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Aranha, Faz, López, Henŕıquez. () Fast Scalar Mult on Koblitz Curves latincrypt 2012 2 / 30



Introduction

Contribution

We are able to perform a scalar multiplication on a Koblitz Curve in less
than 105 clock cycles on a desktop user processor.
Key points to achieve this result are:

Native support of polynomial multiplication over F2 and use of
vectorized instructions.
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Introduction

Contribution

We are able to perform a scalar multiplication on a Koblitz Curve in less
than 105 clock cycles on a desktop user processor.
Key points to achieve this result are:

Native support of polynomial multiplication over F2 and use of
vectorized instructions.

Optimized implementation of binary field arithmetic.

Improvements on point addition implementation.

Data-dependent precision on computation of wτ -NAF recoding.

Application of Frobenius endomorphism in a similar way to s-GLV
decomposition.
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Introduction

Koblitz Curves

Koblitz curves, Ea, are elliptic curves over F2 defined by the following
equation:

Ea : y2 + xy = x3 + ax2 + 1 (1)

where a ∈ {0, 1}.
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Introduction

Koblitz Curves

Koblitz curves, Ea, are elliptic curves over F2 defined by the following
equation:

Ea : y2 + xy = x3 + ax2 + 1 (1)

where a ∈ {0, 1}.
For cryptographic purposes, we can work in elliptic curves over extension
fields, Ea(F2m) such that,

#Ea(F2m) = f · r (2)

where f = 22−a and r is a large prime.
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Introduction

Koblitz Curves

One important remark on Koblitz curves is the presence of an
endomorphic function, say τ . Its evaluation involves application of
Frobenius automorphism in F2 over each coordinate of a given point:

τ : (x , y) → (x2, y2) (3)

O → O
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Introduction

Koblitz Curves

One important remark on Koblitz curves is the presence of an
endomorphic function, say τ . Its evaluation involves application of
Frobenius automorphism in F2 over each coordinate of a given point:

τ : (x , y) → (x2, y2) (3)

O → O

This endomorphism holds, for every point P ∈ Ea, the following equation:

τ2(P) + 2P = µτ(P) µ = (−1)1−a (4)

is also known as the characteristic equation.
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Introduction

Koblitz Curves

Computation of scalar multiplication can be improved by recoding the
scalar into τ -adic representation, which allows to replace point
doublings by τ applications.
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scalar into τ -adic representation, which allows to replace point
doublings by τ applications.

If some extra memory is available, we can think about an wτ -adic
representation, which produces a sparse non-zero coefficient
expansion of the scalar, enabling the use of precomputed points.
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Introduction

Koblitz Curves

Computation of scalar multiplication can be improved by recoding the
scalar into τ -adic representation, which allows to replace point
doublings by τ applications.

If some extra memory is available, we can think about an wτ -adic
representation, which produces a sparse non-zero coefficient
expansion of the scalar, enabling the use of precomputed points.

We can fix w value in such a way that optimizes time/memory to get
high speed.
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Vector instructions

Vector instructions

Nowadays vector instructions are present in contemporary desktop
processors.
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Vector instructions

Vector instructions

Nowadays vector instructions are present in contemporary desktop
processors.

Latest architectures have special register and instruction sets that are
able to perform one single operation over a set of data. Resulting in a
vector-wise processing.

In this work, we exploit capabilities of AVX and SSE instruction sets
on a Sandy Bridge micro-architecture to develop binary field
arithmetic.
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Vector instructions

Vector instructions

Relevant vector instructions:

Bit-wise XOR, AND, OR. These instructions operate with 256-bit
registers performing bit-wise operations.

Aranha, Faz, López, Henŕıquez. () Fast Scalar Mult on Koblitz Curves latincrypt 2012 8 / 30



Vector instructions

Vector instructions

Relevant vector instructions:

Bit-wise XOR, AND, OR. These instructions operate with 256-bit
registers performing bit-wise operations.

64-bit shifts. Processes four parallel shifts per each 64-bit integer in
the register.
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the register.

128-bit shifts. Processes two parallel shifts per each 128-bit data in
the register, with the restriction that only shifts by multiplies of 8 bits
are supported.

Memory alignment. This instruction concatenates two vector
registers and shifts by an 8-bit multiple. It is useful to handle
misaligned data.
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Vector instructions

Vector instructions

Relevant vector instructions:

Bit-wise XOR, AND, OR. These instructions operate with 256-bit
registers performing bit-wise operations.

64-bit shifts. Processes four parallel shifts per each 64-bit integer in
the register.

128-bit shifts. Processes two parallel shifts per each 128-bit data in
the register, with the restriction that only shifts by multiplies of 8 bits
are supported.

Memory alignment. This instruction concatenates two vector
registers and shifts by an 8-bit multiple. It is useful to handle
misaligned data.

Carry-less multiplier.
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Vector instructions

Carry-less multiplier

The instruction PCLMULQDQ, included in AES-NI instruction set,
performs a polynomial multiplication over F2[x ].
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Vector instructions

Carry-less multiplier

The instruction PCLMULQDQ, included in AES-NI instruction set,
performs a polynomial multiplication over F2[x ].

Unlike integer multiplier, this instruction performs intermediate
additions without carry bits, hence its name.

Recent applications of this instruction on binary field arithmetic have
shown that increases throughput on high speed implementations such
as GCM for authenticated encryption, elliptic curves and η-pairings

Native support of this operation produces relevant speed-up in the
computation of scalar multiplication on Koblitz curves.
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Low-level techniques

Binary field arithmetic

Addition. This is the fastest and simplest operation that can be
performed just with bit-wise XOR using 256-bit registers.
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Low-level techniques

Binary field arithmetic

Addition. This is the fastest and simplest operation that can be
performed just with bit-wise XOR using 256-bit registers.

Multiplication. The most performance-critical operation is computed
in two stages, first a polynomial multiplication and then the result of
that is followed by a modular reduction.

Polynomial multiplication. Karatsuba approach was applied in 64-bit
granularity, thus 13 polynomial multiplications and 32 additions are
computed.
Our algorithm processes all polynomial multiplications independently,
so maximizes pipeline occupancy level.
In order to improve register allocation, operands are stored in an
interleaved form.
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Low-level techniques

Binary field arithmetic

Multiplication.

Modular reduction. After a polynomial multiplication or squaring is
processed, a double length element needs to be reduced to obtain a
field element.
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Low-level techniques

Binary field arithmetic

Multiplication.

Modular reduction. After a polynomial multiplication or squaring is
processed, a double length element needs to be reduced to obtain a
field element.
Despite of inefficient choice of the standarized irreducible pentanomial
for modular reduction:

f (z) = z283 + z12 + z7 + z5 + 1
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Binary field arithmetic

Multiplication.

Modular reduction. After a polynomial multiplication or squaring is
processed, a double length element needs to be reduced to obtain a
field element.
Despite of inefficient choice of the standarized irreducible pentanomial
for modular reduction:

f (z) = z283 + z12 + z7 + z5 + 1

we take advantage of this factorization:

f (z) = z283 + (z7 + 1)(z5 + 1)

to formulate a faster modular reduction.
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Low-level techniques

Binary field arithmetic

Multiplication.

Modular reduction. After a polynomial multiplication or squaring is
processed, a double length element needs to be reduced to obtain a
field element.
Despite of inefficient choice of the standarized irreducible pentanomial
for modular reduction:

f (z) = z283 + z12 + z7 + z5 + 1

we take advantage of this factorization:

f (z) = z283 + (z7 + 1)(z5 + 1)

to formulate a faster modular reduction.
The new optimized reduction algorithm is based on bit and byte-wise
shifting and memory alignment instructions.
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Low-level techniques

Binary field arithmetic

Squaring. Squaring is a cheap operation due to Frobenius map in
binary fields.
This operation can be accomplished using look-up table based
instructions provided in Supplemental SSE3 extension set.
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Low-level techniques

Binary field arithmetic

Squaring. Squaring is a cheap operation due to Frobenius map in
binary fields.
This operation can be accomplished using look-up table based
instructions provided in Supplemental SSE3 extension set.

Multi-squaring. Given a field element a, evaluating

b = a2
k

for a fixed value k , is a time-memory trade-off. In which a look-up
table of 16⌈m4 ⌉ field elements is stored. Resulting faster than
repeatedly squarings when k > 6.
We can increase performance when 256-bit XOR instruction is present
with respect to 128-bit XOR instructions.
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Low-level techniques

Binary field arithmetic

Inversion. The friendliest approach to compute the most costly
binary field operation is using Itoh-Tsujii algorithm.
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Inversion. The friendliest approach to compute the most costly
binary field operation is using Itoh-Tsujii algorithm.
Given a field element a, we use the following identity to compute its
inverse:

a−1 =
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a2
m−1−1

)2
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Binary field arithmetic

Inversion. The friendliest approach to compute the most costly
binary field operation is using Itoh-Tsujii algorithm.
Given a field element a, we use the following identity to compute its
inverse:

a−1 =
(

a2
m−1−1

)2

The term a2
m−1−1 is obtained by sequentially computing intermediate

terms of the form:

(

a2
i−1

)2j

·
(

a2
j−1

)

i , j ∈ [0, λ]

where i , j are elements of an addition chain of λ length.
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Low-level techniques

Binary field arithmetic

Inversion. The friendliest approach to compute the most costly
binary field operation is using Itoh-Tsujii algorithm.
Given a field element a, we use the following identity to compute its
inverse:

a−1 =
(

a2
m−1−1

)2

The term a2
m−1−1 is obtained by sequentially computing intermediate

terms of the form:

(

a2
i−1

)2j

·
(

a2
j−1

)

i , j ∈ [0, λ]

where i , j are elements of an addition chain of λ length.
This sequence of powers is done by using multi-squaring operations.
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High-level techniques

Elliptic curve arithmetic

Lazy reduction. The formula for mixed point addition in López-Dahab
coordinates requires:
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We notice that the lazy reduction technique can be applied to save 2
modular reductions when sum of products are computed.
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High-level techniques

Elliptic curve arithmetic

Lazy reduction. The formula for mixed point addition in López-Dahab
coordinates requires:

8 multiplications.

5 squarings.

8 additions.

We notice that the lazy reduction technique can be applied to save 2
modular reductions when sum of products are computed.
Thus, mixed point addition is computed by:

8 unreduced multiplications.

5 unreduced squarings.

11 modular reductions.

10 additions.

Due to the choice of irreducible pentanomial, saving one modular
reduction represents approximately 15% of a field multiplication,
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High-level techniques

wτ -NAF recoding

Recoding. Recoding an integer scalar k to a wτ -NAF expansion allows to
apply Frobenius endomorphism in the computation of scalar multiplication.
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Recoding. Recoding an integer scalar k to a wτ -NAF expansion allows to
apply Frobenius endomorphism in the computation of scalar multiplication.

k ∈ Z →
l−1
∑

i=0

uiτ
i , ui ∈ {αj}j∈{1,3,5,... }

such that expansion preserves characteristics of wτ -NAF expansion.
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apply Frobenius endomorphism in the computation of scalar multiplication.

k ∈ Z →
l−1
∑

i=0

uiτ
i , ui ∈ {αj}j∈{1,3,5,... }

such that expansion preserves characteristics of wτ -NAF expansion.

This conversion is an iterative algorithm, such that for every iteration,
scalar k is reduced by some constant until becomes equal to zero.
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High-level techniques

wτ -NAF recoding

Recoding. Recoding an integer scalar k to a wτ -NAF expansion allows to
apply Frobenius endomorphism in the computation of scalar multiplication.

k ∈ Z →
l−1
∑

i=0

uiτ
i , ui ∈ {αj}j∈{1,3,5,... }

such that expansion preserves characteristics of wτ -NAF expansion.

This conversion is an iterative algorithm, such that for every iteration,
scalar k is reduced by some constant until becomes equal to zero.

Due to deterministic nature of algorithm, code was completely
unrolled to handle only the required precision in current iteration.
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High-level techniques

Scalar multiplication on Koblitz curves

Once that scalar k ∈ Z is recoded to a wτ -NAF expansion, then scalar
multiplication is computed as follows:

Q = [k]P
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High-level techniques

Scalar multiplication on Koblitz curves

Once that scalar k ∈ Z is recoded to a wτ -NAF expansion, then scalar
multiplication is computed as follows:

Q = [k]P

=
l−1
∑

i=0

uiτ
iP

= u0P + u1τ(P) + u2τ
2(P) + · · ·+ ul−1τ

l−1(P)
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High-level techniques

Scalar multiplication on Koblitz curves

Once that scalar k ∈ Z is recoded to a wτ -NAF expansion, then scalar
multiplication is computed as follows:

Q = [k]P

=
l−1
∑

i=0

uiτ
iP

= u0P + u1τ(P) + u2τ
2(P) + · · ·+ ul−1τ

l−1(P)

We notice that τ ⌊m/s⌋ function acts as an endomorphism in the context of
s-GLV decomposition.
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High-level techniques

s-GLV method

Given ψ an endomorphism in E (Fq), then for any point P of order r ,
∃ ξ ∈ Zr such that,

ψ(P) = [ξ]P
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High-level techniques

s-GLV method

Given ψ an endomorphism in E (Fq), then for any point P of order r ,
∃ ξ ∈ Zr such that,

ψ(P) = [ξ]P

We can split the scalar k such that,

k = k0 + k1ξ + k2ξ
2 + · · ·+ ks−1ξ

s−1 (mod r)

with |ki | ≈
1
s
|k |.
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s-GLV method

Given ψ an endomorphism in E (Fq), then for any point P of order r ,
∃ ξ ∈ Zr such that,

ψ(P) = [ξ]P

We can split the scalar k such that,

k = k0 + k1ξ + k2ξ
2 + · · ·+ ks−1ξ

s−1 (mod r)

with |ki | ≈
1
s
|k |.

Thus, scalar multiplication is performed as:

Q = [k]P

= [k0]P + [k1]ψ + [k2]ψ
2 + · · ·+ [ks−1]ψ

s−1(P)
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High-level techniques

s-GLV method

Given ψ an endomorphism in E (Fq), then for any point P of order r ,
∃ ξ ∈ Zr such that,

ψ(P) = [ξ]P

We can split the scalar k such that,

k = k0 + k1ξ + k2ξ
2 + · · ·+ ks−1ξ

s−1 (mod r)

with |ki | ≈
1
s
|k |.

Thus, scalar multiplication is performed as:

Q = [k]P

= [k0]P + [k1]ψ + [k2]ψ
2 + · · ·+ [ks−1]ψ

s−1(P)

The latest equation can be done using an interleaved version of scalar
multiplication, in which m − ⌊m

s
⌋ doublings are saved.
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High-level techniques

Scalar Multiplication on Koblitz curves

Under context of s-GLV method, let ψ ≡ τ ⌊m/s⌋ an endomorphic function.
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=
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uiτ
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=
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High-level techniques

Scalar Multiplication on Koblitz curves

Under context of s-GLV method, let ψ ≡ τ ⌊m/s⌋ an endomorphic function.
Once that scalar is recoded into a wτ -NAF expansion, spliting in s parts is
straightforward, arising the following equation:

Q = [k]P

=

l−1
∑

i=0

uiτ
iP

=

⌊m/s⌋−1
∑

i=0

uiτ
iP +

2⌊m/s⌋−1
∑

i=⌊m/s⌋

uiτ
i−⌊m/s⌋ψ(P) + · · ·+

l−1
∑

i=m−⌊m/s⌋

uiτ
i−m−⌊m/s⌋ψs−1(P)

The latest equation can be done using an interleaved version of scalar
multiplication, saving m − ⌊m

s
⌋ applications of τ .
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Results

Results

Elliptic curve. In order to address 128-bit security level and compliance
with standards, we chose the Koblitz curve K283 proposed by NIST.

E0(F2283) : y2 + xy = x3 + 1

F2283 ≡ F2[z ]/(f (z))

where f (z) = z283 + z12 + z7 + z5 + 1.
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E0(F2283) : y2 + xy = x3 + 1

F2283 ≡ F2[z ]/(f (z))

where f (z) = z283 + z12 + z7 + z5 + 1.
Platform. We use a Sandy Bridge architecture present on an Intel
processor Core-i7 2600K at 3.4GHz. Some features:

SSE4.2 and AVX instruction sets.

PCLMULQDQ instruction included in AES-NI instruction set.

GCC and ICC compilers were used under Linux environment.
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Results

Elliptic curve. In order to address 128-bit security level and compliance
with standards, we chose the Koblitz curve K283 proposed by NIST.

E0(F2283) : y2 + xy = x3 + 1

F2283 ≡ F2[z ]/(f (z))

where f (z) = z283 + z12 + z7 + z5 + 1.
Platform. We use a Sandy Bridge architecture present on an Intel
processor Core-i7 2600K at 3.4GHz. Some features:

SSE4.2 and AVX instruction sets.

PCLMULQDQ instruction included in AES-NI instruction set.

GCC and ICC compilers were used under Linux environment.

The benchmarking was conducted using performance guidelines suggested
by EBACS website.
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Results

Results on binary field operations

Field multiplication F2283 .
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Results

Results on binary field operations

Field multiplication F2283 .

Saving of 15% per unreduced multiplication using lazy reduction technique.
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Results

Results on binary field operations

Comparison between binary field operations F2283 .
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Results

Results on Scalar Multiplication on Koblitz curves

Timings are reported in three different scenarios:

Unknown point

[k]P

P is unknown and k is generated at random, e.g. ECDH shared secret
computing.
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Q is known in advance and k is generated at random, e.g. ECDSA
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Results on Scalar Multiplication on Koblitz curves

Timings are reported in three different scenarios:

Unknown point

[k]P

P is unknown and k is generated at random, e.g. ECDH shared secret
computing.

Fixed point.

[k]Q

Q is known in advance and k is generated at random, e.g. ECDSA
signature.

Multiple point multiplication.

[k]P + [k ′]Q

P is unknown, Q is known in advance and k and k ′ are generated
online at random, e.g. ECDSA verification.
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Results

Results on Scalar Multiplication on Koblitz curves

Unknown point scenario.
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Results

Results on Scalar Multiplication on Koblitz curves

Unknown point scenario.

Breaking the barrier of 105 clock cycles to compute a scalar multiplication
of a random point.
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Results

Results on Scalar Multiplication on Koblitz curves

Fixed point scenario. Using a table of 64 precomputed points (w = 8).
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Aranha, Faz, López, Henŕıquez. () Fast Scalar Mult on Koblitz Curves latincrypt 2012 24 / 30



Results

Results on Scalar Multiplication on Koblitz curves

Multiple point multiplication scenario. Using 2-GLV method.

Aranha, Faz, López, Henŕıquez. () Fast Scalar Mult on Koblitz Curves latincrypt 2012 25 / 30



Results

Results on Scalar Multiplication on Koblitz curves

Multiple point multiplication scenario. Using 2-GLV method.
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Results

Comparison to related work at 128-bit security level
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Results

Comparison to related work at 128-bit security level

1 Twisted Edwards curve over F2255−19 . [BDL+11]

2 Twisted Edwards curve over F2252−2232−1. [Ham12]

3 Koblitz curve K283 by NIST recommendation.

4 4-GLV/GLS curve in TE form over Fp2 , p = 2127 − 5997. [LS12]
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Results

Performance estimates

Longa and Sica [LS12] This work

Finite field Fp2 , p = 2127 − 5997 F2283
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Finite field Fp2 , p = 2127 − 5997 F2283

Operation
counting

742M+225S+1I+767A 407M + 1092S + 3I
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Finite field Fp2 , p = 2127 − 5997 F2283

Operation
counting

742M+225S+1I+767A 407M + 1092S + 3I

64-bit mul-
tiplications
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13(407) = 5,291
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Results

Performance estimates

Longa and Sica [LS12] This work

Finite field Fp2 , p = 2127 − 5997 F2283

Operation
counting

742M+225S+1I+767A 407M + 1092S + 3I

64-bit mul-
tiplications

4(3(742)+2(225))
=10,704

13(407) = 5,291

Multiplier
(latency)

Integer (3 cc) Carry-less (8 cc)

This estimate shows that performing scalar multiplication on a Koblitz
curve should be considerated faster than a prime curve equipped with
endomorphisms, if sufficient support to binary field multiplication is
present.
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Conclusion

Conclusion

We present fast timings for computation of scalar multiplication on
binary curves at 128-bit security level.
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Aranha, Faz, López, Henŕıquez. () Fast Scalar Mult on Koblitz Curves latincrypt 2012 28 / 30



Conclusion

Conclusion

We present fast timings for computation of scalar multiplication on
binary curves at 128-bit security level.

New optimization techniques were applied to binary field arithmetic to
get maximum performance.

Adaptation of s-GLV decomposition method to Koblitz curves via
τ ⌊m/s⌋ endomorphism.

This implementation provides a trade-off between side-channel
protection and standards compliance.
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get maximum performance.

Adaptation of s-GLV decomposition method to Koblitz curves via
τ ⌊m/s⌋ endomorphism.

This implementation provides a trade-off between side-channel
protection and standards compliance.

Future work.
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This implementation provides a trade-off between side-channel
protection and standards compliance.
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Provide side-channel resistant against timing and memory cache
attacks.
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Conclusion

Conclusion

We present fast timings for computation of scalar multiplication on
binary curves at 128-bit security level.

New optimization techniques were applied to binary field arithmetic to
get maximum performance.

Adaptation of s-GLV decomposition method to Koblitz curves via
τ ⌊m/s⌋ endomorphism.

This implementation provides a trade-off between side-channel
protection and standards compliance.

Future work.

Provide side-channel resistant against timing and memory cache
attacks.
Submit source code to EBACS website.
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Conclusion

Thanks!, Muchas Gracias!, Obrigado!
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