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Abstract

In this paper we address the theoretical capabilities of active sampling
for estimating functions in noise. Specifically, the problem we consider is
that of estimating a function from noisy point-wise samples, that is, the
measurements which are collected at various points over the domain of
the function. In the classical (passive) setting the sampling locations are
chosen a priori, meaning that the choice of the sample locations precedes
the gathering of the function observations. In the active sampling setting,
on the other hand, the sample locations are chosen in an online fashion:
the decision of where to sample next depends on all the observations made
up to that point, in the spirit of the twenty questions game (as opposed
to passive sampling where all the questions need to be asked before any
answers are given). This extra degree of flexibility leads to improved
signal reconstruction in comparison to the performance of classical (pas-
sive) methods. We present results characterizing the fundamental limits
of active learning for various nonparametric function classes, as well as
practical algorithms capable of exploiting the extra flexibility of the ac-
tive setting and provably improving on classical techniques. In particular,
significantly faster rates of convergence are achievable in cases involving
functions whose complexity (in a the Kolmogorov sense) is highly concen-
trated in small regions of space (e.g., piecewise constant functions). Our
active learning theory and methods show promise in a number of applica-
tions, including field estimation using wireless sensor networks and fault
line detection.

1 Introduction

In this paper we address the theoretical capabilities of active learning for es-
timating functions in noise. In function regression, the goal is to estimate a
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function from noisy point-wise samples. In the classical (passive) setting the
sampling locations are chosen a priori, meaning that the selection of the sam-
ple locations precedes the gathering of the function observations. In the active
sampling setting, however, the sample locations are chosen in an online fashion:
the decision of where to sample next depends on all the observations made up
to that point, in the spirit of the “Twenty Questions” game (as opposed to
passive sampling, where all the questions need to be asked before any answers
are given). The extra degree of flexibility garnered through active learning can
lead to significantly better function estimates than those possible using clas-
sical (passive) methods. Several empirical and theoretical studies have shown
that selecting samples or making strategic queries in order to learn a target func-
tion/classifier can outperform commonly used passive methods based on random
or deterministic sampling [5, 16, 9, 18, 2]; however, there are very few analyt-
ical methodologies for these Twenty Questions problems when the answers are
not entirely reliable (see for example [4, 10, 12]). This precludes performance
guarantees and limits the applicability of many such methods in a theoretically
sound way.

In the regression setting, significantly faster rates of convergence are achiev-
able in cases involving functions whose complexity (in a the Kolmogorov sense) is
highly concentrated in small regions of space (e.g., functions that are smoothly
varying apart from highly localized abrupt changes such as jumps or edges).
We illustrate this by characterizing the fundamental limits of active learning
for two broad nonparametric function classes which map [0, 1]d onto the real
line: Hölder smooth functions (spatially homogeneous complexity) and piece-
wise constant functions that are constant except on a d−1 dimensional boundary
set or discontinuity embedded in the d dimensional function domain (spatially
concentrated complexity). We conclude that, when the functions are spatially
homogeneous and smooth, passive learning algorithms are near-minimax opti-
mal over all estimation methods and all (active or passive) learning schemes,
indicating that active learning methods will not lead to faster rates of conver-
gence in this regime. For piecewise constant functions, active learning methods
can capitalize on the highly localized nature of the boundary by focusing the
sampling process in the estimated vicinity of the boundary. We present an al-
gorithm that provably improves on the best possible passive learning algorithm
and achieves faster rates of error convergence. Furthermore, we show that no
other active learning method can significantly improve upon this performance
(in a minimax sense).

Our active learning theory and methods show promise for a number of prob-
lems. In particular, in imaging techniques such as laser scanning it is possible
to adaptively vary the scanning process. Using active learning in this context
can significantly reduce image acquisition times. Wireless sensor networks con-
stitute another key application area. Because of necessarily small batteries, it
is desirable to limit the number of measurements collected as much as possi-
ble. Incorporating active learning strategies into such systems can dramatically
lengthen the lifetime of the system. In fact, active learning problems like the
one described in pose in Section 4.2 have already found application in fault line

2



detection [10] and boundary estimation in wireless sensor networking [20].
This paper is organized as follows: Section 2 describes the general scenario

and framework. Section 3 describes the fundamental limits (in a minimax sense)
of active and passive learning for various function classes. In Section 4 learning
strategies are presented, both for passive and active learning. The performance
of these strategies is also analyzed in the section. Finally Section 5 presents
some concluding remarks and open problems and questions. The proofs of the
results are presented in the Appendix.

2 Problem Statement

Let F denote a class of functions mapping [0, 1]d to the real line. Later we will
consider particular classes F . Let f : [0, 1]d → R be a function in that class.
Our goal is to estimate this function from a finite number of noise corrupted
samples. In this paper we consider two different scenarios: (a) Passive learning,
where the locations of the sample points are chosen statistically independently
way of the measurement outcomes. (b) Active learning, where the location of
the ith sample point can be chosen as a function of the samples points and
samples collected up to that instant. The statistical model we consider builds
on the following assumptions:

(A1) The observations {Yi}n
i=1 are given by

Yi = f(Xi) +Wi, i ∈ {1, . . . , n}.

(A2) The random variables Wi are Gaussian zero mean and variance σ2. These
are independent and identically distributed (i.i.d.) and independent of
{Xi}n

i=1.

(A3.1) Passive Learning: The sample locations Xi ∈ [0, 1]d are possibly ran-
dom, but independent of {Yi}j∈{1,...,i−1,i+1,...,n}. They do not depend in
any way on f .

(A3.2) Active Learning: The sample locations Xi are random, and depend
only on {Xj , Yj}i−1

j=1. In other words

Xi|X1 . . .Xi−1,Xi+1, . . . ,Xn, Y1 . . . Yi−1, Yi+1, . . . , Yn
a.s.=

Xi|X1 . . .Xi−1, Y1 . . . Yi−1.

Said in a different way, the sample locations Xi have only a causal de-
pendency on the system variables {Xi, Yi}. Finally given {Xj , Yj}i−1

j=1 the
random variable Xi does not depend in any way on f .

Clearly the passive learning strategy is a special case of the active learning
one. For the scenarios addressed in the paper we assume either (A3.1) or (A3.2)
holds (respectively the passive and active learning scenarios).
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The performance metric we consider is the usual L2 norm,

d(f, g) ≡ ‖f − g‖ =

(∫
[0,1]d

|f(x)− g(x)|2dx

)1/2

,

where f, g ∈ F .
An estimator is a function f̂X1,...,Xn,Y1...,Yn : [0, 1]d → R. That is, given

{Xi, Yi}n
i=1, f̂X1,...,Xn,Y1...,Yn

(·) is a function mapping [0, 1]d to the real line.
We will usually drop the explicit dependence of the estimator on {Xi, Yi}n

i=1,
and denote the estimator by f̂n(·).

When choosing an estimator f̂n our main concern is to ensure that d(f, f̂n)
is small. In our model there is also another degree of freedom: we are allowed to
choose our sampling strategy, that is, we can specify Xi|X1 . . .Xi−1, Y1 . . . Yi−1.
We will denote the sampling strategy by Sn. A pair (f̂n, Sn) is called a esti-
mation strategy. In the rest of the paper we are going to study the fundamen-
tal performance limits for active learning for certain class of functions F , and
describe practical estimation strategies that nearly achieve those fundamental
limits.

As discussed in Section 1, the extra degree of spatial adaptivity under (A3.2)
can provide some gains when the functions in the class F have well localized
features. In this case as the number of samples increases we can “focus” the
sampling on the features that are impairing the estimation performance. Some
classes we are going to consider in the paper have this property.

Assumption (A2) can be relaxed. Actually we only need the variables Wi

to be independent, and their distribution needs to satisfy a certain “moment
condition” (see the statement of Theorem 7). Many random variables satisfy
that condition (e.g., bounded random variables). To avoid cumbersome deriva-
tions we stick with the Gaussian assumption throughout the paper, although it
is easy to generalize the results.

We are going to consider essentially two different types of functions:
functions that are uniformly smooth; and functions that are piecewise con-
stant/smooth, in the sense that these are comprised of constant/smooth regions,
separated by boundaries that have upper box-counting dimension1 at most d−1.

Definition 1. A function f : [0, 1]d → R is locally Hölder smooth at point
x ∈ [0, 1]d if it has continuous partial derivatives up to order k = bαc2 at point
x ∈ [0, 1]d and

∃ε > 0 : ∀ z ∈ [0, 1]d : ‖z − x‖ < ε ⇒ |f(z)− Px(z)| ≤ L‖z − x‖α, (1)

where L,α > 0, and Px(·) denotes the degree k Taylor polynomial approximation
of f expanded around x.

1The upper box-counting dimension of a set B is defined using a cover of the set by
closed balls of diameter r: Let N(r) denote the minimal number of closed balls of di-
ameter r that are cover of B, then the upper box-counting dimension of B is defined as
lim supr→0− logN(r)/ log r. The upper box-counting dimension is also known as the entropy
dimension.

2k = bαc is the maximal integer such that k < α.
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If a function satisfies (1) for every point x ∈ [0, 1]d the function is said to
be Hölder smooth with parameters L and α. Denote this class of functions by
Σ(L,α).

Definition 2. A function f : [0, 1]d → R is piecewise constant if it is locally
constant3 in any point x ∈ [0, 1]d \ B(f), where B(f) ⊆ [0, 1]d is a set with
upper box-counting dimension at most d − 1. Furthermore let f be uniformly
bounded on [0, 1]d (that is, |f(x)| ≤ M, ∀x ∈ [0, 1]d) and let B(f) satisfy
N(r) ≤ βr−(d−1) for all r > 0, where β > 0 is a constant and N(r) is the
minimal number of closed balls of diameter r that covers B(f). The set of
all piecewise constant functions f satisfying the above conditions is denoted by
PC(β,M).

Definition 3. A function f : [0, 1]d → R is piecewise smooth if (1) holds
for any point x ∈ [0, 1]d \ B(f), where B(f) ⊆ [0, 1]d is a set with upper box-
counting dimension at most d− 1. Furthermore let f be uniformly bounded on
[0, 1]d (that is, |f(x)| ≤M, ∀x ∈ [0, 1]d) and let B(f) satisfy N(r) ≤ βr−(d−1)

for all r > 0, where β > 0 is a constant and N(r) is the minimal number of
closed balls of diameter r that covers B(f). The set of all piecewise smooth
functions f satisfying the above conditions is denoted by PS(L,α, β,M).

The concept of box-counting dimension is related the concept of topological
dimension of a set [8], and these coincide when the set is “well-behaved”. Essen-
tially this condition means that the “boundaries” between the various smooth
regions are (d − 1)-dimensional non-fractal curves. We will frequently refer to
the set B(f) as the boundary set. The bound on N(r) in the above definition
leads to a bound on the upper-box counting dimension class. If the bound-
aries B(f) are reasonably smooth then β is an approximate bound on the d− 1
dimensional volume of B(f).

The classes PC(β,M) and PS(L,α, β,M) have the main ingredients that
make active learning appealing: a function f ∈ PS(L,α, β,M) is “well-behaved”
everywhere in the unit square, except in the small set B(f). We will see that
the critical task for any estimator of f is accurately finding the location of the
boundary B(f).

3 Fundamental Limits - Minimax Lower Bounds

In this section we study the fundamental limitations of the active learning strat-
egy. We start by introducing some notation.

Definition 4. For any estimation strategy (f̂n, Sn), and any element f ∈ F we
define the risk of the estimation strategy as

R(f̂n, Sn, f) = Ef,Sn [d2(f̂n, f)],
3A function f : [0, 1]d → R is locally constant at a point x ∈ [0, 1]d if

∃ε > 0 : ∀y ∈ [0, 1]d : ‖x− y‖ < ε ⇒ f(y) = f(x).
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where Ef,Sn is the expectation with respect to the probability measure of
{Xi, Yi}n

i=1 induced by model f and sampling strategy Sn. We define the max-

imal risk of an estimation strategy as supf∈F R(f̂n, Sn, f).

The goal of this section is to find tight lower bounds for the maximal risk,
over all possible estimation strategies. That is, we present bounds of the form

inf
(f̂n,Sn)∈Θ

sup
f∈F

Ef,Sn [d2(f̂n, f)] ≥ cψ2
n, ∀n ≥ n0 (2)

where n0 ∈ N, c > 0 is a constant, ψn is a positive sequence converging to zero,
and Θ is the set of all estimation strategies. The sequence ψ2

n is denoted as a
lower rate of convergence4.

It is also possible to devise upper bounds on the maximal risk. These are usu-
ally obtained through explicit estimation strategies (as presented in Section 4).
If (2) and

inf
(f̂n,Sn)∈Θ

sup
f∈F

Ef,Sn
[d2(f̂n, f)] ≤ Cψ2

n, ∀n ≥ n0 (3)

hold, where C > 0, then ψ2
n is said to be the optimal rate of convergence.

For the problems considered in this paper we observe that the rates are well
approximated by n−γ for some γ, and a large n. When talking about optimal
rates of convergence we are only interested in the polynomial behavior, therefore
a rate of convergence ψ2

n is equivalent to n−γ (i.e., ψ2
n

poly∼ n−γ) if and only if
given γ1 < γ < γ2 we have n−γ2 < ψ2

n < n−γ1 for n large enough.

3.1 Passive Learning Minimax Rates

The passive learning model has been studied extensively for various classes F ,
and there is a vast statistical literature on the optimal rates of convergence
[17, 14].

For the class Σ(L,α) we have the following lower bound.

Theorem 1. Under the requirements of the passive learning model we have

inf
(f̂n,Sn)∈Θpassive

sup
f∈Σ(L,α)

Ef,Sn [‖f̂n − f‖2] ≥ cn−
2α

2α+d , (4)

for n large enough, where c ≡ c(L,α, σ2) > 0, and Θpassive denotes the set of
all passive estimation strategies.

It is possible to show that the rate in the theorem is the optimal rate of
convergence. A relatively simple linear estimator can achieve the above rate,
using a deterministic sampling strategy. For a proof see for example [14]. If

4Clearly ψ2
n is defined up to a bounded factor, that depends on n. Namely, two rates of

convergence ψ2
n and ψ′2n are equivalent if and only if

0 < lim inf
n→∞

ψ2
n/ψ

′2
n ≤ lim sup

n→∞
ψ2

n/ψ
′2
n <∞.

6



we are concerned only with the rate up to polynomial equivalence then the
estimator proposed in Section 4.1 achieves the desired rate.

We now turn our attention to the class of piecewise constant functions
PC(β,M). A smaller class of functions, the boundary fragments, is studied
in [14]. Let g : [0, 1]d−1 → [0, 1] be a Lipshitz function with graph in [0, 1]d,
that is

g ∈
{
b(·) : |b(x)− b(z)| ≤ ‖x− z‖, 0 ≤ b(x) ≤ 1, ∀ x,z ∈ [0, 1]d−1

}
.

Define
G = {(x, y) : 0 ≤ y ≤ g(x), x ∈ [0, 1]d−1}. (5)

Finally define f : [0, 1]d → R by f(x) = 2M1G(x) −M . The class of all the
functions of this form is called the boundary fragment class (usually M = 1),
denoted by BF(M). It is straightforward to to show that BF(M) ⊆ PC(β,M),
for a suitable constant β. Under the passive model we consider in this paper,
we have the following result.

Theorem 2 (Korostelev-Tsybakov, 1993). Under the requirements of the pas-
sive learning model we have

inf
(f̂n,Sn)∈Θpassive

sup
f∈BF(M)

Ef,Sn
[‖f̂n − f‖2] ≥ cn−

1
d , (6)

for n large enough, where c ≡ c(M,σ2) > 0.

It can be shown that the above bound is tight, in the sense that a corre-
sponding upper-bound (3) holds and the rate in the theorem is the optimal rate
of convergence. Noticing that BF(M) ⊆ PC(β,M) we obtain

Proposition 1. Under the requirements of the passive learning model we have

inf
(f̂n,Sn)∈Θpassive

sup
f∈PC(β,M)

Ef,Sn
[‖f̂n − f‖2] ≥ cn−

1
d , (7)

for n large enough, where c ≡ c(β,M, σ2) > 0.

Also, since Σ(L,α) ⊆ PS(L,α, β,M) and BF(M) ⊆ PS(L,α, β,M) we can
put together the results of Theorems 1 and 2 and get the following result for
the piecewise smooth functions.

Proposition 2. Under the requirements of the passive learning model we have

inf
(f̂n,Sn)∈Θpassive

sup
f∈PS(L,α,β,M)

Ef,Sn
[‖f̂n − f‖2] ≥ cmax

{
n−

2α
2α+d , n−

1
d

}
, (8)

for n large enough, where c ≡ c(L,α, β,M, σ2) > 0.

It is possible to construct estimators that achieve, or nearly achieve, the
above performance rates, as we will see in Section 4.
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Observe that, for α small enough (namely α < 1/(2 − 2/d)), the lower
bounds of Theorem 1 and Proposition 2 coincide. This indicates that in such
cases the existence of a boundary set in the elements of PS(L,α, β,M) is not
really making the problem harder. On the other hand, when the function pieces
are sufficiently smooth, the rate of convergence for PS(L,α, β,M) is bounded
below by O(n−1/d). This corresponds to the contribution of the boundary, and
that rate does not change even if we make α larger. This is in contrast to the
behavior for Σ(L,α), where as α increases the performance rate gets arbitrarily
close to the parametric rate O(1/n). This indicates that the class of piecewise
smooth functions may benefit from an active learning strategy as long as the
function is reasonably smooth away from the boundary. Below we see that this
is indeed the case.

3.2 Active Learning Minimax Rates

We begin by studying the class Σ(L,α) under the active learning model. Intu-
itively, there should be no advantage of active learning under this model class,
since there are no localized features. Classical approximation theory results also
support this intuition: the best m-term approximation scheme for the Hölder
class of functions is a linear scheme, using a piecewise polynomial fit. We have
the following main result.

Theorem 3. Under the requirements of the active learning model we have

inf
(f̂n,Sn)∈Θactive

sup
f∈Σ(L,α)

Ef,Sn
[‖f̂n − f‖2] ≥ cn−

2α
2α+d , (9)

for n large enough, where c ≡ c(L,α, σ2) > 0, where Θactive is the set of all
active estimation strategies.

Note that the rate in Theorem 3 is the same as the classical passive learning
rate [17, 14] but the class of estimation strategies allowed is now much bigger.
The proof of Theorem 3 is presented in Appendix A. There are various practical
estimators achieving the performance predicted by Theorem 3, including some
based on kernels, splines or wavelets [19].

We now turn our attention to the class of piecewise constant functions
PC(L,α, β,M). In [12, 13] the active learning scenario was studied for the
boundary fragment class. For this class the following result holds.

Theorem 4 (Korostelev, 1999). Let d ≥ 2. Under the requirements of the
active learning model we have

inf
(f̂n,Sn)∈Θactive

sup
f∈BF(M)

Ef,Sn
[‖f̂n − f‖2] ≥ cn−

1
d−1 , (10)

for n large enough, where c ≡ c(M,σ2) > 0.

The above result is restricted to d ≥ 2. For d = 1 we have an exponential
rate of convergence (much faster than the passive parametric rate of 1/n). This
was shown in pioneering work of Burnashev and Zigangirov [4].
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In [14] an algorithm capable of achieving the above rate for the boundary
fragment class is presented, but this algorithm takes advantage of the very spe-
cial functional form of the boundary fragment functions. The algorithm begins
by dividing the unit hypercube into “strips” and performing a one-dimensional
change-point estimation in each of the strips. This change-point detection can
be performed extremely accurately using active learning, as shown in [4]. Un-
fortunately, the boundary fragment class is very restrictive and impractical for
most applications. Recall that boundary fragments consist of only two regions,
separated by a boundary that is a function of the first d − 1 coordinates. The
class PC(β,M) is much larger and more general, so the algorithmic ideas that
work for boundary fragments can no longer be used. A completely different
approach is required, using radically different tools.

From Theorem 4 we obtain one of the main results of this section.

Theorem 5 (Minimax Lower Bound for PC(β,M)). Let d ≥ 2. Under the
requirements of the active learning model we have

inf
(f̂n,Sn)∈Θactive

sup
f∈PC(β,M)

Ef,Sn
[‖f̂n − f‖2] ≥ cn−

1
d−1 , (11)

for n large enough, where c ≡ c(β,M, σ2) > 0.

In contrast with Proposition 1, we observe that with active learning we have
a potential performance gain over passive strategies, effectively equivalent to a
dimensionality reduction. Essentially the exponent in (11) depends now on the
dimension of the boundary set, d − 1, instead of the dimension of the entire
domain, d. In the next section we verify that the bound in Theorem 5 is tight,
and present an algorithm whose performance is arbitrarily close to that bound
(in terms of the polynomial rate).

Taking into account the results of Theorem 3 and Theorem 4 we obtain
following result.

Theorem 6 (Minimax Lower Bound for PS(L,α, β,M)). Let d ≥ 2. Under the
requirements of the active learning model we have

inf
(f̂n,Sn)∈Θactive

sup
f∈PS(L,α,β,M)

Ef,Sn
[‖f̂n−f‖2] ≥ cmax

{
n−

2α
2α+d , n−

1
d−1

}
, (12)

for n large enough, where c ≡ c(L,α, β,M, σ2) > 0.

From this bound we see that active learning can benefit estimation strategies
for the piecewise smooth class. We conjecture that the rate in the Theorem is
actually the optimal rate, although we have not yet proved this. Therefore the
answer to this question remains an open problem.

4 Learning Strategies

In this section we present various estimation strategies, both for the passive
and active learning models. All the estimation strategies hinge on a tree struc-
tured partition, that allows for the necessary degree of spatial adaptivity. The
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design and analysis of the proposed algorithms are intertwined, since we use
various bounding techniques as guidelines in the design process. The following
fundamental risk bound is a key tool.

Theorem 7. Assume (A1) and (A3.1). Furthermore let {Xi}n
i=1 be i.i.d.,

uniform over [0, 1]d, and independent of {Yi}n
i=1 and {Xi}n

i=1. Suppose also
that for all i ∈ {1, . . . , n} we have E[Wi] = 0, Var(Wi) ≤ σ2, and

E
[
|Wi|k

]
≤ Var(Wi)

k!
2
hk−2, (13)

for some h > 0 and k ≥ 2. Equation (13) is known as the Bernstein’s moment
condition.

Let Γ be a countable class of functions mapping [0, 1]d to the real line such
that

|f(x)| ≤M ∀x ∈ [0, 1]d,∀f ∈ Γ.

Let pen : Γ → [0,+∞) be a function satisfying∑
θ′∈Γ

e−pen(θ′) ≤ s, (14)

for some s > 0.
Finally define the estimator

f̂n(X,Y ) ≡ arg min
f ′∈Γ

{
1
n

n∑
i=1

(Yi − f ′(Xi))2 +
λ

n
pen(f ′)

}
, (15)

where λ > 2(σ2 +M2) + 32(hM +M2/3).
Then

E
[
‖f − f̂n‖2

]
≤ min

f ′∈Γ

1
1− a

{
(1 + a)‖f − f ′‖2 +

λ

n
pen(f ′) +

2λ(s+ 1)
n

}
,

(16)
with a = 2(σ2+M2)

λ−32(hM+M2/3) .

This theorem is an oracle bound, that is, the expected error of the estimator
is, up to a multiplicative constant, the best possible relative to the penalized
criterion among all the models in Γ. The proof is presented in Appendix B.
Note that there is some freedom when deciding how important the penalty is
(parameter λ).

Remark: Notice that (14) can be interpreted as a Kraft inequality [6].
This means that we can construct the penalty function pen(·) by explicitly
describing a prefix code for the elements of Γ: for each θ ∈ Γ, pen(θ) is the
length (in nats) of the codeword associated with θ. The coding argument is
sometimes convenient since a prefix code automatically satisfies (14).
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4.1 Passive Learning Strategies

In this section we focus on the passive learning model (A3.1) and the class of
functions PS(L,α, β,M). A simplification of the techniques employed allows
us to get similar results for the piecewise constant functions in the class class
PC(B,M).

Since the location of the boundary is a priori unknown, it is natural to
distribute the sample points in a uniform way over the unit hypercube. Vari-
ous sampling schemes can be used to accomplish this, but we focus on a very
simple randomized scheme. Let {Xi}n

i=1 be i.i.d. uniform over [0, 1]d. Under
assumption (A2) Wi is Gaussian and so we obtain the following corollary of
Theorem 7.

Corollary 1. Assume (A1), (A2) and (A3.1). Furthermore let {Xi}n
i=1 be

i.i.d., uniform over [0, 1]d, and independent of {Yi}n
i=1 and {Xi}n

i=1. Consider a
class of models Γ satisfying the conditions of Theorem 7 and define the estimator

f̂n(X,Y ) ≡ arg min
f ′∈Γ

{
1
n

n∑
i=1

(Yi − f ′(Xi))2 +
λ

n
pen(f ′)

}
, (17)

with λ = 6(σ2 +M2) + 32( 2
3

√
2
πσM +M2/3).

Then

E
[
‖f − f̂n‖2

]
≤ min

f ′∈Γ

{
2‖f − f ′‖2 +

3
2
λ

n
pen(f ′)

}
+ 3(s+ 1)

λ

n
. (18)

To illustrate the use of Corollary 1 we consider the application of the passive
learning scenario to the class of Hölder smooth functions.

Theorem 8. Let Σ(L,α,M) denote the class of functions f ∈ Σ(L,α) that are
uniformly bounded, that is |f(x)| ≤ M ∀x ∈ [0, 1]d. Under the requirements of
the passive learning model we have

inf
(f̂n,Sn)∈Θpassive

sup
f∈Σ(L,α,M)

Ef,Sn [‖f̂n − f‖2] ≤ C(n/ log n)−
2α

2α+d
poly∼ Cn−

2α
2α+d ,

for n large enough, where C ≡ C(L,α,M, σ2) > 0, and Θpassive denotes the set
of all passive estimation strategies.

The proof of Theorem 8 is presented in Appendix D and contains several
ingredients used in subsequent results. Note that we obtain the same rate as in
the lower bounds of Theorem 1 and Theorem 3 (with respect to the polynomial
rate). The logarithmic factor in Theorem 8 is an artifact of the bounding tech-
niques used, and it is due to the fact that we can consider only a countable set
of possible estimators in Corollary 1 (see Appendix D for more details). This
factor can actually be removed, as well as the bound on the magnitude of f .
This requires a much more careful analysis of the error, such as the one done
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in [14] for a deterministic sample strategy. In conclusion, the optimal rate of
convergence for the class Σ(L,α) is the one given in Theorem 3 both for the
passive and active learning scenarios.

For the piecewise smooth/constant classes the estimators we consider are
built over Recursive Dyadic Partitions (RDPs). The elements of an RDP are
quasi-disjoint5 subintervals of [0, 1]d, such that their union is the entire unit
hypercube. A RDP is any partition that can be constructed using only the
following rules:

i) {[0, 1]d} is a RDP;

ii) Let π = {A0, . . . , Ak−1} be a RDP, where Ai = [ai1, bi1] × . . . × [aid, bid].
Then π′ = {A1, . . . , Ai−1, A

(0)
i , . . . , A

(2d−1)
i , Ai+1, . . . , Ak} is a RDP,

where {A(0)
i , . . . , A

(2d−1)
i } is obtained by dividing the hypercube Ai into

2d quasi-disjoint hypercubes of equal size. Formally, let q ∈ {0, . . . , 2d−1}
and q = q1q2 . . . qd be the binary representation of q. Then

A
(q)
i =

[
ai1 +

bi1 − ai1

2
q1, bi1 +

ai1 − bi1
2

(1− q1)
]
× · · ·

×
[
aid +

bid − aid

2
qd, bid +

aid − bid
2

(1− qd)
]
.

Whenever a partition π′ can be constructed by repeated application of
rule (ii) to a partition π we say that the partitions are nested, and that
π′ � π (meaning that the partition π′ is “finer” than partition π).

Other recursive partition strategies can also be considered, such as “free-
split” procedures [3]. These can also be analyzed in our framework, although
some extra difficulties arise.

It is clear that an RDP π can be described effectively by a rooted tree
structure, where each leaf corresponds to a element of the partition, the root
node corresponds to the set [0, 1]d, and the internal nodes correspond to the
aggregation of elements of π. This idea is illustrated in Figure 1 for the two-
dimensional case. Also, a proper RDP, consisting of disjoint sets (instead of
quasi-disjoint sets) can be constructed the same way. Denote the set of all
RDPs by Π. We define the depth of a leaf in a RDP as the distance (number
of links) from the root to the leaf in the tree representation of the RDP. For
example in Figure 1(c) the RDP has four leafs at depth two and three leafs at
depth one.

The estimates we consider are constructed decorating each of the sets in a
RDP with a polynomial of degree bαc. Formally, let π be a RDP and define

Ξ(π) =

{
g(x) : g(x) =

∑
A∈π

gA(x)1x∈A, gA ∈ P(bαc)

}
. (19)

5Two sets are quasi-disjoint if and only if their intersection has Lebesgue measure zero.
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Figure 1: Example of Recursive Dyadic Partitions, and the corresponding tree
representations.

where P(k) is set of all polynomials of degree k on Rd.
The estimator f̂n we are going to consider is best constructed in a two-stage

way. Define f̂ (π)
n : [0, 1]d → R such that

f̂ (π)
n = arg min

g∈Ξ(π)

n∑
i=1

(Yi − g(Xi))2, (20)

that is, for a fixed RDP π the function f̂
(π)
n is the least squares fit of the data

to f (over the class Ξ(π)). Now define

π̂ ≡ arg min
π∈Π

{
n∑

i=1

(Yi − f̂ (π)
n (Xi))2 + λ(|π|)

}
,

where |π| denotes the number of elements of partition π, and λ(·). Later on we
will see that λ(|π|) = p(n)|π|. Finally, the estimator f̂n : [0, 1]d → R is defined
as

f̂n = f̂ (π̂)
n . (21)

The computation of f̂n can be done by efficiently using tree pruning algo-
rithms, in the spirit of CART [3]. Although the estimator (21) is very appealing
and practical, it is difficult to analyze under the scope of Theorem 7 and Corol-
lary 1, since there is an uncountable number of possible estimates (because Ξ(π)
is uncountable). Instead we are going to analyze a related estimator, where we
consider only a finite subset of Ξ(π), obtained by quantizing the coefficients of
the polynomial decorating the tree leafs. That modified estimator, presented in
the Appendix E, allows us to prove the main result of this section.
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Theorem 9 (Main Passive Learning Theorem). Under the passive learning
scenario we have

inf
(f̂n,Sn)∈Θpassive

sup
f∈PS(L,α,β,M)

Ef [‖f̂n − f‖2]

≤ Cmax

{(
n

log n

)− 2α
2α+d

,

(
n

log n

)− 1
d

}
poly∼ Cmax

{
n−

2α
2α+d , n−

1
d

}
, (22)

where C ≡ C(L,α, β,M, σ2).

The proof of the Theorem is presented in Appendix E. We observe that we
get the same rate (up to a logarithmic factor) of Proposition 2, therefore this is
the optimal rate of convergence for the passive learning scenario.

The above result and estimator are our work-horses in the next section,
where we show how these can be used to obtain faster convergence rates in the
active learning scenario. Before we proceed we add just one remark

Remark:Although the estimator used in the proof of Theorem 9 involved a
search of all possible RDPs, this is not at all required. We need only to consider
RDPs up to a certain depth (more precisely up to depth J = d 1

d log(n/ log(n))e).
This fact is clear from the proof, since in the oracle bound we only need to
consider such RDPs.

To conclude this section we present the results for the piecewise constant
class. This is essentially equivalent to Theorem 9 when the smoothness α is
taken to infinity.

Theorem 10. Under the passive learning scenario we have

inf
(f̂n,Sn)∈Θpassive

sup
f∈PC(β,M)

Ef [‖f̂n − f‖2]

≤ C


log2 n

n , if d = 1,(
n

log n

)− 1
d

, if d > 1,

poly∼ Cn−
1
d ,

where C ≡ C(β,M, σ2).

A sketch of the proof is presented in Appendix F.

4.2 Active Learning Strategies

In this section we present active learning schemes that improve on the best pas-
sive performance rates for the piecewise constant class. The piecewise constant
case is somewhat the canonical case, in the sense that the regression function f
is as simple as possible away from the boundary.
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The proposed scheme is based on a two-step approach. In the first step,
called the preview step, a rough estimator of f is constructed using n/2 samples
(assume for simplicity that n is even), distributed uniformly over [0, 1]d. In the
second step, called the refinement step, we select n/2 samples near the perceived
locations of the boundaries (estimated in the preview step) separating constant
regions. In the end of this process we will have half the samples concentrated
in the vicinity of the boundary set B(f). Since accurately estimating f near
the boundary set is key to obtaining faster rates we expect such a strategy to
outperform the passive learning technique described earlier. The two-steps of
the proposed active learning approach are described in more detail below. For
simplicity assume that n is even.

Preview: The goal of this stage is to provide a coarse estimate of the lo-
cation of B(f). Specifically, collect n′ ≡ n/2 samples at points distributed
uniformly over [0, 1]d. Next we proceed by using the passive learning algorithm
described in Section 4.1, but we restrict ourselves to RDPs with a leafs at a maxi-
mum depth: only RDPs with leafs at a depth j ≤ J = d d−1

(d−1)2+d log(n′/ log(n′))e
are allowed. Denote the set of all such partitions by ΠJ . The reason for this
choice of depth will be clear from the analysis of the algorithm, but for now
notice that these trees are shallower than what is needed to obtain the opti-
mal performance of the passive algorithm (see Appendix F). This creates an
estimate whose error is dominated by the squared bias term, and has a small
variance. In other words, we obtain a very “stable” coarse estimate of f , where
stable means that the estimator does not change much for different realizations
of the data. The above strategy ensures that most of the time, leafs that in-
tersect the boundary are at the maximum allowed depth (because otherwise
the estimator would incur too much empirical error) and leafs away from the
boundary are at shallower depths. Therefore we can “detect” the rough location
of the boundary just by looking at the deepest leafs. Denote this estimator by
f̂p
0 . Formally,

f̂p
0 = f̂

(π̂p
0 )

n′ ,

where f̂n′ was defined in (20) and

π̂p
0 ≡ arg min

π∈ΠJ

 1
2σ2

n′∑
i=1

(Yi − f̂
(π)
n′ (Xi))2 + λ(|π|)

 .

Unfortunately, if the set B(f) is somewhat aligned with the dyadic splits
of the RDP, leafs intersecting the boundary can be pruned without incurring a
large error, and therefore we wouldn’t be able to properly detect the boundary
in those situations. This is illustrated in Figure 2a; the highlighted cell was
pruned and contains a piece of the boundary. The error incurred by pruning
should be small, since that region is mostly of a constant region. However,worst-
case analysis reveals that the squared bias induced by these small volumes can
add up, precluding the desired rates.

The cause of this problem is the fact that our preview estimator is not
translation invariant; that is, if we consider in the observation model (A1) a
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spatially translated version of f , then our RDP-based estimate may changes
considerably. A way of mitigating this issue is to consider multiple RDP-based
estimators, each one using a RDP appropriately shifted. We use d+1 estimators
in the preview step: one on the initial uniform partition, and d over partitions
whose dyadic splits have been translated by 2−J in each one of the d coordinates.
The main idea is illustrated in Figure 2: For f̂p

1 pruning the cells intersecting
the highlighted boundary region would cause a large error, therefore making it
easier to detect the boundary.

Formalizing the structure of the shifted partitions is a little cumbersome, but
for the sake of completeness we include the rules to construct such partitions
below. These are similar the rules presented before for the regular RDPs. A
shifted RDP in the lth coordinate satisfies the following.

i) {[0, 1]d} is a RDP;

ii) Let π = {A1, . . . , Ak} be a RDP, where Ai = [ai1, bi1] × . . . × [aid, bid].
Then π′ = {A1, . . . , Ai−1, A

(1)
i , . . . , A

(2d)
i , Ai+1, . . . , Ak} is a RDP, where

{A(1)
i , . . . , A

(2d)
i } is obtained by dividing the hypercube Ai into 2d quasi-

disjoint hypercubes of equal size (expect near the edge of the unit hyper-
cube). Formally, let q ∈ {0, . . . , 2d−1} and q = q1q2 . . . qd be the corre-
sponding binary representation. Then

A
(q)
i =

[
ai1 +

bi1 − ai1

2
q1, bi1 +

ai1 − bi1
2

(1− q1)
]
× · · ·

×
[
ail +

bil − ail

2
ql + 2−J−1(1ail=0 + 1bil=1)ql,

bil +
ail − bil

2
(1− ql) + 2−J−1(1ail=0 + 1bil=1)(1− ql)

]
× · · ·[

aid +
bid − aid

2
qd, bid +

aid − bid
2

(1− qd)
]
.

Denote the set of all l-coordinate shifted RDPs with all leafs at depths no
greater than J by Πlshift

J . The preview estimators built on shifted partitions are
defined as

f̂p
l ≡ f̂

(π̂p
l )

n′ ,

where

π̂p
l ≡ arg min

π∈Π
lshift
J

 1
2σ2

n′∑
i=1

(Yi − f̂
(π)
n′ (Xi))2 + λ(|π|)

 .

The analysis of an estimator built on top of this shifted partitions is similar to
the one for the regular partitions. Therefore the proof of Theorem 10 applies
also to this estimator. The only difference is that now the volume of cells in the
partition at depth j might be larger than 2−j , although it is at most 2 × 2−j

(therefore the right-hand-side of (43) is multiplied by 2). This only affects the
constant C in Theorem 10.
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(a) (b) (c)

Figure 2: Illustration of the shifted RDP construction for d = 2: (a) RDP used
in f̂p

0 . The highlighted cell intersects the boundary but it was pruned, since the
pruning does not incur in severe error. (b) Shifted RDP, used in f̂p

1 . In this
case there is no pruning, since it would cause a large error. (c) These are the
cells that are going to be refined in the refinement stage.

Any leaf that is at the maximum depth of any of the d+ 1 RDPs pruned in
the preview step indicates the highly probable presence of a boundary, and will
be refined in the next stage.

Refinement: With high probability, the boundary is contained in leafs at
the maximum depth. In the refinement step we collect additional n′ samples in
the corresponding partition sets, and obtain a refined estimate of the function
f . Let

R =
d⋃

l=0

{A ∈ π̂p
l : A corresponds to a leaf at depth J} . (23)

Note that there might be repetitions in the elements of R with the above de-
finition. In the following we assume that those repetitions are removed. For
each set A ∈ R we collect n′/|R| samples, distributed uniformly over each A.
Therefore we collect a total of n′ samples in this step. For each set A ∈ R we
repeat the tree pruning process described in Section 4.1 (but now instead of
defining the possible RDPs over the unit hypercube, we define them over A).
This produces a higher resolution estimate in the vicinity of the boundary set
B(f), yielding a better performance than the passive learning technique. De-
note the estimators obtained over the set A ∈ R by f̂r

A. The overall estimator
of f , obtained after the preview and refinement steps is denoted by f̂active and
it is defined as

f̂active(x) =
{
f̂r

A(x) , if x ∈ A : A ∈ R,
f̂p
0 (x) , otherwise

.

To guarantee the performance of this algorithm we need a further assumption
on the regression function f , namely:
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(A4) Let f ∈ PC(β,M) and consider the partition of [0, 1]d into md identical
hypercubes, with m = 2J and J as defined above. Let fJ : [0, 1]d → R be
a coarse approximation of f . Formally, for all partition sets A ∈ πJ we
have

fJ(x) = md
∑

A∈πJ

(∫
A

f(t)dt

)
1A(x).

Let A ∈ πJ such that A∩B(f) 6= ∅. Consider now the l-coordinate shifted
RDPs, and let A(A, l) denote the cell at depth J − 1 containing A (recall
that l = 0 corresponds to the usual non-shifted RDPs). We require that,
for at least one l ∈ {0, . . . , d},

∫
A(A,l)

(
fJ(x)− 1

|A(A, l)|

∫
A(A,l)

f(y)dy

)2

dx ≥ Cb(f)2−dJ , (24)

where Cb(f) and n ≥ n0(f), with n0(f) > 0.

Although this condition restricts the shape of the boundary sets, it is still
quite general, and encompasses many interesting cases, in particular Lipshitz
boundary fragments. Essentially (A4) require B(f) to be “cusp-free”6. A cusp-
like boundary is difficult to detect with our preview step, since it is very “thin”,
but might still have enough volume to prevent the algorithm from achieving
the correct rate. We conjecture that it is possible to attain the active minimax
rates without requiring (A4), but a different algorithm may be needed. Figure 3
illustrates what happens when a boundary is present. The piece of the boundary
in the central cell is “sensed” by the three different RDPs. Clearly the “green”
partition (with an arrow) is able to detect the boundary piece in the center cell.

Theorem 11. Under the active learning scenario we have, for d ≥ 2 and
functions f satisfying (A4),

E
[
‖f̂active − f‖2

]
≤ C

(
n

log n

)− 1
d−1+1/d poly∼ Cn−

1
d−1+1/d ,

where C > 0.

The proof of Theorem 11 is presented in Appendix G. Note that we improve
on the passive rates using this technique, but do not achieve the lower bound of
Theorem 5. By reiterating this approach (generalizing to a multi-step approach)
it is possible get arbitrarily close to the rate of Theorem 5, as we see below. This
bound does not hold uniformly over the entire class of functions, unlike all of our
previews results. This is again a limitation of our algorithm, and the cause is
the ribbon problem. If f is a thin ribbon then, unless there is enough resolution

6A cusp-free boundary cannot have the behavior you observe in the graph of
p
|x| at the

origin. Less “aggressive” kinks are allowed, such as in the graph of |x|.
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1/m

Figure 3: Illustration of condition (24). The “green” RDP cell (with arrow) is
able to “feel” the shaded boundary in the central cell.

available (n is large enough), we cannot detect that ribbon in the preview step.
Therefore, for n below some critical value the performance of the algorithm is
actually worst than the passive learning algorithm described in Section 4.1. For
n above this critical value we are able to detect the boundary set, and therefore
the active strategy of the algorithm becomes beneficial.

As said before, one can reiterate the two-step procedure: For example, to
obtain a three step procedure we can start with a similar preview step, using
n′′ ≡ n/3 samples, and a different value of J , adjusted accordingly. In the
refinement step apply the two-step procedure as described above, instead of the
passive strategy. With this three step approach we attain the error decay rate

poly∼ n

1
d−1+ 1

(d−1)2+d ,

where in the first step we used

J = d (d− 1)2

d(d2 − 2d+ 2)
log(n′′/ log(n′′))e.

Notice that the error decay rate improved with respect to Theorem 11. This
procedure can be repeated, and we get the following result

Theorem 12. Using the reiterated scheme described above we have, for d ≥ 2
and functions f satisfying (A4),

E
[
‖f̂active − f‖2

] poly

≤ Cn−
1

d−1+ε ,

where ε > 0 depends on the total number of steps of the algorithm, and can be
made arbitrarily small as the number of steps increases.
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(a) (b)

(c) (d)

Figure 4: The two step procedure for d = 2 (no shifted partitions): (a) Initial
unpruned RDP and n/2 samples. (b) Preview step RDP. Note that the cell with
the arrow was pruned, but it contains a part of the boundary. (c) Additional
sampling for the refinement step. (d) Refinement step.

The proof of Theorem 12 goes by careful choice of the maximum resolution
J at each step, by balancing the error between each subsequent steps (as in
Theorem 11).

5 Final Remarks and Open Questions

The results presented in this paper show that in certain scenarios active learning
attains provable gains over the classical passive approaches. Active learning is an
intuitively appealing idea and may find application in many practical problems.
Despite these draws, the analysis of such active methods is quite challenging due
to the loss of statistical independence in the observations (recall that now the
sample locations are coupled with all the observations made in the past). The
function classes presented here are non-trivial canonical examples illustrating
under what conditions one might expect active learning to improve rates of
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convergence. The algorithm presented here for actively learning members of
the piecewise constant class demonstrates the possibilities of active learning. In
fact, this algorithm has already been applied successfully in the context of field
estimation using wireless sensor networks [20].

The algorithmic ideas presented were in this paper might be simple and in-
tuitive, but show the difficulties inherent a sound analysis of such methods. For
example, the algorithm developed is rather “aggressive”: In the preview step we
cannot miss any part of the boundary set, since we have no further chance of de-
tecting it (in the refinement step). This is the reason we need assumption (A4).
Although less aggressive algorithmic techniques can be devised, their analysis
becomes extremely difficult. The algorithm proposed can also be extended to
the piecewise smooth class of functions, as long as condition (24) is satisfied.
This enforces that such a function f is discontinuous in the boundary set, and
so our techniques still work.

Another area that can greatly benefic from the ideas behind active learning
and boundary estimation is binary classification: The goal in this context is to
learn the Bayes decision boundary, so clearly only certain parts of the feature
space are relevant for this task. There are various pieces of work presenting
ideas and methods for active learning in this scenario, but a solid theoretical
framework is still largely undeveloped.
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A Proof of Theorem 3

The proof of Theorem 3 is closely mimics the proof of Theorem 1 presented
in [19] in the 1-dimensional setting. The key idea of the proof is to reduce
the problem of estimating a function in Σ(L,α) to the problem of deciding
among a finite number of hypothesis. The proof methodology for the passive
setting works for the active scenario because we can choose an adequate set of
hypothesis without knowledge of the sampling strategy. There is also another
modification needed, due to the extra flexibility of the sampling strategy. For
the sake of completeness we include the entire proof in this paper.

The proof is essentially the application of the following theorem.

Theorem 13 (Main Theorem of Risk Minimization (Kullback divergence ver-
sion)). Let Θ be a class of models. Associated with each model θ ∈ Θ we have
a probability measure Pθ. Let M ≥ 2 be an integer and let d(·, ·) : Θ × Θ → R
be a semidistance. Suppose we have {θ0, . . . , θM} ∈ Θ such that

i) d(θj , θk) ≥ 2s > 0, ∀0≤j,k≤M ,
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ii) Pθj � Pθ0 , ∀j=1,...,M ,

iii) 1
M

∑M
j=1 KL(Pθj‖Pθ0) ≤ γ logM,

where 0 < γ < 1/8. The following bound holds.

inf
θ̂n

sup
θ∈Θ

Pθ

(
d(θ̂, θ) ≥ s

)
≥

√
M

1 +
√
M

(
1− 2γ − 2

√
γ

logM

)
> 0,

where the infimum is taken with respect to the collection of all possible estimators
of θ, and KL denotes the Kullback-Leibler divergence 7.

From the theorem with can immediately show the following corollary.

Corollary 2. Under the assumptions of Theorem 13 we have

inf
θ̂n

sup
θ∈Θ

E[d2(θ̂, θ)] ≥ s2
√
M

1 +
√
M

(
1− 2γ − 2

√
γ

logM

)
> cs2,

for some c(γ,M) > 0.

Proof. The result follows from straightforward application of Markov’s inequal-
ity,

Pθ

(
d(θ̂, θ) ≥ s

)
= Pθ

(
d2(θ̂, θ) ≥ s2

)
≤ 1
s2

E[d2(θ̂, θ)].

�

Although in our formulation of the problem we assume (A2) that the additive
noise is Gaussian, for the proof of the minimax lower bounds we can use a more
general assumption, namely we require that there exists p∗ > 0 and v0 > 0 such
that

KL(pW (·)‖pW (·+ v)) =
∫

log
pW (w)

pW (w + v)
pW (w)dν(w) ≤ p∗v2, ∀ |v| ≤ v0.

For the Gaussian model this condition is satisfied with p∗ = 1/(2σ2) and v0 = ∞.
Consider a fixed sample size n. To apply Theorem 13 to the problem

considered we need to construct a collection of hypothesis fj(·) ∈ Σ(L,α),
j = 0, . . . ,M . Let c0 > 0 and define

m =
⌈
con

1
2α+d

⌉
, 8 h =

1
m
, xk =

k − 1/2
m

,

7Let P and Q be two probability measures defined on a probability space (X ,B). The
Kullback-Leibler divergence is defined as

KL(P‖Q) =

� R
log dP

dQ
dP , if P � Q,

+∞ , otherwise.
,

where dP/dQ is the Radon-Nikodym derivative of measure P with respect to measure Q.
8k = dxe is the minimal integer such that x < k.
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and

ϕk(x) = LhαK

(
x− xk

h

)
,

where k ∈ {1, . . . ,m}d, x ∈ [0, 1]d and K : Rd → [0,+∞) satisfies K ∈ Σ(1, α)
and supp K = (−1/2, 1/2)d. It is easily shown that such a function K exists 9.
Let Ω = {ω = (ω1, . . . , ωmd), ωi ∈ {0, 1}} = {0, 1}md

, and define

ξ = {fω(·) : fω(·) =
∑

k∈{1,...,m}d

ωkϕk(·), ω ∈ Ω}.

Note that ϕk ∈ Σ(L,α) and these functions have disjoint support, therefore
ξ ⊆ Σ(L,α).

For ω,ω′ ∈ Ω

d(fω, f
′
ω) =

[∫
[0,1]d

(fω(x)− f ′ω(x))2dx

]1/2

=

 ∑
k∈{1,...,m}d

(ωk − ω′k)2
∫

[0,1]d
ϕ2

k(x)dx

1/2

= Lhα+d/2‖K‖

 ∑
k∈{1,...,m}d

|ωk − ω′k|

1/2

= Lhα+d/2‖K‖
√
ρ(ω,ω′),

where ρ is the Hamming distance between ω and ω′, and ‖K‖ =√∫
[0,1]d

K2(x)dx. We will choose our hypotheses from ξ, but we do not need
the entire set. We need the following result from information theory.

Lemma 1 (Varshamov-Gilbert bound, 1962). Let md ≥ 8. There exists a
subset {ω(0),ω(1), . . . ,ω(M)} of Ω such that ω(0) = (0, . . . , 0) and

ρ(ω(j),ω(k)) ≥ md/8, ∀ 0 ≤ j < k ≤M

and M ≥ 2md/8.

For a proof of the Lemma 1 see [19].
Finally let {ω(0),ω(1), . . . ,ω(M)} be a set satisfying the conditions of

Lemma 1 and define fj(·) ≡ fω(j)(·), with j = 0, . . . ,M . This is the collec-
tion of hypotheses we will use with Theorem 13. We need to verify the various
conditions in the theorem. As already pointed out, notice that fj ∈ Σ(L,α).

9For example

K(x) = aK̃(2x), with K̃(x) =

dY
i=1

exp(−
1

1− x2
i

)1(|xi| < 1).

where x = (x1, . . . , xi) and a > 0 is sufficiently small.
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i)

d(fj , fk) = Lhα+d/2‖K‖
√
ρ(ω(j),ω(k)) ≥ Lhα+d/2‖K‖

√
md/8

= Lm−α‖K‖/
√

8,

as long as md > 8, as a result of Lemma 1. This is the case if n ≥ n∗ with
n∗ = (81/d/c0)2α+d.

Let n ≥ n∗, then m ≤ c0n
1

2α+d (1 + 8−1/d), and therefore

d(fj , fk) ≥ L
1√
8
m−α‖K‖

≥ L
1√
8
(1 + 8−1/d)−αc−α

0 ‖K‖n−
α

2α+d

≥ L/3 c−α
0 ‖K‖n−

α
2α+d

= Aψn,

where ψn = n−
α

2α+d and A = Lc−α
0 ‖K‖/3.

ii) Under the active sampling modeling assumption we see that the probabil-
ity measure of (X1, . . . ,Xn, Y1, . . . , Yn) has a nice factorization. To avoid
cumbersome technical derivations assume that the conditional random
variable Xi|X1 . . .Xi−1, Y1 . . . Yi−1 has a density pXi|X1...Xi−1,Y1...Yi−1

with respect to a suitable dominating measure. For a function f ∈ Σ(L,α)
the joint probability measure of the sample points and observations has a
density (with respect to a suitable dominating measure) of the form

pX1,...,Xn,Y1,...,Yn(x1, . . . ,xn, y1, . . . , yn)
= pZX

n ,ZY
n
(zX

n ,z
Y
n )

=
n∏

i=1

pYi|Xi;f (yi|xi) pXi|ZX
i−1,ZY

i−1
(xi|zX

i−1,z
Y
i−1), (25)

where ZX
i ≡ (X1, . . . ,Xi), zX

i ≡ (x1, . . . ,xi), ZY
i ≡ (Y1, . . . , Yi) and

zY
i ≡ (y1, . . . , yi). Now taking into account (A2) we have pYi|Xi;f (yi|xi) =
pW (yi − f(xi)) and we are done since all these measures are absolutely
continuous with respect to each other.

iii) Note that, for n large enough, fj(·) ≤ LhαKmax ≤ v0, where Kmax =
maxx∈Rd K(x). Namely the above holds if n > n0, with n0 =
c
−(2α+d)
0 (LKmax/v0)(2α+d)/α. Taking into account the factorization in
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(25) and recalling that f0(·) = 0 we have, for n > n0,

KL(Pj‖P0)

= Ef0

[
log

∏n
i=1 pYi|Xi;fj

(Yi|Xi) pXi|ZX
i−1,ZY

i−1
(Xi|ZX

i−1,Z
Y
i−1)∏n

i=1 pYi|Xi;f0(Yi|Xi) pXi|ZX
i−1,ZY

i−1
(Xi|ZX

i−1,Z
Y
i−1)

]

= Ef0

[
log

∏n
i=1 pYi|Xi;fj

(Yi|Xi)∏n
i=1 pYi|Xi;f0(Yi|Xi)

]
= Ef0

[
n∑

i=1

log
pYi|Xi;fj

(Yi|Xi)
pYi|Xi;f0(Yi|Xi)

]

=
n∑

i=1

Ef0

[
log

pW (Yi − fj(Xi))
pW (Yi − f0(Xi))

]

=
n∑

i=1

Ef0

[
Ef0

[
log

pW (Yi − fj(Xi))
pW (Yi − f0(Xi))

∣∣∣∣X1, . . . ,Xn

]]

≤
n∑

i=1

Ef0

[
p∗(fj(Xi)− f0(Xi))2

]
=

n∑
i=1

Ef0

[
p∗f2

j (Xi)
]

≤
n∑

i=1

p∗L2h2αK2
max

= p∗L2K2
maxnm

−2α

≤ p∗L2K2
maxnc

−2α
0 n−

2α
2α+d

= p∗L2K2
maxc

−(2α+d)
0 cd0n

d
2α+d ≤ p∗L2K2

maxc
−(2α+d)
0 md.

From Lemma 1 we have md ≤ 8 logM/ log 2 therefore choosing

c0 =
(

8p+L2K2
max

γ log 2

) 1
2α+d

,

with 0 < γ < 1/8 yields the desired result.

Since all the conditions of Theorem 13 are met we can apply Corollary 2 and
conclude that, for n > max{n∗, n0},

inf
(f̂n,Sn)∈Θactive

sup
f∈Σ(L,α)

Ef,Sn [d2(f̂n, f)] ≥ A2n−
2α

2α+d , (26)

where A2 = (L/3)2‖K‖2
(

8p+L2K2
max

γ log 2

) −2α
2α+d

< (L/3)2‖K‖2
(

64p+L2K2
max

log 2

) −2α
2α+d

.

�
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B Proof of Theorem 7

The proof follows closely the strategy in [1], with minor changes pertaining the
different noise model considered. For the sake of completeness we include the
full derivation here.

The proof hinges on a concentration inequality due to Craig [7].

Theorem 14 (Craig, 1933). Let {Ui}n
i=1 be independent random variables, sat-

isfying the Bernstein moment condition

E
[
|Ui − E[Ui]|k

]
= Var(Ui)

k!
2
hk−2,

for some h > 0 and all k ≥ 2. Let U = (1/n)
∑n

i=1 Ui. Then

Pr
(
U − E[U ] ≥ τ

nε
+
nεVar(U)
2(1− c)

)
≤ exp(−τ),

for 0 < εh ≤ c < 1 and τ > 0.

Start by defining

r(f ′, f) = E
[
(Y − f ′(X))2

]
− E

[
(Y − f(X))2

]
.

Note that
r(f ′, f) = E

[
(f ′(X)− f(X))2

]
,

since E[Y |X] = f(X). Define now the empirical version of r(f ′, f), that is

r̂n(f ′, f) ≡ 1
n

n∑
i=1

(Yi − f ′(Xi))2 −
1
n

n∑
i=1

(Yi − f(Xi))2

= − 1
n

n∑
i=1

Ui,

where Ui = −(Yi − f ′(Xi))2 + (Yi − f(Xi))2. Notice that the estimator in (15)
can be written as

f̂n(X,Y ) = arg min
f ′∈Γ

{
r̂(f ′, f∗) +

λ

n
pen(f ′)

}
.

At this point we are going to apply Theorem 14 to {Ui}n
i=1. For this we need

to verify the moment condition in the Theorem. Begin by noticing that

Ui = 2(Yi − f(Xi))(f ′(Xi)− f(Xi))− (f(Xi)− f ′(Xi))2 (27)
= 2Wi(f ′(Xi)− f(Xi))− (f(Xi)− f ′(Xi))2 (28)

The variance of Ui can be easily upper bounded noticing that the Ui is the sum
of two uncorrelated terms. The variance of the first term is

Var (2Wi (f ′(Xi)− f(Xi))) = 4Var(Wi)E
[
(f ′(Xi)− f(Xi))2

]
= 4Var(Wi)r(f ′, f).
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The variance of the second term is easily bounded by

Var
(
(f ′(Xi)− f(Xi))2

)
≤ E

[
(f ′(Xi)− f(Xi))4

]
≤ 4M2E

[
(f ′(Xi)− f(Xi))2

]
≤ 4M2r(f ′, f),

therefore we conclude that Var(Ui) ≤ 4(σ2 +M2)r(f ′, f).
To determine the moment condition constant h we will use a result presented

in [11]. Let A and B be two uncorrelated random variables satisfying the mo-
ment condition with constants hA and hB respectively. Then A+B satisfies the
moment condition with constant 8(hA + hB). We now proceed by splitting Ui

in two terms, as in the computation of the variance, and checking the moment
condition for each one of the these. For the first term we have

E
[
|2Wi(f ′(Xi)− f(Xi))|

k
]

= E
[
|2Wi|k

]
E
[
|f ′(Xi)− f(Xi)|k

]
≤ Var(2Wi)

k!
2

(2h)k−2E
[
|f ′(Xi)− f(Xi)|2

]
(2M)k−2

≤ Var (2Wi (f ′(Xi)− f(Xi)))
k!
2

(4hM)k−2,

for k ≥ 2. The second term is bounded, and so we have simply

E
[∣∣(f ′(Xi)− f(Xi))2 − E

[
(f ′(Xi)− f(Xi))2

]∣∣k]
≤ Var

(
(f ′(Xi)− f(Xi))2

)
(4M2)k−2

≤ Var
(
(f ′(Xi)− f(Xi))2

) k!
2

(4M2/3)k−2,

for k ≥ 2. Finally, using the result in [11] we conclude that Ui satisfies Bern-
stein’s moment condition with

hUi
= 8(4hM + 4M2/3).

Applying Theorem 14 to {Ui}n
i=1, with τ = pen(f ′) + log(1δ) and ε = 1/λ

we get

r(f ′, f)− r̂n(f ′, f) ≥ λ
pen(f ′) + log(1/δ)

n
+

2(σ2 +M2)r(f ′, f)
λ(1− c)

,

with probability not greater than δe−pen(f ′). Using the union of events bound
we conclude that

r(f ′, f)− r̂n(f ′, f) < λ
pen(f ′) + log(1/δ)

n
+

2(σ2 +M2)r(f ′, f)
λ(1− c)

, (29)

for all f ′ ∈ Γ, with probability at least 1−sδ. We need to choose c and λ so that
the conditions in Theorem 14 hold, therefore take c = εhUi

= 32(hM+M2/3)/λ
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and λ > hUi (so that c < 1). Rearranging the terms in (29) we get

(1− a)r(f ′, f) < r̂n(f ′, f) +
λ

n
pen(f ′) +

λ

n
log(1/δ), (30)

with probability at least 1 − sδ, where a = 2(σ2+M2)
λ(1−c) . For out purposes it is

desirable that a < 1. This can be ensured by taking λ > 2(σ2 +M2)+32(hM +
M2/3).

Taking into account the definition of f̂n we have in particular that

(1− a)r(f̂n, f) < r̂n(f̂n, f) +
λ

n
pen(f̂n) +

λ

n
log(1/δ),

≤ r̂n(f ′, f) +
λ

n
pen(f ′) +

λ

n
log(1/δ), (31)

with probability at least 1− sδ, for all f ′ ∈ Γ. Applying Craig’s Theorem once
more, but this time to {−Ui}n

i=1, using τ = log(1/δ), we get

r̂n(f ′, f)− r(f ′, f) < ar(f ′, f) +
λ

n
log(1/δ),

with probability at least 1−δ, therefore putting this together with (31) conclude
that

(1− a)r(f̂n, f) < (1 + a)r(f ′, f) +
λ

n
pen(f ′) +

2λ
n

log(1/δ), (32)

with probability at least 1− (s+ 1)δ. Or rearranging the various terms

r(f̂n, f) <
1 + a

1− a
r(f ′, f) +

λ

n(1− a)
pen(f ′) +

2λ
n(1− a)

log(1/δ), (33)

with probability at least 1 − (s + 1)δ for every f ′ ∈ Γ. Equation (33) is a
Probably Approximately Correct (PAC) bound. It can easily be converted to an
expected risk bound by a standard integration argument, using the fact that
E[X] ≤

∫∞
0

Pr(X ≥ t)dt, for an arbitrary random variable X. To simplify the
presentation let

Υ(f ′, f) ≡ 1 + a

1− a
r(f ′, f) +

λ

n(1− a)
pen(f ′),

and set δ = e−
n(1−a)

2λ t. Then

E
[
r(f̂n, f)−Υ(f ′, f)

]
≤

∫ ∞

0

Pr
(
r(f̂n, f)−Υ(f ′, f) ≥ t

)
≤

∫ ∞

0

(s+ 1)e−
n(1−a)

2λ t

= (s+ 1)
2λ

n(1− a)
,

for every f ′ ∈ Γ, yielding the final result. �

28



C Proof of Corollary 1

All there is to do is to check the moment condition for a Gaussian random
variable. The moments of Wi are given by

E[|Wi|k] = σk



k/2∏
i=1

(2i− 1) , if k is even,

√
2
π

(k−1)/2∏
i=1

(2i) , if k is odd,

.

Using this fact one concludes that the moment condition is satisfied with h =
2
3

√
2
πσ. Now by choosing the particular value of λ in the corollary statement

we obtain the final result. �

D Proof of Theorem 8

Recall that a Hölder function with smoothness parameter α can be locally well
approximated by a polynomial of degree bαc, therefore it seems reasonable to
consider piecewise polynomial estimators. Divide the domain [0, 1]d in md dis-
joint hypercubes {Ul}l∈L, where

L ≡ {l = (l1, . . . , ld), li ∈ {0, . . . ,m− 1}} = {0, . . . ,m− 1}d,

and

Ul =
[
l1
m
,
l1 + 1
m

)
× · · · ×

[
ld
m
,
ld + 1
m

)
= U0 +

l

m
,

with l = (l1, . . . , ld) ∈ L. We will take m as an increasing function of n, so to
be precise we should write mn instead, but ease the notational burden we omit
this dependence.

Let T (i), i = 1, . . . , Dα be a basis for the space of polynomials of degree
bαc over Rd (the dimension of this vector space is Dα ≡

(bαc+d
bαc

)
). Furthermore

assume that the restriction of {T (i)} to the set U0 is an orthogonal basis, that
is, let {T (i)} satisfy ∫

U0

T (i)(x)T (j)(x)dx = 0,

for i 6= j. Assume also that∫
U0

(
T (i)(x)

)2

dx = M2vol(U0) =
M2

md
,

where vol(·) stands for the volume of a set.
In order to use Corollary 1 we need to construct a discrete class of possible

estimators. To do so we consider a polynomial fit to each of the sets Ul, l ∈ L,
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and quantize the coefficients of the polynomial representation with respect to a
suitable basis. We consider estimates of the form

γa(x) ≡
∑
l∈L

Dα∑
i=1

ali T
(i)

(
x− l

m

)
1{x ∈ Ul},

where a ≡ {ali}l∈L,i∈{1,...,Dα}. We need to consider a quantized version of the
polynomial coefficients in order to have a discrete set of estimators. We will see
later that it suffices to assume that

alj ∈ Qn ≡ {−1,
−n+ 1
n

, . . . ,
n− 1
n

, 1}.

Finally define
Γ =

{
γa : a ∈ QL×{1,...,Dα}

n

}
.

Note that Γ is finite, and has (2n + 1)mdDα elements, therefore choosing
pen(γ) = log((2n + 1)mdDα) guarantees the Kraft inequality (14). Note also
that, for n ≥ 2, pen(γ) ≤ 3Dαm

d log n
We have now all the necessary ingredients to apply Corollary 1. Consider an

arbitrary function f ∈ Σ(L,α,M). Notice that the penalty function is constant,
therefore in the application of the oracle bound we just need to find an element
of Γ that is sufficiently close to f , the function we want to estimate. Define
f̄ = γā, where

ā = arg min
a∈RL×{1,...,Dα}

‖f − γa‖2.

Since we chose an orthogonal basis, ā = {āli}l∈L,i∈{1,...,Dα} is given by

āli =
1

M2vol(U0)

∫
Ui

f(x)T (i)

(
x− l

m

)
dx.

Using the fact that f ∈ Σ(L,α) we have

‖f − f̄‖2 =
∫

[0,1]d
|f(x)− f̄(x)|2dx

=
∑
l∈L

∫
Ul

|f(x)− f̄(x)|2dx

≤
∑
l∈L

∫
Ul

|f(x)− P l
m

(x)|2dx (34)

≤
∑
l∈L

∫
Ul

L2

∥∥∥∥x− l

m

∥∥∥∥2α

dx (35)

≤
∑
l∈L

∫
Ul

L2

(
d

m2

)α

dx

=
L2dα

m2α
,

30



where (34) follows from the optimality of f̄ and (35) follows from Definition 1
(recall that P l

m
(·) is the Taylor polynomial of degree bαc around point l/m).

Now observe that

|āli| =
∣∣∣∣ 1
M2vol(U0)

∫
Ui

f(x)T (i)

(
x− l

m

)
dx

∣∣∣∣
≤ 1

M2vol(U0)

√∫
Ui

f2(x)dx

√∫
Ui

(
T (i)

(
x− l

m

))2

dx

≤ 1
M2vol(U0)

√
M2vol(U0)

√
M2vol(U0) = 1. (36)

Define f ′ = γa, where ali = round(nāli)/n (see footnote 10). In light of the
above we know that ali ∈ Qn, therefore f ′ ∈ Γ. This is the estimate we are
going to plug into the oracle bound (16). Begin by observing that

‖f̄ − f ′‖2 =
∫

[0,1]d
|f̄(x)− f ′(x)|2dx

=
∑
l∈L

∫
Ul

|f̄(x)− f ′(x)|2dx

=
∑
l∈L

∫
Ul

∣∣∣∣∣
Dα∑
i=1

(āli − ali)T (i)

(
x− l

m

)∣∣∣∣∣
2

dx

=
∑
l∈L

Dα∑
i=1

(āli − ali)2
∫

Ul

T (i)

((
x− l

m

))2

dx

=
∑
l∈L

Dα∑
i=1

(āli − ali)2M2vol(U0)

≤
∑
l∈L

Dα∑
i=1

1
4n2

M2

md
=
DαM

2

4n2
.

Putting these two bounds together we obtain

‖f − f ′‖2 ≤ ‖f − f̄‖2 + ‖f̄ − f ′‖2 + 2‖f − f̄‖‖f̄ − f ′‖

≤ L2dα 1
m2α

+
DαM

2

4
1
n2

+ 2

√
L2dαDαM2

4
1

nmα

= Cmax
{

1
m2α

,
1
n

}
,

where C > 0 is a constant.
Finally, using Corollary 1 we obtain

E[‖f − f̂n‖] ≤ Cmax
{

1
m2α

,
1
n
,
md log n

n

}
,

10Let x ∈ R, define round(x) ≡ arg minz∈Z |x− z|. Clearly |round(x)− x| ≤ 1/2.
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for a suitable C > 0, and any n ≥ 2, therefore choosing m =
⌈
(n/ log n)

1
2α+d

⌉
yields

E[‖f − f̂n‖] ≤ C(n/ log n)−
2α

2α+d ,

for some C ≡ C(L,α,M, σ2) and any n ≥ 2. �

E Proof of Theorem 9

As mentioned before, we are going to analyze a modification of the estimator
described in (21). This proof uses many of the ideas introduced in the proof of
Theorem 8, therefore it is recommended that the reader glances at that proof
before proceeding this section.

Let π = {A1, . . . , Ak} ∈ Π be a RDP and let {T (i)
Al
}Dα

i=1, l = 1, . . . , k, be an
orthogonal basis of the space of polynomials of degree bαc over Ak. In particular,
for any l ∈ {1, . . . , k} we require the basis to have the following properties

i) For all i, j ∈ {1, . . . , Dα}, i 6= j∫
Al

T
(i)
A (x)T (j)

A (x)dx = 0, ∀A ∈ π, and

ii) ∫
A

(
T

(i)
A (x)

)2

dx = M2vol(A), ∀A ∈ π.

We now define the discrete analogue of Ξ(π) (see equation (19)). We do
this by describing the polynomials decoration each set of the partition using the
previously constructed basis, and restricting the coefficients of those represen-
tations to lie on the discrete set

Qn ≡ {−1,
−n+ 1
n

, . . . ,
n− 1
n

, 1}.

Therefore we define

ΞQn
(π) =

{∑
A∈π

Dα∑
i=1

aA,i T
(i)
A (x)1{x ∈ A} : aA,i ∈ Qn ∀A, i

}
,

and consequently the class of possible estimators we consider is

Γ =
⋃

π∈Π

ΞQn
(π). (37)

This is clearly a countable set (although not finite), and is the set of estimates
we will use to apply Corollary 1.

To construct a penalty function that satisfies the Kraft inequality (14) we
use an explicit description of a prefix encoding of the elements of Γ, therefore au-
tomatically satisfying (14). Let γπ ∈ ΞQn

(π) ⊆ Γ. The encoding of an element
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Figure 5: Prefix encoding of a Recursive Dyadic Partition. The depicted parti-
tion encodes as 100100000 in binary.

of γπ is done in two steps: (i) encoding the underlying RDP π, (ii) encoding
the coefficients of the decorating polynomials {aAi}A∈π,i∈{1,...,Dα}. To encode
the underlying RDP we resort to its tree representation (refer to Figure 5),
and assign a zero or one value to each node of the tree: zero if that node is a
leaf node, and one otherwise. Now collect all those values in a lexicographical
order,i.e.left-to-right breadth-first order (see example in Figure 5). This forms
a binary prefix code for that space of RDP trees.

Note that each node in a RDP tree has either zero or 2d descendants, there-
fore the tree has 1 + 2dk nodes, for some k ∈ N0, and it has 1 + (2d − 1)k leaf
nodes. The number of leaf nodes is the size of the RDP and so, we can describe
a RDP π using

λ1(π) ≡ 1 +
2d

2d − 1
(|π| − 1)

bits. Notice that since this is a binary prefix code it satisfies the Kraft inequality∑
π∈Π 2−λ1(π) ≤ 1.
For each element of the RDP we have a polynomial with Dα coefficients

taking values over Qn, therefore ΞQn
has (2n+ 1)|π|Dα elements. With this at

hand define

pen(γπ) =
(

2d log 2
2d − 1

+Dα log(2n+ 1)
)
|π|. (38)

We have the following result

Lemma 2. The penalty defined in (38) satisfies (14), that is∑
γ∈Γ

exp(−pen(γ)) ≤ 1

for Γ defined in (37).
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Proof.∑
γ∈Γ

exp(−pen(γ)) =
∑

S
π∈Π ΞQn (π)

exp(−pen(γ))

≤
∑
π∈Π

∑
γ∈ΞQn (π)

exp
(
−2d log 2

2d − 1
|π| −Dα log(2n+ 1)|π|

)

=
∑
π∈Π

exp
(
−2d log 2

2d − 1
|π|
) ∑

γ∈ΞQn (π)

1
(2n+ 1)|π|Dα

=
∑
π∈Π

2−
2d

2d−1
|π|

≤
∑
π∈Π

2−
�
1+ 2d

2d−1
(|π|−1)

�
=
∑
π∈Π

2−λ1(π) ≤ 1.

�

It’s important to note that pen(γπ) ≤ C log n|π| for any n ≥ 2 and a suitable
constant C > 0. This is going to be used later to avoid dealing with cumbersome
constants.

We are now ready to apply Corollary 1. We consider first the case d > 1. Fix
an arbitrary function f ∈ F(L,α, β,M). Our strategy is to construct a partition
that is well adapted to the boundary set B(f), in the sense that the partition
sets that intersect B(f) are small. This is desirable because the discontinuity of
B(f) cannot be well approximated with polynomials. Away from the boundary
we can use larger partition sets, although not too large, so that polynomials
approximate well the function f over those sets.

Let J, J ′ ∈ N0 and J > J ′. Consider the RDP tree with all the leafs at depth
J . The corresponding RDP has 2dJ elements. Now prune this tree so that leafs
intersecting B(f) are at depth J and all the other leafs are between depths J ′

and J . This process is illustrated in Figure 6. We have the following result:

Lemma 3. There is a RDP such that leafs intersecting B(f) are at depth J and
all the other leafs are between depths J ′ and J (J ′ < J). Denote the smallest
such RDP by πJ′,J . This RDP has at most 22dB2(d−1)J leafs intersecting B(f)
and

|πJ′,J | ≤ 2d(J′+1) +
{
B′J , if d = 1
B′2(d−1)J , if d > 1

,

where

B′ =

{
22dB , if d = 1
23d−1

2d−1−1
B , if d > 1

.

Proof. Denote the smallest RDP satisfying the conditions of the lemma by πJ,J′ .
The number of leafs is trivially bounded by the number of nodes in the tree,
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(a) (b)

Figure 6: Example of RDP tree pruning, for d = 2, J = 4, and J ′ = 2. The
depicted curve is B(f): (a) partition with all leafs at depth J ; (b) pruned
partition adapted to B(f).

and so the proof strategy entails by bounding from above the number of nodes
πJ,J′ might have. First, since the all the leafs are at depth greater of equal than
J ′, πJ,J′ has no more than 2d(J′+1) nodes at depth J ′. Now let j ∈ N. Begin by
noticing that any closed ball of diameter 2−j is contained in at most 2d nodes
at depth j, thus at depth j there are at most 2dB2(d−1)j nodes of πJ,J′ that
intersect B(f) (recall Definition 3). Due to the diadic structure every leaf has
2d − 1 siblings, thus πJ,J′ has less than 22dB2(d−1)j nodes at depth j (therefore
πJ′,J has at most 22dB2(d−1)J leafs). Finally, the total number of nodes of πJ,J′

is bounded from above by

2d(J′+1) + 22dB
J∑

j=J′+1

2(d−1)j (39)

≤ 2d(J′+1) + 22dB
J∑

j=0

2(d−1)j (40)

≤ 2d(J′+1) +

{
22dBJ , if d = 1
23d−1

2d−1−1
B2(d−1)J , if d > 1

. (41)

�

The key point of Lemma 3 is that the total number of leafs in the described
tree is of the same order of magnitude has the number of leafs intersecting the
boundary set (for d > 1).

Let πJ′,J be the partition of Lemma 3 and define

f̄ =
∑
A∈π

Dα∑
i=1

āA,i T
(i)
A (x)1{x ∈ A},
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where
āAi =

1
M2vol(A))

∫
A

f(x)T (i)(x)dx.

It is easy to verify that f̄ minimizes ‖f − f̄‖2 over Ξ(πJ′,J). Also, by the same
reasoning used in (36)

|āAi| ≤ 1, ∀A ∈ π, i ∈ {1, . . . , Dα}.

Finally define

f ′ =
∑
A∈π

Dα∑
i=1

aA,i T
(i)
A (x)1{x ∈ A},

where aA,i = round(nāA,i)/n. Clearly aA,i ∈ Qn, and so f ′ ∈ Γ. This is the
estimate we are going to plug-in the oracle bound (16).

As in the proof of Theorem 8 we need to bound ‖f − f ′‖. We consider first
the case d > 1. For the ease on notation define two subsets of π: π1 ≡ {A ∈ π :
A
⋂
B(f) 6= ∅}, the set of elements of π that intersect B(f), and π2 ≡ π \ π1,

the set of elements of π that do not intersect B(f).

‖f − f̄‖2 =
∫

[0,1]d
|f(x)− f̄(x)|2dx

=
∑
A∈π

∫
A

|f(x)− f̄(x)|2dx

=
∑

A∈π1

∫
A

|f(x)− f̄(x)|2dx +
∑

A∈π2

∫
A

|f(x)− f̄(x)|2dx

≤
∑

A∈π1

M2vol(A) +
∑

A∈π2

∫
A

|f(x)− PzA
|2dx (42)

≤ B′2(d−1)JM22−dJ +
∑

A∈π2

∫
A

L2|x− zA|2αdx

≤ B′M22−J +
∑

A∈π2

∫
A

L2diam(A)2αdx

= B′M22−J +
∑

A∈π2

L2(d2−2J′)αvol(A)

≤ B′M22−J + L2dα2−2αJ′ , (43)

where diam(·) stands for diameter of a set, and step (42) is due to the fact that
f̄ minimizes ‖f − f̄‖2 over Ξ(πJ′,J). Also

‖f̄ − f ′‖2 =
∫

[0,1]d
|f̄(x)− f ′(x)|2dx

=
∑
A∈π

∫
A

|f̄(x)− f ′(x)|2dx
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=
∑
A∈π

∫
A

|
Dα∑
i=1

(āA,i − aA,i)T
(i)
A (x)|2dx

=
∑
A∈π

Dα∑
i=1

(āA,i − aA,i)2
∫

A

(
T

(i)
A (x)

)2

dx

=
∑
A∈π

Dα∑
i=1

(āA,i − aA,i)2M2vol(A)

≤
∑
A∈π

Dα∑
i=1

1
4n2

M2vol(A) =
DαM

2

4n2
.

Finally

‖f − f ′‖2 ≤ ‖f − f̄‖2 + ‖f̄ − f ′‖2 + 2‖f − f̄‖‖f̄ − f ′‖

≤ Cmax
{

2−J , 2−2αJ′ ,
1
n

}
,

where C > 0 is a suitable constant. Then Corollary 1 yields

E[‖f − f̂n‖2] ≤ Cmax

{
2−J , 2−2αJ′ ,

1
n
,
2dJ′ log n

n
,
2(d−1)J log n

n

}
,

for a suitable C > 0 and any n ≥ 2, where the two last arguments in the
maximum function follow from Lemma 3. Choosing J = d 1

d log(n/ log(n))e and
J ′ = d 1

2α+d log(n/ log(n))e yields the desired result

E[‖f − f̂n‖2] ≤ Cmax

{(
n

log n

)− 2α
2α+d

,

(
n

log n

)− 1
d

}
,

for some C ≡ C(L,α, β,M, σ2) and all n ≥ 2.
When d = 1 the argument suffers a slight modification. Instead of (43) we

have
‖f − f̄‖2 ≤ B′M2J2−J + L22−2αJ′ ,

which follows by the same reasoning as before but noting that Lemma 3 gives
a different expression for |π1|. From Corollary 1

E[‖f − f̂n‖2] ≤ Cmax

{
J2−J , 2−2αJ′ ,

1
n
,
2J′ log n

n
,
J log n
n

}
.

With J = dlog ne and J ′ as before we obtain

E[‖f − f̂n‖2] ≤ C ′ max

{(
n

log n

)− 2α
2α+d

,
log2 n

n

}

≤ C

(
n

log n

)− 2α
2α+d

,

for some C ′ > 0, C ≡ C(L,α, β,M, σ2) and all n ≥ 2, concluding the proof. �
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F Sketch of the proof of Theorem 10

This proof is a simplified version of the proof of Theorem 9. Using the notation
introduced in that proof, the modifications are as follows. Consider first the
case d > 1. The estimators we consider are obtained decorating each leaf on
an RDP with a constant (instead of a polynomial of degree bαc). Since the
functions in the class under consideration are piecewise constant, this model is
exact away from the boundary and so we get

‖f − f̄‖2 ≤ B′M22−J ,

and

‖f̄ − f ′‖2 ≤ M2

4n2
.

Putting these results together and using Corollary 1 in the same fashion as
before we get

E[‖f − f̂n‖2] ≤ Cmax
{

2−J ,
1
n
,
2(d−1)J log n

n

}
,

for a suitable C > 0 and any n ≥ 2. Choosing J = d 1
d log(n/ log(n))e yields the

desired result

E[‖f − f̂n‖2] ≤ C

(
n

log n

)− 1
d

,

for some C ≡ C(β,M, σ2) and all n ≥ 2.
When d = 1 we have

‖f − f̄‖2 ≤ B′M2J2−J ,

which follows by the same reasoning as before but noting that Lemma 3 gives
a different expression for |π1|. Corollary 1 yields

E[‖f − f̂n‖2] ≤ Cmax
{
J2−J ,

1
n
,
J log n
n

}
.

Choosing J = dlog ne we obtain

E[‖f − f̂n‖2] ≤ C
log2 n

n
,

for some C ≡ C(β,M, σ2) and all n ≥ 2, concluding the proof. �

G Proof of Theorem 11

Consider the partition of [0, 1]d into md identical hypercubes, just as in state-
ment of (A4). Let m = 2J and J ∈ N. This partition, that we denote by πJ ,
can also be constructed with a RDP where all the leaves are at depth J . Using
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this partition we define fJ : [0, 1]d → R, a coarse approximation of f up to
resolution J . Formally we have

fJ(x) =
1
md

∑
A∈πJ

(∫
A

f(t)dt

)
1A(x).

Note that fJ is identical to f “away” from the boundary (since f is piecewise
constant), but in the vicinity of the boundary there is some averaging. We have
the following important result.

Lemma 4. Let f̂p
l be the complexity regularized estimators introduced above

(with l ∈ {0, . . . , d}). Let f ∈ BF(M). Then

E
[
‖f̂p

l − fJ‖2
]
≤ C

2(d−1)J log n′

n′
,

for a suitable C > 0, and all n′ ≥ 2.

Proof. The key idea used in the proof is the constructing of a modified observa-
tion setup, that is, instead of using {Xi, Yi}n′

i=1 to determine the estimator f̂P
l ,

we use a different observation model, yielding observations {X′
i, Y

′
i }n′

i=1. This
new observation model is carefully chosen so that the output to the estimator
using either {Xi, Yi}n′

i=1 or {X′
i, Y

′
i }n′

i=1 is statistically indistinguishable.
The new observation model is of the form

Yi = fJ(Xi) +W ′
i ,

where {Wi} are all independent but not identically distributed. Namely let AXi

denote the partition set where Xi is contained, that is,

AXi
≡ A : A ∈ πJ and Xi ∈ A.

We define
W ′

i ≡ f(U i)− fJ(U i) +Wi,

where {U i}n′

i=1 are all independent of {Wi} and U i|Xi ∼ Unif(AXi
), and

{Wi}n′

i=1 are (i.i.d.) Gaussian with zero mean and variance σ2.
Notice that the estimators f̂P

l average the data within each partition cell
A ∈ πJ , completely ignoring the sample location Xi within the cell. This
ensures that the above observation model is statistically indistinguishable from
the original observation model, when used by the estimation procedure. Note
that under the new observation model the regression function is E[Yi|Xi = x]
is fJ(x), instead of f(x) for the original observation model. This is the key
to obtain the desired result, following from the application of Theorem 7, since
now we can evaluate the error performance with respect to fJ . We just need
to check that W ′

i satisfies the moment condition. Since W ′
i is the sum of two

independent random variables, namely Wi and f(U i) − fJ(U i) we can again
use the result in [11] for the sum of random variables satisfying the moment
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condition (as in the proof of Theorem 7). Therefore W ′
i satisfies the moment

condition (13) with constant h = 8( 2
3

√
2
π + 4M2

3 ). From here we proceed as
in the proof of Theorem 8, by noting that there is a model in Γ, built over a
partition with 2(d−1)J elements, that approximates fJ extremely well. Therefore
we conclude that

E
[
‖f̂p

l − fJ‖2
]
≤ Cmax

{
2(d−1)J log n′

n′
,

1
n′

}
= C

2(d−1)J log n′

n′
,

for a suitable C > 0, and all n′ ≥ 2. �

To bound the risk of the active learning procedure we are going to consider
the error incurred in three different situations: (i) the error incurred during the
preview stage in regions away from the boundary; (ii) the error incurred by not
detecting a piece of the boundary (and therefore not performing the refinement
stage on that area); (iii) the error incurred during the refinement stage.

(i) - Recall that fJ is identical to f “away” from the boundary set B(f).
That is, for a fixed set A ∈ πJ that does not intersect the boundary
we have f(x) = fJ(x) for all x ∈ A. Therefore Lemma 4 characterizes
the behavior of the preview estimator “away” from the boundary. Let I
denote the union of all partition sets of πJ not intersecting the boundary.
Then

E
[∫

I
|f̂active(x)− f(x)|2dx

]
= E

[∫
I
|f̂p

0 (x)− fJ(x)|2dx

]
≤ E

[
‖fp

0 − fJ‖2
]

≤ C
2(d−1)J log n′

n′
,

for a suitable C > 0 and all n′ ≥ 2.

(ii) - Let Î be the set of elements of πJ intersecting the boundary that are
not going to be re-sampled in the refinement step. That is

Î = {A ∈ πJ , A ∩B(f) 6= ∅ : ∀l ∈ {0, . . . , d} A /∈ π̂p
l } .

Under (A4) we know that for each element of Î (24) holds for at least one
of the shifted RDPs. Therefore we can construct a decomposition

Î = Ĵ0 ∪ Ĵ1 ∪ · · · ∪ Ĵd,

where Ĵl are disjoint and (24) holds for all the elements of Ĵl, with respect
to shifted RDPs in the lth coordinate (Notice that many such decompo-
sitions might exist, but for our purposes we just need to consider one of
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them). Now

E[‖f̂p
l − fJ‖2] ≥ E

∫ S
A∈Ĵl

A(A,l)

(
f̂p

l (x)− fJ(x)
)2

dx


= E

∫ S
A∈Ĵl

A(A,l)

(
fJ(x)− E[f̂p

l (x)|π̂p
l ]
)2

dx

+

E

∫ S
A∈Ĵl

A(A,l)

(
f̂p

l (x)− E[f̂p
l (x)|π̂p

l ]
)2

dx


≥ E

∫ S
A∈Ĵl

A(A,l)

(
fJ(x)− E[f̂p

l (x)|π̂p
l ]
)2

dx


≥ E[|Ĵl|]Cb(f)2−dJ .

Using Lemma 4 we conclude that E[|Ĵl|] ≤ 2(2d−1)J log n′

n′
1

Cb(f) , and there-

fore E[|Î|] ≤ (d+1)2(2d−1)J log n′

n′
1

Cb(f) . The maximum error we incur in our
final estimate by erroneously not detecting certain pieces of the boundary
is bounded above by

E

∫ S
A∈Î

A

(
f̂active(x)− f(x)

)2

dx


= E

∫ S
A∈Î

A

(
f̂p
0 (x)− f(x)

)2

dx


= E

∫ S
A∈Î

A

(
f(x)− E[f̂p

0 (x)]
)2

dx

+

E

∫ S
A∈Î

A

(
f̂p
0 (x)− E[f̂p

0 (x)]
)2

dx


≤ E[|Î|]M22−dJ + C

2(d−1)J log n′

n′
≤ C ′

2(d−1)J log n′

n′
,

Where C ′ > 0, and C > 0 comes from Lemma 4. We conclude that the
error incurred by failing to detect the boundary has the same contribution
for the total error of the estimator as the error away from the boundary,
analyzed in (i).
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(iii) - In the regions that are going to be refined, that is, the regions in R,
we are going to collect further samples and apply the estimator described
in Section 4.1. Assume for now that we have O(2(d−1)J) elements in R.
This is going to be proved later on, in Lemma 5. We collect a total of
L ≡ n′/|R| samples in each element of R. The error incurred by f̂r, the
refinement estimator, over each one of the elements of R is upper-bounded
by

C

(
logL
L

)1/d

2−dJ ,

where C > 0 comes from Theorem 10. Therefore the error of the estimator
over ∪A∈RA is upper-bounded by

C

(
logL
L

)1/d

2−dJ |R|.

To compute the total error incurred by f̂active we just have to sum the con-
tributions of (i), (ii) and (iii), and therefore we get

E
[
‖f̂active − f‖2

]
≤ C

(
logL
L

)1/d

2−dJ |R|+ C ′
2(d−1)J log n′

n′
,

with C,C ′ > 0. Assuming now that |R| = O(2(d−1)J) we can balance the two
terms in the above expression by choosing

J =
⌈

d− 1
(d− 1)2 + d

log(n′/ log(n′))
⌉
,

yielding the desired result.
As mentioned before, we need to show that the number of partition sets

where we are going to distribute samples in the refinement step is not very
large, namely, with high probability #R = O(2(d−1)J). This ensures that there
are enough samples in each one of these partition sets to properly perform the
refinement step. Without loss of generality, it suffices to analyze the number of
elements in π̂p

0 . We will denote this estimator by π̂ to ease the notation.

Lemma 5. Let π̂ be the partition estimated according to (21). Let πJ′,J be the
partition adapted to the boundary, according to Lemma 3 (recall that this cannot
computed from the data). Then with high probability the number of elements of
π̂ is comparable with the number of elements of πJ′,J , namely

Pr(|π̂| > 2|πJ′,J |) ≤ 1/n,

for n sufficiently large.

From this lemma we conclude that, with high probability, the number of cells
to be refined is actually O(2(d−1)J) and so all the analysis done before holds,
with probability 1− (1/n), concluding the proof.
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Proof of Lemma 5: First note that the number of elements in π̂p
0 is equal to

(2d− 1)k+1 for k ∈ N0, due to the dyadic structure of the partitions. Our goal
is to bound

Pr
(
|π̂p

0 | = (2d − 1)k + 1
)

= Pr

 ⋃
π:|π|=(2d−1)k+1

{π̂ = π}


≤

∑
π:|π|=(2d−1)k+1

Pr (π̂ = π)

≤ #k max
π:|π|=(2d−1)k+1

{Pr (π̂ = π)} , (44)

where #k is the number of partitions with (2d − 1)k + 1 elements. A very
crude upper-bound on #k is

(
2dJ

k

)
. This is obtained noticing that an RDP with

(2d − 1)k+ 1 elements is constructed by doing k splits of the trivial RDP (as in
the formal rules for the construction of RDPs).

To bound Pr(π̂ = π) recall Lemma 3. Let π be an arbitrary RDP. There is
another partition π′ that can be constructed from π by aggregation, adapted to
the boundary and such that

|π′| ≤ min
(
|π|, (2d − 1)C2(d−1)J + 1

)
,

where C > 0 comes from Lemma 3. If k ≤ C2(d−1)J we upper bound Pr(π̂ = π)
by trivially by one. If k > C2(d−1)J notice that π and π′ are nested and π � π′.
To bound Pr(π̂ = π) we will bound the probability that the estimation strategy
chooses π against π′. For a fixed partition the model fit corresponds simply to
a projection onto a linear space. Recall (21). We choose π against π′ if the
difference between the squared errors of the model fits for π and π′ is greater
then the difference of the respective penalty terms. Noting again that π � π′

(that is π is nested inside π′) the difference between the squared errors is a χ2

random variable, with |π| − |π′| degrees of freedom, and so

Pr(π̂ = π) ≤ Pr
(
U(2d−1)(k−C2(d−1)J ) > 2p(n)(2d − 1)(k − C2(d−1)J)

)
,

where U(2d−1)(k−C2(d−1)J ) is a χ2 random variable with (2d − 1)(k − C2(d−1)J)
degrees of freedom, and p(n) = c0 log n. In [15] Laurent and Massart state the
following lemma (Lemma 1): If Uq is χ2 distributed with q degrees of freedom
then, for s > 0

Pr(Uq ≥ q + s
√

2q + s2) ≤ e−s2/2.

Now take q = (2d − 1)(k − C2(d−1)J) and q + s
√

2q + s2 = 2p(n)q. After some
manipulation we conclude that

Pr(π̂ = π) ≤ exp
(
−q
(
p(n)−

√
p(n)− 1/4

))
= exp

(
−(2d − 1)(k − C2(d−1)J)

(
p(n)−

√
p(n)− 1/4

))
.
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We can now ask for a bound on the probability that the number of elements
of π̂ exceeds some value. In particular we are going to bound the probability
that the chosen partition has approximately twice more leafs than the optimal
partition, adapted clairvoyantly to the boundary set. Concretely, we are going
to bound

ζ ≡ Pr(|π̂| ≥ (2d − 1)2C2(d−1)J + 1).

Using (44) we have

ζ ≤
∞∑

k=2C2(d−1)J

{(
2dJ

k

)
exp

(
−(2d − 1)(k − C2(d−1)J)

(
c0 log n−

√
c0 log n− 1/4

))}
.

Let M = 2dJ and note that p(n) = c1 logM . Then

ζ ≤
∞∑

k=2CM
d−1

d

{(
M

k

)

exp
(
−(2d − 1)(k − CM

d−1
d )
(
c1 logM −

√
c1 logM − 1/4

))}
.

For M large the logM term dominates the
√

logM term, and so, for ε > 0 and
M sufficiently large we have

ζ ≤
∞∑

k=2CM
d−1

d

(
M

k

)
exp

(
−(2d − 1)(k − CM

d−1
d )c1 logM(1− ε)

)

≤
∞∑

k=2CM
d−1

d

Mk

k!
M−(2d−1)(k−CM

d−1
d )c1(1−ε).

Now we use the fact that k! grows much faster than an exponential, namely,
for M sufficiently large we have k! > Mαk for some α > 0. Take α such that
1− α− (2d − 1)c1(1− ε) < 0. Then, for M sufficiently large

ζ ≤
∞∑

k=2CM
d−1

d

MkM−αkM−(2d−1)(k−CM
d−1

d )c1(1−ε)

≤
∞∑

k=2CM
d−1

d

M (1−α−(2d−1)c1(1−ε))kM (2d−1)CM
d−1

d c1(1−ε)

=
M (1−α−(2d−1)c1(1−ε))2CM

d−1
d

1−M−1
M (2d−1)CM

d−1
d c1(1−ε)

=
M

M − 1
M (1−α− 1

2 (2d−1)c1(1−ε))2CM
d−1

d ≤M−γ ,

where γ is arbitrarily large, provided α is chosen appropriately, and so ζ < 1/n
for large enough n. �
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