
Statistics and Computing (2020) 30:19–25
https://doi.org/10.1007/s11222-019-09864-2

Faster model matrix crossproducts for large generalized linear models
with discretized covariates

Zheyuan Li2 · Simon N. Wood1

Received: 17 October 2018 / Accepted: 15 February 2019 / Published online: 1 March 2019
© The Author(s) 2019

Abstract
Wood et al. (J Am Stat Assoc 112(519):1199–1210, 2017) developed methods for fitting penalized regression spline based
generalized additive models, with of the order of 104 coefficients, to up to 108 data. The methods offered two to three orders
of magnitude reduction in computational cost relative to the most efficient previous methods. Part of the gain resulted from
the development of a set of methods for efficiently computing model matrix products when model covariates each take only
a discrete set of values substantially smaller than the sample size [generalizing an idea first appearing in Lang et al. (Stat
Comput 24(2):223–238, 2014)]. Covariates can always be rounded to achieve such discretization, and it should be noted that
the covariate discretization is marginal. That is we do not rely on discretizing covariates jointly, which would typically require
the use of very coarse discretization. The most expensive computation in model estimation is the formation of the matrix
cross product XTWX where X is a model matrix and W a diagonal or tri-diagonal matrix. The purpose of this paper is to
present a simple, novel and substantially more efficient approach to the computation of this cross product. The new method
offers, for example, a 30 fold reduction in cross product computation time for the Black Smoke model dataset motivating
Wood et al. (2017). Given this reduction in computational cost, the subsequent Cholesky decomposition ofXTWX and follow
on computation of (XTWX)−1 become a more significant part of the computational burden, and we also discuss the choice
of methods for improving their speed.

Keywords Generalized additive model · Fast regression · BLAS

1 Introduction

A rate limiting step in computations involving large scale
regression models is often the computation of weighted
crossproducts, XTWX, of the model matrix, X, where W
is diagonal (or in this paper sometimes tri-diagonal). When
each covariate of the model results in several model matrix
columns, as is the case in generalized additivemodels (GAM)
or mixed models, then substantial efficiencies are possible.
The key is to exploit the fact that irrespective of dataset size,
n, most covariates only take one of a relatively modest num-
ber of discrete values, and even when that is not the case we
can discretize each covariate to�(n1/2) rounded valueswith-
out statistical loss. For example 107 daily temperature records
are likely to contain only a few hundred distinct values, being

B Simon N. Wood
simon.wood@bristol.ac.uk

1 School of Mathematics, University of Bristol, Bristol, UK

2 Mathematical Sciences, University of Bath, Bath, UK

recorded only to the nearest tenth of a degree. Similarly data
from a network of fixed monitoring stations contain only a
fixed number of location co-ordinates, irrespective of data
set size. This paper provides new algorithms for computing
XTWX from discretized covariates, that are more efficient
than previous algorithms, thereby substantially reducing the
computational burden of estimating largeGAMsof large data
sets.

In itsmost basic form aGAM is a generalized linearmodel
in which the linear predictor depends on unknown smooth
functions, f j , of covariates x j (possibly vector valued). That
is

g(μi ) = Aiθ +
J∑

j=1

f j (x ji ), yi ∼ EF(μi , φ) (1)

where g is a known link function, Aiθ a parametric part
of the linear predictor and EF some exponential family
distribution with location μi and scale φ (Hastie and Tib-
shirani 1990). For practical estimation we use reduced
rank spline basis expansions for the f j , with basis size

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-019-09864-2&domain=pdf
http://orcid.org/0000-0002-7434-5947
http://orcid.org/0000-0002-2034-7453


20 Statistics and Computing (2020) 30:19–25

typically �(n1/9) to �(n1/5) (see e.g. Wood 2017). In
consequence the GAM becomes a richly parameterized
generalized linear model with model matrix, X, contain-
ing A and the evaluated spline basis functions. Infer-
ence with (1) also requires that we control the degree of
smoothness of the f j . This can be achieved by adding
to the log likelihood a set of quadratic smoothing penal-
ties on the spline basis coefficients, each weighted by
a smoothing parameter, λ j (e.g. Green and Silverman
1994). The smoothing parameters can be estimated by
cross validation, for example. Alternatively the penalties
can be induced by Gaussian priors on the spline basis
coefficients (e.g. Silverman 1985), in which case infer-
ence about the λ j can be Bayesian or empirical Bayesian,
with the empirical Bayes approach being computationally
efficient.

As mentioned above, the rate limiting computation in
GAM inference is the computation of the matrix inner prod-
uct XTWX where X is an n × p model matrix and W a
diagonal or tri-diagonal weight matrix. Lang et al. (2014)
recognised that ifX depends on a single covariatewhich takes
only m � n discrete values thenX has onlym distinct rows,
X̄, say. Given an index vector k, such that X(i, ) = X̄(k(i), )
then efficient computation can be based onXTWX = X̄TW̄X̄
where W̄ j j = ∑

k(i)= j Wii (W diagonal). Notice how dis-
cretization reduces the matrix product operations count from
O(np2) to O(mp2) + O(n).

When the model matrix depends on multiple covariates
then matters are somewhat more complicated. The obvious
approach is to discretize the covariates jointly onto a grid
and simply use the Lang et al. (2014) algorithm, but to main-
tain computational efficiency the grid then has to become
coarser and coarser as the number of covariates increases, and
the errors from discretisation rapidly exceed the statistical
error. The alternative is to find ways to exploit discretization
when covariates are discretized individually (marginally),
and Wood et al. (2017) provide a set of algorithms to do this.
These latter methods include the important case of model
interaction terms. The columns ofX relating to an interaction
are given by a row-Kronecker product of a set of marginal
modelmatrices for eachmarginal covariate of the interaction.
Thesemarginal covariates and their marginal model matrices
are discretized separately.

This paper provides new algorithms that improve onWood
et al. (2017) in two ways. Firstly they have substantially
reduced leading order computational costwhenever the prod-
uct of the number of unique values of a pair of covariates
is less than the sample size, and secondly they are matrix
oriented, rather than vector oriented, and are hence able to
make better use of BLAS level optimization. To emphasise
the scale of the computational efficiency gains produced by
the Wood et al. (2017) methods combined with the enhance-
ments suggested here, Fig. 1 contours the computational time

log(n)

lo
g(

p)

 0.5 

 1 

 2 

 5 

 10 

 20 
 50 

 100 

8.0 8.5 9.0 9.5

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

6.
0

Fig. 1 Computation times for gam from R package mgcv divided by
computation times using Wood et al. (2017) with the improved meth-
ods suggested here, against log sample sizes from 2000 to 20000 and
log number of coefficients per smooth from 20 to 500. Computations
are for a Gaussian additive model with 4 univariate smooths, fitted to
data simulated using mgcv function gamSim. For comparability both
methods use a single thread. To the lower left of the unit contour all
model fits take less than 2 s. At the top right of the plot gam takes over
40 min

taken by the conventional algorithm implemented in the gam
function of R package mgcv, divided by the time taken by
the new methods, for some model-data combinations small
enough to be fitted by gam in reasonable time. Section 5 pro-
vides practical illustration of the speed up provided by the
new methods, using a big data example for which the gam
methods would have a practically infeasible memory foot-
print, and where the theoretical speed up relative to the gam
methods is many orders of magnitude.

2 The basic discrete cross product
algorithms

The complete model matrix, X, is made up column-wise of
sub-matrices each relating to a single model term. Let A
and B be two such sub- matrices, of dimension n × pA and
n × pB . The entire product XTWX is made up of blocks
of the form ATWB. For clarity of exposition, we initially
assume that neither matrix represents an interaction term
made up of row-Kronecker products, so that both are of
the form A(i, ) = ∑sA

s=1 Ā(kAs(i), ) where sA is the num-
ber of index vectors used to define A, and Ā is mA × pA.
Definitions for B are similar. For standard generalized addi-
tive models or mixed models sA/B = 1, but higher values
are used to implement linear functionals of smooth terms,
when these occur as model components, for example in

123



Statistics and Computing (2020) 30:19–25 21

scalar on function regression1 (see e.g. Ramsay and Silver-
man 2005, Chap. 15). Further, let w, w+ and w− denote
the leading, super and sub diagonals of tri-diagonal W.
Allowing tri-diagonal W accommodates simple AR1 cor-
relation models (which have tridiagonal precision matrices),
for example.

The basic idea is toworkwith themA×mB matrix W̄ such
that ATWB = ĀTW̄B̄. Firstly, if A = B, w+ = w− = 0 and
sA = 1 then W̄ is diagonal and we can use the Lang et al.
(2014) algorithm. Let w̄, denote the diagonal of W̄.

Algorithm 0 (Lang et al. 2014).

1. Set all elements of w̄ to 0.
2. For l = 1 . . . n do w̄(kAs(l)) += w(l)
3. Form ĀTW̄Ā.

This has cost O(p2AmA) + O(n).

In more general circumstances W̄ will not be diagonal. In
principle the algorithm for computing it is very simple, but
there is an immediate problem. There is nothing to prevent
mAmB beingmuch larger thann, so thatW̄ requires excessive
storage while havingmostly zero entries (in the sA = sB = 1
diagonal W case there are at most n non-zero entries): to
keep operations and memory costs sensibly bounded this has
to be dealt with. Hence only if n ≥ mAmB will we use the
following simple algorithm.

Algorithm 1 (Weight accumulation).

1. Set mA × mB matrix W̄ to 0.
2. For s = 1 . . . sA, t = 1 . . . sB , l = 1 . . . n do

a. W̄ (kAs(l), kBt (l)) += w(l)
b. If l < n W̄ (kAs(l), kBt (l + 1)) += w+(l)
c. If l > 1 W̄ (kAs(l), kBt (l − 1)) += w−(l − 1)

3. Form ĀTW̄B̄ (use themultiplication orderingwith lowest
operation count).

Obviously steps 2b,c can be skipped if W is diagonal (the
same will be true for Algorithms 2 and 3). The cost of this
is the lower of O(sAsBn) + O(pA pBmA) + O(mAmB pB)

and O(sAsBn) + O(pA pBmB) + O(mAmB pA).

In the n < mAmB regime we need to deal with the intrin-
sic sparsity of W̄. The obvious option is to use sparse matrix
methods to represent W̄. An algorithm implementing this
approach is given in the “Appendix” and discussed there
in detail. However, because handling of the sparse matrix

1 Weights can be accommodated in the summation by treating them
as a one dimensional marginal in a tensor product interaction term,
discussed in Sect. 3.

structures involves considerable non-locality of data, and
therefore makes poor use of cache memory, the approach is
often less efficient than the following methods that directly
accumulate either C = W̄B̄ or D = W̄TĀ, depending on
which has the lowest operations count. (In the case that one
of Ā = A or B̄ = B then theminimummemory option is cho-
sen, obviously if Ā = A and B̄ = B then we use a standard
dense matrix inner product.)

Algorithm 2 (Right accumulation).

1. Set mA × pB matrix C to 0.
2. For s = 1 . . . sA, t = 1 . . . sB , q = 1 . . . pB , l = 1 . . . n

do

a. C(kAs(l), q) += w(l)B̄(kBt (l), q)

b. If l < n C(kAs(l), q) += w+(l)B̄(kBt (l + 1), q)

c. If l > 1 C(kAs(l), q) += w−(l −1)B̄(kBt (l −1), q)

3. Form ĀTC.

This has cost O(sBsAnpB) + O(pA pBmA), i.e. essentially
the same cost as Algorithm 1 if mAmB = n, assuming sA =
sB = 1. Note that the l and q loops are ordered for optimal
data-locality whenmatrices are stored in columnmajor order
(the convention in LAPACK and R, for example). The order
should probably be reversed for row major order.

There is an alternative version of the algorithm that should
be used if αsAsBnpA +mB pA pB < αsAsBnpB +mA pA pB ,
where α is the number of operations for steps a - c divided
by 2.

Algorithm 3 (Left accumulation).

1. Set mB × pA matrix D to 0.
2. For s = 1 . . . sA, t = 1 . . . sB , q = 1 . . . pA, l = 1 . . . n

do

a. D(kBt (l), q) += w(l) Ā(kAs(l), q)

b. If l < n D(kBt (l), q) += w−(l) Ā(kAs(l + 1), q)

c. If l > 1 D(kBt (l), q) += w+(l−1) Ā(kAs(l−1), q)

3. Form DTB̄.

This has cost O(sBsAnpA) + O(pA pBmB).

In principle using a sparse matrix representation of W̄,
as in the “Appendix”, reduces the cost of forming D to
O(n)+ O(nu pA), for the sA = sB = 1 case, where nu is the
number of non-zeroes in W̄. Since nu ≤ n this potentially
represents a saving, provided that the overheads of using
sparse matrices are low enough to not outweigh the nu/n
advantage. Similar arguments apply to C. Of course since
we have no guarantee that nu < n, the worst case perfor-
mance of the sparse approach will be the same as that of

123



22 Statistics and Computing (2020) 30:19–25

Algorithms 2 and 3 in leading order cost terms, but worse in
practice because of the extra computational overhead. In our
reported timings we use the sparse matrix approach in place
of Algorithms 2 or 3 only when pA or pB is greater than
15 so that there is some real chance that the savings from
sparsity outweigh the overheads (nu can unfortunately not
be obtained at lower cost than the full sparse accumulation
algorithm).

In principle the equivalent Wood et al. (2017) algorithms
have cost that is the lower of O(sBsAnpA) + O(pA pBmB)

and O(sBsAnpB) + O(pA pBmA). Hence we only achieve
a reduction in leading order cost when it is possible to use
Algorithms 0 or 1, but then the savings can be large, for exam-
ple a factor O(nm−1

B m−1
A ) for Algorithm 1. However, when

Algorithms 2 or 3 are used the leading order count does not
tell the whole story. Firstly the constant of proportionality
on the O(sBsAnpA) terms is higher for Wood et al. (2017),
and secondly the Wood et al. (2017) methods are entirely
vector based, and are therefore unable to make good use of
optimized level 3 BLAS routines, unlike the methods pro-
posed here. Hence the methods proposed here are always an
improvement on Wood et al. (2017), and often a very sub-
stantial improvement.

2.1 Proof of algorithm correctness

Denote the desired cross product as F = ATWB, and assume
that W is diagonal. From the definition of the storage con-
vention we have

F =
∑

i

Ā(kA(i), )Twi B̄(kB(i), )

(so each term in the summation is a rank one pA× pB matrix).
Rows p and q of Ā and B̄ co-occur in the summation when-
ever kA(i) = p and kB(i) = q. Hence we can re-write the
summation as

F =
∑

p,q

Ā(p, )TW̄pq B̄(q, ) where W̄pq =
∑

kA(i)=p
kB (i)=q

wi .

But W̄pq is just element p, q of W̄ accumulated by Algo-
rithm 1, and the preceding summation is simply F = ĀTW̄B̄,
confirming the correctness of Algorithm 1 in the diagonal
case with sA = sB = 1.

Now consider the formation of C = W̄B̄. We have

C(p, j) =
∑

q

W̄pq B̄(q, j) =
∑

q

∑

kA(i)=p
kB (i)=q

wi B̄(q, j),

and hence

C(kA(i), j) =
∑

q

∑

kB (i)=q

wi B̄(q, j) =
∑

i

wi B̄(kB(i), j),

which is Algorithm 2. Algorithm 3 follows similarly.
Correctness of the algorithms in the tri-diagonal case fol-

lows by applying similar arguments to each diagonal and
summing the results. When sA = sB = 1 does not hold,
correctness follows immediately by linearity.

3 Discrete cross product algorithms for
interaction terms

We now return to the case in which either or both ofA and B
are model matrix components relating to interaction terms,
and are hence constructed as row-Kronecker products of a set
of marginal model matrices (each relating to one of the inter-
acting covariates). This includes the simple case in which a
model term is multiplied by a known covariate, for example
f (xi )zi , where xi and zi are both covariates: the multiplying
covariate is treated as a single columnmarginalmodelmatrix.
For the moment suppose that there is only one index vector
per marginal. We denote the marginal model matrices of A,
by A1,A2, . . . ,AdA , where each marginal model matrix has
compact representation A j (i, ) = Ā j (kAj (i), ), and kAj is the
index vector for the j thmarginal of the interaction. ThenA =
A1 �A2 �· · ·�AdA , where ‘�’ denotes the row-Kronecker
product such thatA(i, ) = A1(i, )⊗A2(i, )⊗· · ·⊗AdA(i, ).
Also let Ȧ denote the matrix such that A = Ȧ � AdA . In
greater generality we might also be interested in A(i, ) =∑sA

s=1 Ā1(kA1s(i), ) ⊗ Ā2(kA2s(i), ) ⊗ · · · ⊗ ĀdA(k
A
dAs

(i), ),

where there are sA sets of indices to sum over. For the appli-
cation of sum-to-zero constraints in this case we refer to the
appendix of Wood et al. (2017). For maximum efficiency in
the following, assume that the marginals are arranged so that
AdA has the most columns. Similar definitions apply to B.

Now let D(x) denote the diagonal matrix with x as its
leading diagonal, let C·, j be column j of any matrix C and
note that for a term with only one marginal Ȧ = 1 (similarly
for B). Then in the sA = sB = 1 case

ATWB =
⎛

⎝
AT
da
D(Ȧ·,1)WD(Ḃ·,1)Bdb AT

da
D(Ȧ·,1)WD(Ḃ·,2)Bdb ·

AT
da
D(Ȧ·,2)WD(Ḃ·,1)Bdb AT

da
D(Ȧ·,2)WD(Ḃ·,2)Bdb ·

· · ·

⎞

⎠

Each block, AT
da
D(Ȧ·,i )WD(Ḃ·, j )Bdb , of this expression

can be computed by the Algorithms 0–3 of the previous
section (or the “Appendix”), upon replacement of the tridi-
agonal matrix W by tridiagonal matrix D(Ȧ·,i )WD(Ḃ·, j ).
In the case in which sA and sB are not both 1, so we have
to iterate over indices s and/or t , then W is replaced by
D(Ȧs

·,i )WD(Ḃt
·, j ), where the superscripts s and t allow for

the change in index vectors and hence Ȧ and Ḃ with s and t .

123



Statistics and Computing (2020) 30:19–25 23

4 Parallelization and other numerically
costly operations

Since XTWX is made up of a number of ATWB blocks, it
is very easy to parallelize the matrix cross product by com-
puting different blocks in different threads, using openMP
(OpenMPArchitecture Review Board 2008).When there are
tensor product terms present there is a choice to be made
about whether to parallelize at the coarse ‘whole term block’
level, or at the finer level given by the sub-blocks resulting
from the tensor product structure. Load balancing is typically
slightly better with the finer block structure, and is in either
case improved by processing blocks in order of decreasing
computational cost.

The formation of XTWX is typically the most costly
part of the Wood et al. (2017) estimation method, but
the approach also requires the Cholesky decomposition of
XTWX + Sλ where Sλ is a positive semi-definite matrix
determined by the smoothing penalties, plus the computation
of (XTWX + Sλ)

−1 from the Cholesky factor. The original
Wood et al. (2017) method implemented a parallel version
of the block Cholesky method of Lucas (2004) followed by
a parallel formation of (XTWX + Sλ)

−1: the implemen-
tations scaled well and had good performance relative to
LAPACK’s Cholesky routines based on the reference BLAS,
but were poor compared to LAPACK using a tuned BLAS,
such as OpenBLAS (Xianyi et al. 2014). These deficiencies
can become rate limiting when the new XTWX methods are
used, and we therefore re-implemented the methods to use
level 3 BLAS routines wherever possible, while still paral-
lelizing as appropriate via openMP. In this way it is possible
to produce routines that give reasonable multi-core scaling
for users of the reference BLAS, while also exploiting an
optimized BLAS when this is used (albeit with less good
scaling).

5 Example

To illustrate the practical improvements offered by the new
algorithms, we revisit the daily black smoke pollution mon-
itoring data and model motivating Wood et al. (2017). A key
message is that on the same hardware (twin Intel E5-2670 v3
CPUs each with 12 physical cores) we are able to reduce the
model estimation time from just over an hour for the orig-
inal Wood et al. (2017) method to less than 5 min with the
new crossproduct methods and improved BLAS use.We also
achieve 7.5 min estimation time on a mid-range laptop (Intel
i5-6300 with 2 physical cores).

The UK black smoke monitoring network operated for
more than4decades from the early 1960s, andwas set up after
the UK clean air act which followed the severe London smog
episodes of the 1950s. At any one time the network consisted

of up to 1269 fixed stations distributed over 2862 distinct
locations, although by the time of the network closure in
2005, only 73 stations remained. The stations recorded daily
particulate pollution levels (black smoke) in units ofµg m−3.
Smooth additive modelling of black smoke measurements
is desirable for individual short term exposure estimation
for epidemiological purposes, and to partially alleviate the
effects of the network design being non-random (with more
stations in high pollution areas than in low, and higher prob-
ability of removing stations in low pollution areas).

The model structure used in Wood et al. (2017) and here
is,

log(bsi )= f1(yi )+ f2(doyi )+ f3(dowi )+ f4(yi ,doyi )

+ f5(yi ,dowi ) + f6(doyi ,dowi )

+ f7(ni ,ei )+ f8(ni ,ei ,yi )+ f9(ni ,ei ,doyi )

+ f10(ni ,ei ,dowi ) + f11(hi ) + f12(T
0
i ,T

1
i )

+ f13(T̄1i , T̄2i )+ f14(ri )+αk(i)+bid(i)+ei

(2)

where y, doy and dow denote, year, day of year and day
of week; n and e denote location as kilometres north and
east; h and r are height (elevation of station) and cube root
transformed rainfall (unfortunately only available asmonthly
average); T0 and T1 are daily minimum and maximum tem-
perature, while T̄1 and T̄2 are daily mean temperature on
and two days previously; αk(i) is a fixed effect for the site
type k of the i th observation (type is one of R (rural), A
(industrial), B (residential), C, (commercial), D (city/town
centre), X (mixed) or M (missing)); bid(i) is a random effect
for the idth station, while ei is a Gaussian error term follow-
ing an AR1 process at each site (the AR parameter being
obtained by profile likelihood). Given basis expansions for
all the terms the model has 7320 coefficients and there are
9451232 observations.

Table 1 gives timings inminutes for a singlemodel estima-
tion, excluding the model set up time (initial data handling
and basis set up) which takes 3.2 min. Timings are given
for computing with 1, 4 and 8 cores using single threaded
referenceBLAS andOpenBLAS, and simpleOpenMPparal-
lelization of the cross-product, Cholesky decomposition and
subsequent inversion. We also report a hybrid approach in
which we used a multi-threaded OpenBLAS and OpenMP
parallelization for the cross product in our code, set up to
ensure that there were never more threads than cores (using
24 cores for the multi-threaded BLAS is slower than single
threaded for this example). The original Wood et al. (2017)
method took about 1 h for the same example using 10 cores
on the same hardware, and around 6.5 h with a single core.
So the improvement with the new methods is substantial.

In addition we compared the timings of the new method
and theWood et al. (2017)method for the crossproduct alone,

123



24 Statistics and Computing (2020) 30:19–25

Table 1 Timings inminutes for black smokemodel estimation using the
new methods, for various combinations of BLAS and multi-threading

BLAS�Threads 1 4 8

Reference 126.3 43.4 30.7

OpenBLAS 12.3 6.9 5.8

�Threads 6/1 6/4 4/6

OpenBLAS MT 9.6 5.0 4.8

The reference and OpenBLAS are single threaded, so that the paral-
lelism is within our implementation. OpenBLAS MT is multi-threaded
and the two figures for threading give the number of threads used by the
BLAS and then the number of threads used within our code. The total
number of threads used is the product of the two numbers, since each
thread of our code calls the BLAS: hence the 6/4 and 4/6 columns both
use 24 threads in total. The original Wood et al. (2017) method took an
hour using 10 threads, and 6.5 h using one thread on the same hardware

Table 2 Timings in seconds for the formation of XTWX using the new
methods and the Wood et al. (2017) methods with different numbers of
threads, and different sized sub-samples

n 105 106 All

Threads New Old New Old New Old

1 35 78 125 404 230 7024

4 13 23 45 133 65 1807

8 13 13 34 97 39 1086

The equal timing for 8 threads at n = 105 reflects slightly unfortunate
load balancing for this example with the new method. The improve-
ments of the new method for n = 106 are more reliant on the sparse
matrix accumulation method than the other results. Without the sparse
methods the n = 105 and all data timings barely change, while the
n = 106 timings are around 2.5 times larger, offering only modest
improvement on the old methods

using a single threadedOpenBLAS and simple OpenMP par-
allelization. The results are shown in Table 2. We compared
timings for the full dataset of 9451232 observations and two
random subsamples of size 105 and 106. For the full dataset
the natural discretizations of the data are such that all the term
to term crossproducts use Algorithm 1. For the subsamples,
respectively 40% and 20% of these cross-products use Algo-
rithms 2, 3 or 4, but these are the crossproducts involving the
majority of the work.

As well as illustrating the substantial gains that can
accrue from using the new methods, the results illustrate an
interesting feature of the algorithms.Namely, althoughAlgo-
rithms 1–3 have essentially the same leading order cost when
mAmb = n, in fact Algorithm 1 will be much faster when an
optimized BLAS is used, because most of its cost is in level
3 BLAS operations. Hence, in principle, if we were willing
to tolerate the extra storage costs, it would be worth using
Algorithm 1 whenever mAmb < kn, where k > 1 is some
constant related to the BLAS performance improvement.

6 Conclusions

The new methods presented here offer substantial reduc-
tions in the computational burden associated with estimating
large generalized additive models (Gaussian latent process
models) for large data sets. The discrete matrix crossproduct
methods offer advantages for any regression model in which
each covariate results in a termwith several associatedmodel
matrix columns: models containing several factor variables
are an obvious example beyond smooth regression models.
Extension of the algorithms to bandedWmatrices with more
than 3 bands is obvious, but we have not yet implemented
this extension. Of course the methods are not useful in all
settings. For example, when models have very large num-
bers of coefficients (larger than 104, or a small multiple of
this) but a sparse model matrix, direct use of sparse matrix
methods (e.g. Davis 2006) may be more appropriate. Note,
however, that quite high levels of sparsity may be needed to
ensure feasibility of sparse methods: for example, the model
matrix for (2) would need to be about 99.5% zeroes before it
required less than 10Gb of storage, or 99.95% if we wanted
10 times as many coefficients. Furthermore, depending on
the model details, XTWX can be substantially less sparse
than X, or nearly dense in the worst cases.

The algorithms developed here are available in R package
mgcv, from version 1.8-25.

Acknowledgements Funding was provided by University of Bath.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix: sparse accumulation of W̄

W̄ can be accumulated as a sparse matrix, to avoid exces-
sive storage requirements, and to exploit the fact that it can
have no more than n non-zero elements (3n for tridiagonal
W). The resulting algorithm has lower operations cost than
Algorithms 2 and 3, but there is unavoidable loss of data
locality associated with handling the sparse matrices, so that
practical performance is reduced by inefficient use of cache
memory. The sparsity pattern of W̄ is not known in advance.
To obtain it in advance we could resort to sorting each pair
of ka , kb indices, but this involves more work than necessary,
since we do not require the matrix elements to be ordered.
We therefore adopt a hash table based solution.

In particular we use a hash function (as described in Press
et al. 2007, Sect. 7.6.2) to convert row column index pairs
to locations (between 1 and n) in a hash table. Denote this

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Statistics and Computing (2020) 30:19–25 25

function by hash(i, j). A length n array, sm, then contains
pointers to linked lists ofmatrix elements, with NULL denot-
ing no entries. The elements, e, contain entries e.i , e. j , e.w
and e.next, respectively the row, column, value and pointer
to the next linked list element. The latter is NULL at the end
of a linked list. An array of elements is created before the
algorithm is run, to provide a stack of elements to add to the
link lists as needed. n elements are needed in the diagonal
W case, and 3n in the tri-diagonal case, although these are
both upper bounds on actual usage. The purpose of the hash
function is to ensure thatmatrix entries are stored evenly over
the elements of sm and hence that the linked lists starting at
each element of sm each have at most a few elements.

Algorithm 4 (Sparse accumulation).

1. Set T to 1 or 3 depending on whether W is diagonal or
tri-diagonal.

2. For l = 1, . . . , n, for t = 1 . . . T repeat 3 to 5.
3. Dependent on t execute one of the following.

t = 1: i = ka(l), j = kb(l), ω = w(l).
t = 2: i = ka(l), j = kb(l + 1), ω = w+(l).
t = 3: i = ka(l + 1), j = kb(l), ω = w−(l). If
l = n − 1 set T = 1.

4. k = hash(i, j)
5. Set e to the record pointed to by sm[k]:

(a) While e is non-NULL.
• If e.i = i and e. j = j then set e.w += ω and
go to the next t or l.

• Otherwise set e to the record pointed to by e.next.
(b) No match, so insert a new record in the linked list at

sm[k] with e.i = i , e. j = j and e.w = ω.

The linked lists pointed to by sm now contain the unique
elements of W̄. In principle we can use this structure directly
with the diagonalW versions of Algorithms 2 or 3 to obtain
C or D, however much better data locality and hence cache
efficiency results from reading the i , j and w records out to
arrays k′

a , k
′
b and w′ before computing C or D.

Notice that the accumulation of W̄ has only O(n) cost,
but involves considerable non-localised memory access. The
matrix multiplications to form C and D have lower cost than
Algorithms 2 and 3 whenever the number of unique matrix
elements in W̄ is less than n. The data non-locality overheads

mean that in reality we have to choose when to use the sparse
methods. In the work reported here we use Algorithms 2 and
3 when pA or pB are less than 15, and the sparse method
otherwise (obviously we use Algorithms 0 and 1 wherever
possible). The choice of 15 is somewhat arbitrary, and we
did not seek to tune it. All that really matters is that it is not
too far from the data retrieval latency (i.e. the time it takes to
retrieve a data item from main (not cache) memory divided
by the length of a CPU cycle).

References

Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM,
Philadelphia (2006)

Green, P.J., Silverman, B.W.: Nonparametric Regression and General-
ized Linear Models. Chapman & Hall, London (1994)

Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman &
Hall, London (1990)

Lang, S., Umlauf, N.,Wechselberger, P., Harttgen, K., Kneib, T.: Multi-
level structured additive regression. Stat. Comput. 24(2), 223–238
(2014)

Lucas, C.: LAPACK-style codes for level 2 and 3 pivoted Cholesky
factorizations. In: LAPACK Working Paper (2004)

OpenMP Architecture Review Board (2008) OpenMP application pro-
gram interface version 3.0

Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical
Recipes, 3rd edn. Cambridge University Press, Cambridge (2007)

Ramsay, J., Silverman, B.: Functional DataAnalysis, 2nd edn. Springer,
Berlin (2005)

Silverman, B.W.: Some aspects of the spline smoothing approach to
non-parametric regression curve fitting. J. R. Stat. Soc. Ser. B
47(1), 1–53 (1985)

Wood, S.N.: GeneralizedAdditiveModels: An Introductionwith R, 2nd
edn. CRC Press, Boca Raton (2017)

Wood, S.N., Li, Z., Shaddick, G., Augustin, N.H.: Generalized additive
models for gigadata: modelling the UK black smoke network daily
data. J. Am. Stat. Assoc. 112(519), 1199–1210 (2017)

Xianyi, Z., Qian, W., Chothia, Z.: OpenBLAS. http://xianyi.github.io/
OpenBLAS (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://xianyi.github.io/OpenBLAS
http://xianyi.github.io/OpenBLAS

	Faster model matrix crossproducts for large generalized linear models with discretized covariates
	Abstract
	1 Introduction
	2 The basic discrete cross product algorithms
	2.1 Proof of algorithm correctness

	3 Discrete cross product algorithms for interaction terms 
	4 Parallelization and other numerically costly operations
	5 Example
	6 Conclusions
	Acknowledgements
	Appendix: sparse accumulation of barW
	References


