as a DAG with a

forward structure from causes to effects. This structure is in

fact equivalent to the problems in the simple parsimonious

set covering theory proposed by Peng and Reggia [43]. In

this framework hypotheses and manifestations are disjoint

sets and diagnoses are characterized by the set of hypotheses

covering the observations. As it has been shown previously,

set covering is equivalent to the hitting set problem [26],

thus these types of diagnosis problems can be solved quite

efficiently by employing HS algorithms [29].

5 Conclusion

Abductive reasoning is an NP-complete problem. Hence,

determining algorithms that can compute explanations in

an acceptable time frame is an interesting research problem

with relevance not only for the diagnosis community, but

also all other application areas of abduction. We tackle

this problem in this paper by reviewing two problem

formulations within the context of propositional Horn

clause abduction, i.e., direct proof and conflict-driven

methods. We have exploited well-known as well as recent

abductive reasoning algorithms and have shown possible

adaptations of the techniques to enable a more efficient

computation given our context. Besides implementing

abductive reasoning procedures we have also included

preexisting tools to give a sense of their capability in

regard to this specific framework. To reveal performance

trends, we created an evaluation set-up based on artificially

samples similar to fault knowledge in practice and real

world examples stemming from failure assessments.

Our results show that neither the direct nor the conflict-

driven approach provides a universal advantage for Horn

clause abduction. The two most promising techniques based

on our created problem instances were ATMS and abduction

via HS-DAG with an immediate minimization of conflicts

via QuickXplain. These two methods are particularly

suitable to compare direct and conflict-driven techniques,

since they exploit the same theorem prover. Both could

solve a reasonable amount of samples within the given time

frame and our data shows that ATMS on average is the most

efficient approach, while HS-DAGQX computes diagnoses

12In this case, we could still use LTUR or a SAT solver as

QuickXplain’s consistency check mechanism.

R. Koitz-Hristov and F. Wotawa1570



faster for more instances. Even though the general solvers

were around two orders of magnitude slower than the best

Horn reasoner, they have shown a consistent performance

being able to compute explanations for most samples within

the given runtime allowance. These results demonstrate

that off-the-shelf tools can very well function as suitable

abduction engines despite not being competitive in regard to

runtime.

Inspired by infeasibility analysis, we implemented an

exploration of the power lattice. While this strategy has

accomplished good results in the environment of group-

MUS for Horn formulae, we could not confirm this for

our problem domain. Yet MUS extraction based on an

incremental LTUR can produce slightly better runtime

data than QuickXplain. In light of the results, we plan

further investigating strategies from infeasibility analysis

to improve upon the computation of abductive diagnoses

in the context of Horn formulae. In particular, considering

MUS enumeration methods in conjunction with HS-DAG

might allow to compute diagnoses very efficiently. In

addition, considering conflict extraction approaches, such

as MergeXplain, that not only derive a single refutation

but compute several at once is a possible area for future

research.
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