
Nature | Vol 618 | 8 June 2023 | 257

Article

Faster sorting algorithms discovered using
deep reinforcement learning

Daniel J. Mankowitz1,3 ✉, Andrea Michi1,3, Anton Zhernov1,3, Marco Gelmi1,3, Marco Selvi1,3,
Cosmin Paduraru1,3, Edouard Leurent1,3, Shariq Iqbal1, Jean-Baptiste Lespiau1, Alex Ahern1,
Thomas Köppe1, Kevin Millikin1, Stephen Gaffney1, Sophie Elster1, Jackson Broshear1,
Chris Gamble1, Kieran Milan1, Robert Tung1, Minjae Hwang2, Taylan Cemgil1,
Mohammadamin Barekatain1, Yujia Li1, Amol Mandhane1, Thomas Hubert1,
Julian Schrittwieser1, Demis Hassabis1, Pushmeet Kohli1, Martin Riedmiller1, Oriol Vinyals1 &
David Silver1

Fundamental algorithms such as sorting or hashing are used trillions of times on any
given day1. As demand for computation grows, it has become critical for these
algorithms to be as performant as possible. Whereas remarkable progress has been
achieved in the past2, making further improvements on the efficiency of these
routines has proved challenging for both human scientists and computational
approaches. Here we show how artificial intelligence can go beyond the current state
of the art by discovering hitherto unknown routines. To realize this, we formulated the
task of finding a better sorting routine as a single-player game. We then trained a new
deep reinforcement learning agent, AlphaDev, to play this game. AlphaDev
discovered small sorting algorithms from scratch that outperformed previously
known human benchmarks. These algorithms have been integrated into the LLVM
standard C++ sort library3. This change to this part of the sort library represents the
replacement of a component with an algorithm that has been automatically
discovered using reinforcement learning. We also present results in extra domains,
showcasing the generality of the approach.

Human intuition and know-how have been crucial in improving algo-
rithms. However, many algorithms have reached a stage whereby
human experts have not been able to optimize them further, leading
to an ever-growing computational bottleneck. The work in classical
program synthesis literature, spanning many decades, aims to gen-
erate correct programs and/or optimize programs using proxies for
latency. These include enumerative search techniques4–7 and stochastic
search5,6,8–10 as well as the more recent trend of using deep learning in
program synthesis for generating correct programs11–16. Using deep
reinforcement learning (DRL), we can take this a step further by generat-
ing correct and performant algorithms by optimizing for actual meas-
ured latency at the CPU instruction level, by more efficiently searching
and considering the space of correct and fast programs compared to
previous work.

One of the fundamental questions in computer science is how to
sort a sequence17–20. This is taught in elementary computer science
classes around the world21,22 and is used ubiquitously by a vast range of
applications23–25. Decades of computer science research have focused
on discovering and optimizing sorting algorithms26–28. A key component
of practical solutions is a small sort over a short sequence of elements;
this algorithm is called repeatedly when sorting large arrays that use
divide-and-conquer approaches29. In this work, we focus on two types
of small sort algorithm: (1) the fixed sort and (2) the variable sort. Fixed
sort algorithms sort sequences of a fixed length (for example, sort 3

can only sort sequences of length 3), whereas variable sort algorithms
can sort a sequence of varying size (for example, variable sort 5 can sort
sequences ranging from one to five elements).

We formulate the problem of discovering new, efficient sorting algo-
rithms as a single-player game that we refer to as AssemblyGame. In this
game, the player selects a series of low-level CPU instructions, which
we refer to as assembly instructions30, to combine to yield a new and
efficient sorting algorithm. This is challenging as the player needs to
consider the combinatorial space of assembly instructions to yield an
algorithm that is both provably correct and fast. The hardness of the
AssemblyGame arises not only from the size of the search space, which
is similar to extremely challenging games such as chess (10120 games)31
and Go (10700 games)32, but also from the nature of the reward function.
A single incorrect instruction in the AssemblyGame can potentially
invalidate the entire algorithm, making exploration in this space of
games incredibly challenging.

To play the game, we introduce AlphaDev, a learning agent that is
trained to search for correct and efficient algorithms. This agent is
comprised of two core components, namely (1) a learning algorithm
and (2) a representation function. The AlphaDev learning algorithm
can incorporate both DRL as well as stochastic search optimization
algorithms to play AssemblyGame. The primary learning algorithm
in AlphaDev is an extension of AlphaZero33, a well-known DRL algo-
rithm, in which a neural network is trained to guide a search to solve

https://doi.org/10.1038/s41586-023-06004-9

Received: 25 July 2022

Accepted: 23 March 2023

Published online: 7 June 2023

Open access

 Check for updates

1Deepmind, London, UK. 2Google, Mountain View, CA, USA. 3These authors contributed equally: Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
Edouard Leurent. ✉e-mail: dmankowitz@deepmind.com

https://doi.org/10.1038/s41586-023-06004-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06004-9&domain=pdf
mailto:dmankowitz@deepmind.com

258 | Nature | Vol 618 | 8 June 2023

Article

AssemblyGame. The representation function is interchangeable and
captures the underlying structure of assembly programs. The primary
AlphaDev representation is based on Transformers34.

Using AlphaDev, we have discovered fixed and variable sort algo-
rithms from scratch that are both new and more efficient than the
state-of-the-art human benchmarks. The fixed sort solutions for sort 3,
sort 4 and sort 5 discovered by AlphaDev have been integrated into the
standard sort function in the LLVM standard C++ library3. This library
is used by several million users including universities and numerous
international companies35. In addition, we analyse the new algorithm
discoveries, compare AlphaDev to stochastic search optimization
approaches and apply AlphaDev to further domains to showcase the
generality of the approach.

Representing algorithms as low-level CPU instructions
When compiling algorithms to machine code from a high level language
such as C++ (for example, the sorting function in Fig. 1a), the algorithm
is first compiled into assembly (Fig. 1b). The assembler then converts
the assembly program into executable machine code. In this work, we
optimize algorithms at the assembly level30. In a typical assembly pro-
gram, the values are copied from memory into registers, manipulated
between registers and then written back to memory. The set of assembly
instructions supported depends on the processor architecture. For the
purposes of this work, we focus on a subset of assembly instructions
supported by the x86 processor architecture using the AT&T syntax36.
Each instruction is of the format Opcode⟨OperandA, OperandB⟩. An
example instruction is mov<A,B>, which is defined as move a value
from source (A) to destination (B). Further instruction definitions such
as compare (cmp<A,B>), conditional move (cmovX<A,B>) and jump
(jX<A>) can be found in Extended Data Table 1. In the example in Fig. 1b,
%eax, %ecx, %edx, %edi correspond to four different register locations
and (%rsi), 4(%rsi) correspond to two different memory locations. The
symbol $2 is a placeholder for a constant value, which corresponds to
the length of the vector in this example. We use the terms assembly
program and assembly algorithm interchangeably in this work. This
is because AlphaDev builds an assembly program from scratch, from
an initially unordered set of instructions, each time it plays Assemb-
lyGame, defining a new and efficient algorithm.

DRL for discovering faster algorithms
In this section, we formulate optimizing algorithms at the CPU instruc-
tion level as a reinforcement learning (RL) problem37, in which the
environment is modelled as a single-player game that we refer to as
AssemblyGame. Each state in this game is defined as a vector St = ⟨Pt, Zt⟩
where Pt is a representation of the algorithm generated thus far in
the game and Zt represents the state of memory and registers after

executing the current algorithm on a set of predefined inputs. As seen
in Fig. 2a, at timestep t, the player receives the current state St and
executes an action at. This involves appending a legal assembly instruc-
tion (for example, mov<A,B>) to the current algorithm generated thus
far. A reward rt is received that comprises both a measure of algorithm
correctness and latency. Algorithm correctness (Fig. 2b) involves input-
ting a set of N test sequences into the current algorithm Pt to generate
N outputs. These outputs are then compared to the expected outputs
and a correctness reward rt is computed. Latency rewards can be gen-
erated by either (1) penalizing the agent for increasing the length of
the algorithm (when length and latency are highly correlated) that we
refer to as the algorithm length reward, or (2) measuring the actual
latency of the algorithm. The game is executed for a limited number
of steps, after which the game is terminated. Winning the game corre-
sponds to generating a correct, low-latency algorithm using assembly
instructions. Losing the game corresponds to generating an incorrect
algorithm or a correct but inefficient algorithm.

a b

Fig. 1 | The relationship between C++ and assembly programs. a, A C++ implementation of a variable sort 2 function that sorts any input sequence of up to two
elements. b, The C++ implementation in a is compiled to this equivalent low-level assembly representation.

Table 1 | AlphaDev performance when optimizing for
algorithm length and latency

(a) Algorithm AlphaDev Human benchmarks

Length Length

Sort 3 17 18

Sort 4 28 28

Sort 5 42 46

VarSort3 21 33

VarSort4 37 66

VarSort5 63 115

VarInt 27 31

(b) Algorithm AlphaDev Human benchmarks

Latency ± (lower, upper) Latency ± (lower, upper)

VarSort3 236,498 ± (235,898, 236,887) 246,040 ± (245,331, 246,470)

VarSort4 279,339 ± (278,791, 279,851) 294,963 ± (294,514, 295,618)

VarSort5 312,079 ± (311,515, 312,787) 331,198 ± (330,717, 331,850)

VarInt 97,184 ± (96,885, 97,847) 295,358 ± (293,923, 296,297)

Competitive 75,973 ± (75,420, 76,638) 86,056 ± (85,630, 86,913)

a, AlphaDev performance, compared to the human benchmarks, when optimizing for
algorithm length. AlphaDev discovers algorithms from scratch that match or improve on
the human benchmarks in each case. b, AlphaDev performance, compared to the human
benchmarks, when optimizing directly for latency. In this setup, AlphaDev discovers algorithms
that have significantly lower latency than the human benchmarks in each case. The confidence
intervals are represented as latency ± (lower, upper), in which latency corresponds to the fifth
percentile of latency measurements across 100 different machines. Lower and upper refer to
the bounds of the 95% confidence interval for this percentile.

Nature | Vol 618 | 8 June 2023 | 259

We refer to the agent that plays this single-player game as AlphaDev.
The agent’s primary learning algorithm is an extension of the AlphaZero
agent32 and guides a Monte Carlo tree search (MCTS) planning proce-
dure using a deep neural network33,38. The input to the neural network
is the state St and the output is a policy and value prediction. The policy
prediction is a distribution over actions and the value function is a
prediction of the cumulative returns R that the agent should expect
to receive from the current state St. During a game, the agent receives
as input the current state St. The agent then executes an MCTS pro-
cedure and uses this to select the next action to take. The generated
games are then used to update the network’s parameters, enabling
the agent to learn.

It is critical that AlphaDev has a representation39,40 capable of rep-
resenting complex algorithmic structures to efficiently explore the
space of instructions. To achieve this, we introduce the AlphaDev
representation network (Extended Data Fig. 1a). This network com-
prises two components, namely (1) a transformer encoder network
that provides the agent with a representation of the algorithm
structure, and (2) the CPU state encoder network that helps the
agent predict how the algorithm affects the dynamics of memory
and registers. The CPU state encoder network comprises a multi-
layer perceptron that receives as input the state of each register
and memory location for a given set of inputs. These networks
each output embeddings that are combined to yield the AlphaDev
state representation.

Transformer encoder
Transformers are natural text encoders and have had much success
with language models recently14,34,41. As such, this motivated us to
adapt the standard transformer to model assembly instructions. We
developed and incorporated a transformer encoder, our adaptation of
the MultiQuery transformer encoder42, into the AlphaDev representa-
tion network to represent the assembly instructions. Each assembly
instruction’s Opcode and corresponding Operands are converted to
one-hot encodings and concatenated to form the raw input sequence.
This is fed through a multilayer transformer encoder, which maps it
to corresponding embedding vectors (see Extended Data Fig. 1b for
an illustration).

Latency value functions
Latency is an important reward signal that is used to guide the agent
in discovering performant algorithms. To better estimate latency,

we implemented a dual value function setup, whereby AlphaDev has
two value function heads: one predicting algorithm correctness and
the second predicting algorithm latency. The latency head is used to
directly predict the latency of a given program by using the program’s
actual computed latency as a Monte Carlo target for AlphaDev during
training. This dual-head approach achieved substantially better results
than the vanilla, single head value function setup when optimizing for
real latency.

Results
Discovering faster sort algorithms
We trained the AlphaDev agent from scratch to generate a range of fixed
sort and variable sort algorithms that are both correct and achieve lower
latency than the state-of-the-art human benchmarks.

Fixed sorting algorithms
We considered three fundamental algorithms: sort 3, sort 4 and sort 5.
The state-of-the-art human benchmarks for these algorithms are
sorting networks43 as they generate efficient, conditional branchless
assembly code. This means that all instructions are executed sequen-
tially and there is no branching involved. Improving on these algo-
rithms is challenging as they are already highly optimized. As seen in
Table 1a, AlphaDev is able to find algorithms with fewer instructions
than the human benchmarks for sort 3 and sort 5 and matches the
state-of-the-art performance on sort 4. These shorter algorithms do
indeed lead to lower latency as the algorithm length and latency are
correlated for the conditional branchless case; see Appendix B in Sup-
plementary Information for more details. We also explored scaling
to slightly larger sorts using a variant of AlphaDev. We managed to
save three instructions on sort 6, two instructions on sort 7 and one
instruction on sort 8, which provides a promising basis for future work.
See Appendix C in Supplementary Information for an overview of the
approach.

Variable sorting algorithms
We considered three variable sorting algorithms: VarSort3, VarSort4
and VarSort5. The human benchmark in each case is defined as an algo-
rithm that, for a given input length, calls the corresponding sorting
network. In this case, branching is required, which greatly increases
the complexity of the problem as the agent needs to (1) determine
how many subalgorithms it needs to construct and (2) build the body

AlphaDev

…

MOV<Register0,Memory1>

Algorithm

MOV<Register0,Memory1>

All test input
sequences Output Expected output

=
?

A

B

C

…

MOV<Register0,Memory1>

A′

D′

C′

A′

B′

C′

Algorithmt

b

a

St at

rt

Fig. 2 | The AssemblyGame and algorithm correctness computation. a, The
AssemblyGame is played by AlphaDev, which receives as input the current
assembly algorithm generated thus far St and plays the game by selecting an
action to execute. In this example, the action is a mov<Register0,Memory1>
assembly instruction, which is appended to the current algorithm. The agent
receives a reward that is a function of the algorithm’s correctness, discussed in
b, as well as the algorithm’s latency. The game is won by the player discovering
a low latency, correct algorithm. b, The program correctness and latency

computations are used to compute the reward rt. In this example, test
sequences are input to the algorithm; for example, in the case of sorting three
elements, test inputs comprise all sequences of unsorted elements of length 3.
For each sequence, the algorithm output is compared to the expected output
(in the case of sorting, the expected output is the sorted elements). In this
example, the output DD′′ does not match the expected output BB′′ and the
algorithm is therefore incorrect.

260 | Nature | Vol 618 | 8 June 2023

Article

of the main algorithm in parallel. The agent may also need to call
subalgorithms from other subalgorithms. In this case, optimizing
for length leads to significantly shorter algorithms compared to the
human benchmarks as seen in Table 1a. However, owing to the com-
plexities introduced by branching, latency and length are not always
correlated; see Supplementary Information for more details. As such,
we implemented a procedure that measures the actual latency of the
programs by taking the fifth percentile of latency measurements across
100 different machines, with computed confidence intervals44, and
optimize this metric. See Methods for the full benchmarking setup.
When optimizing for latency, the agent improves significantly on the
human benchmarks in each case as seen in Table 1b.

New algorithm discoveries
The solutions discovered by AlphaDev include new and exciting algo-
rithmic discoveries that lead to more efficient performance. In the
fixed sort setting, we found that AlphaDev discovered two interesting
sequences of instructions that, when applied to a sorting network algo-
rithm, reduce the algorithm by one assembly instruction each time. We
refer to each sequence of instructions as (1) the AlphaDev swap move
and (2) the AlphaDev copy move respectively.

AlphaDev swap move
Figure 3a presents an optimal sorting network for three elements (see
Methods for an overview of sorting networks). We will explain how
AlphaDev has improved the circled network segment. There are many
variants of this structure that are found in sorting networks of various
sizes, and the same argument applies in each case. The circled part
of the network (last two comparators) can be seen as a sequence of
instructions that takes an input sequence ⟨A, B, C⟩ and transforms each
input as shown in Table 2a (left). However, a comparator on wires B and
C precedes this operator and therefore input sequences where B ≤ C
are guaranteed. This means that it is enough to compute min(A, B) as
the first output instead of min(A, B, C) as shown in Table 2a (right).
The pseudocode difference between Fig. 3b,c demonstrates how the
AlphaDev swap move saves one instruction each time it is applied.

AlphaDev copy move
Figure 3d presents a sorting network configuration, consisting of three
comparators, that is applied across four wires. This configuration is
found in a sort 8 sorting network and corresponds to an operator tak-
ing four inputs ⟨A, B, C, D⟩ and transforming them into four outputs

A

B

C

A

B

C

D

a

d

Original AlphaDev

Original AlphaDev

b c

e f

Fig. 3 | Sorting networks and algorithmic improvements discovered by
AlphaDev. a, An optimal classic sorting network for three inputs. The circled
comparators have been improved by AlphaDev. See the AlphaDev swap move
for more details. b,c, The assembly pseudocode before applying the AlphaDev
swap move (b) and after applying the AlphaDev swap move (c), resulting in the

removal of a single instruction. d, An optimal classic sorting network
comparator configuration that has been improved by AlphaDev. See the
AlphaDev copy move for more details. e,f, The assembly pseudocode before
applying the AlphaDev copy move (e) and after applying the AlphaDev copy
move (f), resulting in the removal of a single instruction.

Nature | Vol 618 | 8 June 2023 | 261

as seen in Table 2b (on the left). One can show that as part of sort 8, the
input that flows into the operator satisfies the following inequality:
D ≥ min(A, C). This means that the operator can be improved by apply-
ing the AlphaDev copy move that is defined in Table 2b (on the right),
resulting in one instruction less than the original operator. The code
difference between the original operator and the code after applying
the AlphaDev copy move is visualized in Fig. 3e,f, respectively.

New variable sort algorithms
The VarSort4 algorithm discovered by AlphaDev is particularly inter-
esting. The flow diagram for the human benchmark algorithm and
AlphaDev can be seen in Fig. 4a,b, respectively. The human bench-
mark algorithm determines the length of the input vector, and then
calls the corresponding sorting network to sort the elements. The
AlphaDev solution has a completely different approach as seen
in Fig. 4b. If the length of the input vector is strictly greater than 2,

then sort 3 is immediately called, resulting in the first three elements
being sorted. If the vector is greater than three elements, then a
simpli fied sort 4 algorithm is called that sorts the remaining unsorted
elements in the input vector. It is this simplified part of the routine
that yields significant gains in terms of algorithmic length and latency.

Stochastic search optimization approaches
It is important to understand the advantages and limitations of RL
compared to other approaches for program optimization. As such,
we implemented a state-of-the-art stochastic superoptimization
approach8, adapted it to the sort setting and used it as the learning algo-
rithm in AlphaDev. We refer to this variant as AlphaDev-S (see Methods
for more details). We run this algorithm with at least the same amount
of resources and wall-clock time as AlphaDev. AlphaDev-S requires a
prohibitive amount of time to optimize directly for latency as latency
needs to be computed after every mutation. As such, AlphaDev-S opti-
mizes for a latency proxy, namely algorithm length and, then, at the
end of training, we search through all correct programs generated
by AlphaDev-S and benchmark each one to find the lowest latency
solution. In general, we find that AlphaDev consistently outperforms
AlphaDev-S when learning from scratch without previous knowledge.
In addition, as the size of the program increases, AlphaDev explores
orders of magnitude fewer programs (12 million programs in the worst
case) compared to AlphaDev-S (31 trillion programs in the worst case).
This may be because AlphaDev is able to better explore the space of
algorithms compared to the breadth-first stochastic search proce-
dure that gets stuck more easily into local optima; see Methods for an
overview of this exploration hypothesis. In addition, AlphaDev never
evaluates latency during search as it uses the latency value function
predictions and, because of this, only needs to compute actual meas-
ured latency on less than 0.002% of generated programs. When incor-
porating previous knowledge into AlphaDev-S, such as warm starting
the learning algorithm with a near-optimal solution, AlphaDev-S is
more computationally efficient for sort 3, sort 4 and sort 5 (branch-
less assembly algorithms) and also generates competitive low-latency
algorithms to that of AlphaDev in each case. However, for algorithms
that require branching (if–else statements), in which algorithm length

Table 2 | Analysis of the AlphaDev swap and copy moves

(a) Input Original output AlphaDev swap move

A min(A, B, C) min(A, B)

B max(min(A, C), B) max(min(A, C), B)

C max(A, C) max(A, C)

(b) Input Original output AlphaDev copy move

A min(A, B, C, D) min(A, B, C, D)

B max(B, min(A, C, D)) max(B, min(A, C))

C max(C, min(A, D)) max(C, min(A, D))

D max(A, D) max(A, D)

a, Left shows the transformation applied to inputs A, B and C in a classic sorting network when
applying the circled operator in Fig. 3a. Right shows the AlphaDev swap move transformation
applied in place of the circled operator. Note the new transformation in bold that saves a
single instruction each time it is applied. b, Left shows the transformation applied to inputs
A, B, C and D according to the sorting network configuration in Fig. 3d. Right shows the
AlphaDev copy move transformation applied to this sorting network configuration. The
transformation in bold indicates the change made by the copy move, saving an instruction
each time it is applied.

Length versus 2
Length < 2

Sort 3

Length = 3?
Yes

Sort 4 given �rst 3
elements are sorted

Return

Length = 2

Sort 2

Length > 2

No

Length = 4?

Length = 3?

No

Length = 2?

No

No

Return

Yes

Sort 2

Sort 3

Sort 4

Yes

Yes

a b

Fig. 4 | Fundamentally different algorithms discovered by AlphaDev.
 a, A flow diagram of the variable sort 4 (VarSort4) human benchmark algorithm.
In this algorithm, a sequence of unsorted numbers are input into the algorithm.
If the sequence length is four, three or two numbers, then the corresponding
sort 4, sort 3 or sort 2 sorting network is called that sorts the resulting sequence.
The result is then returned and output by the function. b, The VarSort4 algorithm
discovered by AlphaDev. This algorithm also receives sequences of length four,

three or two numbers as input. In this case, if the length is two, then it calls the
sort 2 sorting network and returns. If the length is three then it calls sort 3 to
sort the first three numbers and returns. If, however, the length is greater than
three, then it calls sort 3, followed by a simplified sort 4 routine that sorts the
remaining unsorted number. It is this part of the routine that results in
significant latency savings.

262 | Nature | Vol 618 | 8 June 2023

Article
and latency are not well correlated, AlphaDev discovers lower latency
solutions than AlphaDev-S, even when warm starting this algorithm
with a near-optimal solution. See Methods for an in-depth analysis of
these algorithms.

Generalization to additional domains
To test the generality of AlphaDev, we train the agent on a set of addi-
tional domains. These include a protocol buffer deserialization subrou-
tine called VarInt, presented below, and a competitive coding problem
(see Appendix D in Supplementary Information for more details). The
competitive coding domain latency performance is reported in Table 1b.

Protocol Buffer is Google’s open-source data format used to serial-
ize structured data45. This format is commonly used in cases in which
performance or network load is of primary concern. The VarInt algo-
rithm46 is a key component in both the serialization and deserialization
processes. We trained the AlphaDev agent as in variable sort to optimize
the VarInt deserialization function with respect to correctness and
measured latency. For correctness, we reward the agent for correctly
deserializing each input. We use a set of 80 inputs and correspond-
ing outputs that cover common protobuf use cases. AlphaDev learns
an optimized VarInt deserialization function and manages to signifi-
cantly outperform the human benchmark for single valued inputs. Our
agent discovers a branchless solution that is both shorter (Table 1a)
and roughly three times faster than the human benchmark (Table 1b).
In doing so, the agent also discovered a new VarInt assignment move in
which AlphaDev learns to combine two operations into a single instruc-
tion leading to latency savings. See Appendix D.1 in Supplementary
Information for a full overview of this move. This is a strong indica-
tion that AlphaDev is capable of generalizing to optimize non-trivial,
real-world algorithms.

Libc++ sort patch
The sort 3, sort 4 and sort 5 algorithms in the LLVM libc++ standard
sorting library are called many times by larger sorting algorithms and
are therefore fundamental components of the library. We reverse
engineered the low-level assembly sorting algorithms discovered by
AlphaDev for sort 3, sort 4 and sort 5 to C++ and discovered that our
sort implementations led to improvements of up to 70% for sequences
of a length of five and roughly 1.7% for sequences exceeding 250,000
elements. These improvements are for the uint32, uint64 and float
data types for ARMv8, Intel Skylake and AMD Zen 2 CPU architectures;
see Appendix E in Supplementary Information for the full performance
tables. The performance improvements are due to both the branch-
less conditional assembly generated by AlphaDev as well as the new
AlphaDev swap move. For sort 5, we used a 43 length algorithm dis-
covered by AlphaDev, as it led to a more efficient C++ implementation.
These algorithms were sent for review and have officially been included
in the libc++ standard sorting library3. It is the first change to these
sub-routines in over a decade. This is also the first time that any compo-
nent in this sort library has been replaced by an algorithm that has been
automatically discovered using reinforcement learning. We estimate
that these routines are being called trillions of times every day1,35,47.

Discussion
AlphaDev discovers new, state-of-the-art sorting algorithms from
scratch that have been incorporated into the LLVM C++ library, used
by millions of developers and applications around the world23–25. Both
AlphaDev and stochastic search are powerful algorithms. An inter-
esting direction for future research is to investigate combining these
algorithms together to realize the complementary advantages of both
approaches.

It is important to note that AlphaDev can, in theory, generalize to
functions that do not require exhaustive verification of test cases.
For example, hashing functions48 as well as cryptographic hashing

functions49 define function correctness by the number of hashing
collisions. Therefore, in this case, AlphaDev can optimize for minimiz-
ing collisions as well as latency. AlphaDev can also, in theory, optimize
complicated logic components within the body of large, impressive
functions. We hope that AlphaDev can provide interesting insights and
inspire new approaches in both the artificial intelligence and program
synthesis communities.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-06004-9.

1. Amazon. Amazon S3—two trillion objects, 1.1 million requests/second. AWS https://aws.
amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/
(2013).

2. Cormen, T. H. et al. Introduction to Algorithms (MIT Press, 2022).
3. Gelmi, M. Introduce branchless sorting functions for sort3, sort4 and sort5. LLVM.org

https://reviews.llvm.org/D118029 (2022).
4. Bansal, S. & Aiken, A. Automatic generation of peephole superoptimizers. ACM SIGARCH

Comput. Arch. News 34, 394–403 (2006).
5. Alur, R. et al. Syntax-Guided Synthesis (IEEE, 2013).
6. Phothilimthana, P. M. et al. Scaling up superoptimization. In Proc. Twenty-First

International Conference on Architectural Support for Programming Languages and
Operating Systems 297–310 (ACM, 2016).

7. Barthe, G. et al. From relational verification to SIMD loop synthesis. In Proc. of the 18th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming 123–134
(ACM, 2013).

8. Schkufza, E., Sharma, R. & Aiken, A. Stochastic superoptimization. ACM SIGPLAN Notices
48, 305–315 (2013).

9. Bunel, R. et al. Learning to superoptimize programs. In Proc. International Conference on
Learning Representations (ICLR, 2016).

10. Phothilimthana, P. M. et al. Chlorophyll: synthesis-aided compiler for low-power spatial
architectures. ACM SIGPLAN Notices 49, 396–407 (2014).

11. Vinyals, O. et al. Grammar as a foreign language. Adv. Neural Inform. Proc. Syst. 28,
2773–2781 (2015).

12. Chen, X., Liu, C. & Song, D. Towards synthesizing complex programs from input-
output examples. In Proc. International Conference on Learning Representations (ICLR,
2018).

13. Devlin, J. et al. Robustfill: neural program learning under noisy i/o. In Proc. International
Conference on Machine Learning 990–998 (PMLR, 2017).

14. Li, Y. et al. Competition-level code generation with AlphaCode. Science 378, 1092–1097
(2022).

15. Pearce, H. et al. Can codex and other large language models help us fix security bugs?
Preprint at https://arxiv.org/abs/2112.02125 (2021).

16. Chen, M. et al. Evaluating large language models trained on code. Preprint at https://
arxiv.org/abs/2107.03374 (2021).

17. Bingmann, T., Marianczuk, J. & Sanders, P. Engineering faster sorters for small sets of
items. Software: Pract. Exper. 51, 965–1004 (2021).

18. Levcopoulos, C. & Petersson, O. Splitsort: an adaptive sorting algorithm. Inform. Proc.
Lett. 39, 205–211 (1991).

19. Helman, D. R., Bader, D. A. & JáJá, J. A randomized parallel sorting algorithm with an
experimental study. J. Parallel Distrib. Comput. 52, 1–23 (1998).

20. Goodrich, M. T. Randomized shellsort: a simple oblivious sorting algorithm. In Proc.
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms 1262–1277
(ACM, 2010).

21. Mehlhorn, K., Sanders, P. & Sanders, P. Algorithms and Data Structures: The Basic Toolbox
Vol. 55. (Springer, 2008).

22. Knebl, H. Algorithms and Data Structures (Springer, 2020).
23. Karatzoglou, A., Baltrunas, L. & Shi, Y. Learning to rank for recommender systems. In Proc.

of the 7th ACM Conference on Recommender Systems 493–494 (ACM, 2013).
24. Yang, J. Y., Zhang, B. & Mao, Y. Study on Information Retrieval Sorting Algorithm in

Network-BasedManufacturing Environment. In Applied Mechanics and Materials Vol. 484,
183–186 (Trans Tech Publishing, 2014).

25. Krallmann, J., Schwiegelshohn, U. & Yahyapour, R. On the design and evaluation of job
schedulingalgorithms. In Workshop on Job Scheduling Strategies for Parallel Processing
17–42 (Springer, 1999).

26. White, S. K., Martinez, T. & Rudolph, G. Generating a novel sort algorithm using
Reinforcement Programming. In Proc. IEEE Congress on Evolutionary Computation 1–8
(IEEE, 2010).

27. Srivastava, S., Gulwani, S. & Foster, J. S. From program verification to program synthesis.
In Proc. of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages 313–326 (ACM, 2010).

28. Ansel, J. et al. Petabricks: a language and compiler for algorithmic choice. ACM Sigplan
Notices 44, 38–49 (2009).

29. Smith, D. R. The design of divide and conquer algorithms. Sci. Comput. Program. 5, 37–58
(1985).

30. Irvine, K. R. et al. Assembly Language for Intel-Based Computers (Prentice Hall, 2003).

https://doi.org/10.1038/s41586-023-06004-9
https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/
https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-11-million-requests-second/
https://reviews.llvm.org/D118029
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Nature | Vol 618 | 8 June 2023 | 263

31. Shannon, C. E. XXII. Programming a computer for playing chess. London, Edinb. Dublin
Philos. Mag. J. Sci. 41.314, 256–275 (1950).

32. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search.
Nature 529, 484–489 (2016).

33. Silver, D. et al. A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play. Science 362, 1140–1144 (2018).

34. Vaswani, A. et al. Attention is all you need. Adv. Neural Inform. Proc. Syst. 30, 5999–6009
(2017).

35. LLVM. LLVM users https://llvm.org/Users.html (LLVM, 2022).
36. Bartlett, J. Learn to Program with Assembly 271–273 (Apress, 2021).
37. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction 2nd edn (MIT Press, 2018).
38. Schrittwieser, J. et al. Mastering atari, go, chess and shogi by planning with a learned

model. Nature 588, 604–609 (2020).
39. Maillard, O.-A., Ryabko, D. & Munos, R. Selecting the state-representation in

reinforcement learning. Adv. Neural Inform. Proc. Syst. 24, 2627–2635 (2011).
40. Qian, R. et al. Spatiotemporal contrastive video representation learning. In Proc. IEEE/CVF

Conference on Computer Vision and Pattern Recognition 6964–6974 (IEEE, 2021).
41. Brown, T. et al. Language models are few-shot learners. Adv. Neural Inform. Proc. Syst. 33,

1877–1901 (2020).
42. Shazeer, N. Fast transformer decoding: one write-head is all you need. Preprint at https://

arxiv.org/abs/1911.02150 (2019).
43. Bundala, D. & Závodny, J. Optimal sorting networks. In Proc. International Conference on

Language and Automata Theory and Applications 236–247 (Springer, 2014).
44. Hahn, G. J. & Meeker, W. Q. Statistical Intervals: A Guide for Practitioners Vol. 92

(John Wiley & Sons, 2011).
45. Google. Protocol buffers, version 0.2.5; https://developers.google.com/protocol-buffers (2022).

46. Google. VarInt protocol buffer serialization and deserialization, version 0.2.5; https://
developers.google.com/protocol-buffers/docs/encoding (2022).

47. Protvin, R. & Levenberg, J. Why Google stores billions of lines of code in a single
repository. Commun. ACM 59, 78–87 (2016).

48. Berman, I. et al. Multi-collision resistant hash functions and their applications. In Proc.
Annual International Conference on the Theory and Applications of Cryptographic
Techniques 133–161 (Springer, 2018).

49. Damgård, I. B. Collision free hash functions and public key signature schemes. In
Workshop on the Theory and Application of of Cryptographic Techniques 203–216
(Springer, 1987).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://llvm.org/Users.html
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding
http://creativecommons.org/licenses/by/4.0/

Article
Methods

Background
AlphaZero. AlphaZero33 is an RL algorithm that leverages MCTS as a
policy improvement operator. It consists of (1) a representation net-
work f rep that outputs a latent representation ht of the state St; and
(2) a prediction network f pred that predicts the expected return
(the value) v̂t and a policy (that is, distribution over the action space)
π̂t from a given latent state. The algorithm uses the true dynamics and
reward when planning. MuZero38 is a model-based variant of Alpha Zero
that has the same representation and prediction networks, but also
learns a model of the dynamics and predicts rewards, which it uses for
planning. Specifically, it learns a dynamics network f dyn that predicts
the next latent state hht

k+1 and reward r̂ t
k+1 resulting from a transition.

Note that the subscript t denotes timesteps in the real environment
and the superscript k represents timesteps in the model.

fhh SS= () (1)t
rep

t

r fhh hh aa, ^ = (,) (2)t
k

t
k dyn

t
k

t
k+1 +1

v π f hh^ , ^ = () (3)t t
pred

t

On reaching a new state, AlphaZero proceeds by first encoding the
state into a latent representation with the representation network.
Then, the true dynamics or dynamics network (for MuZero) as well as
the prediction network f pred(ht) are used to simulate several trajectories
that fill out a search tree, by sampling state transitions. At each node,
the actions are selected using an optimistic strategy called the predic-
tor upper confidence tree bound32, meant to balance exploration
(trying new actions) and exploitation (progressing further down the
subtree of the current estimate of the best action). This strategy starts
out by following the predicted policy π̂t closely, and gradually shifts
towards maximizing the predicted value function. Ultimately, an action
is recommended by sampling from the root node with probability
proportional to its visit count during MCTS. The predicted policy is
then trained to match the visit counts of the MCTS policy in an attempt
to distil the search procedure into a policy such that subsequent itera-
tions of MCTS will disregard nodes that are not promising.

Sorting networks. Sorting networks are very efficient as their struc-
tures can be parallelized on modern CPU architectures. They therefore
tend to achieve faster runtime performance, especially on small sorts,
compared to popular and efficient base case algorithms such as inser-
tion sort17,43,50. A sorting network43 consists of two types of item called
comparators (vertical lines) and wires (horizontal lines) (Extended
Data Fig. 2a). Each wire carries a value from left to right. When two wires
intersect at a comparator, the values on the two wires are compared.
If the value of the bottom wire is smaller than the value of the top wire,
then the values are swapped between wires as seen in Extended Data
Fig. 2b. A programmatic implementation of a sorting network consists
of executing these swaps on particular pairs of elements from the input
sequence in a particular order.

Action pruning rules
We pruned the action space by removing some program invariances
(for example, the order of register allocation) and illegal instructions
(for example, comparing two memory locations). This helps reducing
the size of the action space and increases convergence rate. For our
experiments, we used the following rules:
(1) Memory locations are always read in incremental order.
(2) Registers are allocated in incremental order.
(3) We cannot compare or conditionally move to a memory location

(illegal).

(4) We can read and write to each memory location only once.
(5) We cannot use non-initialized registers (illegal).
(6) Do not perform consecutive compare instructions.

Training regime. We train AlphaDev on a Tensor Processing Unit (TPU) v.3,
with a total batch size of 1,024 per TPU core. We use up to 16 TPU cores
and train for 1 million iterations. On the actor side, the games are played
on standalone TPU v.4, and we use up to 512 actors. In practice, across
all tasks, training takes, in the worst case, 2 days to converge.

AlphaDev-S. It is important to understand the advantages and limi-
tations of RL compared to other possible approaches for program
optimization. As such, we implemented a state-of-the-art stochastic
superoptimization approach8 and incorporated it into AlphaDev as
the learning algorithm to optimize sorting functions. We refer to this
adapted version as AlphaDev-S. Our re-implementation has been spe-
cifically optimized for the sorting domain. This includes implementing
the algorithm to run with our assembly environment, defining a cor-
rectness and performance loss function specific to sorting and running
extensive hyperparameter sweeps to identify the best variant. The cost
function used for AlphaDev-S is c = correctness + α × performance where
correctness corresponds to computing the number of incorrect input
sequence elements that are still unsorted, performance corresponds
to the algorithm length reward and α is a weight trading off the two cost
functions. We are unable to optimize directly for latency as this slows
down the learning algorithm considerably making learning infeasible. It
should be noted that this function has been adapted to support the same
set of assembly instructions used by AlphaDev as well as prune the same
set of incorrect or illegal actions. It also uses the same program correct-
ness computation module (Fig. 2b) to compute the correctness term.

AlphaDev-S is then executed by first proposing a transformation to
the program stored in the buffer (which may be empty or initialized
with an already sorted program). The correctness and performance
terms are then computed using the program correctness module and
algorithm length, respectively. If the cost is lower than the current best
cost, the new program is accepted with high probability, otherwise
it is rejected. We will now discuss the correctness cost function and
transform weights in more detail.

Correctness cost. For the correctness cost function, we implemented
three types of cost function. The first one is defined as the percentage
of incorrectly placed items: P PC

P
− t where P is the total number of items

to place and PCt is number of correctly placed items at timestep t. The
second variant is the square root of this equation. The final cost func-
tion takes the square root of the difference PC− t and this is what
yielded the best performance.

Program transformations. We enabled several program transforma-
tions such as adding an instruction to increase the size of the program
(Add Transform), swapping two instructions (Swap Transform), ran-
domly changing an Opcode for an instruction (Opcode Transform),
randomly sampling an Operand for a chosen instruction (Operand
Transform) and randomly sample an Opcode and its corresponding
Operands (Instruction Transform). It is possible to influence the sam-
pling of these transforms to encourage some to be sampled more or
less frequently. We optimized the weights for sampling transforms by
running an extensive hyperparameter sweep.

Investigative studies for AlphaDev variants
We now present a set of investigative studies that help to better under-
stand the advantages and limitations of the DRL and the stochastic
search learning algorithms used in AlphaDev. We compare AlphaDev to
AlphaDev-S. We implemented two variants of AlphaDev-S: (1) Cold Start
(AlphaDev-S-CS) and (2) Warm Start (AlphaDev-S-WS). AlphaDev-S-CS
uses no previous information and has to generate a program from

an empty program buffer. AlphaDev-S-WS’s buffer is warm started
with a correct sorting program (for example, optimal sorting network
assembly program) and it edits the program to optimize it further. We
compared the variants with AlphaDev in both the individual and vari-
able sort algorithm setups.

Because AlphaDev always learns from scratch with no previous knowl-
edge, the direct comparison would be to the cold start stochastic search
version: AlphaDev-S-CS. However, as initial near-optimal programs
may sometimes be available, we also compare AlphaDev to the warm
start stochastic search version: AlphaDev-S-WS.

It should be noted that the stochastic search variants are unable to
optimize directly for latency, as this would make learning infeasible
because of computational efficiency. As such, our AlphaDev-S variants
optimize for algorithm length. Then, at the end of training, we iterate
through the set of generated programs for AlphaDev-S across varying
lengths and identify the program with the lowest latency.

In each case, the stochastic search algorithms (AlphaDev-S) are run
using at least the same computational resources and wall-clock time
to that of AlphaDev.

Fixed sort. We first examine the performance of the various approaches
for the fixed sort algorithms. In this case, all algorithmic variants opti-
mize for algorithm length as algorithm length and latency are highly
correlated in the conditional branchless setting (see Supplementary
Information for more details).

In the cold start setting, AlphaDev-S-CS is unable to find the optimal
programs in each case as seen in Extended Data Table 2a. In addition,
AlphaDev-S-CS explores orders of magnitude more programs than
AlphaDev as shown in Extended Data Table 2b. In the warm start setting,
AlphaDev-S is warm started with a near-optimal sorted program, and
is able to match the performance of AlphaDev in each case as shown
in Extended Data Table 2a. It is more computationally efficient than
AlphaDev as shown in Extended Data Table 2c but explores orders of
magnitude more programs for sort 3 and sort 5 as shown in Extended
Data Table 2b. It can be argued that AlphaDev-S-WS has a substantial
advantage in this scenario as it is provided with an initial near-optimal
program. We will show in the Variable sort section that when the algo-
rithms become more complicated and branching is introduced, warm
starting the learning algorithm with a near-optimal program is not
enough and can cause it to get stuck in suboptimal solutions.

Brute-force approach. We also used a brute-force approach to prove
that no program shorter than 17 instructions exists for sort 3. We had
to enumerate roughly 1032 programs and, even with pruning heuristics,
it took more than 3 days to prove this hypothesis. For sort 4 and above
this approach is infeasible.

Latency benchmarking suite. The length of a program is only a proxy
for the performance of an algorithm. As we introduce branching struc-
tures, the length and latency of a program are not well correlated.
Therefore, we run the programs on actual machines and measure their
latency. Microbenchmarking is very challenging given the numerous
noise sources that could affect the measurements. This is especially true
when running on shared machines where there could be interference
from other processes. Our approach is to have a separate benchmark-
ing service, replicated on separated machines, so that we can quickly
perform many measurements in a controlled environment under dif-
ferent conditions. The system works as follows:
(1) The RL agent processes 1,000 measurements across the machines

using the replicated service.
(2) For each measurement, the service runs the given sorting algorithm

over 10,000 random inputs (for example, for sort 3 this would be
3 × 10,000 = 30,000 random integers).

(3) We measure the time taken using a CPU performance counter
(CPU_CLK_UNHALTED.CORE).

We then take the fifth percentile as our final measurement, because
we assume that most noise sources are one-sided (for example, cache
misses, pre-emptions and so on). During training we process the meas-
urements across ten machines for computational efficiency. After train-
ing, we benchmark AlphaDev’s solution against the baseline solutions,
and process the measurements across 100 machines for more accuracy
and noise reduction. For each benchmark, we compute confidence
intervals using the distribution-free two-sided confidence interval for
a quantile tabular method44.

Variable sort. When optimizing directly for latency, AlphaDev out-
performs AlphaDev-S-WS on VarSort3, VarSort4 and VarSort5 as seen
in Extended Data Table 3a. AlphaDev-S-CS fails to find a solution in
each case. In the cases of VarSort4 and VarSort5, program length and
latency are not correlated (see Supplementary Information for more
details). This indicates that when program length cannot be used as a
proxy for performance, AlphaDev is able to find lower latency solutions
compared to AlphaDev-S. This is even in the case where the stochas-
tic search is warm started with a near-optimal program. In addition,
AlphaDev converges to the optimal solution after exploring a maxi-
mum of 12M programs as seen in Extended Data Table 3b. This is orders
of magnitude lower than that of AlphaDev-S-CS and AlphaDev-S-WS,
respectively (31 trillion programs in the worst case).

Exploration hypothesis
We proposed that AlphaDev-S struggles to discover programs when
learning from scratch and gets stuck in local optima when warm started
because of its limited exploration capabilities as a result of the stochastic
search procedure. Extended Data Fig. 3 shows two-dimensional
t-stochastic neighbour embedding (t-SNE) projections51 of AlphaDev
and AlphaDev-S’s assembly algorithms discovered during their
respective training procedures for VarSort5. The features used in
the projection include correctness, latency, algorithm length and a
histogram count of the instructions used per algorithm. Extended
Data Fig. 3a indicates the regions in algorithm space explored by
AlphaDev, AlphaDev-S-CS and AlphaDev-S-WS, respectively, whereas
Extended Data Fig. 3b superimposes algorithm correctness onto
each point in the t-SNE projection in which the colour indicates the
correctness of each discovered algorithm, ranging from incorrect
algorithms (purple) to correct algorithms (yellow). The AlphaDev-S
variants both cover a densely packed circular region around their
initial seed, which highlights the breadth-first nature of their sto-
chastic search procedure. This illustrates that AlphaDev-S-CS fails to
navigate through the space of incorrect algorithms in a reasonable
amount of time and discover correct algorithms when learning from
scratch. A similar argument applies to AlphaDev-S-WS whereby, when
optimizing from an already correct but suboptimal expert demon-
stration, the algorithm is biased towards exploring its vicinity and
struggles to escape this local maxima. By contrast, AlphaDev has more
diverse algorithm space coverage, as the long-term value function
is a guiding signal for discovering new and interesting parts of algo-
rithm space. As seen in Extended Data Fig. 3b, it is capable of escaping
the space of incorrect algorithms to discover a new space of correct
algorithms, highlighting the exploration advantages afforded by
AlphaDev.

Related work
Assembly optimization. There are numerous approaches to optimiz-
ing assembly programs, which we have classified into three groups:
enumerative search, stochastic search and symbolic search5.

First, enumerative search techniques include brute-force program
enumeration4–6 as well as implicit enumeration using symbolic theorem
proving52,53. These approaches search through the space of programs
to find a solution based on a predefined set of programs, heuristic and/
or cost function. These approaches struggle to span large regions of

Article
program space, especially as the size and complexity of the program
increases.

Second, stochastic search techniques circumvent comprehensive
enumeration by relying on sampling mechanisms such as Markov
chain Monte Carlo sampling5,6,8,9. Rajeev Alur et al.5 define a correct-
ness specification, provided by a logical formula that uses symbols
from a background theory. The goal is to then find an implementa-
tion expression such that logical formula defining the specification
is valid. The idea is to iteratively add test cases and then search and
expand the program to solve the given test cases. They optimize for
correctness on problems from the book Hacker’s delight54. Phitch-
aya Mangpo Phothilimthana et al.6 introduce the LENS algorithm that
is based on running enumerative, stochastic and symbolic search
in parallel, while relying on handcrafted pruning rules. This setup is
capable of optimizing up to 21 instructions, and cannot optimize for
latency nor support branching. Another algorithm8 is based on Markov
chain Monte Carlo rejection sampling and applies transformations to
programs in assembly using a loss function that is a function of cor-
rectness and performance. Many of these approaches are prone to
getting stuck in local minima and may also struggle as the size and/
or complexity of the program increases. In addition, incorporating
actual, measured latency into these approaches are either infeasible or
prohibitively expensive.

Third, symbolic search approaches can also be implemented to opti-
mize assembly programs. These include SAT solvers55, SMT solvers5,6
and Mixed Integer Programs (MIPs)56,57. However, these approaches
suffer from scaling issues. For example, classical solvers require a prob-
lem to be translated into a certain canonical form. It usually requires
an expert in the said solvers and a substantial amount of time to find
an efficient formulation. In addition, for any new modification of the
problem, this has to be repeated. Classical solvers are also hard to paral-
lelize and thus, it is challenging to leverage more hardware to speed up
the solving process. Another symbolic search algorithm is Cholorphyll10
that implements a multi-phase approach. It first requires as input a
source program with partition annotations that specify where code
and data reside. Then, a layout synthesizer maps program fragments
onto physical cores to minimize computational costs. The code is then
separated into per-core program fragments and the program frag-
ments are compiled into machine code. At this point, a superoptimizer
optimizes each of these fragments.

SIMD optimization. Various approaches58–60 have also been applied
to sorting functions that run in the single instruction, multiple data
(SIMD)61 setup. This setup is capable of parallelizing instruction
execution, but is not supported at present in popular libraries such as
LLVM’s libc++ std::sort library. One example is that from Gilles Barthe
et al.7 that proposes a methodology for optimizing programs by
automatically vectorizing loops with SIMD instructions. They do this
by introducing a framework for verifying the correctness of transfor-
mations to a program and performing a search-based procedure using
the said transformation. Their framework can discover SIMD looping
structures of up to nine instructions in 0.12 s, which corresponds to a
minimum 2× speed-up.

RL approaches for program synthesis. There are also several studies
using RL for program optimization. Kevin Ellis et al.62 learn a policy
and value function to write and evaluate code, as well as performing a
Monte Carlo-style search strategy during inference. This work requires
a pretraining step and aims to generate correct programs that satisfy
a predefined specification. The approach is successfully applied to
computer-aided design and string editing programs. SuperSonic63 uses
an RL meta-optimizer to select between different RL architectures,
using a Multi-Armed Bandit policy search to find a state representation,
reward function and RL algorithm that is optimal for the current task.
This requires keeping track of many RL algorithms and architectures,

which are used as part of the state space. By contrast, our approach
only focuses on training a single RL architecture, taking advantage
of MCTS search and powerful state representations. Shypula et al.64
create a supervised assembly dataset and use it to train a Transformer
model for mapping unoptimized to optimized code, followed by an RL
stage for improving the solution quality. Our method does not require
a supervised dataset or two separate training and finetuning stages,
and optimizes everything end-to-end using RL and search instead.
Chen et al.65 define their own domain specific language and perform
input–output program synthesis that better uses the intermediate
program representation to guide the synthesis routine. They show
that this can be incorporated with RL, using the setup of Rudy Bunel
et al.66 and improve the correctness of generated functions. They do
not, however, optimize for program length or latency.

Input–output examples for program synthesis. A large body of work
addresses the problem of learning programs from input–output pairs.
One type of approach learns a neural network for matching inputs to
outputs directly11,13,67,68. This approach is difficult to integrate into exist-
ing libraries and can struggle to generalize to previously unseen inputs,
although there has been some encouraging recent progress using graph
representations69. Another type of approach is to perform a search in
program space, guided by a learned model12,70–72. For instance, Chen
et al.70 use a model that predicts the next program token on the basis of
a partial program and the input–output pairs. This bears some similari-
ties to how search is guided in our approach: the learned policy prior
in AlphaZero is a model for predicting the next token, learned on the
basis of a combination of a partial program and that program’s effects
on the inputs. However, we are interested in finding correct and efficient
programs, which we achieve by further learning a value function for
approximating the expected latency of partial programs, and using
AlphaZero to incorporate this value function into the search process.

Deep learning for code generation. There are also several deep learn-
ing approaches that use large languages models to generate code. These
approaches vary in their uses from transpilation, code refactoring and
explaining code15 to generating human-level competitive code using a
natural language description14. That particular work aims to generate
correct code, but does not focus on generating low-latency solutions.

Sort-based program optimization. There are several program synthe-
sis studies that have tackled sorting algorithms. For example, White
et al.26 use RL for learning sorting functions. Their work uses several
heuristics and a domain specific language to yield a sorting algorithm
called reinforcement programming sort. Srivastava et al.27 encodes the
program synthesis as a verification problem. Specifically, they repre-
sent a synthesis task as a tuple consisting of the functional expression,
the domains and guards appearing in the synthesized program and the
resource constraints. The idea is that, given a prespecified resource
constraint, their synthesizer produces a program that meets the pre-
defined specification to ensure correctness. They apply this to discover
merge sort and quick sort. Jason Ansel et al.28 takes as input predefined
algorithms (for example, insertion sort, merge sort and quick sort) and
then determines when to select these algorithms for execution using
its autotuner function. It does so by defining a language that contains
rules and transforms that dictate how the algorithms are selected and
where they are executed.

Data availability
The data used to train the system were generated synthetically accord-
ing to the procedures explained in the paper. The algorithms discovered
by AlphaDev for the copy and swap operators are presented in the main
paper. We have also released the discovered AlphaDev assembly imple-
mentations for sort 3–8 as well as VarSort3, 4 and 5 on Github at https://

https://github.com/deepmind/alphadev

github.com/deepmind/alphadev. We have included exhaustive tests
to ensure that each implementation is correct. In addition, Appendix
G in Supplementary Information contains a list of additional, correct
sorting algorithms discovered by AlphaDev for sort 3, sort 4 and sort 5.
The performance of the sort 3, sort 4 and sort 5 algorithms on the
official LLVM benchmarking suite for three different CPU architectures
as well as floats, int32 and int64 data types is detailed in Appendix E
in the Supplementary Information. In addition, the AlphaDev sort 3,
sort 4 and sort 5 implementations can be found in the LLVM libc++
standard sorting library3.

Code availability
We have also released pseudocode at https://github.com/deepmind/
alphadev that includes the environment, the full actor and training
loops as well as the core MCTS algorithm. In addition, we include our
actual JAX implementation of our policy, value and representation
networks that enable the architectures to be reproduced. Finally, we
have a config file containing the hyperparameter definitions to be
used with the agent.

50. Hwang, M. Sort, Bitset (GitHub, 2021).
51. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9.11,

2579–2605 (2008).
52. Gulwani, S. et al. Synthesis of loop-free programs. ACM SIGPLAN Notices 46.6, 62–73

(2011).
53. Sasnauskas, R. et al. Souper: a synthesizing superoptimizer. Preprint at https://arxiv.org/

abs/1711.04422 (2017).
54. Warren, H. S. Hacker’s Delight (Pearson Education, 2013).
55. Hamadi, Y., Jabbour, S. & Sais, L. ManySAT: a parallel SAT solver. J. Satisfiability, Boolean

Model. Comput. 6, 245–262 (2010).
56. Wolsey, L. A. Mixed integer programming. In Wiley Encyclopedia of Computer Science

and Engineering 1–10 (Wiley, 2007).
57. Nair, V. et al. Solving mixed integer programs using neural networks. Preprint at https://

arxiv.org/abs/2012.13349 (2020).
58. Inoue, H. et al. AA-sort: a new parallel sorting algorithm for multi-core SIMD processors.

In Proc. International Conference on Parallel Architecture and Compilation Techniques
(PACT 2007) 189–198 (IEEE, 2007).

59. Yin, Z. et al. Efficient parallel sort on avx-512-based multi-core and many-core
architectures. In Proc. IEEE 21st International Conference on High Performance
Computing and Communications 168–176 (IEEE, 2019).

60. Blacher, M. et al. Vectorized and performance-portable Quicksort. Preprint at https://
arxiv.org/abs/2205.05982 (2022).

61. Wikipedia. Single instruction, multiple data https://en.m.wikipedia.org/wiki/SIMD (2022).

62. Ellis, K. et al. Write, execute, assess: program synthesis with a REPL. Adv. Neural Inform.
Proc. Syst.32, 9137–9146 (2019).

63. Wang, H. et al. Automating reinforcement learning architecture design for code
optimization. In Proc. 31st ACM SIGPLAN International Conference on Compiler
Construction 129–143 (ACM, 2022).

64. Shypula, A. G. et al. Learning to superoptimize real-world programs. Preprint at https://
arxiv.org/abs/2109.13498 (2022).

65. Chen, X., Liu, C. & Song, D. Execution-guided neural program synthesis. In Proc.
International Conference on Learning Representations (ICLR, 2018).

66. Bunel, R. et al. Leveraging grammar and reinforcement learning for neural program
synthesis. In Proc. International Conference on Learning Representations (ICLR, 2018).

67. Aharoni, R. & Goldberg, Y. Towards string-to-tree neural machine translation. In Proc. 55th
Annual Meeting of the Association for Computational Linguistics132–140 (ACL, 2017).

68. Dong, L. & Lapata, M. Language to logical form with neural attention. In Proc. 54th Annual
Meeting of the Association for Computational Linguistics 33–43 (ACL, 2016).

69. Ibarz, B. et al. A generalist neural algorithmic learner. In Proc. Learning on Graphs
Conference Vol. 198, 2:1–2:23 (PMLR, 2022).

70. Chen, X., Song, D. & Tian, Y. Latent execution for neural program synthesis beyond
domain-specific languages. Adv. Neural Inform. Proc. Syst. 34, 22196–22208 (2021).

71. Parisotto, E. et al. Neuro-symbolic program synthesis. Preprint at https://arxiv.org/
abs/1611.01855 (2016).

72. Ellis, K., Solar-Lezama, A. & Tenenbaum, J. Sampling for Bayesian program learning. Adv.
Neural Inform. Proc. Syst. 29, 1297–1305 (2016).

Acknowledgements We thank P. Kurylowicz, N. Anderson and Z. Ahmed for assistance
coordinating the research; L. Dionne and N. Klauser for patiently reviewing our LLVM code;
and N. Vaish, D. Gove, D. Kutenin and A. Fawzi for their helpful advice during the course of the
project. We also thank our colleagues at DeepMind for their encouragement and support.

Author contributions D.J.M., A.Michi and A.Z. conceived the idea and lead the research.
A.Michi, D.J.M., A.Z., M.G., M.S., C.P., E.L., S.I. and A.Mandhane developed the neural network
architecture and training. J.-B.L., C.P., M.G., D.J.M. and E.L. developed the baseline. M.G., A.Z.,
D.J.M., M.H., A.A., T.K. and K.Millikin analysed the generated algorithms and helped with the
sort patch. D.J.M., A.Michi, A.Z., S.G., S.E., J.B., R.T., C.G. and K.Milan, managed the research.
A.Michi, M.G. and M.S. led the technical platform. A.Mandhane, T.H., Y.L., J.S., T.C., M.B., P.K.,
M.R., D.S., O.V. and D.H. contributed technical advice and ideas. D.J.M. and A.Z. conceived the
project. D.J.M., C.P., E.L., A.Michi, M.G., A.Z., P.K. and M.S. wrote the paper.

Competing interests D.J.M., A.Michi, A.Z., M.G., M.S., C.P., E.L., S.I., A.Mandhane, P.K., M.R., D.S.
and O.V. are planning to file a patent application relating to subject matter contained in this
paper in the name of DeepMind Technologies Limited. The remaining authors declare no
competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-023-06004-9.
Correspondence and requests for materials should be addressed to Daniel J. Mankowitz.
Peer review information Nature thanks Zheng Wang and the other, anonymous, reviewer(s) for
their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://github.com/deepmind/alphadev
https://github.com/deepmind/alphadev
https://github.com/deepmind/alphadev
https://arxiv.org/abs/1711.04422
https://arxiv.org/abs/1711.04422
https://arxiv.org/abs/2012.13349
https://arxiv.org/abs/2012.13349
https://arxiv.org/abs/2205.05982
https://arxiv.org/abs/2205.05982
https://en.m.wikipedia.org/wiki/SIMD
https://arxiv.org/abs/2109.13498
https://arxiv.org/abs/2109.13498
https://arxiv.org/abs/1611.01855
https://arxiv.org/abs/1611.01855
https://doi.org/10.1038/s41586-023-06004-9
http://www.nature.com/reprints

Article

Extended Data Fig. 1 | The AlphaDev representation network architecture.
(a) The AlphaDev representation network comprises a Transformer Encoder
network that receives as input the assembly algorithm generated thus far.
It also contains a CPU State Encoder network that receives as input the current
state of memory and registers. The exact architecture and hyperparameters

can be found in the Supplementary Information, Appendix A. (b) Before
inputting instructions into the Transformer Encoder network, each program
instruction’s opcode and operands are converted to one-hot encodings and
concatenated. The resulting encoding is then fed into the Transformer Encoder
network.

Extended Data Fig. 2 | An example sorting network43. (a) The horizontal lines
are called wires and the vertical lines are called comparators. (b) An initially
unsorted sequence of values are input into the sorting network on the left hand
side. At various stages two wires encounter a comparator. If the value at the top

of the comparator is smaller than the value at the bottom of the comparator,
the numbers switch wires. An optimal sorting network places comparators in
specific positions so as to sort any sequence of unsorted values using the
minimum number of comparators.

Article

Extended Data Fig. 3 | Hypothesis for improved exploration using
AlphaDev. (a) A 2D t-SNE51 projection indicating the regions explored by
AlphaDev (blue) compared to AlphaDev-S. (b) The same 2D t-SNE projection as
in (a) with algorithm correctness superimposed onto each point from incorrect

programs (purple) to correct programs (yellow). As seen in the figure,
AlphaDev-S struggles to move out of local optima whereas AlphaDev is able to
explore from the space of incorrect programs to the space of correct
programs.

Extended Data Table 1 | Additional Assembly instructions

This table contains a list of additional assembly X86 instructions using AT&T syntax and their corresponding description.

Article
Extended Data Table 2 | Comparison of AlphaDev and
AlphaDev-S for fixed sort

(a) Presents the shortest programs found by each approach. Note that AlphaDev-S-CS is
unable to discover a sorting function when training from scratch. AlphaDev-S-WS, which is
initialized with a near-optimal program, is able to match the performance of AlphaDev, which
discovers the optimal programs from scratch. (b) Indicates the number of programs explored
by each approach to find the optimal solution. Note that AlphaDev-S-CS explores orders
of magnitude more programs for each sort algorithm. For sort 3 and sort 5 AlphaDev-S-WS
explores orders of magnitude more programs than AlphaDev to find the optimal solution.
(c) The approximate wall clock time to generate the shortest program for each sort length.
AlphaDev-S-WS is more computationally efficient than AlphaDev for branchless sort. How-
ever, as will be shown in Extended Data Table 3, when branching is introduced, AlphaDev
outperforms AlphaDev-S-WS, which tends to get stuck in locally optimal solutions.

Extended Data Table 3 | Comparison of AlphaDev and AlphaDev-S on variable sort

(a) Presents the latency results for the programs discovered by each approach. The reported latency corresponds to the 5th percentile of latencies measured across 100 machines. The ± [Lower,
Upper] reports the lower and upper confidence intervals respectively. In this setting, AlphaDev optimizes directly for real, measured latency. Note that AlphaDev outperforms each approach
and AlphaDev-S-CS is unable to find a solution in each case. (b) In the variable sort setting, both AlphaDev-S variants explore orders of magnitude more programs compared to AlphaDev.

	Faster sorting algorithms discovered using deep reinforcement learning
	Representing algorithms as low-level CPU instructions
	DRL for discovering faster algorithms
	Transformer encoder
	Latency value functions

	Results
	Discovering faster sort algorithms
	Fixed sorting algorithms
	Variable sorting algorithms
	New algorithm discoveries
	AlphaDev swap move
	AlphaDev copy move
	New variable sort algorithms
	Stochastic search optimization approaches
	Generalization to additional domains
	Libc++ sort patch

	Discussion
	Online content
	Fig. 1 The relationship between C++ and assembly programs.
	Fig. 2 The AssemblyGame and algorithm correctness computation.
	Fig. 3 Sorting networks and algorithmic improvements discovered by AlphaDev.
	Fig. 4 Fundamentally different algorithms discovered by AlphaDev.
	Extended Data Fig. 1 The AlphaDev representation network architecture.
	Extended Data Fig. 2 An example sorting network43.
	Extended Data Fig. 3 Hypothesis for improved exploration using AlphaDev.
	Table 1 AlphaDev performance when optimizing for algorithm length and latency.
	Table 2 Analysis of the AlphaDev swap and copy moves.
	Extended Data Table 1 Additional Assembly instructions.
	Extended Data Table 2 Comparison of AlphaDev and AlphaDev-S for fixed sort.
	Extended Data Table 3 Comparison of AlphaDev and AlphaDev-S on variable sort.

