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Fundamental algorithms such as sorting or hashing are used trillions of times on any 
given day1. As demand for computation grows, it has become critical for these 
algorithms to be as performant as possible. Whereas remarkable progress has been 
achieved in the past2, making further improvements on the efficiency of these 
routines has proved challenging for both human scientists and computational 
approaches. Here we show how artificial intelligence can go beyond the current state 
of the art by discovering hitherto unknown routines. To realize this, we formulated the 
task of finding a better sorting routine as a single-player game. We then trained a new 
deep reinforcement learning agent, AlphaDev, to play this game. AlphaDev 
discovered small sorting algorithms from scratch that outperformed previously 
known human benchmarks. These algorithms have been integrated into the LLVM 
standard C++ sort library3. This change to this part of the sort library represents the 
replacement of a component with an algorithm that has been automatically 
discovered using reinforcement learning. We also present results in extra domains, 
showcasing the generality of the approach.

Human intuition and know-how have been crucial in improving algo-
rithms. However, many algorithms have reached a stage whereby 
human experts have not been able to optimize them further, leading 
to an ever-growing computational bottleneck. The work in classical 
program synthesis literature, spanning many decades, aims to gen-
erate correct programs and/or optimize programs using proxies for 
latency. These include enumerative search techniques4–7 and stochastic 
search5,6,8–10 as well as the more recent trend of using deep learning in 
program synthesis for generating correct programs11–16. Using deep 
reinforcement learning (DRL), we can take this a step further by generat-
ing correct and performant algorithms by optimizing for actual meas-
ured latency at the CPU instruction level, by more efficiently searching 
and considering the space of correct and fast programs compared to 
previous work.

One of the fundamental questions in computer science is how to 
sort a sequence17–20. This is taught in elementary computer science 
classes around the world21,22 and is used ubiquitously by a vast range of  
applications23–25. Decades of computer science research have focused 
on discovering and optimizing sorting algorithms26–28. A key component 
of practical solutions is a small sort over a short sequence of elements; 
this algorithm is called repeatedly when sorting large arrays that use 
divide-and-conquer approaches29. In this work, we focus on two types 
of small sort algorithm: (1) the fixed sort and (2) the variable sort. Fixed 
sort algorithms sort sequences of a fixed length (for example, sort 3 

can only sort sequences of length 3), whereas variable sort algorithms 
can sort a sequence of varying size (for example, variable sort 5 can sort 
sequences ranging from one to five elements).

We formulate the problem of discovering new, efficient sorting algo-
rithms as a single-player game that we refer to as AssemblyGame. In this 
game, the player selects a series of low-level CPU instructions, which 
we refer to as assembly instructions30, to combine to yield a new and 
efficient sorting algorithm. This is challenging as the player needs to 
consider the combinatorial space of assembly instructions to yield an 
algorithm that is both provably correct and fast. The hardness of the 
AssemblyGame arises not only from the size of the search space, which 
is similar to extremely challenging games such as chess (10120 games)31 
and Go (10700 games)32, but also from the nature of the reward function. 
A single incorrect instruction in the AssemblyGame can potentially 
invalidate the entire algorithm, making exploration in this space of 
games incredibly challenging.

To play the game, we introduce AlphaDev, a learning agent that is 
trained to search for correct and efficient algorithms. This agent is 
comprised of two core components, namely (1) a learning algorithm 
and (2) a representation function. The AlphaDev learning algorithm 
can incorporate both DRL as well as stochastic search optimization 
algorithms to play AssemblyGame. The primary learning algorithm 
in AlphaDev is an extension of AlphaZero33, a well-known DRL algo-
rithm, in which a neural network is trained to guide a search to solve 

https://doi.org/10.1038/s41586-023-06004-9

Received: 25 July 2022

Accepted: 23 March 2023

Published online: 7 June 2023

Open access

 Check for updates

1Deepmind, London, UK. 2Google, Mountain View, CA, USA. 3These authors contributed equally: Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru, 
Edouard Leurent. ✉e-mail: dmankowitz@deepmind.com

https://doi.org/10.1038/s41586-023-06004-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06004-9&domain=pdf
mailto:dmankowitz@deepmind.com


258 | Nature | Vol 618 | 8 June 2023

Article

AssemblyGame. The representation function is interchangeable and 
captures the underlying structure of assembly programs. The primary 
AlphaDev representation is based on Transformers34.

Using AlphaDev, we have discovered fixed and variable sort algo-
rithms from scratch that are both new and more efficient than the 
state-of-the-art human benchmarks. The fixed sort solutions for sort 3, 
sort 4 and sort 5 discovered by AlphaDev have been integrated into the 
standard sort function in the LLVM standard C++ library3. This library 
is used by several million users including universities and numerous 
international companies35. In addition, we analyse the new algorithm 
discoveries, compare AlphaDev to stochastic search optimization 
approaches and apply AlphaDev to further domains to showcase the 
generality of the approach.

Representing algorithms as low-level CPU instructions
When compiling algorithms to machine code from a high level language 
such as C++ (for example, the sorting function in Fig. 1a), the algorithm 
is first compiled into assembly (Fig. 1b). The assembler then converts 
the assembly program into executable machine code. In this work, we 
optimize algorithms at the assembly level30. In a typical assembly pro-
gram, the values are copied from memory into registers, manipulated 
between registers and then written back to memory. The set of assembly 
instructions supported depends on the processor architecture. For the 
purposes of this work, we focus on a subset of assembly instructions 
supported by the x86 processor architecture using the AT&T syntax36. 
Each instruction is of the format Opcode⟨OperandA, OperandB⟩. An 
example instruction is mov<A,B>, which is defined as move a value 
from source (A) to destination (B). Further instruction definitions such 
as compare (cmp<A,B>), conditional move (cmovX<A,B>) and jump 
( jX<A>) can be found in Extended Data Table 1. In the example in Fig. 1b, 
%eax, %ecx, %edx, %edi correspond to four different register locations 
and (%rsi), 4(%rsi) correspond to two different memory locations. The 
symbol $2 is a placeholder for a constant value, which corresponds to 
the length of the vector in this example. We use the terms assembly 
program and assembly algorithm interchangeably in this work. This 
is because AlphaDev builds an assembly program from scratch, from 
an initially unordered set of instructions, each time it plays Assemb-
lyGame, defining a new and efficient algorithm.

DRL for discovering faster algorithms
In this section, we formulate optimizing algorithms at the CPU instruc-
tion level as a reinforcement learning (RL) problem37, in which the 
environment is modelled as a single-player game that we refer to as 
AssemblyGame. Each state in this game is defined as a vector St = ⟨Pt, Zt⟩ 
where Pt is a representation of the algorithm generated thus far in 
the game and Zt represents the state of memory and registers after 

executing the current algorithm on a set of predefined inputs. As seen 
in Fig. 2a, at timestep t, the player receives the current state St and 
executes an action at. This involves appending a legal assembly instruc-
tion (for example, mov<A,B>) to the current algorithm generated thus 
far. A reward rt is received that comprises both a measure of algorithm 
correctness and latency. Algorithm correctness (Fig. 2b) involves input-
ting a set of N test sequences into the current algorithm Pt to generate 
N outputs. These outputs are then compared to the expected outputs 
and a correctness reward rt is computed. Latency rewards can be gen-
erated by either (1) penalizing the agent for increasing the length of 
the algorithm (when length and latency are highly correlated) that we 
refer to as the algorithm length reward, or (2) measuring the actual 
latency of the algorithm. The game is executed for a limited number 
of steps, after which the game is terminated. Winning the game corre-
sponds to generating a correct, low-latency algorithm using assembly 
instructions. Losing the game corresponds to generating an incorrect 
algorithm or a correct but inefficient algorithm.

a b

Fig. 1 | The relationship between C++ and assembly programs. a, A C++ implementation of a variable sort 2 function that sorts any input sequence of up to two 
elements. b, The C++ implementation in a is compiled to this equivalent low-level assembly representation.

Table 1 | AlphaDev performance when optimizing for 
algorithm length and latency

(a) Algorithm AlphaDev Human benchmarks

Length Length

Sort 3 17 18

Sort 4 28 28

Sort 5 42 46

VarSort3 21 33

VarSort4 37 66

VarSort5 63 115

VarInt 27 31

(b) Algorithm AlphaDev Human benchmarks

Latency ± (lower, upper) Latency ± (lower, upper)

VarSort3 236,498 ± (235,898, 236,887) 246,040 ± (245,331, 246,470)

VarSort4 279,339 ± (278,791, 279,851) 294,963 ± (294,514, 295,618)

VarSort5 312,079 ± (311,515, 312,787) 331,198 ± (330,717, 331,850)

VarInt 97,184 ± (96,885, 97,847) 295,358 ± (293,923, 296,297)

Competitive 75,973 ± (75,420, 76,638) 86,056 ± (85,630, 86,913)

a, AlphaDev performance, compared to the human benchmarks, when optimizing for  
algorithm length. AlphaDev discovers algorithms from scratch that match or improve on  
the human benchmarks in each case. b, AlphaDev performance, compared to the human 
benchmarks, when optimizing directly for latency. In this setup, AlphaDev discovers algorithms 
that have significantly lower latency than the human benchmarks in each case. The confidence 
intervals are represented as latency ± (lower, upper), in which latency corresponds to the fifth 
percentile of latency measurements across 100 different machines. Lower and upper refer to 
the bounds of the 95% confidence interval for this percentile.
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We refer to the agent that plays this single-player game as AlphaDev. 
The agent’s primary learning algorithm is an extension of the AlphaZero 
agent32 and guides a Monte Carlo tree search (MCTS) planning proce-
dure using a deep neural network33,38. The input to the neural network 
is the state St and the output is a policy and value prediction. The policy 
prediction is a distribution over actions and the value function is a 
prediction of the cumulative returns R that the agent should expect 
to receive from the current state St. During a game, the agent receives 
as input the current state St. The agent then executes an MCTS pro-
cedure and uses this to select the next action to take. The generated 
games are then used to update the network’s parameters, enabling 
the agent to learn.

It is critical that AlphaDev has a representation39,40 capable of rep-
resenting complex algorithmic structures to efficiently explore the 
space of instructions. To achieve this, we introduce the AlphaDev 
representation network (Extended Data Fig. 1a). This network com-
prises two components, namely (1) a transformer encoder network 
that provides the agent with a representation of the algorithm 
structure, and (2) the CPU state encoder network that helps the 
agent predict how the algorithm affects the dynamics of memory 
and registers. The CPU state encoder network comprises a multi-
layer perceptron that receives as input the state of each register 
and memory location for a given set of inputs. These networks 
each output embeddings that are combined to yield the AlphaDev  
state representation.

Transformer encoder
Transformers are natural text encoders and have had much success 
with language models recently14,34,41. As such, this motivated us to 
adapt the standard transformer to model assembly instructions. We 
developed and incorporated a transformer encoder, our adaptation of 
the MultiQuery transformer encoder42, into the AlphaDev representa-
tion network to represent the assembly instructions. Each assembly 
instruction’s Opcode and corresponding Operands are converted to 
one-hot encodings and concatenated to form the raw input sequence. 
This is fed through a multilayer transformer encoder, which maps it 
to corresponding embedding vectors (see Extended Data Fig. 1b for 
an illustration).

Latency value functions
Latency is an important reward signal that is used to guide the agent 
in discovering performant algorithms. To better estimate latency, 

we implemented a dual value function setup, whereby AlphaDev has 
two value function heads: one predicting algorithm correctness and 
the second predicting algorithm latency. The latency head is used to 
directly predict the latency of a given program by using the program’s 
actual computed latency as a Monte Carlo target for AlphaDev during 
training. This dual-head approach achieved substantially better results 
than the vanilla, single head value function setup when optimizing for 
real latency.

Results
Discovering faster sort algorithms
We trained the AlphaDev agent from scratch to generate a range of fixed 
sort and variable sort algorithms that are both correct and achieve lower 
latency than the state-of-the-art human benchmarks.

Fixed sorting algorithms
We considered three fundamental algorithms: sort 3, sort 4 and sort 5.  
The state-of-the-art human benchmarks for these algorithms are 
sorting networks43 as they generate efficient, conditional branchless 
assembly code. This means that all instructions are executed sequen-
tially and there is no branching involved. Improving on these algo-
rithms is challenging as they are already highly optimized. As seen in 
Table 1a, AlphaDev is able to find algorithms with fewer instructions 
than the human benchmarks for sort 3 and sort 5 and matches the 
state-of-the-art performance on sort 4. These shorter algorithms do 
indeed lead to lower latency as the algorithm length and latency are 
correlated for the conditional branchless case; see Appendix B in Sup-
plementary Information for more details. We also explored scaling 
to slightly larger sorts using a variant of AlphaDev. We managed to 
save three instructions on sort 6, two instructions on sort 7 and one 
instruction on sort 8, which provides a promising basis for future work. 
See Appendix C in Supplementary Information for an overview of the 
approach.

Variable sorting algorithms
We considered three variable sorting algorithms: VarSort3, VarSort4 
and VarSort5. The human benchmark in each case is defined as an algo-
rithm that, for a given input length, calls the corresponding sorting 
network. In this case, branching is required, which greatly increases 
the complexity of the problem as the agent needs to (1) determine 
how many subalgorithms it needs to construct and (2) build the body 
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Fig. 2 | The AssemblyGame and algorithm correctness computation. a, The 
AssemblyGame is played by AlphaDev, which receives as input the current 
assembly algorithm generated thus far St and plays the game by selecting an 
action to execute. In this example, the action is a mov<Register0,Memory1> 
assembly instruction, which is appended to the current algorithm. The agent 
receives a reward that is a function of the algorithm’s correctness, discussed in 
b, as well as the algorithm’s latency. The game is won by the player discovering  
a low latency, correct algorithm. b, The program correctness and latency 

computations are used to compute the reward rt. In this example, test 
sequences are input to the algorithm; for example, in the case of sorting three 
elements, test inputs comprise all sequences of unsorted elements of length 3. 
For each sequence, the algorithm output is compared to the expected output 
(in the case of sorting, the expected output is the sorted elements). In this 
example, the output DD′′ does not match the expected output BB′′ and the 
algorithm is therefore incorrect.
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of the main algorithm in parallel. The agent may also need to call 
subalgorithms from other subalgorithms. In this case, optimizing 
for length leads to significantly shorter algorithms compared to the 
human benchmarks as seen in Table 1a. However, owing to the com-
plexities introduced by branching, latency and length are not always 
correlated; see Supplementary Information for more details. As such, 
we implemented a procedure that measures the actual latency of the 
programs by taking the fifth percentile of latency measurements across 
100 different machines, with computed confidence intervals44, and 
optimize this metric. See Methods for the full benchmarking setup. 
When optimizing for latency, the agent improves significantly on the 
human benchmarks in each case as seen in Table 1b.

New algorithm discoveries
The solutions discovered by AlphaDev include new and exciting algo-
rithmic discoveries that lead to more efficient performance. In the 
fixed sort setting, we found that AlphaDev discovered two interesting 
sequences of instructions that, when applied to a sorting network algo-
rithm, reduce the algorithm by one assembly instruction each time. We 
refer to each sequence of instructions as (1) the AlphaDev swap move 
and (2) the AlphaDev copy move respectively.

AlphaDev swap move
Figure 3a presents an optimal sorting network for three elements (see 
Methods for an overview of sorting networks). We will explain how 
AlphaDev has improved the circled network segment. There are many 
variants of this structure that are found in sorting networks of various 
sizes, and the same argument applies in each case. The circled part 
of the network (last two comparators) can be seen as a sequence of 
instructions that takes an input sequence ⟨A, B, C⟩ and transforms each 
input as shown in Table 2a (left). However, a comparator on wires B and 
C precedes this operator and therefore input sequences where B ≤ C 
are guaranteed. This means that it is enough to compute min(A, B) as 
the first output instead of min(A, B, C) as shown in Table 2a (right). 
The pseudocode difference between Fig. 3b,c demonstrates how the 
AlphaDev swap move saves one instruction each time it is applied.

AlphaDev copy move
Figure 3d presents a sorting network configuration, consisting of three 
comparators, that is applied across four wires. This configuration is 
found in a sort 8 sorting network and corresponds to an operator tak-
ing four inputs ⟨A, B, C, D⟩ and transforming them into four outputs 
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Fig. 3 | Sorting networks and algorithmic improvements discovered by 
AlphaDev. a, An optimal classic sorting network for three inputs. The circled 
comparators have been improved by AlphaDev. See the AlphaDev swap move 
for more details. b,c, The assembly pseudocode before applying the AlphaDev 
swap move (b) and after applying the AlphaDev swap move (c), resulting in the 

removal of a single instruction. d, An optimal classic sorting network 
comparator configuration that has been improved by AlphaDev. See the 
AlphaDev copy move for more details. e,f, The assembly pseudocode before 
applying the AlphaDev copy move (e) and after applying the AlphaDev copy 
move (f), resulting in the removal of a single instruction.
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as seen in Table 2b (on the left). One can show that as part of sort 8, the 
input that flows into the operator satisfies the following inequality: 
D ≥ min(A, C). This means that the operator can be improved by apply-
ing the AlphaDev copy move that is defined in Table 2b (on the right), 
resulting in one instruction less than the original operator. The code 
difference between the original operator and the code after applying 
the AlphaDev copy move is visualized in Fig. 3e,f, respectively.

New variable sort algorithms
The VarSort4 algorithm discovered by AlphaDev is particularly inter-
esting. The flow diagram for the human benchmark algorithm and 
AlphaDev can be seen in Fig. 4a,b, respectively. The human bench-
mark algorithm determines the length of the input vector, and then 
calls the corresponding sorting network to sort the elements. The 
AlphaDev solution has a completely different approach as seen 
in Fig. 4b. If the length of the input vector is strictly greater than 2, 

then sort 3 is immediately called, resulting in the first three elements  
being sorted. If the vector is greater than three elements, then a 
simpli fied sort 4 algorithm is called that sorts the remaining unsorted  
elements in the input vector. It is this simplified part of the routine 
that yields significant gains in terms of algorithmic length and latency.

Stochastic search optimization approaches
It is important to understand the advantages and limitations of RL 
compared to other approaches for program optimization. As such, 
we implemented a state-of-the-art stochastic superoptimization 
approach8, adapted it to the sort setting and used it as the learning algo-
rithm in AlphaDev. We refer to this variant as AlphaDev-S (see Methods 
for more details). We run this algorithm with at least the same amount 
of resources and wall-clock time as AlphaDev. AlphaDev-S requires a 
prohibitive amount of time to optimize directly for latency as latency 
needs to be computed after every mutation. As such, AlphaDev-S opti-
mizes for a latency proxy, namely algorithm length and, then, at the 
end of training, we search through all correct programs generated 
by AlphaDev-S and benchmark each one to find the lowest latency 
solution. In general, we find that AlphaDev consistently outperforms 
AlphaDev-S when learning from scratch without previous knowledge. 
In addition, as the size of the program increases, AlphaDev explores 
orders of magnitude fewer programs (12 million programs in the worst 
case) compared to AlphaDev-S (31 trillion programs in the worst case). 
This may be because AlphaDev is able to better explore the space of 
algorithms compared to the breadth-first stochastic search proce-
dure that gets stuck more easily into local optima; see Methods for an 
overview of this exploration hypothesis. In addition, AlphaDev never 
evaluates latency during search as it uses the latency value function 
predictions and, because of this, only needs to compute actual meas-
ured latency on less than 0.002% of generated programs. When incor-
porating previous knowledge into AlphaDev-S, such as warm starting 
the learning algorithm with a near-optimal solution, AlphaDev-S is 
more computationally efficient for sort 3, sort 4 and sort 5 (branch-
less assembly algorithms) and also generates competitive low-latency 
algorithms to that of AlphaDev in each case. However, for algorithms 
that require branching (if–else statements), in which algorithm length 

Table 2 | Analysis of the AlphaDev swap and copy moves

(a) Input Original output AlphaDev swap move

A min(A, B, C) min(A, B)

B max(min(A, C), B) max(min(A, C), B)

C max(A, C) max(A, C)

(b) Input Original output AlphaDev copy move

A min(A, B, C, D) min(A, B, C, D)

B max(B, min(A, C, D)) max(B, min(A, C))

C max(C, min(A, D)) max(C, min(A, D))

D max(A, D) max(A, D)

a, Left shows the transformation applied to inputs A, B and C in a classic sorting network when 
applying the circled operator in Fig. 3a. Right shows the AlphaDev swap move transformation 
applied in place of the circled operator. Note the new transformation in bold that saves a  
single instruction each time it is applied. b, Left shows the transformation applied to inputs 
A, B, C and D according to the sorting network configuration in Fig. 3d. Right shows the 
AlphaDev copy move transformation applied to this sorting network configuration. The 
transformation in bold indicates the change made by the copy move, saving an instruction 
each time it is applied.
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Fig. 4 | Fundamentally different algorithms discovered by AlphaDev. 
 a, A flow diagram of the variable sort 4 (VarSort4) human benchmark algorithm. 
In this algorithm, a sequence of unsorted numbers are input into the algorithm. 
If the sequence length is four, three or two numbers, then the corresponding 
sort 4, sort 3 or sort 2 sorting network is called that sorts the resulting sequence. 
The result is then returned and output by the function. b, The VarSort4 algorithm 
discovered by AlphaDev. This algorithm also receives sequences of length four, 

three or two numbers as input. In this case, if the length is two, then it calls the 
sort 2 sorting network and returns. If the length is three then it calls sort 3 to 
sort the first three numbers and returns. If, however, the length is greater than 
three, then it calls sort 3, followed by a simplified sort 4 routine that sorts the 
remaining unsorted number. It is this part of the routine that results in 
significant latency savings.
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and latency are not well correlated, AlphaDev discovers lower latency 
solutions than AlphaDev-S, even when warm starting this algorithm 
with a near-optimal solution. See Methods for an in-depth analysis of 
these algorithms.

Generalization to additional domains
To test the generality of AlphaDev, we train the agent on a set of addi-
tional domains. These include a protocol buffer deserialization subrou-
tine called VarInt, presented below, and a competitive coding problem 
(see Appendix D in Supplementary Information for more details). The 
competitive coding domain latency performance is reported in Table 1b.

Protocol Buffer is Google’s open-source data format used to serial-
ize structured data45. This format is commonly used in cases in which 
performance or network load is of primary concern. The VarInt algo-
rithm46 is a key component in both the serialization and deserialization 
processes. We trained the AlphaDev agent as in variable sort to optimize 
the VarInt deserialization function with respect to correctness and 
measured latency. For correctness, we reward the agent for correctly 
deserializing each input. We use a set of 80 inputs and correspond-
ing outputs that cover common protobuf use cases. AlphaDev learns 
an optimized VarInt deserialization function and manages to signifi-
cantly outperform the human benchmark for single valued inputs. Our 
agent discovers a branchless solution that is both shorter (Table 1a) 
and roughly three times faster than the human benchmark (Table 1b). 
In doing so, the agent also discovered a new VarInt assignment move in 
which AlphaDev learns to combine two operations into a single instruc-
tion leading to latency savings. See Appendix D.1 in Supplementary 
Information for a full overview of this move. This is a strong indica-
tion that AlphaDev is capable of generalizing to optimize non-trivial, 
real-world algorithms.

Libc++ sort patch
The sort 3, sort 4 and sort 5 algorithms in the LLVM libc++ standard 
sorting library are called many times by larger sorting algorithms and 
are therefore fundamental components of the library. We reverse 
engineered the low-level assembly sorting algorithms discovered by 
AlphaDev for sort 3, sort 4 and sort 5 to C++ and discovered that our 
sort implementations led to improvements of up to 70% for sequences 
of a length of five and roughly 1.7% for sequences exceeding 250,000 
elements. These improvements are for the uint32, uint64 and float 
data types for ARMv8, Intel Skylake and AMD Zen 2 CPU architectures; 
see Appendix E in Supplementary Information for the full performance 
tables. The performance improvements are due to both the branch-
less conditional assembly generated by AlphaDev as well as the new 
AlphaDev swap move. For sort 5, we used a 43 length algorithm dis-
covered by AlphaDev, as it led to a more efficient C++ implementation. 
These algorithms were sent for review and have officially been included 
in the libc++ standard sorting library3. It is the first change to these 
sub-routines in over a decade. This is also the first time that any compo-
nent in this sort library has been replaced by an algorithm that has been 
automatically discovered using reinforcement learning. We estimate 
that these routines are being called trillions of times every day1,35,47.

Discussion
AlphaDev discovers new, state-of-the-art sorting algorithms from 
scratch that have been incorporated into the LLVM C++ library, used 
by millions of developers and applications around the world23–25. Both 
AlphaDev and stochastic search are powerful algorithms. An inter-
esting direction for future research is to investigate combining these 
algorithms together to realize the complementary advantages of both 
approaches.

It is important to note that AlphaDev can, in theory, generalize to 
functions that do not require exhaustive verification of test cases. 
For example, hashing functions48 as well as cryptographic hashing 

functions49 define function correctness by the number of hashing  
collisions. Therefore, in this case, AlphaDev can optimize for minimiz-
ing collisions as well as latency. AlphaDev can also, in theory, optimize 
complicated logic components within the body of large, impressive 
functions. We hope that AlphaDev can provide interesting insights and 
inspire new approaches in both the artificial intelligence and program 
synthesis communities.
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Methods

Background
AlphaZero. AlphaZero33 is an RL algorithm that leverages MCTS as a 
policy improvement operator. It consists of (1) a representation net-
work f rep that outputs a latent representation ht of the state St; and  
(2) a prediction network f pred that predicts the expected return  
(the value) v̂t and a policy (that is, distribution over the action space) 
π̂t from a given latent state. The algorithm uses the true dynamics and 
reward when planning. MuZero38 is a model-based variant of Alpha Zero 
that has the same representation and prediction networks, but also 
learns a model of the dynamics and predicts rewards, which it uses for 
planning. Specifically, it learns a dynamics network f dyn that predicts 
the next latent state hht

k+1 and reward r̂ t
k+1 resulting from a transition. 

Note that the subscript t denotes timesteps in the real environment 
and the superscript k represents timesteps in the model.
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On reaching a new state, AlphaZero proceeds by first encoding the 
state into a latent representation with the representation network. 
Then, the true dynamics or dynamics network (for MuZero) as well as 
the prediction network f pred(ht) are used to simulate several trajectories 
that fill out a search tree, by sampling state transitions. At each node, 
the actions are selected using an optimistic strategy called the predic-
tor upper confidence tree bound32, meant to balance exploration  
(trying new actions) and exploitation (progressing further down the 
subtree of the current estimate of the best action). This strategy starts 
out by following the predicted policy π̂t closely, and gradually shifts 
towards maximizing the predicted value function. Ultimately, an action 
is recommended by sampling from the root node with probability 
proportional to its visit count during MCTS. The predicted policy is 
then trained to match the visit counts of the MCTS policy in an attempt 
to distil the search procedure into a policy such that subsequent itera-
tions of MCTS will disregard nodes that are not promising.

Sorting networks. Sorting networks are very efficient as their struc-
tures can be parallelized on modern CPU architectures. They therefore 
tend to achieve faster runtime performance, especially on small sorts, 
compared to popular and efficient base case algorithms such as inser-
tion sort17,43,50. A sorting network43 consists of two types of item called 
comparators (vertical lines) and wires (horizontal lines) (Extended 
Data Fig. 2a). Each wire carries a value from left to right. When two wires 
intersect at a comparator, the values on the two wires are compared.  
If the value of the bottom wire is smaller than the value of the top wire, 
then the values are swapped between wires as seen in Extended Data 
Fig. 2b. A programmatic implementation of a sorting network consists 
of executing these swaps on particular pairs of elements from the input 
sequence in a particular order.

Action pruning rules
We pruned the action space by removing some program invariances 
(for example, the order of register allocation) and illegal instructions 
(for example, comparing two memory locations). This helps reducing 
the size of the action space and increases convergence rate. For our 
experiments, we used the following rules:
(1) Memory locations are always read in incremental order.
(2) Registers are allocated in incremental order.
(3)  We cannot compare or conditionally move to a memory location 

(illegal).

(4) We can read and write to each memory location only once.
(5) We cannot use non-initialized registers (illegal).
(6) Do not perform consecutive compare instructions.

Training regime. We train AlphaDev on a Tensor Processing Unit (TPU) v.3,  
with a total batch size of 1,024 per TPU core. We use up to 16 TPU cores 
and train for 1 million iterations. On the actor side, the games are played 
on standalone TPU v.4, and we use up to 512 actors. In practice, across 
all tasks, training takes, in the worst case, 2 days to converge.

AlphaDev-S. It is important to understand the advantages and limi-
tations of RL compared to other possible approaches for program 
optimization. As such, we implemented a state-of-the-art stochastic 
superoptimization approach8 and incorporated it into AlphaDev as 
the learning algorithm to optimize sorting functions. We refer to this 
adapted version as AlphaDev-S. Our re-implementation has been spe-
cifically optimized for the sorting domain. This includes implementing 
the algorithm to run with our assembly environment, defining a cor-
rectness and performance loss function specific to sorting and running 
extensive hyperparameter sweeps to identify the best variant. The cost 
function used for AlphaDev-S is c = correctness + α × performance where 
correctness corresponds to computing the number of incorrect input 
sequence elements that are still unsorted, performance corresponds 
to the algorithm length reward and α is a weight trading off the two cost 
functions. We are unable to optimize directly for latency as this slows 
down the learning algorithm considerably making learning infeasible. It 
should be noted that this function has been adapted to support the same 
set of assembly instructions used by AlphaDev as well as prune the same 
set of incorrect or illegal actions. It also uses the same program correct-
ness computation module (Fig. 2b) to compute the correctness term.

AlphaDev-S is then executed by first proposing a transformation to 
the program stored in the buffer (which may be empty or initialized 
with an already sorted program). The correctness and performance 
terms are then computed using the program correctness module and 
algorithm length, respectively. If the cost is lower than the current best 
cost, the new program is accepted with high probability, otherwise 
it is rejected. We will now discuss the correctness cost function and 
transform weights in more detail.

Correctness cost. For the correctness cost function, we implemented 
three types of cost function. The first one is defined as the percentage 
of incorrectly placed items: P PC

P
− t  where P is the total number of items 

to place and PCt is number of correctly placed items at timestep t. The 
second variant is the square root of this equation. The final cost func-
tion takes the square root of the difference PC− t  and this is what 
yielded the best performance.

Program transformations. We enabled several program transforma-
tions such as adding an instruction to increase the size of the program 
(Add Transform), swapping two instructions (Swap Transform), ran-
domly changing an Opcode for an instruction (Opcode Transform), 
randomly sampling an Operand for a chosen instruction (Operand 
Transform) and randomly sample an Opcode and its corresponding 
Operands (Instruction Transform). It is possible to influence the sam-
pling of these transforms to encourage some to be sampled more or 
less frequently. We optimized the weights for sampling transforms by 
running an extensive hyperparameter sweep.

Investigative studies for AlphaDev variants
We now present a set of investigative studies that help to better under-
stand the advantages and limitations of the DRL and the stochastic 
search learning algorithms used in AlphaDev. We compare AlphaDev to 
AlphaDev-S. We implemented two variants of AlphaDev-S: (1) Cold Start 
(AlphaDev-S-CS) and (2) Warm Start (AlphaDev-S-WS). AlphaDev-S-CS 
uses no previous information and has to generate a program from 



an empty program buffer. AlphaDev-S-WS’s buffer is warm started 
with a correct sorting program (for example, optimal sorting network 
assembly program) and it edits the program to optimize it further. We 
compared the variants with AlphaDev in both the individual and vari-
able sort algorithm setups.

Because AlphaDev always learns from scratch with no previous knowl-
edge, the direct comparison would be to the cold start stochastic search 
version: AlphaDev-S-CS. However, as initial near-optimal programs 
may sometimes be available, we also compare AlphaDev to the warm 
start stochastic search version: AlphaDev-S-WS.

It should be noted that the stochastic search variants are unable to 
optimize directly for latency, as this would make learning infeasible 
because of computational efficiency. As such, our AlphaDev-S variants 
optimize for algorithm length. Then, at the end of training, we iterate 
through the set of generated programs for AlphaDev-S across varying 
lengths and identify the program with the lowest latency.

In each case, the stochastic search algorithms (AlphaDev-S) are run 
using at least the same computational resources and wall-clock time 
to that of AlphaDev.

Fixed sort. We first examine the performance of the various approaches 
for the fixed sort algorithms. In this case, all algorithmic variants opti-
mize for algorithm length as algorithm length and latency are highly 
correlated in the conditional branchless setting (see Supplementary 
Information for more details).

In the cold start setting, AlphaDev-S-CS is unable to find the optimal 
programs in each case as seen in Extended Data Table 2a. In addition, 
AlphaDev-S-CS explores orders of magnitude more programs than 
AlphaDev as shown in Extended Data Table 2b. In the warm start setting, 
AlphaDev-S is warm started with a near-optimal sorted program, and 
is able to match the performance of AlphaDev in each case as shown 
in Extended Data Table 2a. It is more computationally efficient than 
AlphaDev as shown in Extended Data Table 2c but explores orders of 
magnitude more programs for sort 3 and sort 5 as shown in Extended 
Data Table 2b. It can be argued that AlphaDev-S-WS has a substantial 
advantage in this scenario as it is provided with an initial near-optimal 
program. We will show in the Variable sort section that when the algo-
rithms become more complicated and branching is introduced, warm 
starting the learning algorithm with a near-optimal program is not 
enough and can cause it to get stuck in suboptimal solutions.

Brute-force approach. We also used a brute-force approach to prove 
that no program shorter than 17 instructions exists for sort 3. We had 
to enumerate roughly 1032 programs and, even with pruning heuristics, 
it took more than 3 days to prove this hypothesis. For sort 4 and above 
this approach is infeasible.

Latency benchmarking suite. The length of a program is only a proxy 
for the performance of an algorithm. As we introduce branching struc-
tures, the length and latency of a program are not well correlated. 
Therefore, we run the programs on actual machines and measure their 
latency. Microbenchmarking is very challenging given the numerous 
noise sources that could affect the measurements. This is especially true 
when running on shared machines where there could be interference 
from other processes. Our approach is to have a separate benchmark-
ing service, replicated on separated machines, so that we can quickly 
perform many measurements in a controlled environment under dif-
ferent conditions. The system works as follows:
(1)  The RL agent processes 1,000 measurements across the machines 

using the replicated service.
(2)  For each measurement, the service runs the given sorting algorithm 

over 10,000 random inputs (for example, for sort 3 this would be 
3 × 10,000 = 30,000 random integers).

(3)  We measure the time taken using a CPU performance counter 
(CPU_CLK_UNHALTED.CORE).

We then take the fifth percentile as our final measurement, because 
we assume that most noise sources are one-sided (for example, cache 
misses, pre-emptions and so on). During training we process the meas-
urements across ten machines for computational efficiency. After train-
ing, we benchmark AlphaDev’s solution against the baseline solutions, 
and process the measurements across 100 machines for more accuracy 
and noise reduction. For each benchmark, we compute confidence 
intervals using the distribution-free two-sided confidence interval for 
a quantile tabular method44.

Variable sort. When optimizing directly for latency, AlphaDev out-
performs AlphaDev-S-WS on VarSort3, VarSort4 and VarSort5 as seen 
in Extended Data Table 3a. AlphaDev-S-CS fails to find a solution in 
each case. In the cases of VarSort4 and VarSort5, program length and 
latency are not correlated (see Supplementary Information for more 
details). This indicates that when program length cannot be used as a 
proxy for performance, AlphaDev is able to find lower latency solutions 
compared to AlphaDev-S. This is even in the case where the stochas-
tic search is warm started with a near-optimal program. In addition,  
AlphaDev converges to the optimal solution after exploring a maxi-
mum of 12M programs as seen in Extended Data Table 3b. This is orders 
of magnitude lower than that of AlphaDev-S-CS and AlphaDev-S-WS,  
respectively (31 trillion programs in the worst case).

Exploration hypothesis
We proposed that AlphaDev-S struggles to discover programs when 
learning from scratch and gets stuck in local optima when warm started 
because of its limited exploration capabilities as a result of the stochastic  
search procedure. Extended Data Fig. 3 shows two-dimensional 
t-stochastic neighbour embedding (t-SNE) projections51 of AlphaDev 
and AlphaDev-S’s assembly algorithms discovered during their 
respective training procedures for VarSort5. The features used in 
the projection include correctness, latency, algorithm length and a 
histogram count of the instructions used per algorithm. Extended 
Data Fig. 3a indicates the regions in algorithm space explored by 
AlphaDev, AlphaDev-S-CS and AlphaDev-S-WS, respectively, whereas 
Extended Data Fig. 3b superimposes algorithm correctness onto 
each point in the t-SNE projection in which the colour indicates the 
correctness of each discovered algorithm, ranging from incorrect 
algorithms (purple) to correct algorithms (yellow). The AlphaDev-S 
variants both cover a densely packed circular region around their 
initial seed, which highlights the breadth-first nature of their sto-
chastic search procedure. This illustrates that AlphaDev-S-CS fails to 
navigate through the space of incorrect algorithms in a reasonable 
amount of time and discover correct algorithms when learning from 
scratch. A similar argument applies to AlphaDev-S-WS whereby, when 
optimizing from an already correct but suboptimal expert demon-
stration, the algorithm is biased towards exploring its vicinity and 
struggles to escape this local maxima. By contrast, AlphaDev has more 
diverse algorithm space coverage, as the long-term value function 
is a guiding signal for discovering new and interesting parts of algo-
rithm space. As seen in Extended Data Fig. 3b, it is capable of escaping 
the space of incorrect algorithms to discover a new space of correct 
algorithms, highlighting the exploration advantages afforded by  
AlphaDev.

Related work
Assembly optimization. There are numerous approaches to optimiz-
ing assembly programs, which we have classified into three groups: 
enumerative search, stochastic search and symbolic search5.

First, enumerative search techniques include brute-force program 
enumeration4–6 as well as implicit enumeration using symbolic theorem 
proving52,53. These approaches search through the space of programs 
to find a solution based on a predefined set of programs, heuristic and/
or cost function. These approaches struggle to span large regions of 
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program space, especially as the size and complexity of the program 
increases.

Second, stochastic search techniques circumvent comprehensive 
enumeration by relying on sampling mechanisms such as Markov 
chain Monte Carlo sampling5,6,8,9. Rajeev Alur et al.5 define a correct-
ness specification, provided by a logical formula that uses symbols 
from a background theory. The goal is to then find an implementa-
tion expression such that logical formula defining the specification 
is valid. The idea is to iteratively add test cases and then search and 
expand the program to solve the given test cases. They optimize for 
correctness on problems from the book Hacker’s delight54. Phitch-
aya Mangpo Phothilimthana et al.6 introduce the LENS algorithm that 
is based on running enumerative, stochastic and symbolic search 
in parallel, while relying on handcrafted pruning rules. This setup is 
capable of optimizing up to 21 instructions, and cannot optimize for 
latency nor support branching. Another algorithm8 is based on Markov 
chain Monte Carlo rejection sampling and applies transformations to 
programs in assembly using a loss function that is a function of cor-
rectness and performance. Many of these approaches are prone to 
getting stuck in local minima and may also struggle as the size and/
or complexity of the program increases. In addition, incorporating 
actual, measured latency into these approaches are either infeasible or  
prohibitively expensive.

Third, symbolic search approaches can also be implemented to opti-
mize assembly programs. These include SAT solvers55, SMT solvers5,6 
and Mixed Integer Programs (MIPs)56,57. However, these approaches 
suffer from scaling issues. For example, classical solvers require a prob-
lem to be translated into a certain canonical form. It usually requires 
an expert in the said solvers and a substantial amount of time to find 
an efficient formulation. In addition, for any new modification of the 
problem, this has to be repeated. Classical solvers are also hard to paral-
lelize and thus, it is challenging to leverage more hardware to speed up 
the solving process. Another symbolic search algorithm is Cholorphyll10 
that implements a multi-phase approach. It first requires as input a 
source program with partition annotations that specify where code 
and data reside. Then, a layout synthesizer maps program fragments 
onto physical cores to minimize computational costs. The code is then 
separated into per-core program fragments and the program frag-
ments are compiled into machine code. At this point, a superoptimizer 
optimizes each of these fragments.

SIMD optimization. Various approaches58–60 have also been applied 
to sorting functions that run in the single instruction, multiple data 
(SIMD)61 setup. This setup is capable of parallelizing instruction  
execution, but is not supported at present in popular libraries such as 
LLVM’s libc++ std::sort library. One example is that from Gilles Barthe  
et al.7 that proposes a methodology for optimizing programs by  
automatically vectorizing loops with SIMD instructions. They do this 
by introducing a framework for verifying the correctness of transfor-
mations to a program and performing a search-based procedure using 
the said transformation. Their framework can discover SIMD looping 
structures of up to nine instructions in 0.12 s, which corresponds to a 
minimum 2× speed-up.

RL approaches for program synthesis. There are also several studies 
using RL for program optimization. Kevin Ellis et al.62 learn a policy 
and value function to write and evaluate code, as well as performing a 
Monte Carlo-style search strategy during inference. This work requires 
a pretraining step and aims to generate correct programs that satisfy 
a predefined specification. The approach is successfully applied to 
computer-aided design and string editing programs. SuperSonic63 uses  
an RL meta-optimizer to select between different RL architectures,  
using a Multi-Armed Bandit policy search to find a state representation, 
reward function and RL algorithm that is optimal for the current task. 
This requires keeping track of many RL algorithms and architectures, 

which are used as part of the state space. By contrast, our approach 
only focuses on training a single RL architecture, taking advantage 
of MCTS search and powerful state representations. Shypula et al.64 
create a supervised assembly dataset and use it to train a Transformer 
model for mapping unoptimized to optimized code, followed by an RL 
stage for improving the solution quality. Our method does not require 
a supervised dataset or two separate training and finetuning stages, 
and optimizes everything end-to-end using RL and search instead. 
Chen et al.65 define their own domain specific language and perform 
input–output program synthesis that better uses the intermediate 
program representation to guide the synthesis routine. They show 
that this can be incorporated with RL, using the setup of Rudy Bunel 
et al.66 and improve the correctness of generated functions. They do 
not, however, optimize for program length or latency.

Input–output examples for program synthesis. A large body of work 
addresses the problem of learning programs from input–output pairs. 
One type of approach learns a neural network for matching inputs to 
outputs directly11,13,67,68. This approach is difficult to integrate into exist-
ing libraries and can struggle to generalize to previously unseen inputs, 
although there has been some encouraging recent progress using graph 
representations69. Another type of approach is to perform a search in 
program space, guided by a learned model12,70–72. For instance, Chen 
et al.70 use a model that predicts the next program token on the basis of 
a partial program and the input–output pairs. This bears some similari-
ties to how search is guided in our approach: the learned policy prior 
in AlphaZero is a model for predicting the next token, learned on the 
basis of a combination of a partial program and that program’s effects 
on the inputs. However, we are interested in finding correct and efficient 
programs, which we achieve by further learning a value function for 
approximating the expected latency of partial programs, and using 
AlphaZero to incorporate this value function into the search process.

Deep learning for code generation. There are also several deep learn-
ing approaches that use large languages models to generate code. These 
approaches vary in their uses from transpilation, code refactoring and 
explaining code15 to generating human-level competitive code using a 
natural language description14. That particular work aims to generate 
correct code, but does not focus on generating low-latency solutions.

Sort-based program optimization. There are several program synthe-
sis studies that have tackled sorting algorithms. For example, White 
et al.26 use RL for learning sorting functions. Their work uses several 
heuristics and a domain specific language to yield a sorting algorithm 
called reinforcement programming sort. Srivastava et al.27 encodes the 
program synthesis as a verification problem. Specifically, they repre-
sent a synthesis task as a tuple consisting of the functional expression, 
the domains and guards appearing in the synthesized program and the 
resource constraints. The idea is that, given a prespecified resource 
constraint, their synthesizer produces a program that meets the pre-
defined specification to ensure correctness. They apply this to discover 
merge sort and quick sort. Jason Ansel et al.28 takes as input predefined 
algorithms (for example, insertion sort, merge sort and quick sort) and 
then determines when to select these algorithms for execution using 
its autotuner function. It does so by defining a language that contains 
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Extended Data Fig. 1 | The AlphaDev representation network architecture. 
(a) The AlphaDev representation network comprises a Transformer Encoder 
network that receives as input the assembly algorithm generated thus far.  
It also contains a CPU State Encoder network that receives as input the current 
state of memory and registers. The exact architecture and hyperparameters 

can be found in the Supplementary Information, Appendix A. (b) Before 
inputting instructions into the Transformer Encoder network, each program 
instruction’s opcode and operands are converted to one-hot encodings and 
concatenated. The resulting encoding is then fed into the Transformer Encoder 
network.



Extended Data Fig. 2 | An example sorting network43. (a) The horizontal lines 
are called wires and the vertical lines are called comparators. (b) An initially 
unsorted sequence of values are input into the sorting network on the left hand 
side. At various stages two wires encounter a comparator. If the value at the top 

of the comparator is smaller than the value at the bottom of the comparator, 
the numbers switch wires. An optimal sorting network places comparators in 
specific positions so as to sort any sequence of unsorted values using the 
minimum number of comparators.
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Extended Data Fig. 3 | Hypothesis for improved exploration using 
AlphaDev. (a) A 2D t-SNE51 projection indicating the regions explored by 
AlphaDev (blue) compared to AlphaDev-S. (b) The same 2D t-SNE projection as 
in (a) with algorithm correctness superimposed onto each point from incorrect 

programs (purple) to correct programs (yellow). As seen in the figure, 
AlphaDev-S struggles to move out of local optima whereas AlphaDev is able to 
explore from the space of incorrect programs to the space of correct 
programs.



Extended Data Table 1 | Additional Assembly instructions

This table contains a list of additional assembly X86 instructions using AT&T syntax and their corresponding description.
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Extended Data Table 2 | Comparison of AlphaDev and 
AlphaDev-S for fixed sort

(a) Presents the shortest programs found by each approach. Note that AlphaDev-S-CS is 
unable to discover a sorting function when training from scratch. AlphaDev-S-WS, which is 
initialized with a near-optimal program, is able to match the performance of AlphaDev, which 
discovers the optimal programs from scratch. (b) Indicates the number of programs explored 
by each approach to find the optimal solution. Note that AlphaDev-S-CS explores orders 
of magnitude more programs for each sort algorithm. For sort 3 and sort 5 AlphaDev-S-WS 
explores orders of magnitude more programs than AlphaDev to find the optimal solution. 
(c) The approximate wall clock time to generate the shortest program for each sort length. 
AlphaDev-S-WS is more computationally efficient than AlphaDev for branchless sort. How-
ever, as will be shown in Extended Data Table 3, when branching is introduced, AlphaDev 
outperforms AlphaDev-S-WS, which tends to get stuck in locally optimal solutions.



Extended Data Table 3 | Comparison of AlphaDev and AlphaDev-S on variable sort

(a) Presents the latency results for the programs discovered by each approach. The reported latency corresponds to the 5th percentile of latencies measured across 100 machines. The ± [Lower, 
Upper] reports the lower and upper confidence intervals respectively. In this setting, AlphaDev optimizes directly for real, measured latency. Note that AlphaDev outperforms each approach 
and AlphaDev-S-CS is unable to find a solution in each case. (b) In the variable sort setting, both AlphaDev-S variants explore orders of magnitude more programs compared to AlphaDev.
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