
Faster Ridge Regression via the Subsampled Randomized
Hadamard Transform

Yichao Lu1 Paramveer S. Dhillon2 Dean Foster1 Lyle Ungar2

1Statistics (Wharton School), 2Computer & Information Science
University of Pennsylvania, Philadelphia, PA, U.S.A

{dhillon|ungar}@cis.upenn.edu
foster@wharton.upenn.edu, yichaolu@sas.upenn.edu

Abstract

We propose a fast algorithm for ridge regression when the number of features is
much larger than the number of observations (p� n). The standard way to solve
ridge regression in this setting works in the dual space and gives a running time
of O(n2p). Our algorithm Subsampled Randomized Hadamard Transform- Dual
Ridge Regression (SRHT-DRR) runs in time O(np log(n)) and works by precon-
ditioning the design matrix by a Randomized Walsh-Hadamard Transform with a
subsequent subsampling of features. We provide risk bounds for our SRHT-DRR
algorithm in the fixed design setting and show experimental results on synthetic
and real datasets.

1 Introduction

Ridge Regression, which penalizes the `2 norm of the weight vector and shrinks it towards zero, is
the most widely used penalized regression method. It is of particular interest in the p > n case (p is
the number of features and n is the number of observations), as the standard ordinary least squares
regression (OLS) breaks in this setting. This setting is even more relevant in today’s age of ‘Big
Data’, where it is common to have p � n. Thus efficient algorithms to solve ridge regression are
highly desirable.

The current method of choice for efficiently solving RR is [19], which works in the dual space
and has a running time of O(n2p), which can be slow for huge p. As the runtime suggests, the
bottleneck is the computation of XX> where X is the design matrix. An obvious way to speed
up the algorithm is to subsample the columns of X. For example, suppose X has rank k, if we
randomly subsample psubs of the p (k < psubs � p) features, then the matrix multiplication can be
performed in O(n2psubs) time, which is very fast! However, this speed-up comes with a big caveat.
If all the signal in the problem were to be carried in just one of the p features, and if we missed this
feature while sampling, we would miss all the signal.

A parallel and recently popular line of research for solving large scale regression involves using
some kind of random projections, for instance, transforming the data with a randomized Hadamard
transform [1] or Fourier transform and then uniformly sampling observations from the resulting
transformed matrix and estimating OLS on this smaller data set. The intuition behind this approach
is that these frequency domain transformations uniformlize the data and smear the signal across all
the observations so that there are no longer any high leverage points whose omission could unduly
influence the parameter estimates. Hence, a uniform sampling in this transformed space suffices.
This approach can also be viewed as preconditioning the design matrix with a carefully constructed
data-independent random matrix. This transformation followed by subsampling has been used in a
variety of variations, including Subsampled Randomized Hadamard Transform (SRHT) [4, 6] and
Subsampled Randomized Fourier Transform (SRFT) [22, 17].

1

In this paper, we build on the above line of research and provide a fast algorithm for ridge regression
(RR) which applies a Randomized Hadamard transform to the columns of the X matrix and then
samples psubs = O(n) columns. This allows the bottleneck matrix multiplication in the dual RR to
be computed in O(np log(n)) time, so we call our algorithm Subsampled Randomized Hadamard
Transform-Dual Ridge Regression (SRHT-DRR).

In addition to being computationally efficient, we also prove that in the fixed design setting SRHT-
DRR only increases the risk by a factor of (1 + C

√
k

psubs
) (where k is the rank of the data matrix)

w.r.t. the true RR solution.

1.1 Related Work

Using randomized algorithms to handle large matrices is an active area of research, and has been
used in a variety of setups. Most of these algorithms involve a step that randomly projects the origi-
nal large matrix down to lower dimensions [9, 16, 8]. [14] uses a matrix of i.i.d Gaussian elements
to construct a preconditioner for least square which makes the problem well conditioned. However,
computing a random projection is still expensive as it requires multiplying a huge data matrix by
another random dense matrix. [18] introduced the idea of using structured random projection for
making matrix multiplication substantially faster.

Recently, several randomized algorithms have been developed for kernel approximation. [3] pro-
vided a fast method for low rank kernel approximation by randomly selecting q samples to construct
a rank q approximation of the original kernel matrix. Their approximation can reduce the cost to
O(nq2). [15] introduced a random sampling scheme to approximate symmetric kernels and [12]
accelerates [15] by applying Hadamard Walsh transform. Although our paper and these papers can
all be understood from a kernel approximation point of view, we are working in the p � n � 1
case while they focus on large n.

Also, it is worth distinguishing our setup from standard kernel learning. Kernel methods enable the
learning models to take into account a much richer feature space than the original space and at the
same time compute the inner product in these high dimensional space efficiently. In our p� n� 1
setup, we already have a rich enough feature space and it suffices to consider the linear kernel
XX> 1. Therefore, in this paper we propose a randomized scheme to reduce the dimension of X
and accelerate the computation of XX>.

2 Faster Ridge Regression via SRHT

In this section we firstly review the traditional solution of solving RR in the dual and it’s computa-
tional cost. Then we introduce our algorithm SRHT-DRR for faster estimation of RR.

2.1 Ridge Regression

Let X be the n × p design matrix containing n i.i.d. samples from the p dimensional independent
variable (a.k.a. “covariates” or “predictors”) X such that p � n. Y is the real valued n × 1
response vector which contains n corresponding values of the dependent variable Y . ε is the n × 1

homoskedastic noise vector with common variance σ2. Let β̂λ be the solution of the RR problem,
i.e.

β̂λ = arg min
β∈p×1

1

n
‖Y −Xβ‖2 + λ‖β‖2 (1)

The solution to Equation (1) is β̂λ = (X>X + nλIp)
−1X>Y . The step that dominates the com-

putational cost is the matrix inversion which takes O(p3) flops and will be extremely slow when
p � n � 1. A straight forward improvement to this is to solve the Equation (1) in the dual space.
By change of variables β = X>α where α ∈ n× 1 and further letting K = XX> the optimization
problem becomes

α̂λ = arg min
α∈n×1

1

n
‖Y −Kα‖2 + λα>Kα (2)

1For this reason, it is standard in natural language processing applications to just use linear kernels.

2

and the solution is α̂λ = (K + nλIn)−1Y which directly gives β̂λ = X>α̂λ. Please see [19] for a
detailed derivation of this dual solution. In the p � n case the step that dominates computational
cost in the dual solution is computing the linear kernel matrix K = XX> which takesO(n2p) flops.
This is regarded as the computational cost of the true RR solution in our setup.

Since our algorithm SRHT-DRR uses Subsampled Randomized Hadamard Transform (SRHT),
some introduction to SRHT is warranted.

2.2 Definition and Properties of SRHT

Following [20], for p = 2q where q is any positive integer, a SRHT can be defined as a psubs × p
(p > psubs) matrix of the form:

Θ =

√
p

psubs
RHD

where

• R is a random psubs × p matrix the rows of which are psubs uniform samples (without
replacement) from the standard basis of Rp.

• H ∈ Rp×p is a normalized Walsh-Hadamard matrix. The Walsh-Hadamard matrix of size

p× p is defined recursively: Hp =

[
Hp/2 Hp/2

Hp/2 −Hp/2

]
with H2 =

[
+1 +1
+1 −1

]
.

H = 1√
pHp is a rescaled version of Hp.

• D is a p × p diagonal matrix and the diagonal elements are i.i.d. Rademacher random
variables.

There are two key features that makes SRHT a nice candidate for accelerating RR when p � n.
Firstly, due to the recursive structure of the H matrix, it takes only O(p log(psubs)) FLOPS to
compute Θv where v is a generic p × 1 dense vector while for arbitrary unstructured psubs × p
dense matrix A, the cost for computing Av is O(psubsp) flops. Secondly, after projecting any
matrix W ∈ p× k with orthonormal columns down to low dimensions with SRHT, the columns of
ΘW ∈ psubs × k are still about orthonormal. The following lemma characterizes this property:

Lemma 1. Let W be an p × k (p > k) matrix where W>W = Ik. Let Θ be a psubs × p SRHT
matrix where p > psubs > k. Then with probability at least 1− (δ + p

ek
),

‖(ΘW)>ΘW − Ik‖2 ≤

√
c log(2k

δ)k

psubs
(3)

The bound is in terms of the spectral norm of the matrix. The proof of this lemma is in the Appendix.
The tools for the random matrix theory part of the proof come from [20] and [21]. [10] also provided
similar results.

2.3 The Algorithm

Our fast algorithm for SRHT-DRR is described below:

SRHT-DRR
Input: Dataset X ∈ n× p, response Y ∈ n× 1, and subsampling size psubs.
Output: The weight parameter β ∈ psubs × 1.

• Compute the SRHT of the data: XH = XΘ>.
• Compute KH = XHX>H
• Compute αH,λ = (KH + nλIn)−1Y , which is the solution of Equation (2) obtained by

replacing K with KH .
• Compute βH,λ = X>HαH,λ

3

Since, SRHT is only defined for p = 2q for any integer q, so, if the dimension p is not a power of 2,
we can concatenate a block of zero matrix to the feature matrix X to make the dimension a power
of 2.

Remark 1. Let’s look at the computational cost of SRHT-DRR. Computing XH takes
O(np log(psubs)) FLOPS [2, 6]. Once we have XH , computing αH,λ costs O(n2psubs) FLOPS,
with the dominating step being computing KH = XHX>H . So the computational cost for comput-
ing αH,λ is O(np log(psubs) + n2psubs), compared to the true RR which costs O(n2p). We will
discuss how large psubs should be later after stating the main theorem.

3 Theory

In this section we bound the risk of SRHT-DRR and compare it with the risk of the true dual ridge
estimator in fixed design setting.

As earlier, let X be an arbitrary n× p design matrix such that p� n. Also, we have Y = Xβ + ε,
where ε is the n× 1 homoskedastic noise vector with common mean 0 and variance σ2. [5] and [3]
did similar analysis for the risk of RR under similar fixed design setups.

Firstly, we provide a corollary to Lemma 1 which will be helpful in the subsequent theory.

Corollary 1. Let k be the rank of X. With probability at least 1− (δ + p
ek

)

(1−∆)K � KH � (1 + ∆)K (4)

where ∆ = C
√

k log(2k/δ)
psubs

. (as for p.s.d. matrices G � L means G− L is p.s.d.)

Proof. Let X = UDV> be the SVD of X where U ∈ n × k, V ∈ p × k has orthonormal
columns and D ∈ k×k is diagonal. Then KH = UD(V>ΘΘV)DU>. Lemma 1 directly implies
Ik(1 −∆) � (V>ΘΘV) � Ik(1 + ∆) with probability at least 1 − (δ + p

ek
). Left multiply UD

and right multiply DU> to the above inequality complete the proof.

3.1 Risk Function for Ridge Regression

Let Z = Eε(Y) = Xβ. The risk for any prediction Ŷ ∈ n× 1 is 1
nEε‖Ŷ − Z‖

2.
For any n× n positive symmetric definite matrix M, define the following risk function.

R(M) =
σ2

n
Tr[M2(M + nλIn)−2] + nλ2Z>(M + nλIn)−2Z (5)

Lemma 2. Under the fixed design setting, the risk for the true RR solution is R(K) and the risk for
SRHT-DRR is R(KH).

4

Proof. The risk of the SRHT-DRR estimator is

1

n
Eε‖KHαH,λ − Z‖2 =

1

n
Eε‖KH(KH + nλIn)−1Y − Z‖2

=
1

n
Eε‖KH(KH + nλIn)−1Y − Eε(KH(KH + nλIn)−1Y)‖2

+
1

n
‖Eε(KH(KH + nλIn)−1Y)− Z‖2

=
1

n
Eε‖KH(KH + nλIn)−1ε‖2

+
1

n
‖(KH(KH + nλIn)−1Z − Z‖2

=
1

n
Tr[K2

H(KH + nλIn)−2εε>]

+
1

n
Z>(In −KH(KH + nλIn)−1)2Z

=
σ2

n
Tr[K2

H(KH + nλIn)−2]

+nλ2Z>(KH + nλIn)−2Z

(6)

Note that the expectation here is only over the random noise ε and it is conditional on the Ran-
domized Hadamard Transform. The calculation is the same for the ordinary estimator. In the risk
function, the first term is the variance and the second term is the bias.

3.2 Risk Inflation Bound

The following theorem bounds the risk inflation of SRHT-DRR compared with the true RR solution.
Theorem 1. Let k be the rank of the X matrix. With probability at least 1− (δ + p

ek
)

R(KH) ≤ (1−∆)−2R(K) (7)

where ∆ = C
√

k log(2k/δ)
psubs

Proof. Define

B(M) = nλ2Z>(M + nλIn)−2Z

V (M) =
σ2

n
Tr[K2

H(KH + nλIn)−2]

for any p.s.d matrix M ∈ n × n. Therefore, R(M) = V (M) + B(M). Now, due to [3] we know
that B(M) is non-increasing in M and V (M) is non-decreasing in M. When Equation(4) holds,

R(KH) = V (KH) +B(KH)

≤ V ((1 + ∆)K) +B((1−∆)K)

≤ (1 + ∆)2V (K) + (1−∆)−2B(K)

≤ (1−∆)−2(V (K) +B(K))

= (1−∆)−2R(K)

Remark 2. Theorem 1 gives us an idea of how large psubs should be. Assuming ∆ (the risk inflation
ratio) is fixed, we get psubs = C k log(2k/δ)

∆2 = O(k). If we further assume that X is full rank, i.e.
k = n, then, it suffices to choose psubs = O(n). Combining this with Remark 1, we can see
that the cost of computing XH is O(np log(n)). Hence, under the ideal setup where p is huge so
that the dominating step of SRHT-DRR is computing XH , the computational cost of SRHT-DRR
O(np log(n)) FLOPS.

5

Comparison with PCA Another way to handle high dimensional features is to use PCA and run
regression only on the top few principal components (this procedure is called PCR), as illustrated by
[13] and many other papers. RR falls in the family of “shrinkage” estimators as it shrinks the weight
parameter towards zero. On the other hand, PCA is a “keep-or-kill” estimator as it kills components
with smaller eigenvalues. Recently, [5] have shown that the risk of PCR and RR are related and that
the risk of PCR is bounded by four times the risk of RR. However, we believe that both PCR and
RR are parallel approaches and one can be better than the other depending on the structure of the
problem, so it is hard to compare SRHT-DRR with PCR theoretically.

Moreover, PCA under our p � n � 1 setup is itself a non-trivial problem both statistically and
computationally. Firstly, in the p � n case we do not have enough samples to estimate the huge
p × p covariance matrix. Therefore the eigenvectors of the sample covariance matrix obtained by
PCA maybe very different from the truth. (See [11] for a theoretical study on the consistency of the
principal directions for the high p low n case.) Secondly, PCA requires one to compute an SVD of
the X matrix, which is extremely slow when p � n � 1. An alternative is to use a randomized
algorithm such as [16] or [9] to compute PCA. Again, whether randomized PCA is better than our
SRHT-DRR algorithm depends on the problem. With that in mind, we compare SRHT-DRR against
standard as well as Randomized PCA in our experiments section; We find that SRHT-DRR beats
both of them in speed as well as accuracy.

4 Experiments

In this section we show experimental results on synthetic as well as real-world data highlighting
the merits of SRHT, namely, lower computational cost compared to the true Ridge Regression (RR)
solution, without any significant loss of accuracy. We also compare our approach against “standard”
PCA as well as randomized PCA [16].

In all our experiments, we choose the regularization constant λ via cross-validation on the training
set. As far as PCA algorithms are concerned, we implemented standard PCA using the built in SVD
function in MATLAB and for randomized PCA we used the block power iteration like approach
proposed by [16]. We always achieved convergence in three power iterations of randomized PCA.

4.1 Measures of Performance

Since we know the true β which generated the synthetic data, we report MSE/Risk for the fixed
design setting (they are equivalent for squared loss) as measure of accuracy. It is computed as
‖Ŷ − Xβ‖2, where Ŷ is the prediction corresponding to different methods being compared. For
real-world data we report the classification error on the test set.

In order to compare the computational cost of SHRT-DRR with true RR, we need to estimate the
number of FLOPS used by them. As reported by other papers, e.g. [4, 6], the theoretical cost of
applying Randomized Hadamard Transform is O(np log(psubs)). However, the MATLAB imple-
mentation we used took about np log(p) FLOPS to compute XH . So, for SRHT-DRR, the total
computational cost is np log(p) for getting XH and a further 2n2psubs FLOPS to compute KH . As
mentioned earlier, the true dual RR solution takes≈ 2n2p. So, in our experiments, we report relative
computational cost which is computed as the ratio of the two.

Relative Computational Cost =
p log(p) · n+ 2n2psubs

2n2p

4.2 Synthetic Data

We generated synthetic data with p = 8192 and varied the number of observations n = 20, 100, 200.
We generated a n × n matrix R ∼ MVN(0, I) where MVN(µ,Σ) is the Multivariate Normal
Distribution with mean vector µ, variance-covariance matrix Σ and βj ∼ N (0, 1) ∀j = 1, . . . , p.
The final X matrix was generated by rotating R with a randomly generated n × p rotation matrix.
Finally, we generated the Ys as Y = Xβ + ε where εi ∼ N (0, 1) ∀i = 1, . . . , n.

6

0.5

1

1.5

2

2.5

0.329 0.331 0.337 0.349 0.386 0.417 0.447 0.471 0.508 0.569

Relative Computational Cost

M
S

E
/R

is
k

True RR Solution

PCA

Randomized PCA

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0.08 0.083 0.089 0.126 0.157 0.187 0.211 0.248 0.279 0.309

Relative Computational Cost

M
S

E
/R

is
k

True RR Solution

PCA

Randomized PCA

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.059 0.063 0.069 0.094 0.124 0.155 0.179 0.216 0.246 0.277

Relative Computational Cost

M
S

E
/R

is
k

True RR Solution

PCA

Randomized PCA

Figure 1: Left to right n=20, 100, 200. The boxplots show the median error rates for SRHT-DRR
for different psubs. The solid red line is the median error rate for the true RR using all the features.
The green line is the median error rate for PCR when PCA is computed by SVD in MATLAB. The
black dashed line is median error rate for PCR when PCA is computed by randomized PCA.

For PCA and randomized PCA, we tried keeping r PCs in the range 10 to n and finally chose the
value of r which gave the minimum error on the training set. We tried 10 different values for psubs
from n+ 10 to 2000 . All the results were averaged over 50 random trials.

The results are shown in Figure 1. There are two main things worth noticing. Firstly, in all the cases,
SRHT-DRR gets very close in accuracy to the true RR with only ≈ 30% of its computational cost.
SRHT-DRR also cost much fewer FLOPS than the Randomized PCA for our experiments. Secondly,
as we mentioned earlier, RR and PCA are parallel approaches. Either one might be better than the
other depending on the structure of the problem. As can be seen, for our data, RR approaches are
always better than PCA based approaches. We hypothesize that PCA might perform better relative
to RR for larger n.

4.3 Real world Data

We took the UCI ARCENE dataset which has 200 samples with 10000 features as our real world
dataset. ARCENE is a binary classification dataset which consists of 88 cancer individuals and
112 healthy individuals (see [7] for more details about this dataset). We split the dataset into 100
training and 100 testing samples and repeated this procedure 50 times (so n = 100, p = 10000 for
this dataset). For PCA and randomized PCA, we tried keeping r = 10, 20, 30, 40, 50, 60, 70, 80, 90
PCs and finally chose the value of r which gave the minimum error on the training set (r = 30). As
earlier, we tried 10 different values for psubs: 150, 250, 400, 600, 800, 1000, 1200, 1600, 2000, 2500.

Standard PCA is known to be slow for this size datasets, so the comparison with it is just for accu-
racy. Randomized PCA is fast but less accurate than standard (“true”) PCA; its computational cost
for r = 30 can be approximately calculated as about 240np (see [9] for details), which in this case
is roughly the same as computing XX> (≈ 2n2p).

The results are shown in Figure 2. As can be seen, SRHT-DRR comes very close in accuracy
to the true RR solution with just ≈ 30% of its computational cost. SRHT-DRR beats PCA and
Randomized PCA even more comprehensively, achieving the same or better accuracy at just≈ 18%
of their computational cost.

5 Conclusion

In this paper we proposed a fast algorithm, SRHT-DRR, for ridge regression in the p � n � 1
setting SRHT-DRR preconditions the design matrix by a Randomized Walsh-Hadamard Transform
with a subsequent subsampling of features. In addition to being significantly faster than the true
dual ridge regression solution, SRHT-DRR only inflates the risk w.r.t. the true solution by a small
amount. Experiments on both synthetic and real data show that SRHT-DRR gives significant speeds
up with only small loss of accuracy. We believe similar techniques can be developed for other
statistical methods such as logistic regression.

7

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.13 0.14 0.155 0.175 0.195 0.215 0.235 0.275 0.315 0.365

Relative Computational Cost

C
la

s
s

if
ic

a
ti

o
n

 E
rr

o
r

True RR Solution

PCA

Randomized PCA

Figure 2: The boxplots show the median error rates for SRHT-DRR for different psubs. The solid
red line is the median error rate for the true RR using all the features. The green line is the median
error rate for PCR with top 30 PCs when PCA is computed by SVD in MATLAB. The black dashed
line is the median error rate for PCR with the top 30 PCs computed by randomized PCA.

References

[1] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast johnson-
lindenstrauss transform. In STOC, pages 557–563, 2006.

[2] Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher series on dual bch
codes. Technical report, 2007.

[3] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. CoRR, abs/1208.2015,
2012.

[4] Christos Boutsidis and Alex Gittens. Improved matrix algorithms via the subsampled random-
ized hadamard transform. CoRR, abs/1204.0062, 2012.

[5] Paramveer S. Dhillon, Dean P. Foster, Sham M. Kakade, and Lyle H. Ungar. A risk comparison
of ordinary least squares vs ridge regression. Journal of Machine Learning Research, 14:1505–
1511, 2013.

[6] Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, and Tamás Sarlós. Faster least
squares approximation. CoRR, abs/0710.1435, 2007.

[7] Isabelle Guyon. Design of experiments for the nips 2003 variable selection benchmark. 2003.

[8] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–288,
May 2011.

[9] Nathan Halko, Per-Gunnar Martinsson, Yoel Shkolnisky, and Mark Tygert. An algorithm for
the principal component analysis of large data sets. SIAM J. Scientific Computing, 33(5):2580–
2594, 2011.

[10] Daniel Hsu, Sham M. Kakade, and Tong Zhang. Analysis of a randomized approximation
scheme for matrix multiplication. CoRR, abs/1211.5414, 2012.

[11] S. Jung and J.S. Marron. PCA consistency in high dimension, low sample size context. Annals
of Statistics, 37:4104–4130, 2009.

[12] Quoc Le, Tamas Sarlos, and Alex Smola. Fastfood -approximating kernel expansions in log-
linear time. ICML, 2013.

[13] W.F. Massy. Principal components regression in exploratory statistical research. Journal of the
American Statistical Association, 60:234–256, 1965.

[14] Xiangrui Meng, Michael A. Saunders, and Michael W. Mahoney. Lsrn: A parallel iterative
solver for strongly over- or under-determined systems. CoRR, abs/1109.5981, 2011.

8

[15] Ali Rahimi and Ben Recht. Random features for large-scale kernel machines. In In Neural
Infomration Processing Systems, 2007.

[16] Vladimir Rokhlin, Arthur Szlam, and Mark Tygert. A randomized algorithm for principal
component analysis. SIAM J. Matrix Analysis Applications, 31(3):1100–1124, 2009.

[17] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear
least-squares regression. Proceedings of the National Academy of Sciences, 105(36):13212–
13217, September 2008.

[18] Tamas Sarlos. Improved approximation algorithms for large matrices via random projections.
In In Proc. 47th Annu. IEEE Sympos. Found. Comput. Sci, pages 143–152. IEEE Computer
Society, 2006.

[19] G. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual vari-
ables. In Proc. 15th International Conf. on Machine Learning, pages 515–521. Morgan Kauf-
mann, San Francisco, CA, 1998.

[20] Joel A. Tropp. Improved analysis of the subsampled randomized hadamard transform. CoRR,
abs/1011.1595, 2010.

[21] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Com-
putational Mathematics, 12(4):389–434, 2012.

[22] Mark Tygert. A fast algorithm for computing minimal-norm solutions to underdetermined
systems of linear equations. CoRR, abs/0905.4745, 2009.

9

