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Product formulas can be used to simulate Hamiltonian dynamics on a quan-
tum computer by approximating the exponential of a sum of operators by a
product of exponentials of the individual summands. This approach is both
straightforward and surprisingly efficient. We show that by simply random-
izing how the summands are ordered, one can prove stronger bounds on the
quality of approximation for product formulas of any given order, and thereby
give more efficient simulations. Indeed, we show that these bounds can be
asymptotically better than previous bounds that exploit commutation between
the summands, despite using much less information about the structure of the
Hamiltonian. Numerical evidence suggests that the randomized approach has
better empirical performance as well.

1 Introduction
Simulating quantum dynamics is one of the major potential applications of quantum com-
puters. The apparent intractability of simulating quantum dynamics with a classical com-
puter led Feynman [19] and others to propose the idea of quantum computation. Lloyd
gave the first explicit quantum algorithm for simulating the dynamics of local Hamiltoni-
ans [25], and later work showed that the more general class of sparse Hamiltonians can
also be simulated efficiently [1]. Quantum simulation can be applied to understand the
behavior of various physical systems—including many-body physics [31], quantum chem-
istry [2, 30, 36], and quantum field theory [23]—and designing new quantum algorithms
[9, 11, 16, 18, 21].

The main ingredient in Lloyd’s algorithm is the Lie product formula, which provides a
first-order approximation to the exponential of a sum as a product of exponentials of the
summands. Given Hermitian operators H1, . . . ,HL (which we refer to as the summands
of the Hamiltonian H =

∑L
j=1Hj) and a complex number λ, the Lie product formula

S1(λ) :=
L∏
j=1

exp(λHj), (1)

approximates the exponentiation

V (λ) := exp
(
λ

L∑
j=1

Hj

)
(2)
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in the sense that V (λ) ≈ S1(λ/r)r for large r. Suzuki systematically extended this formula
to give a (2k)th-order approximation S2k, defined recursively by

S2(λ) :=
L∏
j=1

exp
(
λ

2Hj

) 1∏
j=L

exp
(
λ

2Hj

)
S2k(λ) := S2k−2(pkλ)2 S2k−2((1− 4pk)λ)S2k−2(pkλ)2

(3)

with pk := 1/(4 − 41/(2k−1)) [33]. Again we have V (λ) ≈ S2k(λ/r)r for large r, and
the approximation obtained with a given value of r improves as k increases (albeit with a
prefactor that grows exponentially in k). We refer to all such formulas as product formulas.
When they are used for quantum simulation, H is chosen to be the Hamiltonian and
λ = −it, where t is the evolution time. Although other approaches to quantum simulation
have better proven asymptotic performance as a function of various parameters [4, 6–8, 20,
26, 27], product formulas perform well in practice [17] and are widely used in experimental
implementations [3, 12, 24] due to their simplicity and the fact that they do not require
any ancilla qubits.

The main challenge in applying product formulas to quantum simulation is to choose
the number of segments r to ensure the simulation error is at most some allowed threshold
ε. To simulate H =

∑L
j=1Hj for time t, rigorous error analysis shows that

r1,det = O

((tΛL)2

ε

)
(4)

suffices to ensure error at most ε for the first-order formula and

r2k,det = O

((tΛL)1+ 1
2k

ε
1

2k

)
(5)

suffices for (2k)th order [5], where Λ := maxj ‖Hj‖ is a spectral-norm upper bound on
the summands and det indicates that these formulas are constructed deterministically.
However, numerical simulations suggest that the product formula algorithm can perform
significantly better in practice than the best proven error bounds demonstrate [2, 17, 31, 32].
Indeed, recent work suggests that it can even asymptotically outperform more sophisticated
simulation algorithms with better proven running times [17]. This dramatic gap between
the provable and the actual behavior of product formula simulation suggests that it may be
possible to significantly improve their analysis, and thereby give more efficient algorithms
for quantum simulation.

It is sometimes possible to improve the analysis of product formulas using further in-
formation about the form of the Hamiltonian. In particular, the cost of simulation can
be reduced when many pairs of summands commute [2, 17, 25]. However, this approach
can only be applied for structured Hamiltonians that contain many commuting summands.
Furthermore, the best known bounds of this type give only modest improvement, remain-
ing orders of magnitude away from the empirical performance even in cases where many
summands commute [17].

Randomization can be a powerful tool for improving the performance of quantum simu-
lation algorithms. For example, Poulin et al. gave improved simulations of time-dependent
Hamiltonians by sampling the Hamiltonian at random times [29]. Closer in spirit to the
present paper, Zhang studied the effect of randomizing the ordering and/or duration of
evolutions in a product formula, showing in particular that randomly ordering the sum-
mands in the first-order formula in either forward or reverse order can give an improved
algorithm [37].
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In this paper, we explore a closely related approach for higher-order product formulas,
which can achieve significantly better asymptotic performance. Specifically, we analyze the
effect of randomly permuting the summands. The resulting algorithm is not much more
complicated than a deterministic product formula, but the savings in the simulation cost
are substantial. For any permutation σ ∈ Sym(L) of the L summands, let

Sσ2 (λ) :=
L∏
j=1

exp
(
λ

2Hσ(j)

) 1∏
j=L

exp
(
λ

2Hσ(j)

)
Sσ2k(λ) := [Sσ2k−2(pkλ)]2Sσ2k−2((1− 4pk)λ)[Sσ2k−2(pkλ)]2.

(6)

We show that the (2k)th-order randomized simulation has error∥∥∥∥∥∥V(−it)−
( 1
L!

∑
σ∈Sym(L)

Sσ2k
(
−it/r

))r∥∥∥∥∥∥
�

= O

((ΛtL)4k+2

r4k+1 + (Λt)2k+1L2k

r2k

)
. (7)

where V(−it) and Sσ2k(−it/r) are quantum channels describing the unitary transformation
V (−it) and the random unitary Sσ2k(−it/r), respectively, and ‖·‖� is the diamond norm
(defined in Section 2).

Our analysis uses a mixing lemma of Campbell and Hastings [13, 22] to bound the
diamond norm distance from the ideal evolution. (Even for the first-order case, this im-
proves over the analysis of Zhang, which uses similar methods but only bounds the trace
distance from the ideal final state [37], a metric that does not account for entanglement
with a reference system.) Informally, the lemma of [13, 22] states that if we can approxi-
mate a desired operation as the average over some set of operations, then the overall error
depends linearly on the error in the average operation but only quadratically on the error
in any individual operation. Standard error bounds for product formulas do not depend
on how the summands are ordered, but we show that randomizing the ordering gives a
more accurate average evolution. We motivate this approach in Section 2, where we con-
sider the effect of randomizing how the summands are ordered in the simple case of the
first-order formula. Assuming Λ := maxj ‖Hj‖ is constant, the randomized first-order al-
gorithm has gate complexity grand1 = O

(
t1.5L2.5/ε0.5

)
, improving over gdet

1 = O
(
t2L3/ε

)
in

the deterministic case.
Analyzing the effect of randomization on higher-order formulas is more challenging.

For terms of order at most L in the Taylor expansion of a product formula, the majority
of the error comes from terms in which no summands are repeated. We call such contri-
butions nondegenerate terms. In Section 3, we give a combinatorial argument to compute
nondegenerate terms of the average evolution 1

L!
∑
σ∈Sym(L) S

σ
2k(λ) in closed form. (In fact,

we prove a more general result that applies to the average evolution as a special case.) As
a corollary, we show that the nondegenerate terms completely cancel in the randomized
product formula.

Section 4 presents our main technical result, an upper bound on the error in a ran-
domized higher-order product formula simulation. This bound follows by using the mixing
lemma to combine an error bound for the average evolution operator with standard product
formula error bounds for the error of the individual terms. Section 5 discusses the overall
performance of the resulting algorithm and compares it with deterministic approaches. For
the (2k)th-order product formula, assuming Λ := maxj ‖Hj‖ is constant, our randomized
Hamiltonian simulation algorithm has complexity

grand2k = max
{
O

(
tL2

(
tL

ε

) 1
4k+1

)
, O

(
tL2

(
t

ε

) 1
2k
)}

, (8)
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compared to gdet
2k = O

(
tL2(tL/ε)

1
2k
)
in the deterministic case. Thus our algorithm always

improves the dependence on L and sometimes achieves better dependence on t and ε as
well.

We also show in Section 5 that our bound can outperform a previous bound that takes
advantage of the structure of the Hamiltonian. Specifically, we compare our randomized
product formula algorithm with the deterministic algorithm using the commutator bound of
[17] for a one-dimensional Heisenberg model in a random magnetic field. We find that over
a significant range of parameters, the randomized algorithm has better proven performance,
despite using less information about the form of the Hamiltonian.

In light of the large gap between proven and empirical performance of product formulas,
it is natural to ask whether randomized product formulas still offer an improvement under
the best possible error bounds. To address this question, we present numerical comparisons
of the deterministic and randomized product formulas in Section 6. In particular, we show
that the randomized approach can sometimes outperform the deterministic approach even
with respect to their empirical performance.

Finally, we conclude in Section 7 with a brief discussion of the results and some open
questions.

2 The power of randomization
To see how randomness can improve a product formula simulation, consider a simple
Hamiltonian expressed as a sum of two operators, H = H1 +H2. The Taylor expansion of
the first-order formula as a function of λ ∈ C is

S1(λ) = exp(λH1) exp(λH2) = I + λ(H1 +H2) + λ2

2 (H2
1 + 2H1H2 +H2

2 ) +O(λ3), (9)

whereas the Taylor series of the ideal evolution is

V (λ) = exp((H1 +H2)λ) = I+λ(H1 +H2)+ λ2

2 (H2
1 +H1H2 +H2H1 +H2

2 )+O(λ3). (10)

Using the triangle inequality, we can bound the spectral-norm error as

‖V (λ)− S1(λ)‖ ≤ ‖[H1, H2]‖ |λ|
2

2 +O((Λ|λ|)3), (11)

where Λ := max{‖H1‖ , ‖H2‖}. Since H1 and H2 need not commute, S1(λ) approximates
V (λ) to first order in λ, as expected.

It is clearly impossible to approximate V (λ) to second order using a product of only
two exponentials of H1 and H2: any such product can have only one of the products H1H2
and H2H1 in its Taylor expansion, whereas V (λ) contains both of these products in its
second-order term. However, we can obtain both products by taking a uniform mixture of
S1(λ) and

Srev
1 (λ) := exp(λH2) exp(λH1). (12)

Indeed, a simple calculation shows that∥∥∥∥V (λ)− 1
2
(
S1(λ) + Srev

1 (λ)
)∥∥∥∥ = O

(
(Λ|λ|)3). (13)

However,
(
S1(−it) + Srev

1 (−it)
)
/2 is not a unitary operation in general. We could in

principle implement a linear combination of unitaries using the techniques of [6], but such
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an approach would use ancillas and could have high cost, especially when the Hamiltonian
contains many summands. A simpler approach is to apply one of the two operations
S1(−it) and Srev

1 (−it) chosen uniformly at random (as in Algorithm 2 of [37]), thereby
implementing a quantum channel that gives a good approximation to the desired evolution.

We now introduce some notation that is useful to analyze the performance of random-
ized product formulas. Let X be a matrix acting on a finite-dimensional Hilbert space
H. We write ‖X‖ for its spectral norm (the largest singular value) and ‖X‖1 for its trace
norm (the sum of its singular values, i.e., its Schatten 1-norm). Let E : X 7→ E(X) be a
linear map on the space of matrices on H. The diamond norm of E is

‖E‖� := max{‖(E ⊗ 1H)(Y )‖1 : ‖Y ‖1 ≤ 1}, (14)

where the maximization is taken over all matrices Y on H⊗H satisfying ‖Y ‖1 ≤ 1.
The following mixing lemma bounds how well we can approximate a unitary operation

using a random unitary channel. Specifically, the error is linear in the distance between the
target unitary and the average of the random unitaries, and only quadratic in the distance
between the target unitary and each individual random unitary.

Lemma 1 (Mixing lemma [13, 22]). Let V and {Uj} be unitary matrices, with associated
quantum channels V : ρ 7→ V ρV † and Uj : ρ 7→ UjρU

†
j , and let {pj} be a collection of

positive numbers satisfying
∑
j pj = 1. Suppose that

(i) ‖Uj − V ‖ ≤ a for all j and
(ii)

∥∥(∑j pjUj)− V
∥∥ ≤ b.

Then the average evolution E :=
∑
j pjUj satisfies ‖E − V‖� ≤ a2 + 2b.

To simulate the Hamiltonian H = H1 + H2 for time t, we divide the evolution into r
segments of duration t/r and implement each segment via the random unitary operation

1
2
(
S1(−it/r) + Srev

1 (−it/r)
)

(15)

using one bit of randomness per segment, where S1 and Srev
1 are the quantum channels

associated with S1 and Srev
1 . Invoking the mixing lemma with a = O

(
(Λt)2/r2) and

b = O
(
(Λt)3/r3), we find that∥∥∥∥V(−it/r)− 1

2
(
S1(−it/r) + Srev

1 (−it/r)
)∥∥∥∥
�

= O

((Λt)3

r3

)
. (16)

Since the diamond norm distance between quantum channels is subadditive under compo-
sition [35, p. 178], the error of the entire simulation is∥∥∥∥V(−it)− 1

2r
(
S1(−it/r) + Srev

1 (−it/r)
)r∥∥∥∥
�

= O

((Λt)3

r2

)
. (17)

Thus the randomized first-order formula is effectively a second-order formula.
This approach easily extends to a sum of L operators, again effectively making the

first-order formula accurate to second order (cf. [37], which shows the same result with
respect to trace distance of the output state). Keeping track of all the prefactors, we find
the following error bound for the randomized first-order formula.

Theorem 1 (Randomized first-order error bound). Let {Hj}Lj=1 be Hermitian matrices.
Let

V (−it) := exp
(
−it

L∑
j=1

Hj

)
(18)
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be the evolution induced by the Hamiltonian H =
∑L
j=1Hj for time t ∈ R. Define

S1(λ) :=
L∏
j=1

exp(λHj) and Srev
1 (λ) :=

1∏
j=L

exp(λHj). (19)

Let r ∈ N be a positive integer and Λ := max ‖Hj‖. Then∥∥∥∥V(−it)− 1
2r
(
S1(−it/r) + Srev

1 (−it/r)
)r∥∥∥∥
�
≤ (Λ|t|L)4

r3 exp
(

2Λ|t|L
r

)
+2(Λ|t|L)3

3r2 exp
(Λ|t|L

r

)
(20)

where, for λ = −it, we associate channels V(λ), S1(λ), and Srev
1 (λ) with the unitaries

V (λ), S1(λ), and Srev
1 (λ), respectively.

To guarantee that the simulation error is at most ε, we upper bound the right-hand side
of (20) by ε and solve for r. Assuming Λ := maxj ‖Hj‖ is constant, we find that it suffices
to choose rrand

1 = O
(
(tL)1.5/ε0.5

)
, giving a simulation algorithm with gate complexity

grand
1 = O

(
t1.5L2.5/ε0.5

)
. In comparison, the gate complexity in the deterministic case

is gdet
1 = O

(
t2L3/ε

)
. Therefore, the randomized first-order product formula algorithm

improves over the deterministic algorithm with respect to all parameters of interest.
It is natural to ask whether a similar randomization strategy can improve higher-order

product formulas (as defined in (3)). While it turns out that randomization does not
improve the order of the formula, it does result in a significant reduction of the error, and
in particular, lowers the dependence on the number of summands in the Hamiltonian. The
more complicated structure of higher-order formulas makes this analysis more involved
than in the first-order case (in particular, we randomly permute the L summands instead
of simply choosing whether or not to reverse them, so we use Θ(L logL) bits of randomness
per segment instead of only a single bit). As discussed at the end of Section 1, our proof
is based on a randomization lemma (established in the next section) that evaluates the
dominant contribution to the Taylor series of the randomized product formula in closed
form.

3 Randomization lemma
In this section, we study the Taylor expansion of the average evolution operator obtained
by randomizing how the summands of a Hamiltonian are ordered. We consider a formula
of the form

exp(q1λHπ1(1)) exp(q1λHπ1(2)) · · · exp(q1λHπ1(L))
exp(q2λHπ2(1)) exp(q2λHπ2(2)) · · · exp(q2λHπ2(L))
· · ·
exp(qκλHπκ(1)) exp(qκλHπκ(2)) · · · exp(qκλHπκ(L))

(21)

for real numbers q1, . . . , qκ ∈ R, a complex number λ ∈ C, Hermitian matrices H1, . . . ,HL,
and permutations π1, . . . , πκ ∈ Sym(L). By choosing appropriate values of q1, . . . , qκ ∈
R and ordering H1, . . . ,HL in both forward and backward directions, we can write any
product formula S2k(λ) in this form.
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We now permute the summands to get the average evolution
1
L!

∑
σ∈Sym(L)

exp(q1λHσ(π1(1))) exp(q1λHσ(π1(2))) · · · exp(q1λHσ(π1(L)))

exp(q2λHσ(π2(1))) exp(q2λHσ(π2(2))) · · · exp(q2λHσ(π2(L)))
· · ·
exp(qκλHσ(πκ(1))) exp(qκλHσ(πκ(2))) · · · exp(qκλHσ(πκ(L))).

(22)

In its Taylor expansion, we call the sum of the form∑
m1,...,ms

pairwise different

αm1...msλ
sHm1 · · ·Hms , (23)

with coefficients αm1...ms ∈ C, the sth-order nondegenerate term. This term contributes
Θ(Ls) to the sth-order error, whereas the remaining (degenerate) terms only contribute
O(Ls−1).

The following lemma shows how to compute the sth-order nondegenerate term for an
arbitrary average evolution.

Lemma 2 (Randomization lemma). Define an average evolution operator as in (22) and
let s ≤ L be a positive integer. The sth-order nondegenerate term of this operator is

[(q1 + · · ·+ qκ)λ]s

s!
∑

m1,...,ms
pairwise different

Hm1 · · ·Hms . (24)

Proof. We take all possible products of s terms from the Taylor expansion of (22). Observe
that the exponentials in (22) are organized in an array with κ rows and L columns.
We use κ1, . . . , κs and l1, . . . , ls to label the row and column indices, respectively, of the
exponentials from which the terms are chosen. To avoid double counting, we take terms
with smaller row indices first (i.e., κ1 ≤ · · · ≤ κs). Within each row, we take terms with
smaller column indices first. To get the sth-order nondegenerate term, we require that
πκ1(l1), . . . , πκs(ls) are pairwise different. The sth-order nondegenerate term of (22) can
then be expressed as

1
L!

∑
σ∈Sym(L)

∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

(qκ1λHσ(πκ1 (l1))) · · · (qκsλHσ(πκs (ls))). (25)

A direct calculation shows that
1
L!

∑
σ∈Sym(L)

∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

(qκ1λHσ(πκ1 (l1))) · · · (qκsλHσ(πκs (ls)))

= 1
L!

∑
σ∈Sym(L)

∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

∑
m1=σ(πκ1 (l1)),...,
ms=σ(πκs (ls))

(qκ1λHm1) · · · (qκsλHms)

= 1
L!

∑
m1,...,ms

pairwise different

∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

∑
σ∈Sym(L):

σ(πκ1 (l1))=m1,...,
σ(πκs (ls))=ms

(qκ1λHm1) · · · (qκsλHms)

= (L− s)!
L!

∑
m1,...,ms

pairwise different

[ ∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

(qκ1λ) · · · (qκsλ)
]
Hm1 · · ·Hms .

(26)
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Now observe that the summand (qκ1λ) · · · (qκsλ) depends only on the row indices. Letting
r1, . . . , rκ denote the number of terms picked from row 1, . . . , κ, respectively, we can re-
express this summand as (q1λ)r1 · · · (qκλ)rκ . We determine the coefficient of this term as
follows. The number of ways of choosing l1, . . . , ls pairwise different is L(L−1) · · · (L−s+
1). However, when we apply permutations πκ1 , . . . , πκs , we may double count some terms.
In particular, if κi = κi+1, we are to pick terms from the same row κi and we must have
li < li+1. This implies that the ordering of πκi(li) and πκi+1(li+1) is uniquely determined.
Altogether, we see that we have overcounted by a factor of (r1!) · · · (rκ!). Therefore, we
have∑
κ1≤···≤κs

∑
πκ1 (l1),...,πκs (ls)
pairwise different

(qκ1λ) · · · (qκsλ) =
∑

r1,...,rκ:
r1+···+rκ=s

L(L− 1) · · · (L− s+ 1)
(r1!) · · · (rκ!) (q1λ)r1 · · · (qκλ)rκ

= L(L− 1) · · · (L− s+ 1)[(q1 + · · ·+ qκ)λ]s

s! ,

(27)
where the last equality follows by the multinomial theorem.

Substituting (27) into (26) completes the proof.

As an immediate corollary, we compute the sth-order nondegenerate term of the average
evolution operator 1

L!
∑
σ∈Sym(L) S

σ
2k(λ).

Corollary 1. Let {Hj}Lj=1 be Hermitian operators; let λ ∈ C, k, s ∈ N, and s ≤ L.
Then the sth-order nondegenerate term of the average evolution 1

L!
∑
σ∈Sym(L) S

σ
2k(λ), with

Sσ2k(λ) defined in (6), is
λs

s!
∑

m1,...,ms
pairwise different

Hm1 · · ·Hms . (28)

Proof. The fact that Sσ2k(λ) is at least first-order accurate implies that q1 + · · · + qκ = 1
in (24).

Observe that the sth-order nondegenerate term of V (λ) = exp
(
λ
∑L
j=1Hj

)
is also given

by (28). Therefore, the sth-order nondegenerate term completely cancels in

V (λ)− 1
L!

∑
σ∈Sym(L)

Sσ2k(λ). (29)

4 Error bounds
In this section we establish our main result, an upper bound on the error of a randomized
product formula simulation. To apply the mixing lemma, we need to bound the error of
the average evolution. We now present an error bound for an arbitrary fixed-order term
in the Taylor expansion of the average evolution operator.

Lemma 3. Let {Hj}Lj=1 be Hermitian operators; let λ ∈ C and k, s ∈ N. Define the target
evolution V (λ) as in (2), and define the permuted (2k)th-order formula Sσ2k(λ) as in (6).
Then the sth-order error of the approximation

V (λ)− 1
L!

∑
σ∈Sym(L)

Sσ2k(λ) (30)
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is at most 0 0 ≤ s ≤ 2k,
(2·5k−1Λ|λ|)s

(s−2)! Ls−1 s > 2k,
(31)

where Λ := max ‖Hj‖.

The proof of this error bound uses the following estimate of a fixed-order degenerate
term in the average evolution operator.

Lemma 4. Let {Hj}Lj=1 be Hermitian operators with Λ := maxj ‖Hj‖; let q1, . . . , qκ ∈ R
with maxk |qk| ≤ 1; and let s ≤ L be a positive integer. Then the norm of the sth-order
degenerate term of the ideal evolution operator V (λ) as in (2) is at most

(Λ|λ|)s

s!
[
Ls − L(L− 1) · · · (L− s+ 1)

]
(32)

and the norm of the sth-order degenerate term of the average evolution operator as in (22)
is at most

(κΛ|λ|)s

s!
[
Ls − L(L− 1) · · · (L− s+ 1)

]
. (33)

Proof. The sth-order term of V (λ) is(
λ
∑L
j=1Hj

)s
s! = λs

s!
∑

m1,...,ms

Hm1 · · ·Hms (34)

and its nondegenerate term is

λs

s!
∑

m1,...,ms
pairwise different

Hm1 · · ·Hms . (35)

We use the following strategy to bound the norms of these terms: (i) bound the norm of
a sum of terms by summing the norms of each term; (ii) bound the norm of a product
of terms by multiplying the norms of each term; (iii) bound the norm of each summand
by Λ; and (iv) replace λ by |λ|. Applying this strategy, we find that the norm of the
sth-order term is at most (LΛ|λ|)s/s!, where the nondegenerate term contributes precisely
L(L− 1) · · · (L− s+ 1)(Λ|λ|)s/s!. Taking the difference gives the desired bound (32).

According to Lemma 2, the sth-order nondegenerate term of the average evolution is

[(q1 + · · ·+ qκ)λ]s

s!
∑

m1,...,ms
pairwise different

Hm1 · · ·Hms . (36)

Following the same strategy as for V (λ) and also upper bounding the norm of each qk by
1 as part of step (iv), we find that the norm of this term is at most

(κΛ|λ|)s

s! L(L− 1) · · · (L− s+ 1). (37)

It remains to find an upper bound for the entire sth-order term of the average evolution.
To this end, we start with the average evolution (22) and apply the following strategy:
(i′) replace each summand of the Hamiltonian by Λ; (ii′) replace each qk by 1 and each λ
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by |λ|; and (iii′) expand all exponentials into their Taylor series and extract the sth-order
term. In other words, we extract the sth-order term of

∑
σ∈Sym(L) exp(κLΛ|λ|)/L! to get

(κLΛ|λ|)s

s! . (38)

The equivalence of strategies (i)–(iv) and (i′)–(iii′) can be seen from [17, Eq. (57)]. Finally,
taking the difference between (38) and (37) gives the desired bound (33).

Proof of Lemma 3. We first prove a stronger bound, namely that the sth-order error is at
most 

0 0 ≤ s ≤ 2k,
2 (2·5k−1Λ|λ|)s

s! [Ls − L(L− 1) · · · (L− s+ 1)] 2k < s ≤ L,
2 (2·5k−1Λ|λ|)s

s! Ls s > L.

(39)

The first and third cases in this expression are straightforward. The formula Sσ2k is exact
for terms with order 0 ≤ s ≤ 2k (this is what it means for the formula to have order 2k),
so the error is zero in this case. When s > L, the randomization lemma is not applicable
and the error can be bounded as in [17, Proof of Proposition F.3].

To handle the remaining case 2k < s ≤ L, we apply Lemma 4 with κ = 2 · 5k−1. This
choice of κ follows from the definition of the (2k)th-order formula (3). The norm of the
sth-order degenerate terms can be upper bounded by

(Λ|λ|)s

s!
[
Ls−L(L−1) · · · (L−s+1)

]
+ (2 · 5k−1Λ|λ|)s

s!
[
Ls−L(L−1) · · · (L−s+1)

]
. (40)

According to Corollary 1, the sth-order nondegenerate term of (30) cancels, which proves
(39) for 2k < s ≤ L.

To finish the proof, we need a unified error expression for order s > 2k. When 2k <
s ≤ L, we have

Ls − L(L− 1) · · · (L− s+ 1)
= #

{
(l1, . . . , ls) ∈ [L]s

}
−#

{
(l1, . . . , ls) ∈ [L]s : ∀i, j, li 6= lj

}
= #

{
(l1, . . . , ls) ∈ [L]s

}
−#

⋂
i<j

{
(l1, . . . , ls) ∈ [L]s : li 6= lj

}
= #

⋃
i<j

{
(l1, . . . , ls) ∈ [L]s : li = lj

}
≤
(
s

2

)
Ls−1,

(41)

with #{·} denoting the size of a set and [L] := {1, . . . , L}, where the inequality follows
from the union bound. Therefore, we have

2(2 · 5k−1Λ|λ|)s

s! [Ls − L(L− 1) · · · (L− s+ 1)] ≤ (2 · 5k−1Λ|λ|)s

s! s(s− 1)Ls−1

= (2 · 5k−1Λ|λ|)s

(s− 2)! Ls−1.

(42)

If s > L ∈ N, we have s(s− 1) ≥ (L+ 1)L ≥ 2L and

2(2 · 5k−1Λ|λ|)s

s! Ls ≤ (2 · 5k−1Λ|λ|)s

(s− 2)! Ls−1. (43)

This completes the proof.
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We also use the following standard tail bound on the exponential function [17, Lemma
F.2].

Lemma 5. For any x ∈ C and κ ∈ N, we have∣∣∣∣ ∞∑
s=κ

xs

s!

∣∣∣∣ ≤ |x|κκ! exp(|x|). (44)

We now establish the main theorem, which upper bounds the error of a higher-order
randomized product formula.

Theorem 2 (Randomized higher-order error bound). Let {Hj}Lj=1 be Hermitian matrices.
Let

V (−it) := exp
(
−it

L∑
j=1

Hj

)
(45)

be the evolution induced by the Hamiltonian H =
∑L
j=1Hj for time t. For any permutation

σ ∈ Sym(L), define the permuted (2k)th-order formula recursively by

Sσ2 (λ) :=
L∏
j=1

exp
(
λ

2Hσ(j)

) 1∏
j=L

exp
(
λ

2Hσ(j)

)
Sσ2k(λ) := [Sσ2k−2(pkλ)]2Sσ2k−2((1− 4pk)λ)[Sσ2k−2(pkλ)]2,

(46)

with pk := 1/(4− 41/(2k−1)) for k > 1. Let r ∈ N and Λ := max ‖Hj‖. Then∥∥∥∥∥V(−it)−
( 1
L!

∑
σ∈Sym(L)

Sσ2k(−it/r)
)r∥∥∥∥∥

�

≤ 4(2 · 5k−1Λ|t|L)4k+2(
(2k + 1)!

)2
r4k+1

exp
(

4 · 5k−1 Λ|t|L
r

)
+ 2(2 · 5k−1Λ|t|)2k+1L2k

(2k − 1)!r2k exp
(

2 · 5k−1 Λ|t|L
r

)
(47)

where, for λ = −it, we associate quantum channels V(λ) and Sσ2k(λ) with the unitaries
V (λ) and Sσ2k(λ), respectively.

Proof. We first prove that∥∥∥∥∥∥V(λ)− 1
L!

∑
σ∈Sym(L)

Sσ2k(λ)

∥∥∥∥∥∥
�

≤ 4(2 · 5k−1Λ|λ|L)4k+2(
(2k + 1)!

)2 exp
(
4 · 5k−1Λ|λ|L

)
+ 2(2 · 5k−1Λ|λ|)2k+1L2k

(2k − 1)! exp
(
2 · 5k−1Λ|λ|L

)
.

(48)
To this end, note that the sth-order error of V (λ)− Sσ2k(λ) is at most0 0 ≤ s ≤ 2k,

2(2·5k−1Λ|λ|)s
s! Ls s > 2k

(49)

(as before, this follows as in [17, Proof of Proposition F.3]). Thus Lemma 5 gives

‖V (λ)− Sσ2k(λ)‖ ≤ 2(2 · 5k−1Λ|λ|L)2k+1

(2k + 1)! exp
(
2 · 5k−1Λ|λ|L

)
. (50)
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On the other hand, Lemma 3 implies that the sth-order error of V (λ)− 1
L!
∑
σ∈Sym(L) S

σ
2k(λ)

is at most 0 0 ≤ s ≤ 2k,
(2·5k−1Λ|λ|)s

(s−2)! Ls−1 s > 2k,
(51)

so again Lemma 5 gives∥∥∥∥∥∥V (λ)− 1
L!

∑
σ∈Sym(L)

Sσ2k(λ)

∥∥∥∥∥∥ ≤ (2 · 5k−1Λ|λ|)2k+1L2k

(2k − 1)! exp
(
2 · 5k−1Λ|λ|L

)
. (52)

Equation (48) now follows from Lemma 1 by setting

a = 2(2 · 5k−1Λ|λ|L)2k+1

(2k + 1)! exp
(
2 · 5k−1Λ|λ|L

)
,

b = (2 · 5k−1Λ|λ|)2k+1L2k

(2k − 1)! exp
(
2 · 5k−1Λ|λ|L

)
.

(53)

To simulate the evolution for time t, we divide it into r segments. The error within
each segment is obtained from (48) by setting λ = −it/r. Then subadditivity of the
diamond norm distance gives∥∥∥∥∥∥V(−it)−

( 1
L!

∑
σ∈Sym(L)

Sσ2k
(
− it/r

))r∥∥∥∥∥∥
�

≤ r

∥∥∥∥∥∥V(−it/r)− 1
L!

∑
σ∈Sym(L)

Sσ2k
(
− it/r

)∥∥∥∥∥∥
�

,

(54)
which completes the proof.

5 Algorithm performance and comparisons
We now analyze the complexity of our randomized product formula algorithm. Assume
that k ∈ N is fixed, Λ = O(1) is constant, and r > tL. By Theorem 2, the asymptotic
error of the (2k)th-order randomized product formula is∥∥∥∥∥∥V(−it)−

( 1
L!

∑
σ∈Sym(L)

Sσ2k
(
− it/r

))r∥∥∥∥∥∥
�

≤ O
((tL)4k+2

r4k+1 + t2k+1L2k

r2k

)
. (55)

To guarantee that the simulation error is at most ε, we upper bound the right-hand side
of (55) by ε and solve for r. We find that it suffices to use

rrand
2k = max

{
O

((tL)
4k+2
4k+1

ε
1

4k+1

)
, O

(
t

2k+1
2k L

ε
1

2k

)}

= max
{
O

(
tL

(
tL

ε

) 1
4k+1

)
, O

(
tL

(
t

ε

) 1
2k
)} (56)

segments, giving a simulation algorithm with

grand
2k = O(Lrrand

2k ) = max
{
O

(
tL2

(
tL

ε

) 1
4k+1

)
, O

(
tL2

(
t

ε

) 1
2k
)}

(57)

elementary gates.
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For comparison, the error in the (2k)th-order deterministic formula algorithm is at
most [17, Proposition F.4]∥∥∥V (−it)−

[
S2k(−it/r)

]r∥∥∥ ≤ O((tL)2k+1

r2k

)
. (58)

While this bound quantifies the simulation error in terms of the spectral-norm distance, it
can easily be adapted to the diamond-norm distance using either Lemma 1 or [8, Lemma
7]. This translation introduces only constant-factor overhead, so we have∥∥∥V(−it)−

[
S2k(−it/r)

]r∥∥∥
�
≤ O

((tL)2k+1

r2k

)
. (59)

Therefore, the number of segments that suffice to ensure error at most ε satisfies

rdet
2k = O

(
tL

(
tL

ε

) 1
2k
)
, (60)

giving an algorithm with

gdet
2k = O(Lrdet

2k ) = O

(
tL2

(
tL

ε

) 1
2k
)

(61)

elementary gates. Comparing to (57), we see that the randomized product formula strictly
improves the complexity as a function of L. Indeed, the (2k)th-order randomized approach
either provides an improvement with respect to all parameters of interest over the (2k)th
order deterministic approach (if the first term of (57) obtains the maximum), or has better
dependence on the number of terms in the Hamiltonian than any deterministic formula (if
the second term dominates).

We can also compare our result to the commutator bound of [17], which depends on
the specific structure of the Hamiltonian. For concreteness, we consider a one-dimensional
nearest-neighbor Heisenberg model with a random magnetic field, as studied in [17]. Specif-
ically, let

H =
n∑
j=1

(~σj · ~σj+1 + hjσ
z
j ) (62)

with periodic boundary conditions (i.e., ~σn+1 = ~σ1), and hj ∈ [−h, h] chosen uniformly at
random, where ~σj = (σxj , σ

y
j , σ

z
j ) denotes a vector of Pauli x, y, and z matrices on qubit

j. The (2k)th-order deterministic formula with the commutator bound has error at most
[17, Eq. (146)] ∥∥∥V(−it)−

[
S2k

(
− it/r

)]r∥∥∥
�
≤ O

((tL)2k+2

r2k+1 + t2k+1L2k

r2k

)
, (63)

where we have again used Lemma 1 (or [8, Lemma 7]) to relate the spectral-norm distance
to the diamond-norm distance. To guarantee that the simulation error is at most ε, it
suffices to choose

rcomm
2k = max

{
O

((tL)
2k+2
2k+1

ε
1

2k+1

)
, O

(
t

2k+1
2k L

ε
1

2k

)}

= max
{
O

(
tL

(
tL

ε

) 1
2k+1

)
, O

(
tL

(
t

ε

) 1
2k
)} (64)
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segments, giving an algorithm with

gcomm
2k = O(Lrcomm

2k ) = max
{
O

(
tL2

(
tL

ε

) 1
2k+1

)
, O

(
tL2

(
t

ε

) 1
2k
)}

(65)

elementary gates. Comparing to the corresponding bound (57) for randomized product
formulas, we see that the only difference is that the exponent 1/(2k+1) for the commutator
bound becomes 1/(4k + 1) in the randomized case. Thus the randomized approach can
provide a slightly faster algorithm despite using less information about the structure of the
Hamiltonian. More specifically, the relationship between t and L determines whether the
randomized approach offers an improvement. If t = Ω(L2k), then the second term of (65)
achieves the maximum, and both approaches have asymptotic complexity O

(
tL2( t

ε

) 1
2k
)
.

However, if t = o(L2k), then the randomized formula is advantageous.

6 Empirical performance
While randomization provides a useful theoretical handle for establishing better provable
bounds, those bounds may still be far from tight. As described in Section 1, our original
motivation for considering randomization was the observation that product formulas appear
to perform dramatically better in practice than the best available proven bounds would
suggest. To investigate the empirical behavior of product formulas, we numerically evaluate
their performance for simulations of the Heisenberg model (62) with t = n and h = 1,
targeting error ε = 10−3, as previously considered in [17]. We collect data for the first-,
fourth-, and sixth-order formulas as the latter two orders have the best performance in
practice for small n and the first-order formula offers a qualitatively better theoretical
improvement.

For the deterministic formula, we order the operators of the Hamiltonian in the same
way as [17], namely

σx1σ
x
2 , . . . , σ

x
n−1σ

x
n, σ

x
nσ

x
1 , σ

y
1σ

y
2 , . . . , σ

y
n−1σ

y
n, σ

y
nσ

y
1 , σ

z
1σ

z
2 , . . . , σ

z
n−1σ

z
n, σ

z
nσ

z
1 , σ

z
1 , . . . , σ

z
n.
(66)

We compute the error in terms of the spectral-norm distance and convert it to the diamond-
norm distance using Lemma 7 of [8] (i.e., we multiply by 2). To analyze the randomized
formula, we would like to numerically evaluate the diamond-norm distances∥∥∥∥V(−it)− 1

2r
(
S1(−it/r) + Srev

1 (−it/r)
)r∥∥∥∥
�

(67)

and ∥∥∥∥∥∥V(−it)−
( 1
L!

∑
σ∈Sym(L)

Sσ2k
(
−it/r

))r∥∥∥∥∥∥
�

. (68)

While the diamond norm can be computed using a semidefinite program [34], direct com-
putation is prohibitive as the channel contains (L!)r Kraus operators. Instead, we use
Lemma 1 to estimate the error. We randomly choose the ordering of the summands in
each of the r segments, exponentiate each individual operator, and construct a unitary
operator by concatenating the exponentials according to the given product formula. We
follow this procedure to obtain a Monte Carlo estimate of the average error∥∥∥∥∥V (−it)− 1

M

M∑
m=1

S
σm,r
2k

(
−it/r

)
· · ·Sσm,12k

(
−it/r

)∥∥∥∥∥ (69)
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Figure 1: Comparison of the values of r between deterministic and randomized product formulas.
Error bars are omitted when they are negligibly small on the plot. Straight lines show power-law
fits to the data.

for the (2k)th-order formula and similarly for the first-order case. Here, M is the number
of samples in the Monte Carlo estimation, which can be increased to get more accurate
estimate. In practice, we find that it suffices to take only three samples, as the standard
deviations are already negligibly small (about 10−5). We then invoke Lemma 1 to bound
the diamond-norm error in (68). To the extent that the bound of Lemma 1 is loose, we
expect the empirical performance to be better in practice.

Using five randomly generated instances for each value of n, we apply binary search
to determine the smallest number of segments r that suffices to give error at most 10−3.
Figure 1 shows the resulting data for the first-, fourth-, and sixth-order formulas, which
are well-approximated by power laws. Fitting the data, we estimate that

rremp
1 = 300.0n1.806 rremp

4 = 5.458n1.439 rremp
6 = 2.804n1.152 (70)

segments should suffice to give error at most 10−3. We thus observe that the empiri-
cal complexity of the randomized algorithm is still significantly better than the provable
performance

rrand
1 = O(n3) rrand

4 = O(n2.25) rrand
6 = O(n2.17). (71)

For comparison, analogous empirical fits for deterministic formulas give the comparable
values

rdemp
1 = 4143n2.066 rdemp

4 = 5.821n1.471 rdemp
6 = 2.719n1.160, (72)

(cf. [17, Eq. (147)], but note that we have generated new data using [8, Lemma 7] to bound
the diamond-norm distance in terms of the spectral-norm distance), whereas the rigorous
commutator bound gives the larger exponents [17]

rcomm
1 = O(n3) rcomm

4 = O(n2.4) rcomm
6 = O(n2.28). (73)

We see that the randomized bound offers significantly better empirical performance
at first order, consistent with the observation that randomization improves the order of
approximation in this case. The fourth-order formula slightly improves both the exponent
and the constant factor. While this improvement is small, it is nevertheless notable since
it involves only a minor change to the algorithm. At sixth order we see negligible im-
provement. Since the proven bounds give less improvement with each successive order, it
is perhaps not surprising to see that the empirical performance shows similar behavior.

To illustrate the effect of using different formulas and different error bounds to simulate
larger systems, Figure 2 compares the cost of simulating our model system for sizes up to

Accepted in Quantum 2019-08-26, click title to verify. Published under CC-BY 4.0. 15



10 20 30 40 50 60 70 80 90 100105

106

107

108

109

1010

1011

1012

1013

n

nu
m
be

r
of

ex
po

ne
nt
ia
ls

Deterministic PF4 (min)
Deterministic PF4 (com)
Randomized PF4 (min)
Deterministic PF4 (emp)
Randomized PF4 (emp)
Deterministic PF6 (min)
Randomized PF6 (min)
Deterministic PF6 (emp)
Randomized PF6 (emp)

Figure 2: Comparison of the total number of elementary exponentials for product formula simu-
lations of the Heisenberg model using deterministic and randomized product formulas of fourth
and sixth order with both rigorous and empirical error bounds. Note that since the empirical
performance of deterministic and randomized sixth-order product formulas is almost the same, the
latter data points are obscured by the former.

n = 100 with deterministic and randomized formulas of orders 4 and 6, using both proven
error bounds and the above empirical estimates. (We omit the first-order formula since
it is not competitive even at such small sizes.) We give rigorous bounds for deterministic
formulas using the minimized bound of [17], and for fourth order we also show the result of
using the commutator bound. We see that randomization gives a significant improvement
over the deterministic formula using the minimized bound, although the commutator bound
outperforms the randomized bound at the system sizes shown here. For sufficiently large
n, the randomized bound gives lower complexity, but this requires a fairly large n since the
difference in exponents is small and the commutator bound achieves a favorable constant
prefactor. Empirical estimates of the error improve the performance by several orders of
magnitude, with randomization giving a small advantage for the fourth-order formula as
indicated above. However, for systems of size larger than about n = 25, the sixth-order
bound prevails, and in this case randomization no longer offers a significant advantage.

7 Discussion
We have shown that randomization can be used to establish better performance for quan-
tum simulation algorithms based on product formulas. By simply randomizing how the
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summands in the Hamiltonian are ordered, we introduce terms in the average evolution
that could not appear in any deterministic product formula approximation of the same or-
der, and thereby give a more efficient algorithm. Indeed, this approach can outperform the
commutator bound even though that method uses more information about the structure of
the Hamiltonian. A randomized product formula simulation algorithm is not much more
complicated than the corresponding deterministic formula, using only O(L logL) bits of
randomness per segment and no ancilla qubits. Furthermore, we showed that randomiza-
tion can even offer improved empirical performance in some cases.

While randomization has allowed us to make some progress on the challenge of proving
better bounds on the performance of product formulas, our strengthened bounds remain far
from the apparent empirical performance. We expect that other ideas will be required to
improve the product-formula approach [15, 28]. Although our bounds have better asymp-
totic n-dependence than the previous commutator bound, they only offer an improvement
if the system is sufficiently large. It could be fruitful to establish bounds for randomized
product formulas that take advantage of the structure of the Hamiltonian, perhaps offer-
ing better performance both asymptotically and for small system sizes. More generally, it
may be of interest to investigate other scenarios in which random choices can be used to
improve the analysis of quantum simulation [10, 14] and other quantum algorithms.
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