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ABSTRACT
In this paper, we show that the time complexity of monotone min-

plus product of two n × n matrices is Õ (n(3+ω )/2) = Õ (n2.687),
where ω < 2.373 is the fast matrix multiplication exponent [Al-

man and Vassilevska Williams 2021]. That is, when A is an arbi-

trary integer matrix and B is either row-monotone or column-

monotone with integer elements bounded by O (n), computing

the min-plus product C where Ci, j = mink {Ai,k + Bk, j } takes

Õ (n(3+ω )/2) time, which greatly improves the previous time bound

of Õ (n(12+ω )/5) = Õ (n2.875) [Gu, Polak, Vassilevska Williams and

Xu 2021]. Then by simple reductions, this means the case that A is

arbitrary and the columns or rows of B are bounded-difference can

also be solved in Õ (n(3+ω )/2) time, whose previous result gives

time complexity of Õ (n2.922) [Bringmann, Grandoni, Saha and

Vassilevska Williams 2016]. So the case that both of A and B are

bounded-difference also has Õ (n(3+ω )/2) time algorithm, whose

previous results give time complexities of Õ (n2.824) [Bringmann,

Grandoni, Saha and Vassilevska Williams 2016] and Õ (n2.779) [Chi,
Duan and Xie 2022]. Many problems are reducible to these problems,

such as language edit distance, RNA-folding, scored parsing prob-

lem on BD grammars [Bringmann, Grandoni, Saha and Vassilevska

Williams 2016]. Thus, their complexities are all improved.

Finally, we also consider the problem of min-plus convolution

between two integral sequences which are monotone and bounded

byO (n), and achieve a running time upper bound of Õ (n1.5). Previ-

ously, this task requires running time Õ (n(9+
√
177)/12) = O (n1.859)

[Chan and Lewenstein 2015].
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1 INTRODUCTION
The min-plus product C = A⋆ B between two n × n matrices A,B
is defined as Ci, j = min

1≤k≤n {Ai,k + Bk, j }. The straightforward

algorithm for min-plus product runs in O (n3) time, and a long line

of research has been dedicated to breaking this cubic barrier. The

currently fastest algorithm by Williams [14] for min-plus product

runs in time n3/2Θ(
√
logn)

, and it remains a major open question

whether a truly sub-cubic running time ofO (n3−ϵ ) can be achieved

for some constant ϵ > 0. In fact, it is widely believed that truly

sub-cubic time algorithms do not exist according to the famous

APSP hardness conjecture from the literature of fine-grained com-

plexity [16].

Although min-plus product is hard in general cases, when the

input matrices have certain structures, truly sub-cubic time algo-

rithms are known. For example, when all matrix entries are bounded

in absolute value byW , min-plus product can be computed in time

Õ (Wnω ) [2]. Matrices with more general structural properties are

studied in recent years. In paper [5], the authors introduced the

notion of bounded-difference matrices.

Definition 1.1. An integral matrix is called bounded-difference,
if each pair of adjacent elements differ by at most a constant δ .
Formally, a bounded-difference n ×n matrix X satisfies that for any

pair of indices 1 ≤ i, j ≤ n, we have:

|Xi, j − Xi, j+1 | ≤ δ

|Xi, j − Xi+1, j | ≤ δ

The importance of this special type of min-plus product between

bounded-difference matrices is demonstrated by its connection to

sub-cubic algorithms for other problems (for example, language edit

distance [5], RNA folding [5], and tree edit distance [12]). As their

main technical result, the authors of [5] gave the first sub-cubic

time algorithm for computing min-plus product between two n × n
bounded-difference matrices in time Õ (n2.824). This upper bound

was improved significantly to Õ (n2+ω/3) by a very recent work [7];
here ω refers to the fast matrix multiplication exponent [1].
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Following [5], less restricted types of matrices are studied in [9,

18]. In their work [18], Williams and Xu considered the case where

one of the input matrices is monotone.

Definition 1.2. An n×n integral matrix is called row-monotone,
or simplymonotone, if all entries are nonnegative integers bounded
by O (n) and each row of this matrix is non-decreasing, that is, if X
is monotone, then for i, j, 0 ≤ Xi, j = O (n),Xi, j ≤ Xi, j+1. Similarly

we can define column-monotone matrix.

It was shown in [9] that min-plus product in the bounded-

difference setting can be reduced to the monotone setting in qua-

dratic time, so this monotone setting is at least as hard in general.

With this definition, Williams and Xu [18] studied the monotone

min-plus product problem where A is an arbitrary integral matrix

and B is monotone, which has an application in the batch range

mode problem, and they presented a sub-cubic algorithm with run-

ning time Õ (n(15+ω )/6). This upper bound was later improved to

Õ (n(12+ω )/5) in a recent work [9].

Other than matrix pairs, the concept of min-plus also applies to

sequence pairs. Given two sequences A,B with n entries, their min-

plus convolution C = A ⋄ B can be defined as Ck = min
k−1
i=1 {Ai +

Bk−i }, for 2 ≤ k ≤ 2n. Chan and Lewenstein [6] studied fast

algorithms for min-plus convolution when the input sequences

A,B are monotone.

Definition 1.3. An integral sequence of length n is called mono-
tone, if this sequence is monotonically increasing, plus that all

entries are nonnegative and bounded by O (n).

When both sequences A,B are monotone, Chan and Lewen-

stein [6] showed that min-plus convolution can be computed in

sub-quadratic time Õ (n(9+
√
177)/12) = O (n1.859). This problem is

important due to its connectionswith other problems like histogram

indexing and necklace alignment [3, 4, 6].

1.1 Our Results
The main result of this paper is a faster algorithm for min-plus

matrix product in the monotone setting.

Theorem 1.4. There is a randomized algorithm that computes
min-plus product A ⋆ B with expected running time Õ (n(3+ω )/2),
where A is an n × n integral matrix; B is an n × n monotone matrix.

This improves on the previous upper bound of Õ (n(12+ω )/5)
[9]; as a corollary, by a reduction from the bounded-difference

setting to the monotone setting, this also implies that min-plus

matrix product between two bounded-difference matrices can be

computed in time Õ (n(3+ω )/2), which improves upon the recent

upper bound of Õ (n2+ω/3) [7].
By adapting our techniques to the monotone min-plus convolu-

tion problem, we can achieve the following result:

Theorem 1.5. There is a randomized algorithm that computes
min-plus convolution between two monotonically increasing integral
sequencesA,B, where entries ofA,B are nonnegative integers bounded
by O (n), and the expected running time of this algorithm is Õ (n1.5).

In Appendix A, we also generalize Theorem 1.4 to column-

monotone B:

Theorem 1.6. There is a randomized algorithm that computes
min-plus product A ⋆ B with expected running time Õ (n(3+ω )/2),
where A is an n × n integral matrix while B is an n × n column-
monotone matrix.

Since (A ⋆ B)T = BT ⋆AT , these also solve the case that A is

row-monotone or column-monotone and B is arbitrary.

1.2 Technical Overview
In this subsection, we take an overview of our algorithm for mono-

tone matrix min-plus product. The basic algorithmic framework

follows the main idea of the previous work [7] but with some

important modifications so that it can achieve a running time of

Õ (n2+ω/3) for monotone min-plus product instead of bounded-

difference min-plus product. To push it down to Õ (n(3+ω )/2) as
stated in Theorem 1.4, we need to follow a certain recursive para-

digm. For simplicity, let us assume for now that ω = 2.

The Basic Algorithm. Similar to [9], as the first step we take the

approximation matrices Ã, B̃ of the input A,B, which are defined as

Ãi, j = ⌊Ai, j/n
1/3⌋ and B̃i, j = ⌊Bi, j/n

1/3⌋, respectively, and then

compute C̃ = Ã ⋆ B̃ using an elementary combinatorial method

which takes time Õ (n8/3). (See Section 3.1.)

The approximation matrix C̃ gives a necessary condition for

witness indices k such that Ai,k + Bk, j = Ci, j : if the equality holds,

then it must be the case that Ãi,k + B̃k, j − C̃i, j = O (1). Using this
fact, build the following two polynomial matrices A(x ,y),B (x ,y)
on variables x ,y:

Ai,k (x ,y) = xAi,k−n
1/3 ·Ãi,k · yÃi,k

Bk, j (x ,y) = xBk, j−n
1/3 ·B̃k, j · yB̃k, j

Suppose we can directly compute C (x ,y) = A(x ,y) · B (x ,y) under
the standard notion of (+,×) of matrix product. Then, to search

for the true value Ci, j = mink {Ai,k + Bk, j }, we only need to look

at terms xcyd of polynomial Ci, j (x ,y) such that |d − C̃i, j | = O (1),

and determine Ci, j to be the minimum over all values of c + n1/3d .
Unfortunately, computingC (x ,y) = A(x ,y) ·B (x ,y) is very costly

in general since the degrees of y can be very large. To reduce the

y-degrees, the idea is to take p-modulo on the exponent of y, where

p = Θ(n1/3) is a random prime number. Formally, construct two

polynomial matrices Ap (x ,y),Bp (x ,y) as following:

A
p
i,k (x ,y) = xAi,k−n

1/3 ·Ãi,k · yÃi,k mod p

B
p
k, j (x ,y) = xBk, j−n

1/3 ·B̃k, j · yB̃k, j mod p

In this way, matrix product Cp = Ap · Bp only requires running

time Õ (n8/3). The problem with this approach is that, when we go

over all the terms xcyd of polynomial Ci, j (x ,y) such that |d − C̃i, j
mod p | = O (1), c +n1/3d might be an underestimate ofCi, j ; in fact,

it could be the case that for some index k , we have:

c = Ai,k − n
1/3 · Ãi,k + Bk, j − n

1/3 · B̃k, j

d ≡ Ãi,k + B̃k, j mod p

d , Ãi,k + B̃k, j

To resolve this issue, we should first enumerate all triples i, j,k such

that d ≡ Ãi,k + B̃k, j mod p and d , Ãi,k + B̃k, j , and then subtract
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the erroneous terms xcyd fromCi, j (x ,y). To upper bound the total
running time, the key point is that when p is a random prime, the

probability that d ≡ Ãi,k + B̃k, j mod p is at most Õ (1/p) when

d , Ãi,k + B̃k, j , and therefore the expected number of erroneous

terms is bounded by Õ (n3/p) = Õ (n8/3).

Improvement by Recursion. To push the upper bound exponent

from 8/3 to 2.5, we again follow the idea in [7] of using recursions.

Roughly speaking, we will apply a numerical scaling technique

on the input matrices A,B, and the key technical point is that

throughout different numerical scales we need to carefully maintain

all erroneous terms.

More specifically, take a random prime p in [n0.5, 2n0.5], and de-

fine A
(l )
i, j = ⌊(Ai, j mod p)/2l ⌋, B

(l )
i, j = ⌊(Bi, j mod p)/2l ⌋, C (l ) =

⌊(Ci, j mod p)/2l ⌋, then we will iteratively compute all C (l )
with

l = h,h − 1,h − 2, · · · , 0, for some parameter h; note that in general

C (l ) , A(l ) ⋆ B (l )
, so computing C (l )

would also require informa-

tion from the original input matrices A,B. Once we have C (0) = C
mod p, we can deduce the true value of C from the approximation

matrix C∗ = A∗ ⋆ B∗, where A∗i, j = ⌊Ai, j/p⌋ and B∗i, j = ⌊Bi, j/p⌋;

note that computing C∗ takes time Õ (n2.5).

To compute C (l )
, the algorithm uses C (l+1)

as an approximation.

Namely, similar to the basic algorithm, let us construct two n × n
polynomial matrices Ap ,Bp on variables x ,y in the following way:

A
p
i,k = x

A(l )
i,k−2A

(l+1)
i,k · y

A(l+1)
i,k

B
p
k, j = x

B (l )
k, j−2B

(l+1)
k, j · y

B (l+1)
k, j

Then, compute the standard (+,×) matrix multiplication Cp =
Ap · Bp using fast matrix multiplication. The advantage of numer-

ical scaling is that the degree of x is 0 or 1, so polynomial matrix

multiplication only takes time Õ (n2.5).

To retrieve C
(l )
i, j , we will prove that C

(l )
i, j must be equal to some

A
(l )
i,k + B

(l )
k, j such that the following two conditions hold:

• |A
(l+1)
i,k + B

(l+1)
k, j −C

(l+1)
i, j | = O (1).

• A∗i,k + B
∗
k, j = C

∗
i, j .

So, we only need to look at the monomials inC
p
i, j whosey-degree

differs from C
(l+1)
i, j by at most O (1). However, before this we need

to subtract all erroneous terms from C
p
i, j , which are all of those

triples (i, j,k ) ∈ [n]3 such that:

• |A
(l+1)
i,k + B

(l+1)
k, j −C

(l+1)
i, j | = O (1).

• A∗i,k + B
∗
k, j , C

∗
i, j .

To efficiently enumerate these triples, the key idea is to maintain

them iteratively for all l = h,h − 1, · · · , 0 as well, along with the

approximation matrices C (l )
. A technical issue is that the total

number of such triples might be as large as Θ(n3). This is where we
utilize the monotone property (of B andC) by grouping consecutive
triples into segments such that the total number of segments is

bounded by O (n3/p) = O (n2.5).

2 PRELIMINARIES
Notations. For any integers a,m, let (a mod m) refer to the

unique value b ∈ {0, 1, 2, · · · ,m − 1} such that a ≡ b mod m.

For any positive integer x , [x] refers to the set {1, 2, 3, · · · ,x }. For
a matrix A and a real number x , A + x means adding x to every

element of A.

Segment Trees. Let X = {x1,x2, · · · ,xN } be an integral sequence

of N elements which undergoes updates and queries. Each update

operation specifies an interval [i, j] and an integer value u, then
for each i ≤ l ≤ j, xl is updated as xl ← min{xl ,u}. Each query

operation inspects the current value of an arbitrary element xi .
Using standard segment tree data structures [8], both update and

query operations are supported in O (logN ) deterministic worst-

case time.

Matrix Multiplication. We denote with O (nω ) the arithmetic

complexity of multiplying two n × n matrices. Currently the best

bound is ω < 2.37286 [1, 11, 15].

Polynomial Matrices. Our algorithm will work with multivariate

polynomials. For bivariate polynomials on variables x ,y, suppose
the maximum degrees of x ,y are bounded in absolute value by

d1,d2, respectively (we allow their degrees to be negative). Given

two polynomials p,q ∈ Z[x ,y], we can add and subtract p,q in

O (d1d2) time, and multiply p,q in Õ (d1d2) time using fast-Fourier

transformations [13]. Similar bounds hold for polynomials on three

variables x ,y, z as well.
We will also work with polynomial matrices from (Z[x ,y])n×n .

Products between two matrices in (Z[x ,y])n×n can be performed

as usual, but since each arithmetic operation takes time Õ (d1d2),
the cost of matrix multiplication takes time Õ (d1d2n

ω ). To do this,

we can reduce it to multiplication of polynomial univariate matri-

ces: replace y = x10d1 and multiply the two univariate matrices,

and then take 10d1-modulo on the degrees to recover the original

degrees of x ,y of each element.

Distribution of Primes. Let π (x ) be the prime-counting function

that gives the number of primes less than or equal to x . According
to the famous prime number theorem [10], π (x ) ∼ x/ ln(x ). As a
corollary, for any large enough integer N , the number of primes in

the range [N , 2N ] is at least Ω(N / logN ).

Assumptions and Reductions. When computing the min-plus

product of A and B, it is easy to see the following operations will

not affect the complexity of computation:

(1) We can add the same value to all elements in a row ofA or to

all elements in a column of B. To recover the original result

A⋆B from the new resultC , simply subtract the same value

in the corresponding row of C or subtract the same value in

the corresponding column of C , resp.
(2) We can add the same value δ to all elements in i−th column

of A and subtract δ from all elements in i−th row of B. The
min-plus product remain unchanged.

(3) If B is column-monotone, we can make A row-monotone

(reverse order), since when Bk, j ≤ Bk+1, j , if Ai,k < Ai,k+1,
thenAi,k+1+Bk+1, j cannot be a candidate ofCi, j , so we can
make Ai,k+1 ← Ai,k .
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(4) [9] If B is δ -row-bounded-difference, that is, |Bi, j −Bi, j+1 | ≤
δ , then we can add j ·δ to the j−th column of B to make B row-

monotone, so row-bounded-difference can be reduced to row-

monotone. Similarly, if B is δ -column-bounded-difference, it

can be reduced to column-monotone (with the change of A
by (2)).

(5) If all elements in B are between 0 and c ·n for some constant

c , by (1), we can adjust rows of A so that the first column of

A are all set to c · n, then all elements of A can be made in

the range [0, 2c · n].

Also, it is easy to get the following fact:

Fact 2.1. In C = A ⋆ B, if B is row-monotone, then C is also
row-monotone.

From (4) we can reduce A⋆ B for any A,B to the case that B is

row-monotone or column-monotone without O (n)-bound, so the
general case of B monotone is APSP-hard [17]. Thus, from (5), we

only consider the case thatB is row-monotone or column-monotone

and all elements in A and B are nonnegative integers bounded by

O (n). In this paper, monotone matrices are defined to have this

element bound of O (n) as in Definition 1.2.

3 MONOTONE MIN-PLUS PRODUCT
3.1 Basic Algorithm
In this section we prove Theorem 1.4, that is, B is row-monotone.

Take a constant parameter α ∈ (0, 1) which is to be determined

in the end; for convenience let us assume nα is an integer. The

algorithm consists of three phases.

Approximation. Define two n × n integer matrices Ã, B̃ such that

Ãi, j = ⌊Ai, j/n
α ⌋, B̃i, j = ⌊Bi, j/n

α ⌋. Therefore, B̃ is an integer

matrix whose entries are bounded by O (n1−α ), and each row of B̃
is non-decreasing.

Next, compute the approximation matrix C̃ = Ã ⋆ B̃ in the

following way. Initialize each entry of C̃ to be ∞, and maintain

each row of C̃ using a segment tree that supports interval updates.

Then, for every pair of indices i,k ∈ [n], run the following it-

erative procedure that scans the k-th row of B̃. Starting with in-

dex j = 1, find the largest index j ≤ j1 ≤ n such that B̃k, j =

B̃k, j+1 = · · · = B̃k, j1 using binary search. Then, update all elements

C̃i,l ← min{C̃i,l , Ãi,k + B̃k,l } for all j ≤ l ≤ j1 using the segment

tree data structure; notice that this operation is legal since all B̃k,l
are equal when j ≤ l ≤ j1. After that, set j ← j1 + 1 and repeat

until j > n.

Polynomial Matrix Multiplication. Uniformly sample a random

prime number p in the range [nα , 2nα ]. Construct two polynomial

matrices Ap and Bp on variables x ,y in the following way:

A
p
i,k = xAi,k−n

α Ãi,k · yÃi,k mod p

B
p
k, j = xBk, j−n

α B̃k, j · yB̃k, j mod p

Then, compute the standard (+,×) matrix multiplication Cp =
Ap · Bp using fast matrix multiplication algorithms.

Subtracting Erroneous Terms. The last phase is to extract the true
values Ci, j ’s from C̃ and Cp . The algorithm iterates over all offsets

b ∈ {0, 1, 2}, and computes the set Tb ⊆ [n]3 of all triples of indices
(i, j,k ) such that Ãi,k + B̃k, j , C̃i, j + b but Ãi,k + B̃k, j ≡ C̃i, j + b
mod p; in the running time analysis, we will show that Tb can be

computed in time Õ ( |Tb | + n
3−α ).

For each pair of indices i, j ∈ [n], collect all the non-zero mono-

mials λxcyd (for some integer λ) of C
p
i, j such that

d ≡ C̃i, j + b mod p

and let C
p
i, j,b (x ) be the sum of all such terms λxc .

Next, compute a polynomial

R
p
i, j,b (x ) =

∑
(i, j,k )∈Tb

xAi,k−n
α Ãi,k+Bk, j−nα B̃k, j

Finally, let si, j,b be the minimum degree of x of the polynomial

C
p
i, j,b (x )−R

p
i, j,b (x ), and compute a candidate value ci, j,b = n

α (C̃i, j+

b)+si, j,b . Ranging over all integer offsetsb ∈ {0, 1, 2}, take the mini-

mum of all candidate values and output asCi, j = min
0≤b≤2{ci, j,b }.

3.1.1 Proof of Correctness. First we show that C̃ is indeed an ap-

proximation of C:

Lemma 3.1. For any triple (i, j,k ) ∈ [n]3 such that Ai,k + Bk, j =
Ci, j , we have

0 ≤ Ãi,k + B̃k, j − C̃i, j ≤ 2

Proof. Clearly Ãi,k + B̃k, j − C̃i, j ≥ 0, so we only need to focus

on the second inequality.

Suppose C̃i, j = Ãi,l + B̃l, j for some l . Then, by definition of Ã, B̃,
we have:

nα C̃i, j = n
α Ãi,l + n

α B̃l, j ≥ Ai,l + Bl, j − 2n
α ≥ Ci, j − 2n

α

= Ai,k + Bk, j − 2n
α ≥ nα Ãi,k + n

α B̃k, j − 2n
α

Hence, Ãi,k + B̃k, j − C̃i, j ≤ 2. □

Next we argue that our algorithm correctly computes all entries

Ci, j . Let l be the index such that Ci, j = Ai,l + Bl, j . By the above

lemma, there exists an integer offset b ∈ {0, 1, 2} such that Ãi,l +

B̃l, j = C̃i, j + b. Therefore, by construction of polynomial matrices

Ap ,Bp , we have:

C
p
i, j,b (x ) =

∑
k |Ãi,k+B̃k, j=C̃i, j+b

xAi,k−n
α Ãi,k+Bk, j−nα B̃k, j

+
∑

k |(Ãi,k +B̃k, j ,C̃i, j +b )

∧(Ãi,k +B̃k, j ≡C̃i, j +b mod p )

xAi,k−n
α Ãi,k+Bk, j−nα B̃k, j

=
∑

k |Ãi,k+B̃k, j=C̃i, j+b

xAi,k−n
α Ãi,k+Bk, j−nα B̃k, j

+
∑

(i, j,k )∈Tb

xAi,k−n
α Ãi,k+Bk, j−nα B̃k, j

= x−n
α (C̃i, j+b ) ·

∑
k |Ãi,k+B̃k, j=C̃i, j+b

xAi,k+Bk, j + R
p
i, j,b (x )
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Therefore,

x−n
α (C̃i, j+b ) ·

∑
k |Ãi,k+B̃k, j=C̃i, j+b

xAi,k+Bk, j = C
p
i, j,b (x ) − R

p
i, j,b (x )

Since Ãi,l + B̃l, j = C̃i, j + b, we can extract Ci, j from terms of

C
p
i, j,b (x )−R

p
i, j,b (x ). In the otherway, every nonzero termC

p
i, j,b (x )−

R
p
i, j,b (x ) corresponds to a sum of Ai,k + Bk, j , which is at leastCi, j .

3.1.2 Running Time Analysis. We analyze the running time by

parts:

Lemma 3.2. The approximation matrix C̃ = Ã⋆B̃ can be computed
in time Õ (n3−α ).

Proof. For any pair of i,k , the algorithm iteratively increases

index j and apply update operations on the segment tree data struc-

ture. Since elements of B are bounded by O (n), the total number of

different values on the k-th row of B̃ is at mostO (n1−α ). Therefore,
the number of iterations over j is at most O (n1−α ) as well. Hence,
the running time of this phase is Õ (n3−α ). □

As for polynomial matrix multiplication, by definition the x-
degree and y-degree of Ap ,Bp are both bounded by O (nα ) in abso-

lute value, so the matrix multiplication takes time O (nω+2α ).

Lemma 3.3. Computing the triple setTb takes time Õ ( |Tb |+n
3−α ).

Proof. Fix any pair of i,k , we try to find all j such that (i, j,k ) ∈
Tb . By Fact 2.1, B̃ and C̃ are both row-monotone, so we can divide

thek-th row of B̃ and i-th row of C̃ into at mostO (n1−α ) consecutive
intervals, such that entries in each interval are all equal. So there

are O (n1−α ) intervals [j0, j1] such that for all j ∈ [j0, j1], Ãi,k +

B̃k, j and C̃i, j are fixed. Therefore, as the total number of such row

intervals is bounded by O (n3−α ), the total running time becomes

Õ ( |Tb | + n
3−α ). □

By the above lemma, the subtraction phase takes time Õ ( |Tb | +
n3−α ) as well. So it suffices to bound the size ofTb . For any (i, j,k ) ∈
[n]3 such that Ãi,k + B̃j,k , C̃i, j + b since |Ãi,k + B̃j,k − C̃i, j − b |
is bounded by O (n), there are at most O (1/α ) = O (1) different
primes in [nα , 2nα ] that divides Ãi,k + B̃j,k − C̃i, j − b. Since p is

a uniformly random prime in the range [nα , 2nα ], the probability
that Ãi,k + B̃j,k −C̃i, j −b can be divided by p is bounded by Õ (n−α ).

Hence, by linearity of expectation, we have Ep [|Tb |] ≤ Õ (n3−α ).
Throughout all three phases, the expected running time of our

algorithm is bounded by Õ (n3−α + nω+2α ). Taking α = 1 − ω/3,

the running time becomes Õ (n2+ω/3).

3.2 Recursive Algorithm
Let α ∈ (0, 1) be a constant parameter to be determined later,

and pick a uniformly random prime number p in the range of

[40nα , 80nα ]. Without loss of generality, let us assume that n is a

power of 2. Next we make the following assumption about elements

in A and B:

Assumption 3.4. For every i, j, either (Ai, j mod p) < p/3 or
Ai, j = +∞. For every Bi, j , (Bi, j mod p) < p/3. And each row of B
is monotone.

Lemma 3.5. The general computation of A ⋆ B where B is row-
monotone can be reduced to a constant number of computations of
Ai ⋆ Bi , where all of Ai ,Bi ’s satisfy Assumption 3.4.

Proof. The idea is very simple: for every element Ai, j ,

• if (Ai, j mod p) < p/3, A′i, j = Ai, j , A
′′
i, j = A′′′i, j = +∞

• if p/3 < (Ai, j mod p) < 2p/3, A′′i, j = Ai, j , A
′
i, j = A′′′i, j =

+∞

• if (Ai, j mod p) > 2p/3, A′′′i, j = Ai, j , A
′
i, j = A′′i, j = +∞

When we try to define B′,B′′ and B′′′ similarly, to make them

still row-monotone, we need to fill the “blanks” with appropriate

numbers.

• if (Bi, j mod p) < p/3, letB′i, j = Bi, j andB
′′
i, j = p·⌊Bi, j/p⌋+

⌈p/3⌉, B′′′i, j = p · ⌊Bi, j/p⌋ + ⌈2p/3⌉

• if p/3 < (Bi, j mod p) < 2p/3, let B′′i, j = Bi, j and B′i, j =

p · ⌊Bi, j/p + 1⌋, B
′′′
i, j = p · ⌊Bi, j/p⌋ + ⌈2p/3⌉

• if (Bi, j mod p) > 2p/3, letB′′′i, j = Bi, j andB
′
i, j = p·⌊Bi, j/p+

1⌋, B′′i, j = p · ⌊Bi, j/p + 1⌋ + ⌈p/3⌉

We can see each pair ofA∗ andB∗, whereA∗ ∈ {A′,A′′−⌈p/3⌉,A′′′−
⌈2p/3⌉}, B∗ ∈ {B′,B′′ − ⌈p/3⌉,B′′′ − ⌈2p/3⌉}, all satisfy Assump-

tion 3.4, so we computeC ′ = minA∗∈{A′,A′′,A′′′ },B∗∈{B′,B′′,B′′′ } {A
∗⋆

B∗} (element-wise minimum). Since elements in B′,B′′,B′′′ be-
come no smaller than the corresponding ones in B, similarly for

A′,A′′,A′′′, so C ′i, j ≥ Ci, j . But for the k satisfying Ai,k + Bk, j =

Ci, j , Ai, j and Bk, j must be in one of the 9 pairs, so C ′i, j = Ci, j . □

Define integer h such that 2
h−1 ≤ p < 2

h
. For each integer

0 ≤ l ≤ h, letA(l )
be then×nmatrix defined asA

(l )
i, j = ⌊

Ai, j mod p
2
l ⌋

if Ai, j is finite, otherwise A
(l )
i, j = +∞, similarly define matrix B (l ) =

⌊
Bi, j mod p

2
l ⌋.

DefineA∗ and B∗ asA∗i, j = ⌊Ai, j/p⌋ and B
∗
i, j = ⌊Bi, j/p⌋. We use

the segment tree structure to calculate C∗ = A∗ ⋆ B∗ in Õ (n3−α )
time. By Assumption 3.4, C∗i, j = ⌊Ci, j/p⌋ if Ci, j is finite.

We will recursively calculate C (l )
for l = h,h − 1, · · · , 0. Intu-

itively, C
(l )
i, j is the approximate result obtained from A

(l )
i,k and B

(l )
k, j

for those k satisfying C∗i, j = A∗i,k + B
∗
k, j . If Ci, j is finite, C

(l )
will

satisfy that

(1) ⌊
(Ci, j mod p )−2(2l−1)

2
l ⌋ ≤ C

(l )
i, j ≤ ⌊

(Ci, j mod p )+2(2l−1)
2
l ⌋

(2) If C∗i, j0 = C∗i, j1 for j0 < j1, the elements in C
(l )
i, j0
, · · · ,C

(l )
i, j1

are monotonically non-decreasing.

(Note that C (l )
is not necessarily equal to A(l ) ⋆ B (l )

.) In the end

when l = 0 we can get the matrix C
(0)
i, j = Ci, j mod p, by the

procedure of recursion. Thus we can calculate the exact value of

Ci, j by the result of Ci, j mod p.

We can see all elements in A(l ) ,B (l ) ,C (l )
are non-negative in-

tegers at most O (nα /2l ) or infinite. From B is row-monotone and

property (2) of C (l )
, every row of B (l ) ,C (l )

composed of O (n/2l )
intervals, where all elements in each interval are the same. Define

a segment as:
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Definition 3.6. A segment (i,k, [j0, j1]) w.r.t. B (l )
andC (l )

, where

i,k, j0, j1 ∈ [n] and j0 ≤ j1, satisfies that for all j0 ≤ j ≤ j1,

B
(l )
k, j = B

(l )
k, j0

, B∗k, j = B∗k, j0
and C

(l )
i, j = C

(l )
i, j0

, C∗i, j = C
∗
i, j0 .

Then each pair of rows of B (l ) ,C (l )
can be divided into O (n/2l )

segments.

We maintain the auxiliary sets T
(l )
b for −10 ≤ b ≤ 10 through-

out the algorithm, where the set T
(l )
b consists of all the segments

(i,k, [j0, j1]) w.r.t. B
(l )

and C (l )
satisfying: (So this holds for all

j ∈ [j0, j1].)

Ai,k is finite and A∗i,k + B
∗
k, j0
, C∗i, j0 and A

(l )
i,k + B

(l )
k, j0
= C

(l )
i, j0
+ b

The algorithm proceeds as:

• In the first iteration l = h, we want to calculate C
(h)
i, j . How-

ever since p < 2
h
, A(h) ,B (h) ,C (h)

are zero matrices, so T
(h)
0

includes all segments (i,k, [j0, j1]) where Ai,k is finite and

A∗i,k + B∗k, j0
, C∗i, j0 . And T

(h)
b = ∅ (b , 0). Since the

number of segments in a row w.r.t. B (h) ,C (h)
is O (n1−α ),

|T
(h)
b | = O (n3−α ).

• For l = h − 1, · · · , 0, we first compute C (l )
with the help

of T
(l+1)
b , then construct T

(l )
b from T

(l+1)
b . By Lemma 3.8

that

⋃
10

i=−10T
(l )
i ⊆

⋃
10

i=−10T
(l+1)
i , we can search the shorter

segments contained in T
(l+1)
b to find T

(l )
b . By Lemma 3.9,

|T
(l )
b | is always bounded by O (n3−α ).

Each iteration has three phases:

Polynomial Matrix Multiplication. Construct two polynomial ma-

trices Ap and Bp on variables x ,y in the following way: When Ai,k
is finite,

A
p
i,k = x

A(l )
i,k−2A

(l+1)
i,k · y

A(l+1)
i,k

Otherwise A
p
i,k = 0, and:

B
p
k, j = x

B (l )
k, j−2B

(l+1)
k, j · y

B (l+1)
k, j

Then, compute the standard (+,×) matrix multiplication Cp =

Ap ·Bp using fast matrix multiplication algorithms. Note thatA
(l )
i, j −

2A
(l+1)
i, j ,B

(l )
i, j − 2B

(l+1)
i, j are 0 or 1, so the degree of x terms are 0 or

1. This phase runs in time Õ (nω+α ).

Subtracting Erroneous Terms. This phase is to extract the true

values C
(l )
i, j ’s from C

(l+1)
i, j . The algorithm iterates over all offsets

−10 ≤ b ≤ 10, and enumerates all the segments in T
(l+1)
b .

For each pair of indices i, j ∈ [n], if C
p
i, j = 0 then C

(l )
i, j = +∞,

otherwise collect all the monomials λxcyd of C
p
i, j such that

d = C
(l+1)
i, j + b

and let C
p
i, j,b (x ) be the sum of all such terms λxc . Next, compute a

polynomial

R
p
i, j,b (x ) =

∑
(i,k,[j0, j1])∈T

(l+1)
b , j ∈[j0, j1]

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

Finally, let si, j,b be the minimum degree of x in the polynomial

C
p
i, j,b (x ) − R

p
i, j,b (x ), and compute a candidate value ci, j,b = 2d +

si, j,b . (If si, j,b = 0 then ci, j,b = +∞.) Ranging over all integer

offsets −10 ≤ b ≤ 10, take the minimum of all candidate values

and output as C
(l )
i, j = min−10≤b≤10{ci, j,b }. This phase runs in time

Õ (n3−α+n2+α ), since every segment (i,k, [j0, j1]) ∈ T
(l+1)
b contains

at most two different B
(l )
k, j , thus also two different R

p
i, j,b (x ), so we

can use a segment tree to compute all of C
p
i, j,b (x ) − R

p
i, j,b (x ) in

Õ (n2+α + |T
(l+1)
b |) time.

Computing Triples T (l )
b . Since B (l )

k, j − 2B
(l+1)
k, j and C

(l )
i, j − 2C

(l+1)
i, j

are both between 0 and a constant (see Lemma 3.7), so each segment

w.r.t. B (l+1) ,C (l+1)
can be split into at most O (1) segments w.r.t.

B (l ) ,C (l )
. By Lemma 3.8 we know that

⋃
10

i=−10T
(l )
i is contained in⋃

10

i=−10T
(l+1)
i , so our work here is to check the sub-segments of

each segment in

⋃
10

i=−10T
(l+1)
i and put it into theT

(l )
b it belongs to.

Each segment in T
(l+1)
b breaks into at most O (1) sub-segments in

the next iteration, and we can use binary search to find the breaking

points. This phase runs in time Õ (n3−α ).
The expected running time of the recursive algorithm is bounded

by Õ (n3−α+nω+α ). Takingα = (3−ω)/2, the running time becomes

Õ (n(3+ω )/2).

3.2.1 Proof of Correctness. We first prove the lemmas needed to

bound the running time and show the correctness, then we will

show that the properties of C
(l )
i, j are maintained in the algorithm:

Lemma 3.7. In each iteration l = h − 1, · · · , 0, −7 ≤ C
(l )
i, j −

2C
(l+1)
i, j ≤ 8.

Proof. For all l , we can get:

(Ci, j mod p)

2
l

− 3 ≤ C
(l )
i, j ≤

(Ci, j mod p)

2
l

+ 2

and

C
(l )
i, j ≥ 2

(Ci, j mod p)

2
l+1

− 3 ≥ 2C
(l+1)
i, j − 7

C
(l )
i, j ≤ 2

(Ci, j mod p)

2
l+1

+ 2 ≤ 2C
(l+1)
i, j + 8

□

Lemma 3.8. We have
⋃

10

i=−10T
(l )
i ⊆

⋃
10

i=−10T
(l+1)
i , that is, the

segments we consider in each iteration must be sub-segments of the
segments in the last iteration.

Proof. Segments (i,k, [j0, j1]) in T
(l )
b and T

(l+1)
b must satisfy

Ai,k is finite andA∗i,k +B
∗
k, j0
, C∗i, j0 . By definition,A

(l )
i,k −2A

(l+1)
i,k =

0 or 1. Similar for B, and by Lemma 3.7, we have
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A
(l+1)
i,k + B

(l+1)
k, j −C

(l+1)
i, j

≥A
(l )
i,k/2 − 1/2 + B

(l )
k, j/2 − 1/2 −C

(l )
i, j /2 − 7/2

≥
1

2

(
A
(l )
i,k + B

(l )
k, j −C

(l )
i, j

)
− 9/2.

A
(l+1)
i,k + B

(l+1)
k, j −C

(l+1)
i, j

≤A
(l )
i,k/2 + B

(l )
k, j/2 −C

(l )
i, j /2 + 4

≤
1

2

(
A
(l )
i,k + B

(l )
k, j −C

(l )
i, j

)
+ 4.

Therefore, when −10 ≤ A
(l )
i,k + B

(l )
k, j −C

(l )
i, j ≤ 10,

−10 < −10/2 − 9/2 ≤ A
(l+1)
i,k + B

(l+1)
k, j −C

(l+1)
i, j ≤ 10/2 + 4 < 10.

□

Lemma 3.9. The expected number of segments in T (l )
b is Õ (n3−α ).

Proof. When 2
l > p/100, the total number of segments is

bounded by O (n3−α ), so next we assume that 2
l < p/100.

For any segment (i,k, [j0, j1]), and arbitrarily pick a j ∈ [j0, j1]
whereAi,k is finite andA∗i,k +B

∗
k, j , C

∗
i, j . By Assumption 3.4, (Ci, j

mod p) < 2p/3, so if A∗i,k + B
∗
k, j ≥ C∗i, j + 1,

Ai,k/p+Bk, j/p ≥ ⌊Ai,k/p⌋+ ⌊Bk, j/p⌋ ≥ ⌊Ci, j/p⌋+1 ≥ Ci, j/p+1/3

So Ai,k + Bk, j ≥ Ci, j + p/3. Similarly, if A∗i,k + B
∗
k, j ≤ C∗i, j − 1,

Ai,k/p − 1/3 + Bk, j/p − 1/3

≤⌊Ai,k/p⌋ + ⌊Bk, j/p⌋

≤⌊Ci, j/p⌋ − 1 ≤ Ci, j/p − 1

Thus we get |Ai,k + Bk, j −Ci, j | ≥ p/3 in either case.

We want to bound the probability that (i,k, [j0, j1]) appears in

T
(l )
b . By definition, this is to say that

⌊
Ai,k mod p

2
l

⌋
+

⌊
Bk, j mod p

2
l

⌋
= C

(l )
i, j + b .

So

−4 ≤
Ai,k mod p

2
l

+
Bk, j mod p

2
l

−
Ci, j mod p

2
l

− b ≤ 4

Let Ci, j = Ai,q + Bq, j , and

(Ai,k + Bk, j −Ai,q − Bq, j ) mod p ∈ [2l (b − 4), 2l (b + 4)].

That is, Ai,k + Bk, j − Ai,q − Bq, j should be congruent to one

of the O (2l ) remainders. For each possible remainder r ∈ [2l (b −

4), 2l (b + 4)], (|b | ≤ 10), we have

|r | ≤ 14 · 2l < p/6 ≤
1

2

| Ai,k + Bk, j −Ai,q − Bq, j | .

If Ai,k ,Ai,q are finite and Bk, j ,Bq, j are from the original B (see

Lemma 3.5), |(Ai,k + Bk, j −Ai,q − Bq, j ) − r | is a positive number

bounded by O (n), the number of different primes p ∈ [40nα , 80nα ]
which divides (Ai,k + Bk, j −Ai,q − Bq, j ) − r can not exceed 1/α =
O (1). In our algorithm, when we uniformly choose a prime p
from [40nα , 80nα ], the probability that (Ai,k + Bk, j −Ai,q − Bq, j )

mod p ≡ r is Õ
(

1

nα
)
.

However in Lemma 3.5, Bk, j and Bq, j may be set artificially

to numbers which are congruent to 0, ⌈p/3⌉ or ⌈2p/3⌉ modulo

p, but finite Ai,k and Ai,q must come from the original A. For
example, if Bk, j is made congruent to ⌈p/3⌉ module p and Bq, j is
from original B, we want that p dividesAi,k −Ai,q −Bq, j −r + ⌈p/3⌉.
Since 3 does not divides p, 3⌈p/3⌉ is p + 1 or p + 2, so p divides

3(Ai,k −Ai,q − Bq, j − r ) + 1 or 3(Ai,k −Ai,q − Bq, j − r ) + 2. The

probability is still Õ
(

1

nα
)
. Other cases of Bk, j and Bq, j can be

done similarly. Since on all cases of Bk, j and Bq, j the conditional
probability that p divides (Ai,k +Bk, j −Ai,q −Bq, j ) − r is bounded

by Õ
(

1

nα
)
, the total probability is also Õ

(
1

nα
)
.

Since there are O (2l ) such possible remainders r , in expectation

we have O (2l ) ·O
(
n3

2
l

)
· Õ
(

1

nα
)
= Õ (n3−α ) segments in T

(l )
b .

□

Lemma 3.10. If Ai,k + Bk, j = Ci, j , then A
(l )
i,k + B

(l )
k, j = C

(l )
i, j + b

for some −10 ≤ b ≤ 10.

Proof. By Assumption 3.4,

A
(l )
i,k + B

(l )
k, j −C

(l )
i, j

=

⌊
Ai,k mod p

2
l

⌋
+

⌊
Bk, j mod p

2
l

⌋
−C

(l )
i, j

≤
Ai,k mod p

2
l

+
Bk, j mod p

2
l

−
Ci, j mod p

2
l

+ 3

=
(Ai,k + Bk, j −Ci, j ) mod p

2
l

+ 3 = 3.

A
(l )
i,k + B

(l )
k, j −C

(l )
i, j

=

⌊
Ai,k mod p

2
l

⌋
+

⌊
Bk, j mod p

2
l

⌋
−C

(l )
i, j

≥
Ai,k mod p

2
l

+
Bk, j mod p

2
l

−
Ci, j mod p

2
l

− 4

=
(Ai,k + Bk, j −Ci, j ) mod p

2
l

− 4 = −4.

□

Next we argue that our algorithm correctly computes all entries

C
(l )
i, j from C

(l+1)
i, j and T

(l+1)
b , for l = h − 1, · · · , 0. Let q be the index

such that Ci, j = Ai,q + Bq, j . By the above lemma, there exists an

integer offset b ∈ [−10, 10] such that A
(l+1)
i,q + B

(l+1)
q, j = C

(l+1)
i, j + b.
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Therefore, by construction of polynomial matrices Ap ,Bp , we have:

C
p
i, j,b (x ) =

∑
k |A(l+1)

i,k +B
(l+1)
k, j =C

(l+1)
i, j +b

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

=
∑

k |(A∗i,k +B
∗
k, j =C

∗
i, j )

∧(A(l+1)
i,k +B (l+1)

k, j =C
(l+1)
i, j +b )

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

+
∑

k |(A∗i,k +B
∗
k, j ,C

∗
i, j )

∧(A(l+1)
i,k +B (l+1)

k, j =C
(l+1)
i, j +b )

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

=
∑

k |(A∗i,k +B
∗
k, j =C

∗
i, j )

∧(A(l+1)
i,k +B (l+1)

k, j =C
(l+1)
i, j +b )

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

+
∑

(i,k,[j0, j1])∈T
(l+1)
b , j ∈[j0, j1]

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

= x−2(C
(l+1)
i, j +b )

∑
k |(A∗i,k +B

∗
k, j =C

∗
i, j )

∧(A(l+1)
i,k +B (l+1)

k, j =C
(l+1)
i, j +b )

x
A(l )
i,k+B

(l )
k, j + R

p
i, j,b (x )

Since A∗i,q + B
∗
q, j = C

∗
i, j and A

(l+1)
i,q + B

(l+1)
q, j = C

(l+1)
i, j + b, when we

extract A
(l )
i,q + B

(l )
q, j from terms of C

p
i, j,b (x ) − R

p
i, j,b (x ), it satisfies

⌊
Ai,q mod p

2
l

⌋
+

⌊
Bq, j mod p

2
l

⌋

≤
(Ai,q + Bq, j ) mod p

2
l

=
Ci, j mod p

2
l

≤



(Ci, j mod p) + 2l − 1

2
l


⌊
Ai,q mod p

2
l

⌋
+

⌊
Bq, j mod p

2
l

⌋

≥
((Ai,q + Bq, j ) mod p) − 2(2l − 1)

2
l

≥



(Ci, j mod p) − 2(2l − 1)

2
l


Thus the term which givesA

(l )
i,q +B

(l )
q, j can give a validC

(l )
i, j . Also

for every term which givesA
(l )
i,k +B

(l )
k, j satisfyingA

∗
i,k +B

∗
k, j = C

∗
i, j

and Ai,k + Bk, j ≥ Ci .j ,
⌊
Ai,k mod p

2
l

⌋
+

⌊
Bk, j mod p

2
l

⌋

≥
((Ai,k + Bk, j ) mod p) − 2(2l − 1)

2
l

≥



(Ci, j mod p) − 2(2l − 1)

2
l


So by choosing the minimum, we can get a valid C

(l )
i, j satisfying

property (1).

To see that C (l )
satisfies property (2), consider C∗i, j0 = C∗i, j1

where j0 < j1. For all the k such that A∗i,k + B
∗
k, j1
= C∗i, j1 , C

∗
i, j0 ≤

A∗i,k + B∗k, j0
≤ A∗i,k + B∗k, j1

= C∗i, j1 , so B∗k, j0
= B∗k, j1

and B
(l )
k, j0
≤

B
(l )
k, j1

. Thus, for term A
(l )
i,k + B

(l )
k, j1

which gives C
(l )
i, j1

, the term with

A
(l )
i,k +B

(l )
k, j0

also exist inC
p
i, j0

and cannot be subtracted sinceA∗i,k +

B∗k, j0
= C∗i, j0 . If this result is not included in C

p
i, j0,b

(x ) − R
p
i, j0,b

(x )

for all −10 ≤ b ≤ 10, A
(l+1)
i,k + B

(l+1)
k, j0

−C
(l+1)
i, j0

is larger than 10 or

less than −10. If A
(l+1)
i,k + B

(l+1)
k, j0

−C
(l+1)
i, j0

< −10,

−10 >A
(l+1)
i,k + B

(l+1)
k, j0

−C
(l+1)
i, j0

=

⌊
Ai,k mod p

2
l+1

⌋
+

⌊
Bk, j0 mod p

2
l+1

⌋
−C

(l+1)
i, j0

≥
Ai,k mod p

2
l+1

+
Bk, j0 mod p

2
l+1

−
Ci, j0 mod p

2
l+1

− 4

So (Ai,k mod p) + (Bk, j0 mod p) − (Ci, j0 mod p) < 0, which is

impossible since A∗i,k + B∗k, j0
= C∗i, j0 . Thus, it can only be that

A
(l+1)
i,k + B

(l+1)
k, j0

− C
(l+1)
i, j0

> 10, so by inductive assumption and

Lemma 3.7,

C
(l )
i, j1
= A

(l )
i,k + B

(l )
k, j1

≥ 2

(
A
(l+1)
i,k + B

(l+1)
k, j1

)
≥ 2

(
A
(l+1)
i,k + B

(l+1)
k, j0

)
> 2C

(l+1)
i, j0

+ 20

≥ C
(l )
i, j0
+ 12

This proves property (2).

4 MONOTONE MIN-PLUS CONVOLUTION
4.1 Basic Algorithm
In this sectionwe prove Theorem 1.5 following the same algorithmic

framework of Theorem 1.4. The min-plus convolution C = A ⋄ B of

two arrayA and B can be defined asCk = min
k−1
i=1 {Ai +Bk−i },∀2 ≤

k ≤ 2n. Take two constant parameters α , β ∈ (0, 1) which are to

be determined in the end; for convenience let us assume nα is an

integer.

Approximation. Define two integral arrays Ã, B̃ such that Ãi =
⌊Ai/n

α ⌋, B̃i = ⌊Bi/n
α ⌋. Therefore, Ã, B̃ is an integer array whose

entries are bounded by O (n1−α ), and both Ã, B̃ are non-decreasing.

Next, compute the approximate min-plus convolution C̃ = Ã ⋄ B̃
combinatorially. Initialize each entry of C̃ to be∞, and maintain C̃
using a segment tree that supports interval updates. Divide A and

B into at most O (n1−α ) consecutive intervals:

=[1,a2 − 1] ∪ [a2,a3 − 1] ∪ · · · ∪ [aд ,n]

=[1,b2 − 1] ∪ [b2,b3 − 1] ∪ · · · ∪ [bh ,n]

such that for each i ∈ [al ,al+1 − 1], Ãi ’s are all equal, and for

each j ∈ [bk ,bk+1 − 1], B̃j ’s are all equal (assume a1 = b1 = 1 and

aд+1 = bh+1 = n + 1). Then, to compute C̃ , take any pair of indices
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k, l ∈ [д]× [h], and update C̃i ← min{C̃i , Ãal + B̃bk } for each index

al +bk ≤ i ≤ al+1 +bk+1 − 2 using the segment tree data structure

maintained on array C̃ . The total time is Õ (n2−2α ).

Polynomial Multiplication. Uniformly sample a random prime

number p in the range [nβ , 2nβ ]. Construct two polynomialAp and

Bp on variables x ,y, z in the following way:

Ap (x ,y, z) =
n∑
i=1

xAi−n
α Ãi · yÃi mod p · zi

Bp (x ,y, z) =
n∑
i=1

xBi−n
α B̃i · yB̃i mod p · zi

Then, compute polynomial multiplicationCp (x ,y, z) = Ap (x ,y, z) ·
Bp (x ,y, z) using standard fast Fourier transform algorithms [13].

Subtracting Erroneous Terms. The last phase is to extract the true
values Ci ’s from C̃ and Cp (x ,y, z). The algorithm iterates over all

offsets b ∈ {0, 1, 2}, and computes the set Tb ⊆ [n]2 of all pairs of
indices (i, j ) such that Ãi + B̃j , C̃i+j + b but Ãi + B̃j ≡ C̃i+j + b
mod p; in the running time analysis, we will show that Tb can be

computed in time Õ ( |Tb | + n
2−2α ).

For each index 1 ≤ k ≤ n, consider the coefficient of zk in

Cp (x ,y, z) denoted by C
p
k (x ,y). First enumerate all terms λxcyd of

C
p
k (x ,y) such that d ≡ C̃k +b mod p, and defineC

p
k,b (x ) to be the

sum of all λxc . Next, compute a polynomial:

R
p
k,b (x ) =

∑
(i,k−i )∈Tb

xAi−n
α Ãi+Bk−i−nα B̃k−i

Finally, let sk,b be the minimum degree of x of the polynomial

C
p
k,b (x )−R

p
k,b (x ), and compute a candidate value nα (C̃k +b)+sk,b

for Ck . Ranging over all integer offsets b ∈ {0, 1, 2}, take the mini-

mum of all candidate values and output asCk = min
0≤b≤2{n

α (C̃k+
b) + sk,b }.

4.1.1 Proof of Correctness. First we show that C̃ is indeed an ap-

proximation of C:

Lemma 4.1. For any pair of indices 1 ≤ i, j ≤ n such thatAi +Bj =
Ci+j , we have:

0 ≤ Ãi + B̃j − C̃i+j ≤ 2

Proof. Clearly Ãi + B̃j − C̃i+j ≥ 0 by definition of min-plus

convolution. So let us only focus on the second inequality. Suppose

C̃i+j = Ãk + B̃l for some indices 1 ≤ k, l ≤ n such that k + l = i + j .

Then, by definition of Ã, B̃, we have:

nα C̃i+j = n
α Ãk + n

α B̃l ≥ Ak + Bl − 2n
α ≥ Ci+j − 2n

α

= Ai + Bj − 2n
α ≥ nα Ãi + n

α B̃j − 2n
α

Hence, Ãi + B̃j − C̃i+j ≤ 2. □

Next we argue that our algorithm correctly computes all entries

Ck . Let l be the index such thatCk = Al +Bk−l . By the above lemma,

there exists an integer offset b ∈ [0, 2] such that Ãl + B̃k−l = C̃k +b.

Therefore, by construction of polynomial matrices Ap ,Bp , we have:

C
p
k,b (x ) =

∑
i |Ãi+B̃k−i=C̃k+b

xAi−n
α Ãi+Bk−i−nα B̃k−i

+
∑

i |(Ãi +B̃k−i ,C̃k +b )
∧(Ãi +B̃k−i ≡C̃k +b mod p )

xAi−n
α Ãi+Bk−i−nα B̃k−i

=
∑

k |Ãi+B̃k−i=C̃k+b

xAi−n
α Ãi+Bk−i−nα B̃k−i

+
∑

(i,k−i )∈Tb

xAi−n
α Ãi+Bk−i−nα B̃k−i

= x−n
α (C̃k+b ) ·

∑
k |Ãi+B̃k−i=C̃k+b

xAi+Bk−i + R
p
k,b (x )

Thus, x−n
α (C̃k+b ) ·

∑
i |Ãi+B̃k−i=C̃k+b

xAi+Bk−i = C
p
k,b (x )−R

p
k,b (x ).

Since Ãl + B̃k−l = C̃k + b, we know nα (C̃k + b) + sk,b = Ck .

4.1.2 Running Time Analysis. By the algorithm, computing the

approximation array C̃ takes time Õ (n2−2α ). As for polynomial

multiplication, by definition the x-degree and y-degree of Ap ,Bp

are both bounded in absolute value by O (nα ),O (nβ ) respectively,

so the polynomial multiplication takes time O (n1+α+β ).

Lemma 4.2. The set Tb can be computed in time Õ ( |Tb | + n
2−2α ).

Proof. Recall the partition of sequences A,B into intervals in

the first phase:

= [1,a2 − 1] ∪ [a2,a3 − 1] ∪ · · · ∪ [aд ,n]

= [1,b2 − 1] ∪ [b2,b3 − 1] ∪ · · · ∪ [bh ,n]

such that A,B are all equal within each interval. Fix two intervals

[as ,as+1 − 1] and [bt ,bt+1 − 1] where array Ã and B̃ have the same

value. Next, we try to find all i ∈ [as ,as+1 − 1], j ∈ [bt ,bt+1 − 1]
such that (i, j ) ∈ Tb . The key advantage is that the value ∆ = Ãi+B̃j
is a fixed value for any (i, j ) ∈ [as ,as+1 − 1] × [bt ,bt+1 − 1].

Now search for all indices as + bt ≤ k ≤ as+1 + bt+1 − 2 such
that C̃k + b , ∆ while C̃k + b ≡ ∆ mod p. Using standard binary

search tree data structures, we can obtain the set of all such indices

Kb in time Õ ( |Kb |). Then, for each k ∈ Kb , enumerate all (i,k − i )
satisfying

max{as ,k + 1 − bt+1} ≤ i ≤ min{as+1 − 1,k − bt }

and add the pair (i,k −i ) toTb . Ranging over all choices of intervals
[as ,as+1 − 1] and [bt ,bt+1 − 1], the total time becomes Õ ( |Tb | +
n2−2α ). □

By the above lemma, the subtraction phase takes time Õ ( |Tb | +
n2−2α ) as well. So it suffices to bound the size ofTb . For any (i,k−i )
such that Ãi + B̃k−i , C̃k + b, since p is a uniformly random prime

in the range [nβ , 2nβ ], the probability that Ãi + B̃k−i − C̃k − b

can be divided by p is bounded by Õ (n−β ). Hence, by linearity of

expectation, Ep [|Tb |] ≤ Õ (n2−β ).
Throughout all three phases, the expected running time of our

algorithm is bounded by Õ (n2−2α + n1+α+β + n2−β ). Taking α =
0.2, β = 0.4, the running time becomes Õ (n1.6).
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4.2 Recursive Algorithm
Let α ∈ (0, 1) be a constant parameter to be determined later,

and pick a uniformly random prime number p in the range of

[40nα , 80nα ]. Without loss of generality, let us assume that n is

a power of 2. Like in Section 3.2, w.l.o.g. we make the following

assumption about elements in A and B:

Assumption 4.3. For every i , either (Ai mod p) < p/3 or Ai =
+∞, and A is monotone besides the infinite elements. Similar for B.

Lemma 4.4. The general computation of A ⋄ B can be reduced to
a constant number of computations of Ai ⋄ Bi where all of Ai ,Bi ’s
satisfy Assumption 4.3. The number of intervals of infinity in each Ai

and Bi is bounded by O (n1−α ).

Proof. We just arrange the elements ofA toA′,A′′,A′′′ by their
remainders module p, other elements becomes +∞. It is easy to see

that the number of intervals of infinity in each of A′,A′′,A′′′ is
bounded by O (n1−α ). Similar for B. □

Define integer h such that 2
h−1 ≤ p < 2

h
. For each integer

0 ≤ l ≤ h, let A(l )
be a sequence of length n defined as A

(l )
i =

⌊
Ai mod p

2
l ⌋ if Ai is finite, otherwise A

(l )
i = +∞, similarly define

sequence B (l ) = ⌊
Bi mod p

2
l ⌋.

We will recursively calculate C (l )
for l = h,h − 1, · · · , 0, and if

Ci is finite, C
(l )

will satisfy

⌊
(Ci mod p) − 2(2l − 1)

2
l

⌋ ≤ C
(l )
i ≤ ⌊

(Ci mod p) + 2(2l − 1)

2
l

⌋

(Note thatC (l )
is not necessarily equal toA(l )⋄B (l )

.) In the endwhen

l = 0 we can get the matrix C
(0)
i = Ci mod p by the procedure

of recursion. Define A∗ and B∗ as A∗i = ⌊Ai/p⌋ and B∗i = ⌊Bi/p⌋.
We use the segment tree structure to calculate C∗ = A∗ ⋄ B∗ in
Õ (n2−2α ) time. By Assumption 4.3, C̃i = ⌊Ci/p⌋ ifCi is finite. Thus
we can calculate the exact value of Ci by the result of Ci mod p.

We can see all elements in A(l ) ,B (l ) ,C (l )
are non-negative in-

tegers at most O (nα /2l ) or infinite. Since A,B are monotone and

by Lemma 4.4, A(l ) ,B (l )
compose of O (n/2l ) intervals, where all

elements in each interval are the same. Define a segment as:

Definition 4.5. A segment ([i0, i1],k ) w.r.t. A(l )
and B (l )

, where

i0, i1,k ∈ [n] and i0 ≤ i1, satisfies that for all i0 ≤ i ≤ i1, Ai ,Bk−i
are finite, and A

(l )
i = A

(l )
i0
, A∗i = A∗i0 , B

(l )
k−i = B

(l )
k−i0

, B∗k−i = B∗k−i0
.

So A(l ) ,B (l )
can be divided into O (n/2l ) segments for some k .

We maintain the auxiliary sets T
(l )
b for −10 ≤ b ≤ 10 through-

out the algorithm, where the set T
(l )
b consists of all the segments

([i0, i1],k ) w.r.t. A
(l )

and B (l )
satisfying:

Ck is finite and A∗i0 + B
∗
k−i0
, C∗k and A

(l )
i0
+ B

(l )
k−i0
= C

(l )
k + b

The algorithm proceeds as:

• In the first iteration l = h, we want to calculate C (h) . How-

ever sincep < 2
h
,A(h) ,B (h) ,C (h)

are zero sequences, soT
(h)
0

includes all segments ([i0, i1],k ) where A
∗
i0 + B∗k−i0

, C∗k ,

and T
(h)
b = ∅ (b , 0). Since the number of segments w.r.t.

A(h) ,B (h)
for every k is O (n1−α ), |T

(h)
b | = O (n2−α ).

• For l = h − 1, · · · , 0, we first compute C (l )
with the help

of T
(l+1)
b , then construct T

(l )
b from T

(l+1)
b . By Lemma 4.6

that

⋃
10

i=−10T
(l )
i ⊆

⋃
10

i=−10T
(l+1)
i , we can search the shorter

segments contained in T
(l+1)
b to find T

(l )
b . By Lemma 4.7,

|T
(l )
b | is always bounded byO (n2−α ). Each iteration has three

phases:

Polynomial Multiplication. Construct two polynomial matrices

Ap and Bp on variables x ,y in the following way:

Ap =
n∑
i=1

xA
(l )
i −2A

(l+1)
i · yA

(l+1)
i · zi .

Bp =
n∑
j=1

xB
(l )
j −2B

(l+1)
j · yB

(l+1)
j · z j .

Then, compute the polynomial multiplication Cp = Ap · Bp using

standard FFT [13]. Note that A
(l )
i − 2A

(l+1)
i ,B

(l )
j − 2B

(l+1)
j are 0 or

1, so the degree of x terms are 0 or 1.

This phase runs in time Õ (n1+α ).

Subtracting Erroneous Terms. This phase is to extract the true

values C
(l )
k ’s from C

(l+1)
k . The algorithm iterates over all offsets

−10 ≤ b ≤ 10, and enumerates all the segments in T
(l+1)
b .

For each index 1 ≤ k ≤ n, consider the coefficient of zk in Cp

denoted by C
p
k (x ,y). Enumerate all terms λxcyd of C

p
k (x ,y) such

that d = C
(l+1)
k + b, and define C

p
k,b (x ) to be the sum of all such

λxc . Next, compute a polynomial:

R
p
k,b (x ) =

∑
([i0,i1],k )∈T

(l+1)
b ,i ∈[i0,i1]

xA
(l )
i −2A

(l+1)
i +B (l )

k−i−2B
(l+1)
k−i

Finally, let sk,b be the minimum degree of x of the polynomial

C
p
k,b (x )−R

p
k,b (x ), and compute a candidate value sk,b +2d forC

(l )
k .

Ranging over all integer offsets −10 ≤ b ≤ 10, take the minimum of

all candidate values and output as C
(l )
k = min−10≤b≤10{sk,b + 2d }.

Computing TriplesT (l )
b . To computeT

(l )
b , initially set allT

(l )
b ← ∅

for all |b | ≤ 10. By Lemma 4.6 we know that

⋃
10

i=−10T
(l )
i is con-

tained in

⋃
10

i=−10T
(l+1)
i , so our work here is to check each segment

in

⋃
10

i=−10T
(l+1)
i and put it into theT

(l )
b it belongs to. Each segment

in T
(l+1)
b breaks into at most 4 segments in the next iteration, and

we can use binary search to find the breaking points. This phase

runs in time Õ (n2−α ) by Lemma 4.7.

The expected running time of the recursive algorithm is bounded

by Õ (n1+α + n2−α ). Taking α = 0.5, the running time is Õ (n1.5).

4.2.1 Proof of Correctness. We will prove the lemmas needed to

bound the running time and show the correctness, then show that

the properties of C
(l )
k are maintained in the algorithm:

Lemma 4.6. We have
⋃

10

i=−10T
(l )
i ⊆

⋃
10

i=−10T
(l+1)
i .

Proof. By definition,A
(l )
i −2A

(l+1)
i = 0 or 1, and B

(l )
i −2B

(l+1)
i =

0 or 1. For C (l ) , we can see similar result as Lemma 3.7 still holds.
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A
(l+1)
i0

+ B
(l+1)
k−i0

−C
(l+1)
k

≥A
(l )
i0
/2 − 1/2 + B

(l )
k−i0
/2 − 1/2 −C

(l )
k /2 − 7/2

≥
1

2

(
A
(l )
i0
+ B

(l )
k−i0
−C

(l )
k

)
− 9/2.

A
(l+1)
i0

+ B
(l+1)
k−i0

−C
(l+1)
k

≤A
(l )
i0
/2 + B

(l )
k−i0
/2 −C

(l )
k /2 + 8/2

≤
1

2

(
A
(l )
i0
+ B

(l )
k−i0
−C

(l )
k

)
+ 4.

Therefore, when −10 ≤ A
(l )
i0
+ B

(l )
k−i0
−C

(l )
k ≤ 10,

−10 < −10/2 − 9/2 ≤ A
(l+1)
i0

+ B
(l+1)
k−i0

−C
(l+1)
k ≤ 10/2 + 4 < 10.

□

Lemma 4.7. The expected number of segments in T (l )
b is Õ (n2−α ).

Proof. When 2
l ≥ p/100, the total number of segments is

bounded by O (n2−α ), so next we assume that 2
l < p/100.

For any segment ([i0, i1],k ) of finite elementswhereA∗i0+B
∗
k−i0
,

C∗k . By Assumption 4.3, (Ck mod p) < 2p/3, so we can get |Ai0 +
Bk−i0 −Ck | ≥ p/3 as in Lemma 3.9.

We want to bound the probability that ([i0, i1],k ) appears in

T
(l )
b . If it is in T

(l )
b ,

⌊
Ai0 mod p

2
l

⌋
+

⌊
Bk−i0 mod p

2
l

⌋
= C

(l )
k + b .

So

−4 ≤
Ai0 mod p

2
l

+
Bk−i0 mod p

2
l

−
Ck mod p

2
l

− b ≤ 4

Let Ck = Aq + Bk−q , and

(Ai0 + Bk−i0 −Aq − Bk−q ) mod p ∈ [2l (b − 4), 2l (b + 4)].

That is,Ai0+Bk−i0−Aq−Bk−q should be congruent to one of the

O
(
2
l
)
remainders. As the argument in Lemma 3.9, the probability

that it falls into the range of length O (2l ) is O (2l /nα ). Since the

number of segments isO (n2/2l ), the expected number of segments

in T
(l )
b is Õ (n2−α ).

Lemma 4.8. If Ai + Bk−i = Ck , then A
(l )
i + B

(l )
k−i = C

(l )
k + b for

some −10 ≤ b ≤ 10.

Proof. By Assumption 4.3,

A
(l )
i + B

(l )
k−i −C

(l )
k

=

⌊
Ai mod p

2
l

⌋
+

⌊
Bk−i mod p

2
l

⌋
−C

(l )
k

≤
Ai mod p

2
l

+
Bk−i mod p

2
l

−
Ck mod p

2
l

+ 3

=
(Ai + Bk−i −Ck ) mod p

2
l

+ 3 = 3.

A
(l )
i + B

(l )
k−i −C

(l )
k

=

⌊
Ai mod p

2
l

⌋
+

⌊
Bk−i mod p

2
l

⌋
−C

(l )
k

≥
Ai mod p

2
l

+
Bk−i mod p

2
l

−
Ck mod p

2
l

− 4

=
(Ai + Bk−i −Ck ) mod p

2
l

− 4 = −4.

□

Next we argue that our algorithm correctly computes all entries

C
(l )
k from C

(l+1)
k and T

(l+1)
b , for l = h − 1, · · · , 0. Let q be the index

such that Ck = Aq + Bk−q . By the above lemma, there exists an

integer offset b ∈ [−10, 10] such that A
(l+1)
q + B

(l+1)
k−q = C

(l+1)
k + b.

Therefore, by construction of polynomials Ap ,Bp , we have:

C
p
k,b (x ) =

∑
i |A(l+1)

i +B (l+1)
k−i =C

(l+1)
k +b

xA
(l )
i −2A

(l+1)
i +B (l )

k−i−2B
(l+1)
k−i

=
∑

i |(A∗i +B
∗
k−i =C

∗
k )

∧(A(l+1)
i +B (l+1)

k−i =C
(l+1)
k +b )

xA
(l )
i −2A

(l+1)
i +B (l )

k−i−2B
(l+1)
k−i

+
∑

i |(A∗i +B
∗
k−i ,C

∗
k )

∧(A(l+1)
i +B (l+1)

k−i =C
(l+1)
k +b )

xA
(l )
i −2A

(l+1)
i +B (l )

k−i−2B
(l+1)
k−i

=
∑

i |(A∗i +B
∗
k−i =C

∗
k )

∧(A(l+1)
i +B (l+1)

k−i =C
(l+1)
k +b )

xA
(l )
i −2A

(l+1)
i +B (l )

k−i−2B
(l+1)
k−i

+
∑

([i0,i1],k )∈T
(l+1)
b ,i ∈[i0,i1]

xA
(l )
i −2A

(l+1)
i +B (l )

k−i−2B
(l+1)
k−i

= x−2(C
(l+1)
k +b )

∑
i |(A∗i +B

∗
k−i =C

∗
k )∧

(A(l+1)
i +B (l+1)

k−i =C
(l+1)
k +b )

xA
(l )
i +B

(l )
k−i + R

p
k,b (x )

Since A∗q + B
∗
k−q = C

∗
k and A

(l+1)
q + B

(l+1)
k−q = C

(l+1)
k + b, when we

extract A
(l )
q + B

(l )
k−q from terms of C

p
k,b (x ) − R

p
k,b (x ), it satisfies

⌊
Aq mod p

2
l

⌋
+

⌊
Bk−q mod p

2
l

⌋

≤
(Aq + Bk−q ) mod p

2
l

=
Ck mod p

2
l

≤



(Ck mod p) + 2l − 1

2
l
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⌊
Aq mod p

2
l

⌋
+

⌊
Bk−q mod p

2
l

⌋

≥
((Aq + Bk−q ) mod p) − 2(2l − 1)

2
l

≥



(Ck mod p) − 2(2l − 1)

2
l


Thus the term which givesA

(l )
q +B

(l )
k−q can give a validC

(l )
k . Also

for every term which gives A
(l )
i + B

(l )
k−i which satisfies A∗i + B

∗
k−i =

C∗k and Ai + Bk−i ≥ Ck ,
⌊
Ai mod p

2
l

⌋
+

⌊
Bk−i mod p

2
l

⌋

≥
((Ai + Bk−i ) mod p) − 2(2l − 1)

2
l

≥



(Ck mod p) − 2(2l − 1)

2
l


So by choosing the minimum, we can get a valid C

(l )
k .

□

A MIN-PLUS PRODUCTWHEN B IS COLUMN
MONOTONE

In Section 3, we consider the restricted case that the rows of B are

monotone. Now we explain how to calculate the min-plus prod-

uct with the same asymptotic time complexity when B is column-

monotone, via minor adjustments of the recursive algorithm.

Wewant to calculateC = A⋆B,whereA,B aren×nmatrices, and

the columns of B are monotonously non-decreasing.We can assume

without loss of generality that the rows ofA are monotonously non-

increasing: If there exists two entries Ai,k1 and Ai,k2 in the same

row of A, with k1 < k2 and Ai,k1 < Ai,k2 , then for any entry

Ci, j = mink {Ai,k +Bk, j }, we have Ai,k1 +Bk1, j < Ai,k2 +Bk2, j , so
the value ofAi,k2 is never considered in the calculation, thus in this

case we can setAi,k2 ← Ai,k1 . When B is bounded byO (n), we can
make A and C also bounded by O (n) by the method in Section 2

Let α ∈ (0, 1) be a constant parameter to be determined later,

and pick a uniformly random prime number p in the range of

[40nα , 80nα ]. Without loss of generality, let us assume that n is a

power of 2. Next we make the following assumption about elements

in A and B:

Assumption A.1. For every i, j, either (Ai, j mod p) < p/3 or
Ai, j = +∞, and each row of A is monotone besides the infinite ele-
ments. Similar for B: either (Bi, j mod p) < p/3 or Bi, j = +∞, and
each column of B is monotone besides the infinite elements.

By the same method in Lemma 4.4, we can prove:

Lemma A.2. The general computation of A ⋄ B can be reduced to
a constant number of computations of Ai ⋄ Bi where all of Ai ,Bi ’s
satisfy Assumption A.1. The number of intervals of infinity in each
row of Ai and in each column of Bi is bounded by O (n1−α ).

Define integer h such that 2
h−1 ≤ p < 2

h
. For each integer

0 ≤ l ≤ h, letA(l )
be then×nmatrix defined asA

(l )
i, j = ⌊

Ai, j mod p
2
l ⌋

if Ai, j is finite, otherwise A
(l )
i, j = +∞, similarly define matrix B (l )

.

We will recursively calculate C (l )
for l = h,h − 1, · · · , 0, and

if Ci, j is finite, C
(l )

will satisfy: ⌊
(Ci, j mod p )−2(2l−1)

2
l ⌋ ≤ C

(l )
i, j ≤

⌊
(Ci, j mod p )+2(2l−1)

2
l ⌋ (Note that C (l )

is not necessarily equal to

A(l ) ⋆ B (l )
.) In the end when l = 0 we can get the matrix C

(0)
i, j =

Ci, j mod p, by the procedure of recursion. Define A∗ and B∗ as
A∗i, j = ⌊Ai, j/p⌋ and B∗i, j = ⌊Bi, j/p⌋. We use the trivial method

which checks each interval on i-th row of A∗ and j-th column of

B∗ to calculate C∗ = A∗ ⋆ B∗ in Õ (n3−α ) time. By Assumption A.1,

C∗i, j = ⌊Ci, j/p⌋ if Ci, j is finite. Thus we can calculate the exact

value of Ci, j by the result of Ci, j mod p.

We can see all elements in A(l ) ,B (l ) ,C (l )
are non-negative inte-

gers at most O (nα /2l ) or infinite. Since A is row-monotone and B

is column-monotone, every row of A(l )
and every column of B (l )

is

composed of O (n/2l ) intervals, where all elements in each interval

are the same. The change we should make on the recursive algo-

rithm is the organization of segments: instead of fixing i,k, we fix
i, j .

Definition A.3. A segment w.r.t. A(l )
and B (l )

as (i, j, [k0,k1]),
where i, j,k0,k1 ∈ [n] satisfies that for all k0 ≤ k ≤ k1, Ai,k0 and

Bk0, j are finite, A
(l )
i,k = A

(l )
i,k0

and A∗i,k = A∗i,k0
, B

(l )
k, j = B

(l )
k0, j

and

B∗k, j = B∗k0, j
.

Then for the i-th row of A(l )
and the j-th column of B (l )

, [n] can
be divided into O (n/2l ) segments.

We maintain the auxiliary sets T
(l )
b for −10 ≤ b ≤ 10 through-

out the algorithm, where the set T
(l )
b consists of all the segments

(i, j, [k0,k1]) w.r.t. A
(l )

and B (l )
satisfying:

Ai,k0 is finite and A
∗
i,k0
+ B∗k0, j

, C∗i, j and A
(l )
i,k0
+ B

(l )
k0, j
= C

(l )
i, j + b

The algorithm proceeds as:

• In the first iteration l = h, A(h) ,B (h) ,C (h)
are zero matrices,

and it is easy to see |T
(h)
b | = O (n3−α ).

• For l = h − 1, · · · , 0, we first compute C (l )
with the help

of T
(l+1)
b , then construct T

(l )
b from T

(l+1)
b . By Lemma A.5

that

⋃
10

i=−10T
(l )
i ⊆

⋃
10

i=−10T
(l+1)
i , we can search the shorter

segments contained in T
(l+1)
b to find T

(l )
b . By Lemma A.6,

|T
(l )
b | is always bounded by O (n3−α ).

Each iteration has three phases:

Polynomial Matrix Multiplication. Construct two polynomial

matrices Ap and Bp on variables x ,y in the following way: When

Ai,k is finite,

A
p
i,k = x

A(l )
i,k−2A

(l+1)
i,k · y

A(l+1)
i,k

Otherwise A
p
i,k = 0, and when Bk, j is finite,

B
p
k, j = x

B (l )
k, j−2B

(l+1)
k, j · y

B (l+1)
k, j

Otherwise B
p
k, j = 0. Then, compute the standard (+,×) matrix mul-

tiplicationCp = Ap ·Bp using fast matrix multiplication algorithms.

Note that A
(l )
i, j − 2A

(l+1)
i, j ,B

(l )
i, j − 2B

(l+1)
i, j are 0 or 1, so the degree of

x terms are 0 or 1. This phase runs in time Õ (nω+α ).
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Subtracting Erroneous Terms. This phase is to extract the true

values C
(l )
i, j ’s from C

(l+1)
i, j . The algorithm iterates over all offsets

−10 ≤ b ≤ 10, and enumerates all the segments in T
(l+1)
b .

For each pair of indices i, j ∈ [n], if C
p
i, j = 0 then C

(l )
i, j = +∞,

otherwise collect all the monomials λxcyd of C
p
i, j such that

d = C
(l+1)
i, j + b

and let C
p
i, j,b (x ) be the sum of all such terms λxc . Next, compute a

polynomial

R
p
i, j,b (x ) =

∑
(i, j,[k0,k1])∈T

(l+1)
b ,k ∈[k0,k1]

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

Finally, let si, j,b be the minimum degree of x in the polynomial

C
p
i, j,b (x ) − R

p
i, j,b (x ), and compute a candidate value ci, j,b = 2d +

si, j,b . Ranging over all integer offsets −10 ≤ b ≤ 10, take the mini-

mumof all candidate values and output asC
(l )
i, j = min−10≤b≤10{ci, j,b }.

This phase runs in time Õ (n2+α + n3−α ) (see Lemma A.6), since

every segment (i, j, [k0,k1]) ∈ T
(l+1)
b contains at most two differ-

ent A
(l )
i,k and two different B

(l )
k, j , thus it is easy to compute all of

C
p
i, j,b (x ) − R

p
i, j,b (x ) in O (n2+α + |T

(l+1)
b |) time.

Computing Triples T (l )
b . Since A(l )

k, j − 2A
(l+1)
k, j and B

(l )
i, j − 2B

(l+1)
i, j

are both 0 or 1, so each segment w.r.t.A(l+1) ,B (l+1)
can be split into

at mostO (1) segments w.r.t.A(l ) ,B (l )
. By Lemma A.5 we know that⋃

10

i=−10T
(l )
i is contained in

⋃
10

i=−10T
(l+1)
i , so our work here is to

check the sub-segments of each segment in

⋃
10

i=−10T
(l+1)
i and put

it into the T
(l )
b it belongs to. This phase runs in time Õ ( |T

(l+1)
b |).

The expected running time of the recursive algorithm is bounded

by Õ (n3−α + nω+α ) by Lemma A.6. Taking α = (3 − ω)/2, the

running time becomes Õ (n(3+ω )/2).

A.1 Proof of Correctness
We can get a similar lemma as Lemma 3.7,

Lemma A.4. In each iteration l = h − 1, · · · , 0, −7 ≤ C
(l )
i, j −

2C
(l+1)
i, j ≤ 8.

Lemma A.5. We have
⋃

10

i=−10T
(l )
i ⊆

⋃
10

i=−10T
(l+1)
i , that is, the

segments we consider in each iteration must be sub-segments of the
segments in the last iteration.

Proof. Segments (i, j, [k0,k1]) in T
(l )
b and T

(l+1)
b must satisfy

Ai,k0 ,Bk0, j are finite andA
∗
i,k0
+B∗k0, j

, C∗i, j . By definition,A
(l )
i,k0
−

2A
(l+1)
i,k0

= 0 or 1, and similar for B. By Lemma A.4, we have

A
(l+1)
i,k + B

(l+1)
k, j −C

(l+1)
i, j ≥

1

2

(
A
(l )
i,k + B

(l )
k, j −C

(l )
i, j

)
− 9/2.

A
(l+1)
i,k + B

(l+1)
k, j −C

(l+1)
i, j ≤

1

2

(
A
(l )
i,k + B

(l )
k, j −C

(l )
i, j

)
+ 4.

Therefore, when −10 ≤ A
(l )
i,k + B

(l )
k, j −C

(l )
i, j ≤ 10,

−10 < −10/2 − 9/2 ≤ A
(l+1)
i,k + B

(l+1)
k, j −C

(l+1)
i, j ≤ 10/2 + 4 < 10.

□

Lemma A.6. The expected number of segments inT (l )
b is Õ (n3−α ).

Proof. As before we assume that 2
l < p/100. For any segment

(i, j, [k0,k1]) and k ∈ [k0,k1] where Ai,k ,Bk, j are finite and A
∗
i,k +

B∗k, j , C∗i, j , similar to proof in Lemma 3.9, we get |Ai,k + Bk, j −

Ci, j | ≥ p/3.
We want to bound the probability that (i, j, [k0,k1]) appears in

T
(l )
b . If it is in T

(l )
b ,

⌊
Ai,k mod p

2
l

⌋
+

⌊
Bk, j mod p

2
l

⌋
= C

(l )
i, j + b .

So

−4 ≤
Ai,k mod p

2
l

+
Bk, j mod p

2
l

−
Ci, j mod p

2
l

− b ≤ 4

(Ai,k + Bk, j −Ci, j ) mod p ∈ [2l (b − 4), 2l (b + 4)].

That is,Ai,k+Bk, j−Ci, j should be congruent to one of theO
(
2
l
)

remainders. For each possible remainder r ∈ [2l (b − 4), 2l (b + 4)],
(|b | ≤ 10), we have

|r | ≤ 14 · 2l < p/6 ≤
1

2

| Ai,k + Bk, j −Ci, j | .

So |(Ai,k + Bk, j − Ci, j ) − r | is a positive number bounded by

O (n), and the number of different primes p ∈ [40nα , 80nα ] that
p | (Ai,k + Bk, j − Ci .k ) − r can not exceed 1/α = O (1). In our

algorithm, when we uniformly choose a prime p from [40nα , 80nα ],

the probability that (Ai,k+Bk, j−Ci, j ) mod p = r is Õ
(

1

nα
)
. Since

there are O (2l ) such possible remainders, in expectation we have

O (2l ) ·O
(
n3

2
l

)
· Õ
(

1

nα
)
= Õ (n3−α ) segments in T

(l )
b .

□

From the proof of Lemma 3.10, we can get:

Lemma A.7. If Ai,k + Bk, j = Ci, j , then A
(l )
i,k + B

(l )
k, j = C

(l )
i, j +b for

some −10 ≤ b ≤ 10.

Next we argue that our algorithm correctly computes all entries

C
(l )
i, j from C

(l+1)
i, j and T

(l+1)
b , for l = h − 1, · · · , 0. Let q be the index

such that Ci, j = Ai,q + Bq, j . By the above lemma, there exists an

integer offset b ∈ [−10, 10] such that A
(l+1)
i,q + B

(l+1)
q, j = C

(l+1)
i, j + b.
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Therefore, by construction of polynomial matrices Ap ,Bp , we have:

C
p
i, j,b (x ) =

∑
k |(A∗i,k +B

∗
k, j =C

∗
i, j )

∧(A(l+1)
i,k +B (l+1)

k, j =C
(l+1)
i, j +b )

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

+
∑

k |(A∗i,k +B
∗
k, j ,C

∗
i, j )

∧(A(l+1)
i,k +B (l+1)

k, j =C
(l+1)
i, j +b )

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

=
∑

k |(A∗i,k +B
∗
k, j =C

∗
i, j )

∧(A(l+1)
i,k +B (l+1)

k, j =C
(l+1)
i, j +b )

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

+
∑

(i, j,[k0,k1])∈T
(l+1)
b ,k ∈[k0,k1]

x
A(l )
i,k−2A

(l+1)
i,k +B

(l )
k, j−2B

(l+1)
k, j

=x−2(C
(l+1)
i, j +b )

∑
k |(A∗i,k +B

∗
k, j =C

∗
i, j )

∧(A(l+1)
i,k +B (l+1)

k, j =C
(l+1)
i, j +b )

x
A(l )
i,k+B

(l )
k, j + R

p
i, j,b (x )

Since A∗i,q + B
∗
q, j = C

∗
i, j and A

(l+1)
i,q + B

(l+1)
q, j = C

(l+1)
i, j + b, when we

extract A
(l )
i,q + B

(l )
q, j from terms of C

p
i, j,b (x ) − R

p
i, j,b (x ), it satisfies

⌊
Ai,q mod p

2
l

⌋
+

⌊
Bq, j mod p

2
l

⌋

≤
(Ai,q + Bq, j ) mod p

2
l

=
Ci, j mod p

2
l

≤



(Ci, j mod p) + 2l − 1

2
l

⌊
Ai,q mod p

2
l

⌋
+

⌊
Bq, j mod p

2
l

⌋

≥
((Ai,q + Bq, j ) mod p) − 2(2l − 1)

2
l

≥



(Ci, j mod p) − 2(2l − 1)

2
l


Thus the term which givesA

(l )
i,q +B

(l )
q, j can give a validC

(l )
i, j . Also

for every term which givesA
(l )
i,k +B

(l )
k, j which satisfiesA∗i,k +B

∗
k, j =

C∗i, j and Ai,k + Bk, j ≥ Ci .j ,
⌊
Ai,k mod p

2
l

⌋
+

⌊
Bk, j mod p

2
l

⌋

≥
((Ai,k + Bk, j ) mod p) − 2(2l − 1)

2
l

≥



(Ci, j mod p) − 2(2l − 1)

2
l



So by choosing the minimum, we can get a valid C
(l )
i, j .
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