
Faster Modular Multiplication
by Operand Scaling

Colin D. Waiter

Computation Department, U.M.I.S.T.,

PO Box 88, Sackville Street, Manchester M60 lQD, U.K.

e-mail: cdwQsa.co.umist.ac.uk

Key Words: Modular Multiplication, Fast Computer Arithmetic, Digital Arithmetic
Methods, RSA Algorithm, Cryptography.

Abstract

There are a number of techniques known for speeding up modular multiplication, which
is the main arithmetic operation in RSA cryptography. This note shows how to gain speed
by scaling the modulus. Resulting hardware is limited only by the speed of addition'.
Detailed analysis of fan out shows that over existing methods the speedup is potentially as
much as two-fold. This is because the addition and fan out can now be done in parallel. Of
course, in RSA the modulus can be chosen to need no scaling, so that most of the minor
extra costs are eliminated.

in the rump session at EUROCRYPT '90, but nothing appears in the Proceedings.
'J.4. Quisquater informed me at the conference that he had spoken on a similar technique for software

J. Feigenbaum (Ed.): Advances in Cryptology - CRYPT0 '91, LNCS 576, pp. 313-323, 1992.
0 Springer-Verlag Berlin Heidelberg 1992

314

1 Introduction

One of the motivations for studying fast modular multiplication is its use in crypto-
graphy, including the RSA algorithm [5] . That algorithm provides potentially the most
widely useful system as it appears to be arbitrarily secure. However, its arithmetic intensity
requires dedicated hardware if it is to be used in a real-time system working with bulk data.

A number of techniques are already known for improving the speed of hardware for
modular multiplication of integers. These are surveyed in, for example, Eldridge & Walter
[3]. Most can be combined without difficulty with the modification suggested here, and SO

our contribution is presented in terms of the essential, basic techniques described by Brickell
[2]. Fundamental there is the use of a truncated partial product and truncated modulus to

determine, with sufficient accuracy, the correct multiple of the modulus to subtract during
each of the repeated addition cycles that perform the multiplication. This had been used
for some timein the case of real number division, being reported on by, for example, Atkins
[l] and Taylor [6] in cases of number representations with radix greater than 2. In a recent

paper [4], Ercegovac and Lang show how improve this technique for division by scaling
both numerator and divisor by the same amount in order to obtain known, fixed, most
significant digits for the divisor. With these digits known, the hardware logic for deciding
the multipleof the divisor to subtract is much simpler. So the clock may be run faster and
the quotient obtained more quickly. A similar procedure works for modular multiplication
by scaling the modulus, and we present the details for this here.

As in the case of division, the speed-up consequent from this technique derives from
the reduced complexity of the hardware logic for deciding the multiple of the divisor to
subtract from the dividend. Analysis by Eldridge and Walter in [3] of logic for the usual
modular multiplication algorithm shows that, as with division (see IS]), this complexity
normally determines the critical path length in the hardware, and so the clock speed and
overail time.

The overheads eiitaiied by employing the technique liere are minimal. Initially, scaling
of the modulus would probably be done by software. In the case of the RSA algorithm
the same modulus is used over and over again, so that scaling done once for all is very
cheap. During computation the registers need to be a digit or so larger, which affects the

31 5

chip area only marginally. Also one or two more iterations of the main loop need to be
done. This hardly affects the time at ail. After the loop, the result may be too large and
a few extra subtractions of the original modulus may be necessary. This is potentially the
most expensive overhead as the original modulus may need to be reloaded or kept in a
further register. Overall, the hardware is almost the same as before, with slightly adjusted
parameters, except for the improved logic mentioned above. The gain in efficiency against
the minor overheads is worked out in detail in this paper, with encouraging results.

2 Overview of the Algorithm

We begin by noting that fast modular multiplication is usually done by repeated cycles
involving shifting and addition, as in ordinary multiplication, together with a simultaneous
modular subtraction. Thus, each cycle also needs to predict the multiple of the modulus
to subtract in the next cycle.

Suppose we represent numbers with radix r . If we wish to calculate the residue R of
(A x B) mod M , or indeed the integer quotient Q = (A x B) div M , then, with some detail
yet t o be explained, the basis of the algorithm in [2] is the following:

Type Index = 0 . .MaxIndex ;

Regi s t e r = Array[Indexl of D ig i t ;

Procedure ModMult(A , B, M : R e g i s t e r ; Var R, Q : R e g i s t e r 1 ;
{ Pre-Conditions : M,,, 5 M 5 M,,,,, and A,B 2 0 }
.(Post-Conditions: A x B = Q x M + R and Top(R) _< L 1

Var J : Index ;

Function Quotient(ToprR,TopM : I n t) : Dig i t ;

C Post-Condition : Quotzent z (ToprR) d2v TopM }

Begin . . . End ;

31 6

Begin { ModMult 1
R : = O ; q : = O ;
F o r J := MaxIndex DownTo 0 do

Begin C Loop I n v a r i a n t : Top(R) _< L and R 2 0 1
Q[J l := Quotient(Top(r*R) ,Top(M)) ;

R := r * R + A[JI*B - Q[J]*M ;

End ;

End ; I ModMult 1

It is fairly straightforward to see that the output satisfies A x B = QxM + R. For
speed, the quotient digits are generated by only considering the topmost digits of the
partial product R and the modulus M . These are extracted by the function Top, which
truncates a fixed number (usually most) of the lowest digits. By allowing the digits of Q to

lie in a sufficiently wide range, the accumulating partial product can be kept fairly small,
being bounded through some fixed L. Appropriate choices make R less than ZM, but not
necessarily less than M . So the final output may fail to be the least non-negative residue
of A x B modulo M, but it is easy to subtract an extra M to obtain (A x B) mod M , if
necessary. The precise conditions required for undefined constants such as L are given in
[7]. Such detaii is not needed here, although we look a t L in section 4.

3 Scaling the Modulus

Let q be the number of the most significant digits of the modulus A4 which the function
Quotient needs and suppose M has a standard, non-redundant representation, i.e. digits
in the range O..r--l. Assume inputs are shifted as necessary to give the modulus exactly m
digits, so that the hardware function Top just truncates the m - q least significant digits
of both M and the partial product R. We want to scale the modulus 2p.l by a factor f such
that fM has its q most significant digits fmed, say, to M,,=.

The revised algorithm uses fM, with an appropriate shift, in place of M . One benefit
of this is that Quotient is easier to calculate because it no longer depends on any digits
of Top(M) , as they are fixed. This saves minimal hardware area, but, more importantly,

31 7

shortens the cycle time of each iteration. In particular, if Quotient is performed by doing
div (Tap(M)+l) and M,,= = r?-1 then the implied integer division is by rq and can be
done just by shifting. The penalties of the technique include the pre-calculation of f and
fM (which may be needed in non-redundant form), an increase in register lengths by the
number of digits in f, and, if necessary, up to 2f final subtractions of A4 from the output,
which may otherwise be nearly as large as 2 f M .

Let us now show how to calculate f . Suppose J M has p non-redundant digits. Then,
for the q most significant digits of fh.1 to be M,iz, f must satisfy

This is equivalent to demanding that f lie in the real interval

This must be of length at least 1 in order that it always contain an integer which can be
chosen as the value of f. The condition for this is M 5 r p - q , in other words, fM has
at least q more digits than M . Ideally, p should be piclced minimally. Thus, f could be
calculated by brute force using

f = (T” x (M,,=+l) - 1) div M with p = m+ q (*I)

A more efficient approach may be desirable, one which derives f from a truncated
value of M . Suppose q’ digits of M are needed to find such an f. Let Top’ be the function
that provides these. From the property rm-q’Top’(M) 5 M < rm-q’(Top‘(M)+l) we can
approximate the ends of the interval above to obtain the strict subinterval

1

1
) / rm-q’(Top‘(M)t

31 8

This has length at least 1 precisely when

By viewing this as a quadratic in Top’(M) , it is most difficult to satisfy a t the extreme

Unfortunately, for p = m + q it does not hold when Top‘(M) = ~ q ‘ - 1 , and so we need to
increase p to p = m t q + 1. Then the lower limit rq‘-’ is the harder to satisfy and we
require

of the range [rq’-’, rq’ - 11 which is furthest from the turning point (T ’ - ” ’ + ~ ’ - ~ - 1 112-

or, equivalently,

Since Mji, < r q , this will always hold by taking q’ = q + 2, (and usually when q‘ = q + 1).
Thus a solution which yields f from only the topmost digits of M is given by

f = (rq’+’(Mf;.$l)) div (Top’(M)+l) with p = rn+q+l and q’ = q+2 (*2)

To summarise the results of this section, we begin by choosing a suitable MI,= with q

digits which would make computation of Quotzent easy if Mf, , were given by Top applied
to the modulus. ?u’exr we replace the modulus M by fM where f is as defined in either
(*1) or (*2) . Lastly, when running the modular multiplication algorithm with the new
modulus, perform extra auomactions of the original modulus as necessary after the main
loop to obtain the least non-negative residue. This can be done with about Q + 2 shifts
and subtractions of digit multiples of the original modulus because (*1) and (t2) yield
f 5 rq+l and f 5 PO+’ respectively in the worst cases.

319

4 Solutions for Radix 2

NOW let US look at the saving in computational time by seeing how the hardware is
affected in the case of radix 2. Assume that M has already been replaced by fM and
shifted, so that T o p (M) = M,,,. Suppose also that M is in usual non-redundant binary
form. Speed is obtained mainly by using this
redundant representation in order to curtail carry propagation to only one or two places

during the addition. This enables digit operations for addition to be carried out in parallel.
One choice for Quotient which is discussed in [7] is

However, let R have digits from 0..2.

Quotient(ToprR, T o p M) = ToprR div (T o p M S l)

A sensible choice for MI,, is therefore 29 - 1 so that div can be performed simply by
shifting. A value for q which makes the algorithm work now has to be determined.

The loop invariant for the addition cycle must be preserved. So Top(R) 5 L must
imply the condition

Top(2R + A [J] x B - (Top(2R) div P) x M 5 L (*3)

since the left side is the value of Top(R) for the next iteration. A scheme following the
lines of Brickell [a] computes (AxB) mod M as ((S A X E) mod S M) diu S for some shift
factor S , with T o p truncating appropriately more digits. Here S is chosen sufficiently large
for the input A [J] x B not to affect any of the thus-redefined top digits in the value of R
to which it contributes. So, that term may be ignored. Now, looking at top digits only,

2R - (Top(2R) div 2 9) x M
<
=

= (Top(2R) mod 2 9) ~ 2 ~ - 9 + 2"-9 + (Top(2R) div 2q) ~ 2 ~ - '

(Top(2R) + 1)2"-q - (Top(2R) div 2'
{ Top(2R) - 2q(Tap(2R) div 2q) } ~ 2 ~ - ~ + 2m-9 + (Top(2R) d i ~ 2P)x2m-q

x (2" - Zrn-')

320

Applying T o p to this, and noting the strictness of the inequality, ensures the condition
(*3) is met if

T u p (2 R) mod 29 + Top(2R) div 2q 5 L

Here R may equal M . Thus Top(R) may be at least as great as T o p (M) = 2q - 1. Hence
T o p (2 R) = 2q+' - 1 is possible, and for this the inequality requires L 2 2q. We will show
that (*4) is satisfied by taking L = 2q and p 2 2. So suppose this is the value of L and
that Tup(R) 5 L . As digits of R are at most 2 , we have Top(2R) 5 2Tup(R) + 2 when
the multiplication is done by shifting. Thus Top(2R) 5 2 L + 2 = 29+' + 2. The left side
of (*4) is a saw-tooth function of T o p (2 R) , with increasing maxima before each multiple
of 2q. So (*4) is satisfied if it holds at the last value, when Top(2R) = 2q+' + 2, and at
the previous maximum, when T o p (2 R) = 29+' - 1. Both are easily seen to satisfy the in-
equality if q > 2, confirming the validity of the choice for L. The output conveniently satis-
fies R < 2 M because T o p (R) 5 L < 2L-2 = 2 T o p (M) _< Top(2M) and similarly Q [J] I 2
because Tup(2R) dzv (T u p (M) + l) 5 (2L+2) div L = 2.

There are no solutions at all for q 5 1. Larger values of q progressively simplify the
hardware, but each increase by 1 costs an extra digit position in registers, an extra addition
cycle, and another final subtraction of a shifted digit multiple of the original modulus.

5 Improved Circuits for Radix 2

Now recall that hardware ciock speed is limited by the longest path in the circuit from
input to output. The length of the shortest possible clock cycle is approximately the sum of
delay times associated with the gates on such a path. This in turn is roughly proportional to
the number of such gates. In [3], Figure 2 , there is a circuit for implementing the software
addition cycle with a delay carry adder. This uses the same redundant number system
assumed at the start of the previous section to allow parallel digit operations. Generating
the new value for R as well as the Quotient digit for the next iteration results in a critical
path length of 11 XOR gates compared with the 6 needed for calculating a typical output

321

digit. However, like the clock signais, the Quotient digit needs to be broadcast subsequently
to each place in the adder. We will assume the technology requires a tree 5 gates deep to
do this for a 512 to 1024 bit modulus. Then the correct multiple of M can be selected
ready for the next iteration using two more gates. If we preferentially broadcast to the
topmost inputs first (2 gates) then the path length at the top end is actually 11+2+2 =
15 gates, whilst that for a typical output digit is 6+5+2 = 13 gates.

If the Quotient digit were to be computed earlier, then the fanning out of this inform-
ation could be overlapped with the current addition to reduce the critical path length closer
to the theoretical minimum of 6, which is the number of gates for finding a typical output
digit in the adder. We now show how scaling the modulus makes this possible.

Suppose we take q 2 2. Then the most significant digit of R has index at most m
because R < 2 M . Indeed, if a suffix , denotes the digit coefficient of 2' in a number
representation, then R,,, = 0 or 1. This bound on R determines the size of registers as
neediug m+1 digits. So the subtraction of Q j x M might be implemented here by adding
QJ times the complement (2m+1-1) - M together with an initial carry Q J at the bottom
end and ignoring an overflow of Q J X ~ " + ' . Call this input M', and assume that the
inherent non-zero digit multiples are obtained by shifting so that its digits are bits. Then,
because M,,= = Zq - I gives M,,, = 0 and M, = 1 for m-1 2 i 2 m-q, the topmost digits
of M' satisfy MA = 0 or 1, and M: = 0 for rn-1 2 i > m-q. The initial carry does not
propagate up the adder more than a coupie of places, and so it does not affect the top
digits. Finally, QJ has the simple formula 2& +

Now take q = 4. The top end of the delay carry adder simplifies to the typical bit slice
illustrated in Figure 1 because the most significant digits of input AJ x B are 0. Using the
various bit values just described, consequent simplifications to the bit slice yield most of

the top end of Figure 1. However, once R is computed, part of the next addition cycle can
be performed on its topmost digits to convert them nearer to non-redundant form. This
is illustrated in that part of the figure below the dotted line which marks the end of one
iteration of the software algorithm proved above. Enough has been done there to remove
the possibility that R,,,-4 = 2, i.e. (2R),,,-3 = 2, which explains the other simplification to
the input.

The advantage of starting part of the next iteration is that the quotient digit can be

322

calculated e d i e r in the cycle. Here it appears after a maximum of 3 gates, rather than the
1 1 noted above: a substantial reduction. Since it is actually computed earlier than a typical
digit output from lower down the adder, it is clearly possible after further modifications
to fan out this information in parallel with the addition rather than sequentially after it,
thereby reducing the critical path length to that of the adder (6 here). This requires a lot
of the top digit calculations to he considerably advanced, but it would enable chips using
scaling to run at about double the speed of others with the only significant cost being an
extra register to hold M'. To build such a circuit is just tedious development and we omit
the details.

Finally, we consider how to add surrounding detail to Figure 1 without trying to advance
the quotient digit computations still further. If all the topmost input bits needed for
calculating the quotient digit are already in position at the start of a clock cycle, then
generating the same inputs for the next cycle requires 3 gates €or the quotient digit, 2 for
fanning it out and 2 for selecting digits for M': a total of 7. Let us use 5 gates to completely
disseminate the new quotient digit to all digit positions. So this makes a total depth of
3+5 = 8 gates at the top end. The main part of a 512- to 1024-bit adder then just needs
a depth of 2 gates for selecting M' as well as the 6 gates of the adder itself. This makes
the critical path length just 8, compared to 15 without modulus scaling. Counting 2 gates
as the equivalent of the set-up and hold times for registers, the hardware presented here
should be able to be run at about (15$2)/(8+2) times the speed of comparable hardware
without a scaled modulus, i.e. 70% faster.

Input M' and 2R
(R sh i f t ed 1 p lace)

S l l a e

S / W c y c l e a t to^ end
Output next R

Figure 1. Adder for radix 2 when q = 4 and Mj,, = 15.

323

6 Final Detail and Conclusions

We have shown how to scale the modulus for modular multiplication to potentially
double the speed of hardware, giving sufficient detail to achieve a speedup factor of 70%.
The cost for radix 2 involved 4 extra bit positions in registers and consequently 4 extra
clock cycles - less than 1% in space or time for typical RSA applications. For the full
doubling of speed an extra register holding M' is required. Further penalties are slight.
They concern pre- and post- processing. Initial scaling is cheap when the modulus is much
used as it is done once for all. The output is bounded by 2 f M, where f is the scaling factor.
Hence M needs to be loaded and subtracted as necessary. However, in RSA cryptography
this does not need t o be done until decryption, and it can be avoided entirely by choosing
a modulus which needs no scaling.

References

[l] D. E. Atkins, Higher Radix Division using Estimates of the Divisor and Partial
Remainders, IEEE Trans. Comp., vol. C-17, 1968, pp. 925-934.

E. F. Brickell, A Fast Modular Multiplication Algorithm with Application to ' h o

Key Cryptography, Advances in Cryptology (Proceedings of CRYPTO 82) ed. Chaum
et al., Plenum, 1983, pp. 51-60.

S. E. Eldridge and C. D. Walter, Montgomery's Algorithm for Fast Modular Multi-
plication, IEEE Trans. Comp., to appear.

M. D. Ercegovac and T. Lang, Simple Radix-4 Division with Operands Scaling, IEEE
Trans. Comp., vol. 39, 1990, pp. 1204-8.

R. L. Rivest, A. Shamir and L. Adleman, A Method of Obtaining Digital Signatures
and Public Key Cryptosystems, Comm. ACM, vol. 21, 1978, pp. 120-126.

G. S. Taylor, Radix 16 SRT Dividers with overlapped Quotient Selection Stages, Proc.
IEEE 7th Symp. Comp. Arith., 1985, pp. 64-73.

c. D. Walter, Fast Modular Multiplication using 2-Power Radix, Intern. J. Computer
Maths., vol. 39, 1991, pp. 21-28.

[2)

13)

[4]

[5]

[S]

[7]

	Introduction
	Overview of the Algorithm
	Scaling the Modulus
	Solutions for Radix 2
	Improved Circuits for Radix 2
	Final Detail and Conclusions
	References

