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Abstract—This paper proposes two improved interleaved modular multiplication

algorithms based on Barrett and Montgomery modular reduction. The algorithms

are simple and especially suitable for hardware implementations. Four large sets

of moduli for which the proposed methods apply are given and analyzed from a

security point of view. By considering state-of-the-art attacks on public-key

cryptosystems, we show that the proposed sets are safe to use, in practice, for

both elliptic curve cryptography and RSA cryptosystems. We propose a hardware

architecture for the modular multiplier that is based on our methods. The results

show that concerning the speed, our proposed architecture outperforms the

modular multiplier based on standard modular multiplication by more than

50 percent. Additionally, our design consumes less area compared to the standard

solutions.

Index Terms—Modular multiplication, Barrett reduction, Montgomery reduction,

public-key cryptography.
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1 INTRODUCTION

PUBLIC-KEY cryptography (PKC), a concept introduced by Diffie
and Hellman [10] in the mid 1970s, has gained its popularity
together with the rapid evolution of today’s digital communication
systems. The best-known public-key cryptosystems are based on
factoring, i.e., RSA [25], and on the discrete logarithm problem in a
large prime field (Diffie-Hellman, ElGamal, Schnorr, DSA) [19] or
on an elliptic curve (ECC/HECC) [15], [20], [14]. Based on the
hardness of the underlying mathematical problem, PKC usually
deals with large numbers ranging from a few hundreds to a few
thousands of bits in size. Consequently, efficient implementation
of PKC primitives has always been a challenge.

Modular multiplication forms the basis of modular exponentia-
tion which is the core operation of the RSA cryptosystem. It is also
present in many other cryptographic algorithms including those
based on ECC and HECC. In particular, if one uses projective
coordinates for ECC/HECC, modular multiplication remains the
most time-consuming operation for ECC. For efficient implemen-
tation of modular multiplication, the crucial operation is modular
reduction. Algorithms that are most commonly used for this
purpose are Barrett reduction [4] and Montgomery reduction [21].

In this study, we propose two interleaved modular multi-
plication algorithms based on Barrett and Montgomery modular
reduction. The methods are simple and especially suitable for
hardware implementations. Four large sets of moduli for which the
proposed methods apply are given and analyzed from a security
point of view. We propose a hardware architecture for the modular
multiplier that is based on our methods. The results show that

concerning the speed, our proposed architecture outperforms the
modular multiplier based on standard modular multiplication by
more than 50 percent. Additionally, our design consumes less area
compared to the standard solutions.

The remainder of this paper is structured as follows: Section 2
describes the algorithms of Barrett and Montgomery as the two
most commonly used reduction methods and presents a short
overview of related work. In Section 3, we show how precomputa-
tion can be omitted and the quotient evaluation simplified in
Barrett and Montgomery algorithms. Section 4 analyzes the
security implications, and in Section 5, we describe a hardware
implementation. Section 6 concludes the paper.

2 PRELIMINARIES

In this paper, we use the following notations. A multiple-precision
n-bit integer A is represented in radix r representation as
A ¼ ðAnw#1 . . .A0Þr, where r ¼ 2w; nw represents the number of
digits and is equal to dn=we, where w is a digit size; andAi is called a
digit andAi 2 ½0; r# 1&. A special case is when r ¼ 2 (w ¼ 1) and the
representation of A ¼ ðAn#1 . . .A0Þ2 is called a bit representation.

To make the following discussion easier, we define the floor
function for integers in the following manner. Let U , M 2 ZZ and
M > 0, then there exist integers q and Z such that U ¼ qM þ Z and
0 ( Z < M . The integer q is called the quotient and is denoted by
the floor function as

q ¼
!
U=M

"
: ð1Þ

The integer Z is called the remainder and can also be represented
as Z ¼ U mod M . Note here that the floor function always
rounds toward negative infinity. This is very useful for hardware
implementations, where the numbers are given in two’s comple-
ment representation. If the divisor is of type 2s, the floor function
is just a simple shift to the right for s positions.

2.1 Classical and Montgomery Modular Multiplication
Methods

Given a modulus M and two elements X, Y 2 ZZM , where ZZM is
the ring of integers modulo M, the ordinary modular multi-
plication is defined as

X ) Y ¼4 X * Y mod M:

Let the modulus M be an nw-digit integer, where the radix of each
digit is r ¼ 2w. The classical modular multiplication algorithm
computes XY mod M by interleaving the multiplication and
modular reduction phases, as shown in Algorithm 1. The value q
is called an intermediate quotient, while Z represents an intermediate
remainder. The calculation of q at step 4 of the algorithm is done by
utilizing integer division which is considered as an expensive
operation, especially in hardware. The idea of using the pre-
computed reciprocal of the modulus M and simple shift and
multiplication operations instead of division was first introduced
by Barrett [3], [4] in 1984. The original algorithm considers only
reduction, assuming that the multiplication is performed before-
hand. To explain the basic idea, we rewrite the intermediate
quotient q as

q ¼ Z

M

# $
¼

Z
2nþ!

2nþ"

M

2"#!

$ %
+

!
Z

2nþ!

"!
2nþ"

M

"

2"#!

$ %
¼ q̂: ð2Þ

The value q̂ represents an estimation of the intermediate quotient q.
In most of the cryptographic applications, the modulus M is fixed
during the manymodular multiplications, and hence, the value # ¼
b2nþ"=Mc can be precomputed and reused multiple times. Since the
value of q̂ is an estimated value, some correction steps at the end of
the modular multiplication algorithm have to be performed.
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Algorithm 1. Classical modular multiplication algorithm

Input: X ¼ ðXnw#1 . . .X0Þr, Y ¼ ðYnw#1 . . .Y0Þr,
M ¼ ðMnw#1 . . .M0Þr where 0 ( X; Y < M, 2n#1 ( M < 2n,

r ¼ 2w and nw ¼ dn=we.
Output: Z ¼ XY mod M.

1: Z ( 0

2: for i ¼ nw # 1 downto 0 do

3: Z ( ZrþXYi

4: q ( bZ=Mc
5: Z ( Z # qM

6: end for

7: Return Z.

To reduce the number of correction steps, Dhem [9] determines

the values of " ¼ wþ 3 and ! ¼ #2 for which the classical modular

multiplication based on Barrett reduction needs at most one

subtraction at the end of the algorithm. To make the following

explanations easier, we outline a similar analysis as given in [9].

We assume that step 4 of Algorithm 1 is performed according to (2)

and q̂ is used instead.
Analysis of Algorithm 1. Let us first consider the first iteration

of Algorithm 1 (i ¼ 0). We can find an integer $ such that

Z0 ¼ XYnw#1 < 2nþ$ . This represents an upper bound of Z (Z0 for

i ¼ 0). The quotient q ¼ bZ0
Mc can now be written as

q ¼ Z0

M

# $
¼

Z0

2nþ!
2nþ"

M

2"#!

$ %

;

where " and ! are two variables. The estimation of the given

quotient is now equal to

q̂ ¼
!

Z0

2nþ!

"!
2nþ"

M

"

2"#!

$ %
¼

!
Z0

2nþ!

"
#

2"#!

$ %
;

where # ¼ b2nþ"

M c is a constant and may be precomputed. Let us

now define the quotient error as a function of the variables ", !,

and $

e ¼ eð"; !; $Þ ¼ q # q̂:

Since A
B + bABc >

A
B # 1 for any A;B 2 ZZ, we can write the following

inequality:

q ¼ Z0

M

# $
+ q̂ >

!
Z0

2nþ!

"!
2nþ"

M

"

2"#!
# 1

>

%
Z0

2nþ! # 1
&%

2nþ"

M # 1
&

2"#!
# 1

¼ Z0

M
# Z0

2nþ"
# 2nþ!

M
þ 1

2"#!
# 1

+ Z0

M

# $
# Z0

2nþ"
# 2nþ!

M
þ 1

2"#!
# 1

¼ q # Z0

2nþ"
# 2nþ!

M
þ 1

2"#!
# 1:

Now, since e 2 ZZ, the quotient error can be estimated as

e ¼ eð"; !; $Þ ( 1þ Z0

2nþ"
þ 2nþ!

M
# 1

2"#!

# $
:

According to Algorithm 1, we have Z0 < 2nþ$ and M + 2n#1.

Hence, we can evaluate the quotient error as

e ¼ eð";!; $Þ ( 1þ 2$#" þ 2!þ1 # 1

2"#!

# $
:

Following the previous inequality, it is obvious that for " + $ þ 1

and ! ( #2, it holds e ¼ 1.
Next, we need to ensure that the intermediate remainder Zi

does not grow uncontrollably as i increases. Since X < M, Yi < 2w,

Zi < M þ eM and M < 2n, after i iterations, we have

Zi ¼ Zi#12
w þXYi

< ðM þ eMÞ2w þM2w

< ð2þ eÞ2nþw:

Since we want to use the same value for e during the algorithm, the

next condition must hold

Zi < ð2þ eÞ2nþw < 2nþ$ :

To minimize the quotient error (e ¼ 1), we must choose $ such that

3 * 2w < 2$ :

In other words, we choose $ + wþ 2. Now, according to the

previous analysis, we can conclude that for " + $ þ 1, ! ( #2 and

$ + wþ 2, we may realize a modular multiplication with only one

correction step at the end of the whole process.
The only drawback of the proposed method is the size of the

intermediate quotient q̂ and the precomputed value #. Due to the

parameters " and ! chosen in a given way, the size of q̂ is wþ 2

and # is at most wþ 4 bits. This introduces an additional overhead

for the software implementations, while it can be easily overcome

in the hardware implementations.
Montgomery’s algorithm [21] is the most commonly utilized

modular multiplication algorithm today. In contrast to the classical

modular multiplication, it utilizes right to left divisions. Given an

n-digit odd modulus M and an integer U 2 ZZM , the image or the

Montgomery residue of U is defined as X ¼ UR mod M, where R,

the Montgomery radix, is a constant relatively prime to M. If X

and Y are the images of U and V , respectively, the Montgomery

multiplication of these two images is defined as

X , Y ¼4 XYR#1 mod M:

The result is the image of UV mod M and needs to be converted

back at the end of the process. For the sake of efficient

implementation, one usually uses R ¼ rnw , where r ¼ 2w is the

radix of each digit. Similar to a classical modular multiplication

based on Barrett reduction, this algorithm uses a precomputed

value M 0 ¼ #M#1 mod r ¼ #M#1
0 mod r. The algorithm is shown

as follows:

Algorithm 2. Montgomery modular multiplication algorithm

Input: X ¼ ðXnw#1 . . .X0Þr, Y ¼ ðYnw#1 . . . Y0Þr,
M ¼ ðMnw#1 . . .M0Þr, M 0 ¼ #M#1

0 mod r where

0 ( X; Y < M, 2n#1 ( M < 2n, r ¼ 2w, gcdðM; rÞ ¼ 1 and

nw ¼ dn=we.
Output: Z ¼ XY r#nw mod M .

1: Z ( 0

2: for i ¼ 0 to nw # 1 do

3: Z ( Z þXYi

4: qM ( ðZ mod rÞM 0 mod r

5: Z ( ðZ þ qMMÞ=r
6: end for

7: if Z + M then

8: Z ( Z #M

9: end if

10: Return Z.
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2.2 Related Work

Before introducing related work, we note here that for the moduli
used in all common ECC cryptosystems, the modular reduction
can be done much faster than the one proposed by Barrett or
Montgomery. Even without any multiplication. This is the reason
behind standardizing generalized Mersenne prime moduli (sums/
differences of a few powers of 2) [22], [1], [26].

The idea of simplifying an intermediate quotient evaluation
was first presented by Quisquater [23] at the rump session of
Eurocrypt ’90. The method is similar to the one of Barrett except
that the modulus M is preprocessed before the modular multi-
plication in such a way that the evaluation of the intermediate
quotient q basically comes for free. Preprocessing requires some
extra memory and computational time, but the latter is negligible
when many modular multiplications are performed using the same
modulus.

Lenstra [16] points out that choosing moduli with a predeter-
mined portion is beneficial both for storage and computational
requirements. He proposes a way to generate RSA moduli with
any number of predetermined leading (trailing) bits, with the
fraction of specified bits only limited by security considerations.
Furthermore, Lenstra discusses security issues and concludes that
the resulting moduli do not seem to offer less security than regular
RSA moduli. In [13], Joye enhances the method for generating
RSA moduli with a predetermined portion proposed in [16].

In [12], Hars proposes a long modular multiplication method
that also simplifies an intermediate quotient evaluation. The
method is based on Quisquater’s algorithm and requires a
preprocessing of the modulus by increasing its length. The
algorithm contains conditional branches that depend on the sign
of the intermediate remainder. That increases the complexity of
the algorithm, especially concerning the hardware implementa-
tions where additional control logic needs to be added.

In this paper, we propose four sets of moduli that specifically
target efficient modular multiplication by means of classical
modular multiplication based on general Barrett reduction [9] and
Montgomery modular multiplication [21]. In addition to simplified
quotient evaluation, our algorithms do not require any additional
preprocessing. The algorithms are simple and especially suitable for
hardware implementations. They contain no conditional branches
inside the loop, and hence, require a very simple control logic. Note
that the same algorithms are applicable to general moduli if the
preprocessing described in [12] is performed beforehand.

The methods describing how to generate such moduli in case of
RSA are discussed in [16], [13]. Furthermore, from the sets
proposed in this paper, one can also choose the primes that
generate the RSA modulus to speed up a decryption of RSA by
means of the Chinese Remainder Theorem (CRT). In Section 4, we
discuss security issues concerning this matter.

3 THE PROPOSED MODULAR MULTIPLICATION

METHODS FOR INTEGERS

In both Barrett and Montgomery modular multiplications, the
precomputed values of either modulus reciprocal (#) or modulus
inverse (M 0) are used in order to avoid multiple-precision
divisions. However, single-precision multiplications still need to
be performed (step 4 of the Algorithms 1 and 2). This especially
concerns the hardware implementations, as the multiplication with
the precomputed values often occurs within the critical path of the
whole design. Section 5 discusses this issue in more detail.

Let us, for now, assume that the precomputed values # and M 0

are both of type -2% # ", where % 2 ZZ and " 2 f0; 1g. By tuning #
and M 0 to be of this special type, we transform a single-precision
multiplication with these values into a simple shift operation in

hardware. Therefore, we find sets of moduli for which the
precomputed values are both of type -2% # ".

3.1 Speeding Up Classical Modular Multiplication

Before describing the actual algorithm, we provide two lemmas to
make the following explanation easier:

Lemma 1. Let M ¼ 2n ## be an n-digit positive integer in radix 2
representation and let # ¼ b2nþ"=Mc, where " 2 NN. If 0 < # (
b 2n

1þ2"c, then

# ¼ 2": ð3Þ

Proof of Lemma 1. Rewrite 2nþ" as

2nþ" ¼ M2" þ 2"#:

Since it is given that 0 < # ( b 2n

1þ2"c, we conclude that
0 < 2"# < M . By the definition of euclidean division, this
shows that # ¼ 2". tu

Lemma 2. Let M ¼ 2n#1 þ# be an n-digit positive integer in radix 2
representation and let # ¼ b2nþ"=Mc, where " 2 NN. If 0 < # (
b 2n#1

2"þ1#1c, then

# ¼ 2"þ1 # 1: ð4Þ

Proof of Lemma 2. Rewrite 2nþ" as

2nþ" ¼ Mð2"þ1 # 1Þ þ 2n#1 ##ð2"þ1 # 1Þ:

Since 0 < # ( b 2n#1

2"þ1#1c, we conclude that 0 ( 2n#1 #
#ð2"þ1 #1Þ < M. By the definition of euclidean division,
this shows that # ¼ 2"þ1 # 1. tu
The interleaved modular multiplication algorithm based on

general Barrett reduction is given in Section 2. Now, according to
Lemmas 1 and 2, we can define two sets of moduli for which the
modular multiplication based on Barrett modular reduction can be
improved. These sets are of type:

S1 : M ¼ 2n ## where 0 < # ( 2n

1þ 2"

# $
;

S2 : M ¼ 2n#1 þ# where 0 < # ( 2n#1

2"þ1 # 1

# $
:

ð5Þ

Fig. 1 further illustrates the properties of the two proposed
sets S1 and S2. As can be seen in the figure, approximately " bits of
the modulus are fixed to be all 0s or all 1s, while the other
n# " bits are arbitrarily chosen.1

The proposed modular multiplication algorithm is shown in
Algorithm 3. The parameters " and ! are important for the
quotient evaluation. As we show later, to minimize the error in
quotient evaluation, " and ! are chosen such that " ¼ wþ 3 and
! ¼ #2. The same values of the parameters are obtained in [9] for
the classical modular multiplication based on Barrett reduction.
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Fig. 1. Binary representation of the proposed sets S1 and S2.

1. If Mn#"#2 ¼ 1 for M 2 S1 (Mn#"#1 ¼ 0 for M 2 S2), then the
remaining n# "# 2 (n# "# 1) least significant bits can be arbitrarily
chosen. Otherwise, if Mn#"#2 ¼ 0 (Mn#"#1 ¼ 1), then the remaining n# "#
2 (n# "# 1) least significant bits are chosen such that (5) is satisfied.



Algorithm 3. Proposed interleaved modular multiplication based

on generalized Barrett reduction (" ¼ wþ 3 and ! ¼ #2)

Input: X ¼ ðXnw#1 . . .X0Þr, Y ¼ ðYnw#1 . . .Y0Þr, M 2 S1 [ S2
where 0 ( X; Y < M, r ¼ 2w and nw ¼

'
n=w

(
.

Output: Z ¼ XY mod M.

Z ( 0

for i ¼ nw # 1 downto 0 do

Z ( Z2w þXYi

q̂ ¼

Z

2n

# $
if M 2 S1;

Z

2n#1

# $
if M 2 S2:

8
>><

>>:

Z ( Z # q̂M

end for

if Z + M then

Z ( Z #M // At most 1 subtraction is needed.

end if

while Z < 0 do

Z ( Z þM // At most 2 additions are needed.

end while

return Z.

In contrast to the classical modular multiplication based on
Barrett reduction where the quotient is evaluated as

q̂ ¼
!

Z
2nþ!

"!
2nþ"

M

"

2"#!

$ %

;

in our proposed algorithm, the evaluation basically comes for free:

q̂ ¼

Z

2n

# $
; if M 2 S1;

Z

2n#1

# $
; if M 2 S2:

8
>><

>>:

This saves one single-precision multiplication and additionally
increases the speed of the proposed modular multiplication
algorithm.

Proof of Algorithm 3. To prove the correctness of the algorithm,
we need to show that there exist "; ! 2 ZZ, such that q̂ can
indeed be represented as

q̂ ¼

Z

2n

# $
; if M 2 S1;

Z

2n#1

# $
; if M 2 S2:

8
>><

>>:

As shown in the analysis of Algorithm 1, to have the minimized
quotient error, the parameters " and ! need to be chosen such
that " + wþ 3 and ! ( #2. Let us first assume that M 2 S1.
According to Lemma 1, it follows that # ¼ 2". Now, q̂ becomes
equal to

q̂ ¼
!

Z
2nþ!

"
#

2"#!

# $
¼

!
Z

2nþ!

"
2"

2"#!

# $
¼ Z

2nþ!

# $
2!

# $
:

For ! ( 0, the previous equation becomes equivalent to

q̂ ¼ Z

2n

# $
:

For the case where M 2 S2, we have, according to Lemma 2,
that # ¼ 2"þ1 # 1. Now, q̂ becomes equal to

q̂ ¼
!

Z
2nþ!

"
ð2"þ1 # 1Þ
2"#!

# $
¼ Z

2nþ!

# $
2!þ1 1# 1

2"þ1

) *# $
:

To further simplify the proof, we choose ! ¼ #2 and the
previous equation becomes equivalent to

q̂ ¼ Z

2n#2

# $
1

2
1# 1

2"þ1

) *# $
:

If we choose " such that

2"þ1 > max
Z

2n#2

# $+ ,
; ð6Þ

the expression of q̂ simplifies to

q̂ ¼

Z

2n#1

# $
# 1; if 2

-- Z

2n#2

# $
;

Z

2n#1

# $
; if 2 6

-- Z

2n#2

# $
:

8
>><

>>:
ð7Þ

The inequality (6) can be written as

2"þ1 >
maxfZg
2n#2

# $
;

where max fZg is evaluated in the analysis of Algorithm 1 and
given as max fZg ¼ ð2þ eÞ2nþw. To have the minimal error, we
choose e ¼ 1 and get the following relation:

2"þ1 >
3 * 2nþw

2n#2

# $
¼ b3 * 2wþ2c:

The latter inequality is satisfied for " + wþ 3.
If, instead of (7), we use only q̂ ¼ b Z

2n#1c, the evaluation of the
intermediate quotient q̂ will, for 2 j b Z

2n#2c, become greater than
or equal to the real intermediate quotient q. Due to this fact, Z
can become negative at the end of the current iteration. Hence,
we need to consider the case where Z < 0. Let us prevent Z
from an uncontrollable decrease by putting a lower bound with
Z > #2nþ$ , where $ 2 ZZ. Since A

B + bABc >
A
B # 1 for any A,

B 2 ZZ, we can write the following inequality (note that Z < 0
and M > 0):

q̂ ¼
!

Z
2nþ!

"!
2nþ"

M

"

2"#!

$ %
(

!
Z

2nþ!

"!
2nþ"

M

"

2"#!

<
Z

2nþ!

%
2nþ"

M # 1
&

2"#!

¼ Z

M
# Z

2nþ"

<
Z

M

# $
þ 1# Z

2nþ"

¼ q þ 1# Z

2nþ"

< q þ 1þ 2$#":

Now, since q; q̂; e 2 ZZ, we choose " + $ þ 1 and the quotient
error gets estimated as #1 ( e ( 0. If in the next iteration, it
again happens that 2 j b Z

2n#2c, the quotient error will become
#2 ( e ( 0.

Finally, to assure that Z will remain within the bounds
during the ith iteration, we write

Zi ¼ Zi#12
w þXYi

¼ ðZi#2 # qM þ eMÞ2w þXYi

> ð0þ eMÞ2w þ 0

> e2nþw > #2nþ$ :

The worst case is when e ¼ #2, and then, it must hold
$ > wþ 1. By choosing " ¼ wþ 3 and ! ¼ #2, all conditions
are satisfied, and hence, q̂ is indeed a good estimate of q. At
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most one subtraction or two additions at the correction step are
required to obtain Z ¼ XY mod M. tu

3.2 Speeding Up Montgomery Modular Multiplication

Similar to Lemmas 1 and 2, we also have Lemmas 3 and 4 that are
at the heart of the proposed modular multiplication algorithm
based on Montgomery reduction.

Lemma 3. Let M ¼ #2w þ 1 be an n-digit positive integer in radix 2
representation, i.e., 2n#w#1(# < 2n#w, and letM 0 ¼ #M#1 mod 2w,
where w 2 NN, then

M 0 ¼ #1: ð8Þ

Proof of Lemma 3. Since M . 1 mod 2w, we clearly have
#M#1 . #1 mod 2w. tu

Lemma 4. Let M ¼ #2w # 1 be an n-digit positive integer in radix 2
representation, i.e., 2n#w#1<# ( 2n#w and letM 0 ¼ #M#1 mod 2w,
where w 2 NN, then

M 0 ¼ 1: ð9Þ

Proof of Lemma 4. Since M . #1 mod 2w, we clearly have
#M#1 . 1 mod 2w. tu

According to the previous two lemmas, we can easily find two
sets of moduli for which the precomputation step in Montgomery
multiplication can be excluded. The resulting algorithm is shown
in Algorithm 4. The proposed sets are of type

S3 : M ¼ #2w þ 1; where 2n#w#1 ( # < 2n#w;
S4 : M ¼ #2w # 1; where 2n#w#1 < # ( 2n#w:

ð10Þ

Fig. 2 further illustrates the properties of the two proposed sets S3
and S4. As can be seen in the figure, w# 1 bits of the modulus are
fixed to be all 0s or all 1s, while the other n# wþ 1 bits are
arbitrarily chosen. To fulfill the condition gcdðM; bÞ ¼ 1 (see
Algorithm 2), the least significant bit of M is set to 1.

Algorithm 4. Proposed interleaved modular multiplication based

on Montgomery modular reduction.

Input: X ¼ ðXnw#1 . . .X0Þr, Y ¼ ðYnw#1 . . .Y0Þr, M 2 S3 [ S4
where 0 ( X; Y < M, r ¼ 2w and nw ¼ dn=we.

Output: Z ¼ XY r#nw mod M.

Z ( 0

for i ¼ 0 to nw # 1 do

Z ( Z þXYi

qM ¼ #Z mod r if M 2 S 3;
Z mod r if M 2 S4:

+

Z ( ðZ þ qMMÞ=r
end for

if Z + M then

Z ( Z #M

end if

return Z.

Due to the use of special type of moduli, the evaluation of the
intermediate Montgomery quotient is simplified compared to the

original algorithm given in Algorithm 2. As in our case, the value
of M 0 is simply equal to 1 or #1, the Montgomery quotient qM ¼
ðZ mod rÞM 0 mod r becomes now

qM ¼ #Z mod r; if M 2 S3;
Z mod r; if M 2 S4:

+

Since r ¼ 2w, the evaluation of q basically comes for free.

Proof of Algorithm 4. Follow immediately from Lemmas 3 and 4.tu

4 SECURITY CONSIDERATIONS

In this section, we analyze the security implications of choosing
primes in one of the sets S1; S2; S3; S4 for use in ECC/HECC
and in RSA.

In the current state of the art, the security of ECC/HECC over
finite fields GF(q) only depends on the extension degree of the
field [2]. Therefore, the security does not depend on the precise
structure of the prime p. This is illustrated by the particular
choices for p that have been made in several standards such as
SEC [26], NIST [22], ANSI [1]. In particular, the following primes
have been proposed: p192 ¼ 2192 # 264 # 1, p224 ¼ 2224 # 296 þ 1,
p256 ¼ 2256 # 2224 þ 2192 þ 296 # 1, p384 ¼ 2384 # 2128 # 296 þ 232 # 1,
and p521 ¼ 2521 # 1. It is easy to verify that for w ( 28, all primes
are in one of the proposed sets. As such at least one of our
methods applies for all primes included in the standards. In
conclusion, choosing a prime of prescribed structure has no
influence on the security of ECC/HECC.

The case of RSA requires a more detailed analysis than ECC/
HECC. First, we assume that the modulus N is chosen from one of
the proposed sets. This is a special case of the security analysis
given in [16] followed by the conclusion that the resulting moduli
do not seem to offer less security than regular RSA moduli.

Next, we assume that the primes p and q that constitute the
modulus N ¼ pq both are chosen in one of the sets Si. To analyze
the security implications of the restricted choice of p and q, we first
make a trivial observation. The number of n-bit primes in the sets
Si for n > 259þ w is large enough such that exhaustive listing of
these sets is impossible, since a maximum of wþ 3 bits are fixed.

The security analysis then corresponds to attacks on RSA with
partially known factorization. This problem has been analyzed
extensively in the literature and the first results come from Rivest
and Shamir [24] in 1985. They describe an algorithm that factors N
in polynomial time if 2=3 of the bits of p or q are known. In 1995,
Coppersmith [6] improves this bound to 3=5.

Today’s best attacks all rely on variants of Coppersmith’s
algorithm published in 1996 [8], [7]. A good overview of these
algorithms is given in [17], [18]. The best results in this area are as
follows: Let N be an n bit number, which is a product of two
n=2-bit primes. If half of the bits of either p or q (or both) are
known, then N can be factored in polynomial time. If less than half
of the bits are known, say n=4# " bits, then the best algorithm
simply guesses " bits, and then, applies the polynomial-time
algorithm, leading to a running time exponential in ". In practice,
the values of w (typically, w ( 64) and n (n + 1;024) are always
such that our proposed moduli remain secure against Coppers-
mith’s factorization algorithm, since at most wþ 3 bits of p and q
are known.

Finally, we consider a similar approach extended to moduli of
the form N ¼ prq, where p and q have the same bit size. This
extension was proposed by Boneh et al. [5]. Assuming that p and q
are of the same bit size, one needs a 1=ðrþ 1Þ-fraction of the most
significant bits of p in order to factorN in polynomial time. In other
words, for the case r ¼ 1, we need half of the bits, whereas for, e.g.,
r ¼ 2, we need only a third of the most significant bits of p. These
results show that the primes p; q 2 S, assembling an RSA modulus
of the form N ¼ prq, should be used with care. This is especially
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Fig. 2. Binary representation of the proposed sets S3 and S4.



true when r is large. Note that if r / log p, the latter factoring
method factors N in polynomial time for any primes p; q 2 NN.

5 HARDWARE IMPLEMENTATION OF THE PROPOSED

ALGORITHMS

A typical architecture that describes an interleaved modular
multiplier is shown in Fig. 3. Both Barrett and Montgomery
algorithms can be implemented based on this architecture. The
architecture consists of two multiple-precision multipliers (&1 and
&2) and one single-precision multiplier (&3). Apart from the
multipliers, the architecture contains an additional adder denoted
by $. Having two multiple-precision multipliers may seem
redundant at first glance, but the multiplier &1 uses data from x
and y that are fixed during a single modular multiplication. Now,
by running &1 and &2 in parallel, we speed up the whole
multiplication process. If the target is a more compact design,
one can also use a single multiple-precision multiplier which does
not reduce the generality of our discussion.

Multipliers &1 and &2 perform multiplications at lines 3 and 5
of both Algorithms 1 and 2, respectively. A multiplication
performed in step 4 of both algorithms is done by multiplier &3.
An eventual shift of the register Z is handled by controller. The
exact schedule of the functional parts of the multiplier is as
follows: &1 ! $ ! &1&2&3 ! $ ! $ ! &1&2&3 ! $ ! $ ! * * * In
case of generalized Barrett reduction [9], the precomputed value #
is ' ¼ wþ 4-bits long, while for the case of Montgomery, the
precomputed value M 0 is ' ¼ w-bits long. Due to the generalized
Barrett’s algorithm, the multiplier &2 uses the most significant
' bits of the product calculated by &3, while for the case of
Montgomery, it uses the least significant ' bits of the same
product. This is indeed a reason for Montgomery’s multiplier
being superior compared to the one of Barrett.

The critical path of the whole design occurs from the output of
the register Z to the input of the temporary register in &2, passing
through two single-precision multipliers and one adder (bold
line). To show this, in practice, we have synthesized 192, 256, and
512-bit multipliers, each with the digit size of 32 bits. The code was
first written in GEZEL [11] and tested for its functionality, and
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TABLE 1
Synthesis Results for the Hardware Architectures of 192, 256, and 512-Bit Modular Multipliers

Fig. 3. Architecture for an interleaved modular multiplier based on Barrett or
Montgomery reduction.

Fig. 4. Architecture for an interleaved modular multiplier based on modified Barrett
or modified Montgomery reduction.



then, translated to VHDL and synthesized using the Synposys
Design Compiler version Y-2006.06. The library we used was
UMC 0:13 #m CMOS High-Speed standard cell library. The results
can be found in Table 1. The size of the designs is given as the
number of NAND gate equivalences (GEs).

A major improvement of the new algorithms is the simplified
quotient evaluation. This fact results in the new proposed
architecture for the efficient modular multiplier, as shown in
Fig. 4. It consists of two multiple-precision multipliers (&1 and &2)
only. The most important difference is that there are no multi-
plications with the precomputed values, and hence, the critical
path contains one single-precision multiplier and one adder only
(bold line). To compare the performance with the architecture
proposed in Fig. 3, we have again synthesized a number of
multipliers using the same standard cell library.

The results are given in Table 1 and show that frequencywise
our proposed architecture outperforms the modular multiplier
based on standard Barrett’s reduction up to 52 percent. The
architecture based on Montgomery’s reduction results in a
relative speedup up to 31 percent. Additionally, designs based
on our algorithms demonstrate area savings in range from 3.5 to
14 percent. Note here that the obtained results are based on the
synthesis only. After the place and route are performed, we
expect a decrease of the performance for both implemented
multipliers, and hence, believe that the relative speedup will
approximately remain the same.

Finally, it is interesting to consider a choice of the digit size.
As discussed in the previous section, the upper bound is decided
by security margins. A typical digit size of 8, 16, 32, or 64 bits
seems to provide a reasonable security margin for the RSA
modulus of 512 bits or more. On the other side, with the increase
of digit size, the number of cycles decreases for the whole design
and the overall speedup is increasing. It is also obvious that the
larger digit size implies the larger circuit, and thus, the
performance trade-off concerning throughput and area would
be interesting to explore.

6 CONCLUSION

In this work, we proposed two interleaved modular multiplication
algorithms based on Barrett and Montgomery modular reductions.
We introduced two sets of moduli for the algorithm based on
Barrett and two sets of moduli for the algorithm based on
Montgomery algorithm. These sets contain moduli with a
prescribed number (typically, the digit size) of zero/one bits,
either in the most significant or least significant part. Due to this
choice, our algorithms have no precomputational phase and have a
simplified quotient evaluation, which makes them more flexible
and efficient than existing solutions.

Following the same principles as described in the paper, this
approach can be easily extended to finite fields of characteristic two.
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