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Abstract

In this paper, we propose a risk-sensitive approach

to parameter estimation for hidden Markov models

(HMMs). The parameter estimation approach con-

sidered exploits estimation of various functions of the

state, based on model estimates. We propose certain

practical suboptimal risk-sensitive �lters to estimate

the various functions of the state during transients,

rather than optimal risk-neutral �lters as in earlier

studies. The estimates are asymptotically optimal, if

asymptotically risk neutral, and can give signi�cantly

improved transient performance, which is a very desir-

able objective for certain engineering applications.

To demonstrate the improvement in estimation simu-

lation studies are presented that compare parameter

estimation based on risk-sensitive �lters with estima-

tion based on risk-neutral �lters.

1 Introduction

Hidden Markov models (HMMs) are a powerful tool

in the �eld of signal processing [2] with application to

speech processing[8], digital communication systems[3]

and biological signal processing[5].

Hidden Markov models in discrete time can be viewed

as having a state Xk at time k belonging to a dis-

crete set, without loss of generality denoted as S =

fe1; e2; :::; eNg, where ei is a vector that is zero every-

where excepting the ith element which is 1. There are

transitions between states described by �xed probabil-

ities which form a matrix A = (aij) where aij is the

probability of transferring from state ej to state ei.

Observations of the Markov state are made. We con-

sider a Poisson observation process, where the Markov

chain modulates the rate of a observed Poisson process.

Several schemes for estimating the parameters of a

HMM have been proposed including an EM approach

[1] and RPE approaches [4, 6]. All these approaches re-

quire estimation of various functions of the state. For

example, the number of transitions between the possi-

ble states of the Markov chain is used to estimate the

transition probability matrix. Previous approaches use

risk-neutral �lters conditioned on model estimates to

generate estimates of various state quantities. How-

ever, risk-neutral �lters are only optimal in the trivial

case when the model estimates are equal to the true

model.

In [7] optimal risk-sensitive �lters and smoothers for

known hidden Markov models, are proposed. The

risk-sensitive �lter is �nite dimensional and evanesces



to the risk-neutral �lter as the risk parameter � ap-

proaches zero. Simulation studies illustrate that the

risk-sensitive �lter can perform better than the risk-

neutral �lter on limited �nite data when the HMM is

not known accurately.

The key proposal of this paper is that risk-sensitive

�lters should be used to improve performance of cer-

tain HMM parameter estimators. Unfortunately, opti-

mal risk-sensitive �lters for the various functions of the

states are computational prohibitive and we propose

suboptimal versions. In this paper we consider o�-line

estimation of HMM parameters.

This paper is organized as follows: In Section 2 we in-

troduce the notation used for HMMs in this paper. In

Section 3 the parameter estimation problem is intro-

duced. In Section 4 the risk-sensitive �ltering prob-

lem is introduced and our suboptimal risk-sensitive ap-

proach to parameter estimation is proposed. In Section

5 simulation studies are presented. Finally, in Section

6 some conclusions are presented.

2 State Dynamics, and Observation Process

2.1 The State Process

Let Xk be a discrete-time homogeneous, �rst order

Markov process, belonging to a �nite set. The state

space, X , without loss of generality, can be identi�ed

with a set of unit vectors, S = fe1; e2; ::; eNg; ei =

(0; : : : ; 0; 1; 0; : : : ; 0)0 2 AN with 1 in the ith position.

The transition probability matrix is

A = (aij) for 1 � i; j � N

where aij = P (Xk+1 = eijXk = ej), so that

E[Xk+1jXk] = AXk (1)

where E[:] denotes the expectation operator. We also

denote fF`; ` 2 Z
+g the complete �ltration generated

by X , that is, for any k 2 Z+;Fk is the complete �ltra-

tion generated by X`; ` � k. For a brief introduction

of the concept of �ltration in this context see [2].

Lemma 2.1 The dynamics of Xk are given by the

state equation

Xk+1 = AXk + Vk+1 (2)

where Vk+1 is a (A;Fk) martingale increment, in that

E[Vk+1jFk] = 0.

Proof: See [2].

We can also write the initial state probability vector for

the Markov chain as � = (�i) where �i = P (X1 = ei).

2.2 The Observation Process

We assume Xk is hidden, that is, indirectly observed

by measurements yk (a Poisson process modulated by

Xk). That is, the state modulates the rate (ie. the rate

zk is given by zk = �Xk, where � is a vector of Pois-

son rates) of an observed Poisson process. Hence we

have observations fy0; y1; : : :g that obey the following

Poisson density:

P ((yk � yk�1) = njxk) =
znk
n!
e�zk ; n = 0; 1; : : : (3)

The HMM described by (2),(3) is denoted by MP =

(A; �; �).

3 Parameter Estimation

In this section we consider the problem of estimating

the parameters of a hidden Markov model (2),(3) from

observations yk.

From manipulation of (2), by multiplication by X 0
k and

summing over k we obtain

kX
`=1

X`+1X
0
` = A

kX
`=1

X`X
0
` +

kX
`=1

VkX
0
`; (4)



or

Jk = AOk +

kX
`=1

VkX
0
` (5)

where

Jk =

kX
`=1

X`+1X
0
` and Ok =

kX
`=1

X`X
0
`; (6)

A reasonable estimate of A is Â�
k = Jk (Ok)

�1
:

To estimate � we note that (3) can be rewritten as

yk � yk�1 = �Xk + !k (7)

where !k is zero mean !k � ��Xk and (�Xk + !k) 2

Z+ where Z+ is the set of non-negative integers.

Hence, a reasonable estimate of � is �̂�k = �Tk (Ok)
�1

where

�Tk =

kX
`=1

�y`X
0
` (8)

and where �y` = y` � y`�1.

3.1 Conditional mean estimates

When Jk;Ok and �Tk are not available directly we work

with estimates of these quantities. Conditional mean

estimates can be obtained using the �lters given in [2]

if the true model is known. Thus de�ne,

JX
k := Xkrow vec Jk 2 <

N�N2

(9)

row vec Jk = 10JX
k 2 <1�N2

: (10)

Conditional mean estimates are obtained as follows[2],

�(JX
kjk) = AB(yk)�(J

X
k�1jk�1)

+ ((Ae1)diag; (Ae2)diag; : : : ; (AeN )diag)

� (B(yk)(�k�1)diag 
 I)

where row vec �(Jkjk) = 10�(J X
kjk) (11)

�( �T X
kjk) = AB(�yk)�( �T

X
k�1jk�1)

+AB(�yk)(�k�1)diag�yk

where row vec �( �Tkjk) = 10�( �T X
kjk): (12)

where �(J X
kjk) is the unnormalised conditional mean

estimate for JXk . These recursions assume knowledge

of M and hence these �lters are termed risk-neutral

(RN) �lters.

O�-line Parameter Estimation

In o�-line estimation, after each pass through the data

set, parameter estimates are obtained and the model

estimate is updated. That is, given the data set

�y0; : : : ; �yT we calculate estimates for JT ;OT and �TT

based on the last o�-line model, M̂P
`�1, obtained after

the `� 1th pass through the data as follows

Ĵ
T jT;M̂P

`�1

= E
h
JT

���M̂P
`�1

i
; (13)

ÔT jT;M̂P

`�1

= E
h
OT

���M̂P
`�1

i
; (14)

�̂T T jT;M̂P

`�1

= E
h
�TT

���M̂P
`�1

i
: (15)

Then, after passing through the data our new parame-

ter estimates are:

�A` = ĴT jT;M̂P

`�1

�
ÔT jT;M̂P

`�1

��1

;

��` = ĴT jT;M̂P

`�1

�
ÔT jT;M̂P

`�1

��1

(16)

The model estimate, M̂P
` , is then created for use in the

next pass and Jk, Ok and �Tk are again estimated.

Local convergence of �A` to A and ��` to � follows by

applying the EM algorithm [8].

These conditional mean �lters (11)� (12) are optimal

for pass ` if M̂P
` =MP . However, it is the nature of the

estimation problem that in general M̂P
` 6=MP . When

M̂P
` 6= MP the RN �lter may have poor performance

even when the error in M̂P
` is small (ie. M̂P

` is close

MP ). The question explored in this paper is whether

or not RS �lters can be shown to perform better than

RN �lters when used for the purpose of parameter es-

timation. RS �lters do not assume an average noise

situation, but rather move towards a worse case noise

situation, which may represent in an useful way this

sort of model uncertainty. In the following section we

investigate RS �lters and parameter estimation.



4 Risk-Sensitive Filters

In this section we de�ne the RS �ltering task and pro-

pose practical RS �lters for the Jk, Ok, and �Tk quanti-

ties. Estimators for the model parameters A and � are

then proposed.

Risk-Sensitive Performance Index

The RS estimation problem is to determine the esti-

mate X̂k such that

X̂k = argmin
�
; Jk (�) for all k = 0; 1; : : : ; (17)

where

Jk (�) = E [� exp (�	0;k (�))j Yk] (18)

is the RS cost function. Here,

	0;k(�) = �̂0;k�1 +
1

2
(Xk � �)0Qk(Xk � �); (19)

where Qk � 0 for all k and

	̂m;n =
1

2

nX
i=m

�
Xi � X̂i

�0
Qi

�
Xi � X̂i

�
(20)

This RS �ltering problem for HMMs was solved by Dey

and Moore [7].

Risk-Sensitive State Estimation

In [7] it is shown that a information state, �k, for the

state Xk is given by

�k+1 = ADkBk�k (21)

where

Dk = diag

(
exp

�
�

2

�
e1 � X̂k

�0
Qk

�
e1 � X̂k

��
; : : :

; exp

�
�

2

�
eN � X̂k

�0
Qk

�
eN � X̂k

��)
(22)

and

Bk = diag

�
(�e1)

n

n!
e�(�e1); : : : ;

(�eN )
n

n!
e�(�eN )

�
:

(23)

Note that for the Poisson process the di�erences, yk �

yk�1, can be considered the observations. By compar-

ing with the standard HMM �lter (ie. �k+1 = ABk�k)

it is clear that the RS �lter is di�erent only in that

the diagonal matrix Bk has been modi�ed to the di-

agonal matrix DkBk. The Dk matrix has the e�ect of

increasing the tails of the noise probability density in

an appropriate manner. This can be interpreted as al-

lowing for parameter uncertainty by allowing for more

observation noise.

Here we are interested in RS �lters for the quantities

Jk, Ok and �Tk. The RS �ltering problem is computa-

tionally intensive for Jk;Ok and �Tk because it requires

maximization over Nk elements, at each time instant

k so in the next section we consider suboptimal risk-

sensitive �lters for these quantities.

Proposed Suboptimal Parameter Estimators

A key result of this paper is to propose suboptimal RS

�lters in which the noise model is modi�ed to allow for

parameter uncertainty. Our pseudo RS �lter for quan-

tities Jk;Ok and �Tk are constructed from the optimal

RN �lter by replacing the Bk terms by DkBk terms,

in the same way as occurs for the RS state estimation

�ltering problem. This is partially justi�able from the

interpretation given above ofDk as modifying the noise

model.

That is, our suboptimal RS estimates for Jk;Ok and

�Tk are as follows:

�(JX
kjk) = ADB(yk)�(J

X
k�1jk�1)

+ ((Ae1)diag; (Ae2)diag; : : : ; (AeN )diag)

� (DB(yk)(�k�1)diag 
 I)

where row vec �(Jkjk) = 10�(JX
kjk) (24)

�( �T X
kjk) = ADB(�yk)�( �T

X
k�1jk�1)



+ADB(�yk)(�k�1)diag�yk

where row vec �( �Tkjk) = 10�( �T X
kjk): (25)

Here �(J X
kjk) is the unnormalised conditional mean es-

timate for JXk . We obtain unnormalised conditional

mean estimates for Jk from �(JX
kjk) using (24).

This suboptimal RS �lter is not optimal in a RS sense

but hopefully will be able to handle parameter uncer-

tainty better than the RN �lter.

Using the suboptimal RS �lters we estimate parameters

in an o�-line manner as follows.

�ARS
`+1 = Ĵ RS

T jT;M̂P

`

�
ÔRS

T jT;M̂P

`

��1

;

��RS`+1 = �̂T
RS

T jT;M̂P

`

�
ÔRS

T jT;M̂P

`

��1

(26)

where �ARS
` etc. are the RS estimates.

5 Simulations Studies

In this section, simulation studies are presented to il-

lustrate the performance improvement of RS estima-

tion of HMM parameters. The example presented is

representative of the sort of performance improvement

possible. Of course, it would be more convincing to

have theorems giving relative rates of convergence dur-

ing transients on �nite data, but because estimation

here is inherently a nonlinear exercise for which there

is no precedent for such results, we settle here for sim-

ulation studies.

5.1 O� Line estimation HMM parameters

A 3000 point, 2-state HMM with parameters: A =

[0:8; 0:3; 0:2; 0:7] and � = [10; 20]0 is generated.

Initial estimates of the HMM parameter are: aij = 0:5

for all i; j. � is assumed known. Adaptive estimation

of A is performed using both (16) and (26) (� = 0:1

and Q = I2) with A updated after each pass through

the data.

Figure 1 shows the error in a22 estimates plotted

against pass number. Convergence in the other param-

eters is similar. The RS parameter estimator appears

to converge better from the initialization. A reasonable

approach may be to estimated parameters by using RS

�lters for the initial passes through the data and then

use the RN estimator once convergence close to the true

values has occurred.

5.2 E�ect of � choices on RS estimation

A HMM was generated and estimation of A and � was

performed using a online RS approach (not shown here)

using three di�erent choices of �. Figure 2 shows the

evolution of parameter estimates.

For small values of � the performance of the risk sen-

sitive �lter is, not surprisingly, very similar to the op-

timal �lter. As the value of � is increased the perfor-

mance improves until some point. For larger values of �

the RS estimator does not perform as well. It appears

that moderate choices of � result in performance gains.

6 Conclusion

In this paper we have proposed a practical risk-

sensitive approach to estimation of hidden Markov

model (HMM) parameters. It is not surprising that

a risk-sensitive approach, being inherently risk averse

or robust to modelling errors, can give better tran-

sient performance than working with risk-neutral �l-

ters, and yet achieve asymptotic optimality if asymp-

totically risk-neutral. The simulation examples show

that in an o�-line situations that using risk-sensitive

�ltering results in a improvement in transient perfor-

mance of the parameter estimation from poor initial-

izations. We conclude that the risk sensitive approach

to HMM parameter estimation should be seen an al-

ternative approach to the HMM parameter estimation



problems.
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Figure 1: O�-line Estimation of A in Poisson Model.
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