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Abstract. We study the following problem of subset selection for matrices: given a matrix
X ∈ Rn×m (m > n) and a sampling parameter k (n ≤ k ≤ m), select a subset of k columns from
X such that the pseudoinverse of the sampled matrix has as small a norm as possible. In this work,
we focus on the Frobenius and the spectral matrix norms. We describe several novel (deterministic
and randomized) approximation algorithms for this problem with approximation bounds that are
optimal up to constant factors. Additionally, we show that the combinatorial problem of finding a
low-stretch spanning tree in an undirected graph corresponds to subset selection, and discuss various
implications of this reduction.
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1. Introduction. Given a full-rank short-and-fat matrixX ∈ R
n×m with m > n

(typically m � n) it is often of interest to compress X via selecting a subset of its
columns. The goal of such a sampling procedure is to select the columns in such a
way that the sampled matrix behaves spectrally similarly to the original matrix, i.e.,
the singular values of the two matrices are comparable. Since deleting columns from
X decreases the singular values monotonically (this is immediate from the interlacing
property of the singular values; see Theorem 8.1.7 on page 443 in [30]), the challenge is
to select the columns that in a sense (which we make precise in the problem definition
below) maximize the spectrum in the sampled matrix. In particular, we consider the
following combinatorial optimization problem (let [m] = {i ∈ N : i ≤ m}, i.e., the set
of natural numbers 1, 2, . . . ,m).

Problem 1.1 (subset selection for matrices). Fix X ∈ R
n×m with m > n and

a sampling parameter k with n ≤ k ≤ m. Let S ⊆ [m] denote a set of cardinality
at most k for which rank(XS) = rank(X), where XS ∈ R

n×|S| contains the columns
of X indicated in S. Among all such possible choices of S, find an Sopt such that

‖X†
Sopt
‖ξ is minimized, i.e.,

Sopt ∈ arg min
S∈F(X,k)

‖X†
S‖ξ ,

where F(X, k) = {S : |S| ≤ k, rank(XS) = rank(X)}. Note that there might be
more than one possibility for Sopt (the minimizer might not be unique). In the above,

ξ = 2,F denotes the spectral or the Frobenius matrix norm, respectively, and X†
S

denotes the Moore–Penrose pseudoinverse of XS .
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Technically, the above problem corresponds to two different combinatorial opti-
mization problems, one for ξ = 2 and the other for ξ = F.

Problem 1.1 occurs in numerous situations: column-based low-rank matrix ap-
proximation [10, 12]; feature selection in k-means clustering [11, 13]; optimal exper-
iment design [19, 20]; multipoint boundary value problems [19, 20]; sparse solutions
to least-squares regression [15, 8]; sensor selection in a wireless network [40]; rank-
deficient linear least squares [28]; and rank-deficient nonlinear least squares [39], just
to name a few. We discuss some of these situations in section 6.

However, our initial motivation for investigating Problem 1.1 was our observation
that the combinatorial problem of finding a low-stretch spanning tree in an undirected
graph [2] corresponds to the Frobenius norm version of Problem 1.1. This connection
is new and might be of independent interest.

We study three aspects of Problem 1.1: algorithms, lower bounds, and applica-
tions. We now summarize our contributions in each of these aspects.

1.1. Our contributions.

1.1.1. Algorithms. In section 3 we describe five different approximation al-
gorithms for Problem 1.1. We suggest five different algorithms because no single
algorithm has the lowest operation count; the choice of the most efficient algorithm
depends on the actual values of m, n, and k. Our algorithms are considerably faster
than the previously known algorithms, and they achieve the same or tighter approxi-
mation bounds. Table 1.1 summarizes the algorithms we propose, as well as previously
known algorithms for Problem 1.1.

Our first two algorithms, Algorithms 1 and 2, which we describe in Theorem 3.1
and Corollary 3.3 (both in section 3), respectively, are especially fast when k is close
to m, since they form S by greedily removing columns. Both algorithms are determin-
istic. Algorithm 1 in Theorem 3.1 is designed for the Frobenius norm case (ξ = F).
It requires O

(
mn2 +mn(m− k)

)
operations, and finds a subset S of cardinality k

such that

‖X†
S‖2F ≤

m− n+ 1

k − n+ 1
· ‖X†‖2F .

Notice, for example, that if k = m−α, for some small integer 0 < α ≤ 0.9(m−n+1),
then the approximation bound is 1 + 10α(m− n+ 1)−1.

Algorithm 2 in Corollary 3.3 is designed for the spectral norm case (ξ = 2). Its
operation count is O

(
mn2 +mn(m− k)

)
as well. It finds a subset S of cardinality k

such that

‖X†
S‖22 ≤

(
1 +

n (m− k)

k − n+ 1

)
· ‖X†‖22 .

Similarly, if, for example, k = n+ 1 + β for some integer β close to m with 0 < β <
m− n+ 1, then the approximation bound is 1 + n+ n(m− n− 1)β−1.

The idea of greedily removing columns was previously used by de Hoog and
Mattheijb in [19]. However, our algorithms are at least a factor of n faster, and
in some cases a factor of n2 faster. Furthermore, our algorithms operate on a wider
range of matrices: the algorithms in [19] require that all possible column subsets in
X of size k or larger are nonsingular, while our algorithms have no such restriction
(see subsection 1.2.1 for a detailed discussion of the results in [19]).

Our third algorithm, which we describe as Algorithm 3 in Theorem 3.7 (section 3),
is designed for cases when k is small, e.g., k = O(n), a case which is common in
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applications (see section 6). The algorithm’s operation count is O
(
mn2 + kn2m

)
,

and it constructs a subset S with cardinality at most k > n such that, for both
ξ = 2,F,

‖X†
S‖2ξ ≤

(
1 +

√
m

k

)2(
1−

√
n

k

)−2

‖X†‖2ξ .

This algorithm is inspired by recent results on approximate decompositions of the
identity [4, 10]. Notice that, for example, if k = Θ(n), the approximation bound is
1 +O(m/k).

Our fourth algorithm, which we describe as Algorithm 4 in Theorem 3.7 (sec-
tion 3), is designed for cases where bothm and k are large (specifically, k = Ω(n logn)).
It is especially fast since it is based on randomly sampling columns of the matrix. How-
ever, we do not use uniform sampling, so our bounds are independent of numerical
properties of the matrix. The operation count of the algorithm is O(mn2 + k log k).
For a fixed probability parameter δ (0 < δ < 1), and k ≥ � 32n ln(2n/δ) 	, the algo-
rithm constructs a subset S of cardinality at most k such that, for both ξ = 2,F, and
with probability 1− δ,

‖X†
S‖2ξ ≤ 4 ·m · ‖X†‖2ξ .

If X has orthonormal rows, then the operation count drops to O(mn + k log k), i.e.,
linear in the size of the input. The analysis of the algorithm is based on the matrix
concentration bound of [47].

Our last algorithm, Algorithm 5 in Theorem 3.11 (section 3.5), is designed for
k = n. It is based on the following theoretical contribution (Lemma 3.9 in section 3.5):
if we randomly sample a subset S of cardinality k ≥ n with probability proportional
to det(XSX

T

S), then

E

[
‖X†

S‖2F
]
≤ m− n+ 1

k − n+ 1
· ‖X†‖2F and E

[
‖X†

S‖22
]
≤
(
1 +

n(m− k)

k − n+ 1

)
· ‖X†‖22.

Algorithm 5 finds a subset S of cardinality k = n such that

‖X−1
S ‖22 ≤ ‖X

−1
S ‖2F ≤ (1 + η) · (m− n+ 1) · ‖X†‖2F ≤ (1 + η) · (m− n+ 1) · n · ‖X†‖22

for any η > 0 chosen by the user. This bound is deterministic but the bound on the
number of operations is probabilistic. Specifically, for any 0 < δ < 1, we show that
with probability 1− δ, the operation count is O

(
mn3 log δ−1 log−1 (1 + η)

)
.

Our volume-sampling-based algorithm for the subset selection problem can be
viewed as a complementary result to the volume-sampling-based algorithms designed
before for low-rank matrix approximation [22]. In low-rank matrix approximation,
the subspace spanned by the columns that are selected by volume sampling contains
a rank k matrix that approximates the best rank k matrix computed via the SVD;
in our case, the objective is different but we show that volume sampling gives useful
results as well.

1.1.2. Lower bounds. By lower bounds, we mean that there exists a matrix
X ∈ R

n×m such that for every S of cardinality k ≥ n, for ξ = 2 or ξ = F, we have
‖X†

S‖2ξ ≥ γ‖X†‖2ξ for some value of γ which we call lower bound. We develop such lower
bounds via, first, relating the subset selection problem to the so-called column-based
matrix reconstruction problem [10], and then employing existing lower bounds [10] for
column-based matrix reconstruction. We present these results in section 4; a summary
of lower bounds appears in Table 1.2. Our lower bounds indicate that some upper
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Table 1.2

Summary of lower bounds for Problem 1.1. By lower bounds, we mean that there is a matrix

X ∈ R
n×m such that for every S, ‖X†

S‖2ξ ≥ γ‖X†‖2ξ , for a value of γ shown in the table. S ⊆ [m]

has cardinality at most n ≤ k ≤ m. For ξ = 2 and n = k, the bound is from Lemma 2.2 in [31]; the
bound for ξ = F is an immediate corollary. We prove the other bounds in section 4. C denotes a
constant.

‖X†
S‖2F ≥ γ‖X†‖2F; γ = ‖X†

S‖22 ≥ γ‖X†‖22; γ =

k = n m/n m
k > n, k = O(n) m/k − C m/k − 1
k > n, k = ω(n) m/k − k/n m/k − 1

bounds of de Hoog and Mattheij [19, 20] as well as ours are the best possible up to
constant factors. This resolves an open question in [19, 20].

An alternative way to study the optimality of our algorithms is to develop lower
bounds of the form ‖X†

S‖2ξ ≥ γ‖X†
Sopt
‖2ξ. However, we were unable to prove such

bounds, so we leave this as an interesting open question for future investigation.

1.1.3. Applications. In section 5, we study the connection between low-stretch
spanning trees and subset selection. Using a result by Spielman andWoo [52], we prove
that the stretch of any tree in an undirected graph equals the Frobenius norm squared
of the pseudoinverse of the sampled matrix that arises by sampling columns from an
orthonormal matrix which is a basis for the row space of the so-called node-by-edge in-
cidence matrix of the graph. This incidence matrix contains as many columns as edges
in the graph; so, sampling columns from this matrix corresponds to sampling edges
from the graph. We then use this reduction to develop novel algorithms for construct-
ing spanning trees with low stretch in undirected graphs. Unfortunately, our algo-
rithms are worse than the available state-of-the-art algorithms [27, 1, 42]. We believe,
however, that the connection is interesting and might be useful to shed new light on the
combinatorial problem of finding a low stretch spanning tree in an undirected graph.

In section 6 we use the subset selection algorithms of this paper to design novel
algorithms for three other problems involving subsampling: column-based low-rank
matrix reconstruction, sparse solution of least-squares problems, and feature selection
in k-means clustering.

1.2. Related work. We now provide a comprehensive summary of known re-
sults regarding Problem 1.1 and we comment on two related subset selection problems
studied in the literature.

1.2.1. Greedy algorithms. In [19] de Hoog and Mattheij propose the following
algorithm for the Frobenius norm version of Problem 1.1. The idea is to proceed by
removing one column at a time from X. In the first iteration of the algorithm, they
remove the column with index i1, where

i1 = arg min
i=1,...,m

Tr

((
XXT − xix

T

i

)−1
)
.

Let X1 ∈ R
n×(m−1) be the matrix obtained after removing the i1th column of X. In

the second iteration of the algorithm, they remove the column with index i2 such that

i2 = arg min
i=1,...,m−1

Tr

((
X1X

T

1 − xix
T

i

)−1
)
,

and so on, until m− k columns are removed.
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A straightforward implementation of this idea requires O(mn3(m−k)) operations.
However, one can use the Sherman–Morrison formula for rank one updates to the
inverse of a matrix and improve the operation count to O(n3 +mn2(m− k)).

Notice that the algorithm just described assumes (implicitly) that in all the itera-
tions, removing a single column does not result in a rank deficient matrix; otherwise,
for an iterate Xj (j = 1, . . . ,m−k) and a column xi (i = 1, . . . ,m) whose removal will

result in a rank deficient matrix, the inverse of XjX
T

j −xix
T

i is not defined. In [19] it

is shown that this algorithm achieves the bound ‖X†
S‖2F ≤ m−n+1

k−n+1 · ‖X
†‖2F. However,

the assumption just mentioned is not true in general.
Our algorithms of Theorem 3.1 and Corollary 3.3 use the greedy removal idea as

well. However, they find the columns to be removed in a different way. Our algorithms
are substantially faster (at least a factor of n, and a factor of n2 in some cases)
than the algorithm of [19]. Additionally, our algorithms efficiently detect columns
whose removal results in a rank deficient matrix, and avoid removing them. So, our
algorithms work for any full-rank matrix X, without any restriction.

We also mention that Theorem 1 in [20] describes a similar greedy deterministic
algorithm with comparable operation count but slightly worse approximation bounds
than the algorithm of [19] (see Table 1.1 for the precise statement of these results).
On the positive side, this algorithm works for any X.

1.2.2. Rank-revealing factorizations. The subset selection problem that we
study in this paper has deep connections, which we do not explain in detail, with
the so-called Rank-Revealing QR (RRQR) [33] (see also [12, 16] for a summary of
available RRQR algorithms) and Rank-Revealing LU [34] factorizations.

Worth a special mention is the seminal work of Gu and Eisenstant [33] on strong
RRQR. Algorithm 4 and Theorem 3.2 of [33] are stated for matrices with at least as
many rows as columns, but they can be easily adapted to the case where there are at
least as many columns as rows (see Lemma 15 of [9] or (3.1) of [14]). That is, these
algorithms provide a numerically stable way to compute a subset S of cardinality
k ≤ n with bounds on all the nonzero singular values of XS . Specifically, when k = n,
then for i = 1, . . . , n this approach provides the following bound:

σ2
i (XS) ≥

σ2
i (X)

1 + f2n(m− n)
.

By applying the inequality to i = n we have the following bound:

‖X−1
S ‖22 ≤

(
1 + f2n (m− n)

)
· ‖X†‖22 .

By summing up the bounds on each singular value we get the following bound:

‖X−1
S ‖2F ≤

(
1 + f2n (m− n)

)
· ‖X†‖2F .

For f > 1 and k = n, the operation count of this method is O(mn2 logf m).
Rank revealing approaches can only be used to sample k ≤ n columns; extending

these approaches to sample arbitrary k ≥ n columns, which is the focus of this paper,
is not obvious.

1.2.3. Incoherent subset selection. A recent result by Gittens [29] studies
the subset selection problem in the context of the so-called coherence of X. The
algorithm uses random sampling of columns. Gittens shows that this simple algorithm
gives competitive bounds for matrices which have low coherence.
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1.2.4. Approximation via convex relaxation. Joshi and Boyd [40] explored
the use of convex relaxation to solve Problem 1.1: initially, they maximize the norm
(spectral or Frobenius) of (XE)†, where E ∈ R

m×m is a diagonal matrix with diag-
onal entries that are inside the interval [0, 1]. This is a convex program, which can
be solved, for example, via an interior point algorithm. Note that Problem 1.1 cor-
responds to maximizing the norm of (XD)† where D ∈ R

m×m is a diagonal matrix
with diagonal entries that are either 0 or 1, and setting S = {i : Dii = 1}. So, to get
a feasible solution for Problem 1.1, Joshi and Boyd suggest a rounding scheme to get
strictly 0 or 1 weights. No theoretical results are reported but the method is shown
to perform well in practice.

1.2.5. Maximum-volume subsets. Theorem 1 in de Hoog and Mattheij [19]
shows that, for k ≥ n, if XS maximizes det(XT

T XT ) among all possible subsets T of

cardinality k, then the following two bounds hold: ‖X†
S‖22 ≤ (1 + n (m− k) /(k − n+ 1))·

‖X†‖22; and ‖X†
S‖2F ≤ (m− n+ 1) / (k − n+ 1) · n · ‖X†‖22. Similar spectral norm

bounds for k = n were shown before in (2.4) of Theorem 2.2 of [37], Lemma 3.4
(μ = 1, where μ is a parameter in the lemma) in [45], Lemma 2.1 of [31], and Algo-
rithm 3 in [33]. A similar Frobenius norm bound for k = n was shown before in (2.13)
of Theorem 2.3 of [37]. Notice that all of these results do not imply any algorithm
other than the naive procedure of testing all the

(
m
k

)
possible subsets of cardinality k

(this procedure has an exponential operation count).
Our Lemma 3.9 proves a similar result, which states that if one samples S

with probability proportional to det(XT

SXS), then the same bounds hold in ex-
pectancy. Now, recent polynomial-time implementations (O(mn3) operations) of such
determinant-based random sampling [21, 35] allow us to design efficient algorithms
(O(mn3) operations with high probability) that achieve only slightly larger bounds.

Finally, note that the strong RRQR algorithm of [33] finds a local maximum-
volume subset. By local maximum-volume subset, we mean that the volume of the
subset found is always bigger than the volume of any subset obtained by interchanging
a single column.

1.2.6. Computational complexity of subset selection. In [18], Civril and
Magdon-Ismail study the spectral norm version of Problem 1.1, as well as three other
similar subset selection problems, from a complexity theory point of view. They
show that these problems are NP-hard. They give special emphasis to the problem of
finding a subset S for which XS has maximum volume, i.e., det(XSX

�
S ) is maximized.

As we discussed above, the problem of finding the subset with maximum volume is
connected to Problem 1.1.

The computational complexity of finding a maximum volume subset was also
investigated in the computational geometry literature. The problem is stated differ-
ently: find a large simplex in a V-polytope. NP-hardness was established in [44], and
exponential inapproximability was established in [41].

1.2.7. Variants of the subset selection problem. Other variants of subset
selection have been studied extensively in numerical linear algebra and computer
science. Most of this work focused on spectral norm and the case of XS containing
rescaled columns from X (Theorem 3.1 in [47]; Theorem 11 in [57]; Theorem 3.1
in [4]) or XS containing linear combinations of columns from X (Lemma 3.15 of [43];
Lemma 6 of [48]; Theorem 1.3 of [53]). We should note that all these results give
much better approximation bounds than our bounds for the spectral norm version of
Problem 1.1. For example, the deterministic algorithm in Theorem 3.1 in [4], for any
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ε > 0, selects and appropriately rescales O(n/ε2) columns from X and guarantees an
approximation bound 1 + ε.

Finally, we mention that all of these algorithms have found many applications
in numerous problems involving subsampling: least-squares regression [3]; column-
based low-rank matrix approximation [12]; spectral graph sparsification [49]; and
dimensionality reduction in clustering [13].

1.2.8. Restricted invertibility. Bourgain and Tzafriri restricted invertibility
result [7] states that there exists a universal constant C such that for every square
invertible matrix A ∈ R

n×n whose columns have unit 
2 norm, one can find a subset
S ⊆ [n] of cardinality at least Cn/‖A‖22 such that ‖AS‖2 · ‖A†

S‖2 ≤
√
3 . Given A,

finding such a subset S is another variant of column subset selection. Tropp gave
the first polynomial (randomized) algorithm for restricted invertibility [54]. A deter-
ministic algorithm was recently suggested by Spielman and Srivastava [50]. However,
restricted invertibility deals with selecting fewer than n columns that maximize the
smallest nonzero singular value, while Problem 1.1 deals with selecting at least n
columns so that the matrix is full-rank, and the smallest singular value is as large as
possible. So, the problems are similar, but different.

2. Preliminaries.

2.1. Basic notation. We use [n] to denote the set {1, . . . , n}. We use X,Y . . .
to denote matrices; x,y . . . to denote column vectors. We denote the columns of
X ∈ R

n×m by x1,x2, . . . ,xm ∈ R
n; xi is column i of X. Im is the m ×m identity

matrix; 0n×m is the n×m matrix of zeros; ei is the ith standard basis vector (whose
dimensionality will be clear from the context): all entries are zero except the ith entry,
which equals one. Xij or (X)ij denotes the (i, j)th element of X. vij denotes the
jth element of a vector vi. Logarithms are base two. We abbreviate “independent
identically distributed” to “i.i.d.” Finally, for a set A, we denote by C (A, k) the set
of all subsets of A of cardinality k.

2.2. Sampling columns. In the context of Problem 1.1, S is a set of cardinality
1 < k ≤ m, which contains some subset of the natural numbers from 1, 2, . . . ,m
(repetition of numbers is not allowed). XS contains the columns of some matrix
X ∈ R

n×m, indicated in S; sometimes we will use (X)S to denote the same matrix.
The columns of XS are ordered consistently with their order in X: if i, j are elements
from S and i < j, then the ith column of X will appear before the jth column of X
in XS . Finally, X

T

S means (XS)
T and X†

S means (XS)
†.

2.3. Singular value decomposition. The (thin) SVD of X ∈ R
n×m of rank

ρ = rank(X) is

X =
(
Ur Uρ−r

)︸ ︷︷ ︸
U∈Rn×ρ

(
Σr 0
0 Σρ−r

)
︸ ︷︷ ︸

Σ∈Rρ×ρ

(
VT

r

VT

ρ−r

)
︸ ︷︷ ︸
VT∈Rρ×m

,

with singular values σ1 ≥ · · ·σr ≥ σr+1 ≥ · · · ≥ σρ > 0. Here, r is some rank
parameter 1 ≤ r ≤ ρ. We will often denote σ1 as σmax and σρ as σmin, and will use
σi (X) to denote the ith singular value of X when the matrix is not clear from the
context. The matrices Ur ∈ R

n×r and Uρ−r ∈ R
n×(ρ−r) contain the left singular

vectors of X; and similarly, the matrices Vr ∈ R
m×r and Vρ−r ∈ R

m×(ρ−r) contain
the right singular vectors of X. Finally, we repeatedly use the following column
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representation for the matrix V: VT = Y = [y1,y2, . . . ,ym]. Here, the yi’s are
vectors in R

ρ.

2.4. Moore–Penrose pseudoinverse. Let X ∈ R
n×m with SVD X = UΣVT.

Then, X† = VΣ−1UT ∈ R
m×n denotes the Moore–Penrose pseudoinverse of X (Σ−1

is the inverse of Σ).
Lemma 2.1 (Fact 6.4.12 in [5]). Let A ∈ R

m×n,B ∈ R
n×�, and assume that

rank(A) = rank(B) = n. Then, (AB)† = B†A†.
Lemma 2.2. Let A ∈ R

n×m be a full-rank matrix with m ≥ n. Let B be an
invertible m×m matrix. Then

‖(AB)†‖2 ≤ ‖A†‖2 · ‖B−1‖2 .

Proof. We have that

‖(AB)†‖2 = (σmin(AB))−1 = (σmin(B
TAT))−1

=

(
min
x �=0

‖BTATx‖2
‖x‖2

)−1

≤
(
min
x �=0

‖BTATx‖2
‖ATx‖2

· ‖A
Tx‖2
‖x‖2

)−1

(∗)
≤
(
min
x �=0

‖BTATx‖2
‖ATx‖2

·min
x �=0

‖ATx‖2
‖x‖2

)−1

≤
(
min
y �=0

‖BTy‖2
‖y‖2

·min
x �=0

‖ATx‖2
‖x‖2

)−1

= (σmin(B
T) · σmin(A

T))−1

= ‖A†‖2 · ‖B−1‖2.

In (∗) we use the fact that AT is a full-rank matrix with more rows than columns
(so ‖ATx‖2 �= 0 for x �= 0).

2.5. Column exchanges and Cramer’s rule. For a matrix A, an index i,
and a vector v, we denote by A(i → v) the matrix obtained after replacing the ith
column of A by v. Notice that for square matrices A and B of the same dimension
we have det(A) det(B(i → v)) = det((AB)(i → Av)). For an invertible square
matrix A, recall Cramer’s rule, which gives a formula for computing the components
of x = A−1b in terms of determinants. In our notation, the rule states that xi, the
ith position in x, is

xi =
det(A(i→ b))

det(A)
.

2.6. Volume sampling. Let X be a full-rank matrix of dimensions n×m with
m ≥ n, and let n ≤ k ≤ m be some integer. Given a subset S ∈ C ([m], k), define the
probability of S by

PS =
det
(
XSX

T

S

)
∑

T ∈C([m],k) det
(
XT X

T

T

) .



FASTER SUBSET SELECTION FOR MATRICES 1473

The values {PS}S∈C([m],k) define a distribution over the sets in C ([m], k). We denote
this distribution by VolSamp(X, k). That is, we write S ∼ VolSamp(X, k) to denote
that S is a random subset which assumes value in C ([m], k), whose distribution is
defined by

Pr(S = T ) = PT .

We call this sampling distribution volume sampling due to the fact that det(XSX
T

S)
1/2

is the volume of the parallelpiped defined by the rows of XS . Notice that if A is a
square nonsingular matrix, then VolSamp(AX, k) = VolSamp(X, k) (this follows from
the fact that det((AX)S(AX)TS) = det(A)2 det(XSX

T

S) for every S).
An efficient algorithm for sampling a set from VolSamp(X, n) was first suggested

by Deshpande and Rademacher [21]. This algorithm was recently improved by Gu-
ruswami and Sinop, who showed how to sample such a subset with O(n3m) opera-
tions [35]. There is currently no algorithm for sampling from VolSamp(X, k) for an
arbitrary k ≥ n.

2.7. Other known results. In addition we use the following two known results.
Lemma 2.3 (special case of the Cauchy–Binet formula). Let A ∈ R

n×m,B ∈
R

n×m, and m ≥ n. Then,

det(ABT) =
∑

S∈C([m],n)

det(AS) det(B
T

S) .

Lemma 2.4 (Theorem 1.2.12 in [38]). Let λ1 ≥ λ2 ≥ · · · ≥ λm denote the
eigenvalues of A ∈ R

m×m. Let 1 ≤ k ≤ m. Then,∑
S∈C([m],k)

det (AS,S) =
∑

S∈C([m],k)

∏
i∈S

λi.

Here, AS,S ∈ R
k×k denotes the submatrix of A corresponding to the rows and the

columns in S ⊆ [m], which has cardinality k.
Lemma 2.4 expresses the kth elementary symmetric function of the eigenvalues

of A as the sum of the k × k principal minors of A.

3. Algorithms.

3.1. Deterministic greedy removal (Frobenius norm). This section de-
scribes an algorithm based on the same greedy removal strategy as in [19], but it
is faster, since it exploits the SVD decomposition of the matrix and the ability to
quickly update it. Additionally, our algorithm efficiently detects columns whose re-
moval results in a rank deficient matrix, and avoids removing them (see the discussion
in section 1.2). We prove that our algorithm achieves the same approximation bounds
as in [19]. The proof of [19] does not apply to our algorithm, since [19] assumes im-
plicitly that in all the iterations, removing a single column does not result in a rank
deficient matrix.

A complete pseudocode description of our algorithm appears as Algorithm 1. We
now explain the steps of the algorithm. To facilitate the description of the algorithm,
we assume the columns in XS are indexed using their index in X. Our algorithm
constructs S by iteratively removing columns. That is, we start with a complete
subset S0 = [m]. Then we proceed with m − k iterations, since the goal is to select
k columns. We reserve the index i to refer to the iterations of the algorithm; so,
i = 1, 2, . . . ,m− k.
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Algorithm 1. A deterministic greedy removal algorithm for subset selection (Theo-
rem 3.1).

Input: X ∈ R
n×m (m > n, rank(X) = n), sampling parameter n ≤ k ≤ m.

Output: Set S ⊆ [m] of cardinality k.

1: S0 ← [m]

2: Compute the SVD of XS0 : XS0 = U(0)Σ(0)Y(0)

3: for i = 1, 2, . . . ,m− k do

4: Let the singular values of XSi−1 be σ
(i−1)
1 , . . . , σ

(i−1)
n .

5: Let the columns of Y(i−1) be {y(i−1)
r }r∈Si−1 .

Denote by y
(i−1)
rl the lth element of y

(i−1)
r .

6: ji ← argmin
r∈Si−1;‖y(i−1)

r ‖2<1

(∑n
l=1

(
y
(i−1)
rl /σ

(i−1)
l

)2

1−‖y(i−1)
r ‖2

2

)
.

{See proof on how to implement this step in a stable manner.}
7: Si ← Si−1 − {ji}
8: Downdate the SVD of XSi−1 to obtain an SVD of XSi = U(i)Σ(i)Y(i)

{using an algorithm described in [32]}.
9: end for

10: return S

Each iteration i of the algorithm starts with some Si−1 ⊆ [m] of cardinality
m − i + 1, and removes one index from it, to obtain Si ⊂ Si−1 of cardinality m − i.
Our algorithm does exactly m− k iterations, hence it returns Sm−k of cardinality k.
Additionally, in each iteration we maintain an SVD of the current subset, XSi =

U(i)Σ(i)Y(i). We denote the singular values of XSi by σ
(i)
1 , . . . , σ

(i)
n , and the columns

of Y(i) by {y(i)
r }r∈Si .

Our algorithm begins by computing the SVD of XS0 = X. Then, for i =
1, 2, . . . ,m− k, iteration i has two stages:

1. Finding an index ji to remove. We then set Si = Si−1 − {ji}.
2. Updating the SVD XSi = U(i)Σ(i)Y(i). The algorithm needs only Σ(i) and

Y(i) (no need to downdate U(i)).
We now describe each stage in detail. Our algorithm implements the greedy

removal idea of Theorem 2 in [19], so ji is selected as to minimize ‖X†
Si
‖2F subject to

constraint Si is obtained from Si−1 by removing a single entry, and that the rank of
XSi is equal to the rank of XSi−1 . Specifically, the formula for ji is

ji = arg min
r∈Si−1;‖y(i−1)

r ‖2<1

⎛
⎜⎝
∑n

l=1

(
y
(i−1)
rl /σ

(i−1)
l

)2
1− ‖y(i−1)

r ‖22

⎞
⎟⎠ .(3.1)

In the last equation, y
(i−1)
rl is the l element of y

(i−1)
r or, equivalently, the (l, r) element

of Y(i−1). We will prove shortly that, indeed, ji is the minimizer we seek.
As for the second stage, we simply downdate the SVD of XSi−1 to obtain an SVD

of XSi , using the algorithm described in [32].
Before proceeding to the analysis of Algorithm 1, we discuss two numerical stabil-

ity issues that affect actual implementation of Algorithm 1. Computing the terms in
(3.1) might be problematic since the computation can potentially suffer from catas-
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trophic cancellations when ‖y(i−1)
r ‖2 ≈ 1. However, to find the minimizer we need only

do comparisons. That is, we need to be able to determine for two indices g, h ∈ Si−1

whether ∑n
l=1

(
y
(i−1)
gl /σ

(i−1)
l

)2
1− ‖y(i−1)

g ‖22
≤

∑n
l=1

(
y
(i−1)
hl /σ

(i−1)
l

)2
1− ‖y(i−1)

h ‖22

or not. It is easy to verify that provided ‖y(i−1)
g ‖2 < 1 and ‖y(i−1)

h ‖2 < 1, the last
equation holds if and only if

n∑
l=1

(
y
(i−1)
gl /σ

(i−1)
l

)2
+ ‖y(i−1)

g ‖22 ·
n∑

l=1

(
y
(i−1)
hl /σ

(i−1)
l

)2

≤
n∑

l=1

(
y
(i−1)
hl /σ

(i−1)
l

)2
+ ‖y(i−1)

h ‖22 ·
n∑

l=1

(
y
(i−1)
gl /σ

(i−1)
l

)2
.

The last equation does not do any subtraction, so it does not suffer from catastrophic
cancellations.

Another issue with (3.1) is that an index h ∈ Si−1 is a candidate minimizer only if

‖y(i−1)
h ‖2 < 1. Under inexact arithmetic that will always be the case, even if removing

the column results in a rank deficient system. This issue can be solved by replacing

the test ‖y(i−1)
h ‖2 < 1 with ‖y(i−1)

h ‖2 < 1− τ for some small threshold τ .
Theorem 3.1. Fix X ∈ R

n×m (m > n, rank(X) = n) and sampling parameter
m ≥ k ≥ n. Algorithm 1 needs O

(
mn2 +mn (m− k)

)
operations and deterministic-

ally constructs a set S ⊆ [m] of cardinality k with

‖X†
S‖2F ≤

m− n+ 1

k − n+ 1
· ‖X†‖2F and ‖X†

S‖22 ≤
m− n+ 1

k − n+ 1
· n · ‖X†‖22.

Moreover, if X contains orthonormal rows, the operation count is O (mn (m− k)).
Before proceeding with the proof we state an auxiliary lemma. However, we defer

the proof to section 3.5 since this lemma is a corollary of a theorem that appears in
that section.

Lemma 3.2. Let X ∈ R
n×m (m ≥ n) be a full-rank matrix. There exists a subset

S ⊂ [m] of cardinality m− 1 such that XS is full rank and

‖X†
S‖2F ≤

m− n+ 1

m− n
· ‖X†‖2F .

Proof of Theorem 3.1. The spectral norm bound is immediate from the Frobenius
norm bound using the fact that for any matrix B,

‖B‖22 ≤ ‖B‖2F ≤ rank(B) · ‖B‖22.

So, we prove only the Frobenius norm bound.
We now prove that ji, given by (3.1) (and line 6 in Algorithm 1), minimizes

‖X†
Si
‖2F subject to constraint Si is obtained from Si−1 by removing a single entry,

and that the rank of XSi is equal to the rank of XSi−1 .
First, we argue that for any r ∈ Si−1 the matrix

XSi−1−{r}X
T

Si−1−{r} = XSi−1X
T

Si−1
− x(i−1)

r (x(i−1)
r )T
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is singular if and only if ‖y(i−1)
r ‖2 = 1 (under the assumption that XSi−1X

T

Si−1
is

nonsingular). Notice that

XSi−1X
T

Si−1
−x(i−1)

r (x(i−1)
r )T = U(i−1)Σ(i−1)

(
In − y(i−1)

r (y(i−1)
r )T

)
Σ(i−1)(U(i−1))T .

The matrix U(i−1) is full-rank (it is square unitary), so we find that

XSi−1X
T

Si−1
− x(i−1)

r (x(i−1)
r )T

is singular if and only if

Σ(i−1)
(
In − y(i−1)

r (y(i−1)
r )T

)
Σ(i−1)

is singular. We now observe that Σ(i−1) is full-rank (it is diagonal with positive values
on the diagonal) as well, so we find that

XSi−1X
T

Si−1
− x(i−1)

r (x(i−1)
r )T

is singular if and only if

In − y(i−1)
r (y(i−1)

r )T

is singular. That can hold only if ‖y(i−1)
r ‖2 = 1. Therefore, comparing the norm of

y
(i−1)
r with 1 is an efficient way (once we have an SVD) under exact arithmetic to

detect whether

XSi−1−{r}X
T

Si−1−{r}

is singular. This justifies the restriction ‖y(i−1)
r ‖2 < 1 in (3.1).

We proceed with some calculations. Fix an index r ∈ Si−1. If

XSi−1X
T

Si−1
− x(i−1)

r (x(i−1)
r )T

is not singular, then,

Tr

((
XSi−1X

T

Si−1
− x(i−1)

r (x(i−1)
r )T

)−1
)

(a)
= Tr

(
U(i−1)

(
(Σ(i−1))2 −Σ(i−1)y(i−1)

r (y(i−1)
r )TΣ(i−1)

)−1

(U(i−1))T
)

(b)
= Tr

(
(Σ(i−1))−2 +

(Σ(i−1))−1y
(i−1)
r (y

(i−1)
r )T(Σ(i−1))−1

1− (y
(i−1)
r )Ty

(i−1)
r

)

(c)
= Tr

(
(Σ(i−1))−2

)
+Tr

(
(Σ(i−1))−1y

(i−1)
r (y

(i−1)
r )T(Σ(i−1))−1

1− (y
(i−1)
r )Ty

(i−1)
r

)

(d)
= ‖X†

Si−1
‖2F +

Tr

(
(Σ(i−1))−1y

(i−1)
r

(
(Σ(i−1))−1y

(i−1)
r

)
T

)
1− ‖y(i−1)

r ‖22
(e)
= ‖X†

Si−1
‖2F +

‖(Σ(i−1))−1y
(i−1)
r ‖22

1− ‖y(i−1)
r ‖22

(f)
= ‖X†

Si−1
‖2F +

∑n
l=1

(
y
(i−1)
rl /σ

(i−1)
l

)2
1− ‖y(i−1)

r ‖22
.
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(a) follows by replacing the SVD of X and the identity (UAUT)−1 = UA−1UT for a
unitary U and nonsingular A. (b) follows from the Sherman–Morrison formula (recall

that we assume that the matrix is not singular, so ‖y(i−1)
r ‖2 �= 1), and that for any

unitary U we have Tr(UAUT) = Tr(A). (c) follows by the linearity of the trace

operator. (d) follows from the fact that 1/(1−‖y(i−1)
r ‖22) is a scalar. (e) follows from

the fact that for any matrix B we have Tr(BBT) = ‖B‖2F; in our case, we apply this

equality to B = (Σ(i−1))−1y
(i−1)
r . (f) follows because Σ(i−1) is diagonal.

These calculations, together with the observation that

XSi−1X
T

Si−1
− x(i−1)

r (x(i−1)
r )T

is singular if and only if ‖y(i−1)
r ‖2 = 1, imply that, indeed, using (3.1) we can find

the ji such that ‖X†
Si
‖2F is minimized.

We now use this fact to establish the Frobenius norm approximation bound (recall
that the spectral norm bound follows immediately from the Frobenius norm bound).
We will show, using induction, that

(3.2) ‖X†
Si
‖2F ≤

m− n+ 1

m− i − n+ 1
· ‖X†‖2F .

Since our algorithm returns Sm−k, the claim follows from (3.2).
Equation (3.2) trivially holds for i = 0. Assume it holds for i− 1. We now show

it holds for i. Note that the cardinality of Si−1 is m− i+ 1. Lemma 3.2 ensures that
there exists a subset Ti ⊂ Si−1 of cardinality m− i such that

‖X†
Ti
‖2F ≤

m− i− n+ 2

m− i− n+ 1
· ‖X†

Si
‖2F ≤

m− i− n+ 2

m− i− n+ 1
· m− n+ 1

m− i− n+ 2
· ‖X†‖2F

=
m− n+ 1

m− i− n+ 1
· ‖X†‖2F .

Our algorithm finds a subset Si ⊂ Si−1 of cardinality m− i with minimal ‖X†
Si
‖2F, so

‖X†
Si
‖2F ≤ ‖X

†
Ti
‖2F ≤

m− n+ 1

m− i− n+ 1
· ‖X†‖2F .

We conclude by analyzing the operation count. At the start, Algorithm 1 requires
O(mn2) operations to compute a thin SVD of X. Now, at iteration i, computing ji
requires O((m − i + 1)n) operations. Downdating the SVD to find Σ(i) and Y(i)

can be done in O((m − i + 1)n) operations.1 There are m − k iterations, so overall,
O
(
mn2 +mn (m− k)

)
operations suffice. If X has orthonormal rows, the operation

count is just O (mn (m− k)) because the initial SVD is available.

3.2. Deterministic greedy removal (spectral norm). We now describe an
algorithm which achieves a slightly worse Frobenius norm bound than the bound in
the previous theorem, but a slightly better spectral norm bound. Algorithm 2 is
the pseudocode description. Algorithm 2 simply applies Algorithm 1 on VT, where
V ∈ R

m×n is the matrix containing the top n right singular vectors of X. Notice that
the output of Algorithms 1 and 2 might be different.

1This is precisely Problem 3 on page 794 of [32]; the third paragraph on page 795 of [32] argues
that this problem can be solved in O(mn log2 ε) operations, where ε is the machine precision. In
our analysis we ignore the log2 ε term since ε is constant, and log2 ε is not too big since typically
ε ≈ 10−16. Ignoring such terms is common in the analysis of SVD-type algorithms.
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Algorithm 2. A deterministic greedy removal algorithm for subset selection (Corol-
lary 3.3).

Input: X ∈ R
n×m (m > n, rank(X) = n), sampling parameter n ≤ k ≤ m.

Output: Set S ⊆ [m] of cardinality k.

1: Compute the matrix V ∈ R
m×n of the right singular vectors corresponding to the

top n singular values of X.
2: Run Algorithm 1 with inputs VT and k to obtain S of cardinality k.
3: return S

Corollary 3.3. Fix X ∈ R
n×m (m > n, rank(X) = n) and sampling parameter

k ≥ n. Algorithm 2 needs O
(
mn2 +mn (m− k)

)
operations and deterministically

constructs a set S ⊆ [m] of cardinality k with

‖X†
S‖2F ≤

m− n+ 1

k − n+ 1
· n · ‖X†‖22.

Also, for i = 1, . . . , n we have

σ2
i (X) ·

(
1 +

n (m− k)

k − n+ 1

)−1

≤ σ2
i (XS) .

In particular,

‖X†
S‖22 ≤

(
1 +

n (m− k)

k − n+ 1

)
· ‖X†‖22 .

Moreover, if X contains orthonormal rows, the operation count is O (mn (m− k)).
Proof. Let S ⊆ [m] be the set found by the algorithm, and let S̄ = [m] − S.

Corollary 2 of [19] asserts that

‖X†
S ·XS̄‖2F ≤

n(m− k)

k − n+ 1
.

Now, Corollary 1 in [19] indicates that if such a bound holds for ‖X†
S ·XS̄‖2F, then

‖X†
S‖2F ≤

m− n+ 1

k − n+ 1
· n · ‖X†‖22; for i = 1, . . . , n :σ2

i (X)

·
(
1 +

n (m− k)

k − n+ 1

)−1

≤ σ2
i (XS) .

3.3. Deterministic greedy selection. The algorithm of this section builds the
set S by iteratively adding columns to it, after starting with the empty set. It uses
a deterministic algorithm presented in [10], which is, in turn, a generalization of an
algorithm from [4]. In particular, we use Lemma 10 from [10].

Lemma 3.4 (dual set spectral sparsification, Lemma 10 in [10]). Let V =
{v1, . . . ,vm} and U = {u1, . . . ,um} be two equal cardinality decompositions of iden-
tity matrices: vi ∈ R

n (n < m), ui ∈ R
� (
 ≤ m),

∑m
i=1 viv

T

i = In, and
∑m

i=1 uiu
T

i =
I�. Given an integer k with n < k ≤ m, there exists an algorithm that computes a set
of weights si ≥ 0 (i = 1, . . . ,m) at most k of which are nonzero such that

σn

(
m∑
i=1

siviv
T

i

)
≥
(
1−

√
n

k

)2

and σ1

(
m∑
i=1

siuiu
T

i

)
≤
(
1 +

√



k

)2

.
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Algorithm 3. A deterministic greedy selection algorithm for subset selection (The-
orem 3.5).

Input: X ∈ R
n×m (m > n, rank(X) = n), sampling parameter n ≤ k ≤ m.

Output: Set S ⊆ [m] of cardinality at most k.

1: Compute the matrix V ∈ R
m×n of the top n right singular vectors of X.

2: Let V = {y1, . . . ,ym} (see section 2 for the definition of yi’s).
3: Let U = {e1, . . . , em} contain the standard basis vectors.
4: Run [s1, s2, . . . , sm] = DualSet(V ,U , k).
5: return S = {i : si �= 0}

The algorithm is deterministic and needs at most O
(
km

(
n2 + 
2

))
operations. More-

over, if the set U contains vectors from the standard basis from R
m, the algorithm

needs O
(
kmn2

)
operations. We denote the application of the algorithm to V and U by

[s1, s2, . . . , sm] = DualSet(V ,U , k).

We refer the reader to [10] for the full description of the algorithm. Lemma 3.4
implies that one can sample from two different sets of vectors V = {v1, . . . ,vm}
and U = {u1, . . . ,um}, and control simultaneously the smallest singular value of the
matrix formed from the sampled vectors from the first set, and the largest singular
value of the matrix formed from the sampled vectors from the second set.

A complete pseudocode description of our algorithm appears as Algorithm 3.
Algorithm 3 proceeds as follows. First, it computes the SVD of X: X = UΣVT

(see also section 2 for useful notation). The second step is to apply the algorithm
of Lemma 3.4 (DualSet) on V = {y1, . . . ,ym} and U = {e1, . . . , em}, the standard
basis, to compute the weights s1, . . . , sm. The algorithm then returns the set of
nonzero si’s: S = {i : si �= 0}.

We now present the analysis of Algorithm 3.
Theorem 3.5. Fix X ∈ R

n×m (m > n, rank(X) = n) and sampling parameter
m ≥ k > n. Algorithm 3 needs O

(
kmn2

)
operations and deterministically constructs

a set S ⊆ [m] of cardinality at most k such that for both ξ = 2,F,

‖X†
S‖2ξ ≤

(
1 +

√
m

k

)2(
1−

√
n

k

)−2

‖X†‖2ξ.

Proof. We first prove the approximation bound, and then bound the number of
operations.

Lemma 3.4 guarantees that

σ1

(
m∑
i=1

sieie
T

i

)
≤
(
1 +

√
m

k

)2

.

However,
∑m

i=1 sieie
T

i = diag(s1, . . . , sm) ∈ R
m×m, a diagonal matrix containing

the weights si’s in its main diagonal; so, maxi si ≤
(
1 +

√
m
k

)2
. Lemma 3.4 also

guarantees that

σn

(
m∑
i=1

siyiy
T

i

)
≥
(
1−

√
n

k

)2

.



1480 HAIM AVRON AND CHRISTOS BOUTSIDIS

Assume that S = {i1, . . . , ik̃}, where k̃ ≤ k and i1 < i2 < · · · < ik̃, and let D =

diag(
√
si1 , . . . ,

√
sik̃). It is easy to verify that

∑m
i=1 siyiy

T

i = YSD
2YT

S ; so, YS is

full-rank and ‖(YSD)†‖22 ≤
(
1−

√
n
k

)−2
. The bound maxi si ≤

(
1 +

√
m
k

)2
earlier

implies that ‖D‖22 ≤
(
1 +

√
m
k

)2
. Now, observe that

‖X†
S‖2ξ

(a)
= ‖ (UΣYS)

† ‖2ξ
(b)
= ‖Y†

SΣ
−1UT‖2ξ

(c)

≤ ‖Y†
S‖22 · ‖X

†‖2ξ
(d)
= ‖

(
YSDD−1

)† ‖22 · ‖X†‖2ξ
(e)

≤ ‖D‖22 · ‖ (YSD)
† ‖22 · ‖X†‖2ξ

(f)

≤
(
1 +

√
m

k

)2

·
(
1−

√
n

k

)−2

· ‖X†‖2ξ.

(a) follows by replacing X with its SVD. (b) follows by using Lemma 2.1 and the fact
that all three matrices involved are full-rank. (c) follows by standard properties of
matrix norms, and using the definition of the pseudoinverse ofX andΣ. (d) follows by
introducing the identity matrix Ik̃ = DD−1. (e) follows by using Lemma 2.2. Finally,

(f) follows from the bounds we just proved for the terms ‖D‖22 and ‖ (YSD)
† ‖22.

We conclude by analyzing the operation count. The algorithm first computes
an SVD of X, which costs O

(
mn2

)
. The second step is to run the algorithm of

Lemma 3.4 on the right singular vectors of X and the standard basis, which costs
O
(
kmn2

)
. So the total cost is O

(
kmn2

)
.

3.4. Randomized selection. The main idea in the algorithm of this section
is to nonuniformly sample columns from X. The analysis is based on a matrix con-
centration bound from [47]. More specifically, we use Theorem 3.1 from [47] (the
constants are from Corollary 4 in [55]).

Lemma 3.6 (Theorem 3.1 in [47]). Let x ∈ R
n be a random vector which is

uniformly bounded almost everywhere: ‖x‖2 ≤ M . Assume, for normalization, that
‖E
[
xxT

]
‖2 ≤ 1. Let x1,x2, . . . ,xk be k independent copies of x sampled with replace-

ment. Then, for every ε ∈ (0, 1), and with probability at least 1 − 2 · n · e−ε2k/4M2

,

‖ 1k
∑k

i=1 xix
T

i − E
[
xxT

]
‖2 ≤ ε.

Our algorithm is based on nonuniform sampling of columns with replacement.
This type of sampling is the basis of many randomized matrix algorithms [23, 25].
The sampling probabilities are related to the so-called leverage scores of the columns
of X [12, 25], but in our algorithm we make sure that no column has a sampling
probability that is too small. One needs cubic time to compute these probabilities
using SVD or QR; our algorithm computes the probabilities that way. However, one
can approximate these probabilities in subcubic time using recent results from [24].
It might be the case that these results can be used to improve the running time of our
algorithm at the cost of some small increase in the approximation bound. However,
we leave this issue for future research.

A complete pseudocode description of our algorithm appears as Algorithm 4.
Algorithm 4 proceeds as follows. First, it computes the SVD of X: X = UΣVT (see
also section 2 for useful notation). Let

τi = max
{
‖yi‖22,

n

m

}



FASTER SUBSET SELECTION FOR MATRICES 1481

Algorithm 4. A randomized algorithm for subset selection (Theorem 3.7).

Input: X ∈ R
n×m (m > n, rank(X) = n), sampling parameter n ≤ k ≤ m.

Output: Set S ⊆ [m] of cardinality at most k.

1: Compute the matrix V ∈ R
m×n of the top n right singular vectors of X.

2: For i = 1, 2, . . . ,m let (see section 2 for the definition of yi’s)

τi = max
{
‖yi‖22,

n

m

}
and

pi = τi/
m∑
j=1

τj .

3: for t = 1, 2, . . . , k do
4: Pick it, where it = i with probability pi.
5: end for
6: return S = {i1, i2, . . . , it}

for i = 1, . . . ,m. The set S is formed by nonuniformly, and independently, sampling k
numbers from 1, . . . ,m with replacement. In each trial, i is sampled with probability

pi = τi/

m∑
j=1

τj .

We now present the analysis of Algorithm 4.
Theorem 3.7. Fix X ∈ R

n×m (m > n, rank(X) = n). Choose a proba-
bility parameter δ (0 < δ < 1). Now, choose a sampling parameter m ≥ k ≥
min(� 32n ln(2n/δ) 	,m). Algorithm 4 needs O

(
mn2 + k log k

)
operations and ran-

domly constructs a set S ⊆ [m] with cardinality at most k such that, for both ξ = 2,F,
and with probability at least 1− δ,

‖X†
S‖2ξ ≤ 4 ·m · ‖X†‖2ξ.

Moreover, if X contains orthonormal rows, the operation count is O (mn+ k log k).
Proof. We first prove the approximation bound, and then bound the number of

operations.
The first part of the approximation bound analysis is a technical manipulation

to enable us to use Lemma 3.6. First, let c1, . . . , ck be the indices sampled in trials
1, . . . , k. That is S = {c1, . . . , ck}. For i = 1, . . . , k define the random vector xi =
yci/
√
pci . Now, for i = 1, . . . ,m define si = 1

kpi
· #{j : cj = i}. Notice that

S = {i : si �= 0}. Assume that S = {i1, . . . , ik̃}, where k̃ ≤ k and i1 < i2 < · · · < ik̃,
and let

D = diag(
√
si1 , . . . ,

√
sik̃).

With these definitions we observe that

1

k

k∑
i=1

xix
T

i = YSD
2YT

S .
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Notice that x1,x2, . . . ,xk are i.i.d. Let x denote a random vector from the same
distribution of x1,x2, . . . ,xk. To use Lemma 3.6 we need to compute E

[
xxT

]
and to

bound ‖x‖22:

E
[
xxT

]
=

m∑
i=1

pi ·
1
√
pi
yi ·

1
√
pi
yT

i =

m∑
i=1

yiy
T

i = In ,

‖x‖22
(a)

≤ max
j∈[m]

‖yj‖22
pj

(b)
= max

j∈[m]

∑m
i=1 τi
τj

‖yj‖22
(c)

≤
m∑
i=1

τi
(d)
=

m∑
i=1

max
{
‖yi‖22,

n

m

}
(e)

≤ n+

m∑
i=1

‖yi‖22
(f)
= 2n.

(a) follows by replacing the values taken by the vector x. (b) follows by replacing
the value for the probabilities pi’s. (c) follows by the fact that τj ≥ ‖yj‖22 for all
j = 1, . . . ,m. (d) follows by replacing the value for the parameters τi’s. (e) follows
by simple algebra.

We are now ready to apply Lemma 3.6 for the random vector y described above.
An immediate application of this lemma (M =

√
2n, ε = 1/2) and our bound on k

give that with probability at least 1− δ,

‖YSD
2YT

S − In‖2 ≤
1

2
.

(Recall that 1
k

∑k
i=1 xix

T

i = YSD
2YT

S .) Standard matrix perturbation theory re-
sults [30] imply that for i = 1, . . . , n,

|σ2
i (YSD)− 1| ≤ ‖YSD

2YT

S − In‖2,

so, i = n gives

‖(YSD)†‖22 ≤ 2.

We bound ‖D‖22 as follows:

‖D‖22
(a)
= max

j∈[m]
D2

jj

(b)

≤ k max
j∈[m]

(
1

kpj

)
(c)

≤ max
j∈[m]

(∑m
i=1 τi
τj

)
(d)
=

(
m∑
i=1

τi

)
· max
j∈[m]

(
1

max{‖yj‖22, n/m}

)
(e)

≤ 2 · n · max
j∈[m]

(
1

max{‖yj‖22, n/m}

)
(f)

≤ 2 · n · m
n

= 2 ·m.

(a) follows because D2 is a diagonal matrix. (b) follows because each entry in D2

might contain the term 1/kpj at most k times. (c) follows by replacing the values for
the probabilities. (d) follows by replacing the values of the parameters τj ’s. (e) follows
by the fact that

m∑
i=1

τi ≤ 2n,

which we proved in (f) in the previous calculations. (f) follows by simple algebra.
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To conclude the analysis of the approximation bound, notice that at the end of
Theorem 3.5, we implicitly proved that

‖X†
S‖2ξ ≤ ‖D‖22 · ‖(YSD)†‖22 · ‖X†‖2ξ.

Replace the bounds for ‖(YSD)†‖22 and ‖D‖22 in this bound to wrap up.
We conclude by analyzing the operation count. The algorithm first computes an

SVD of X, which costs O
(
mn2

)
. The probabilities can be calculated in O(mn) and

the sampling procedure can be implemented in O(m + k log k). In total, the cost
is O

(
mn2 + k log k

)
. If X contains orthonormal rows, O(mn + k log k) operations

suffice.

3.5. Volume based bounds and algorithms. We now consider bounds and
algorithms which construct the set S by looking at the volume of the parallelepiped
spanned by the columns of XS , which is exactly the determinant of XSX

T

S .

3.5.1. Subset selection and determinants. We start with Lemma 3.8, which
establishes the connection between determinants and subset selection.

Lemma 3.8. Let X ∈ R
n×m (m ≥ n) be a full-rank matrix, and let S ⊆ [m] be

any subset of cardinality k (n ≤ k ≤ m) such that XS is full-rank. For i = 1, . . . , n,
let Yi ∈ R

(n−1)×m denote the matrix obtained after removing the ith row of X. Then

‖X†
S‖2F =

∑n
i=1 det

(
(Yi)S (Yi)

T

S

)
det
(
XSX

T

S

) .

Let X = [x1,x2, . . . ,xm] be the column representation of X. If S has cardinality
exactly n, then

‖X−1
S ‖2F ≤ ‖X

†‖22 ·
∑m

j=1

∑n
i=1 det (XS(i→ xj))

2

det (XS)
2 .

Recall that XS (i→ xj) is the matrix by replacing the ith column of XS with xj, the
jth column of X. If X has orthonormal rows, then the last inequality is an equality.

Proof. We first prove the equality in Lemma 3.8 (S has cardinality k unless
otherwise stated),

‖X†
S‖2F

(a)
= Tr

((
XSX

T

S

)−1
)

(b)
= Tr

(
det
(
XSX

T

S

)−1

Adj
(
XSX

T

S

))
(c)
= det

(
XSX

T

S

)−1

Tr
(
Adj

(
XSX

T

S

))
(d)
= det

(
XSX

T

S

)−1 n∑
i=1

(
Adj

(
XSX

T

S

))
ii

(e)
= det

(
XSX

T

S

)−1 n∑
i=1

det
(
(Yi)S (Yi)

T

S

)
.

(a) follows by a property which connects the Frobenius norm of the pseudoinverse with
the trace operator. (b) follows by the well-known formula for the inverse of a matrix
using the adjugate matrix. (c) follows by the linearity of the trace operator. (d) follows
by the definition of the trace operator. Finally, (e) follows by the definition of the
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adjugate matrix and the observation that the ith diagonal element of Adj(XSX
T

S)
equals the determinant of an (n − 1) × (n − 1) matrix which is exactly XSX

T

S after

removing its ith row and ith column. This matrix is exactly (Yi)S (Yi)
T

S .
We now prove the second inequality (S has now fixed cardinality n). Let X =

UΣVT be an SVD of X (see also section 2 for useful notation). Define xj = UΣyj .
Then

‖X−1
S ‖2F

(a)
= ‖Y−1

S Σ−1UT‖2F
(b)

≤ ‖Σ−1‖22 · ‖Y−1
S Y‖2F

(c)
= ‖Σ−1‖22 ·

m∑
j=1

‖Y−1
S yj‖22

(d)
= ‖Σ−1‖22 ·

m∑
j=1

‖Y−1
S Σ−1UTUΣyj‖22

(e)
= ‖Σ−1‖22 ·

∑m
j=1

∑n
i=1 det ((UΣYS) (i→ UΣyj))

2

det(UΣYS)2

(f)
= ‖X†‖22 ·

∑m
j=1

∑n
i=1 det(XS(i→ xj))

2

det(XS)2
.

(a) follows by replacing the SVD of X−1
S . Notice that XS = UΣYS and X−1

S =
Y−1

S Σ−1UT. The latter equality holds because Y−1
S is a square full-rank matrix,

which is immediate by the assumption that rank(XS) = n. (b) follows by first using
a property of matrix norms, and then dropping the square orthonormal matrix UT

and inserting the matrix Y, which has orthonormal rows, into the Frobenius norm
term. (c) follows by the definition of the Frobenius norm. (d) follows by inserting the
identity matrix Σ−1UTUΣ = In. (e) follows by applying Cramer’s rule to the linear
system Ax = b, with A = UΣYS and b = UΣyj . Finally, (f) follows by replacing
the appropriate values for XS , xj , and ‖Σ−1‖22.

Notice that if X has orthonormal rows, then Σ is the identity matrix, and (b) be-
comes an equality.

3.5.2. Random subsets chosen via volume sampling. Lemma 3.8 connects
determinants and the term ‖X†

S‖2F, for any set S for which XS has full rank. In the
related work part of the introduction, we also stated various results for the specific
set Ŝ ⊆ [m] of cardinality k ≥ n that maximizes det(XT X

T

T ) over all possible T ’s of
cardinality k. Unfortunately, finding the maximum volume (determinant) subset is not
only NP-hard [44, 18], but also exponentially hard to approximate [41, 17], so, these
results do not yield an efficient algorithm. We solve this issue using randomization.

Lemma 3.9. Let X ∈ R
n×m (m ≥ n) be a full-rank matrix, and let m ≥ k ≥ n.

Suppose that S ∼ VolSamp(X, k). Then,

E

[
‖X†

S‖2F
]
≤ m− n+ 1

k − n+ 1
· ‖X†‖2F .(3.3)

(If for every set S ∈ C ([m], n) the matrix XS is full-rank, then this bound becomes
an equality.) Also, for i = 1, . . . , n,

E
[
σ−2
i (XS)

]
≤
(
1 +

n(m− k)

k − n+ 1

)
· σ−2

i (X) .
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In particular,

E

[
‖X†

S‖22
]
≤
(
1 +

n(m− k)

k − n+ 1

)
· ‖X†‖22 .

Proof. For i = 1, . . . , n, let Yi ∈ R
(n−1)×m denote the matrix obtained after

removing the ith row of X. Using the definition of expectation and the equality of
Lemma 3.8,

E

[
‖X†

S‖2F
]
=

∑
S∈C([m],k) det(XSX

T

S)‖X
†
S‖2F∑

S∈C([m],k) det(XSX
T

S)

(∗)
=

∑
S∈C([m],k),rank(XS)=n det(XSX

T

S)‖X
†
S‖2F∑

S∈C([m],k) det(XSX
T

S)

=

∑
S∈C([m],k),rank(XS)=n

∑n
i=1 det((Yi)S(Yi)

T

S)∑
S∈C([m],k) det(XSX

T

S)
.

In (∗), if rank(XS) �= n, then det(XSX
T

S) = 0, so it can be ignored in the sum. We
will now analyze the numerator and the denominator of the last relation separately.
We start with the denominator. We have∑

S∈C([m],k)

det(XSX
T

S)
(a)
=

∑
S∈C([m],k)

∑
T ∈C(S,n)

det(XT X
T

T )

(b)
=

(
m− n

k − n

) ∑
T ∈C([m],n)

det(XT X
T

T )

(c)
=

(
m− n

k − n

) n∏
i=1

σ2
i ,

where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values of X. (a) follows by applying the

Cauchy–Binet formula. (b) follows from observing that each set in
(
[m]
n

)
is repeated

exactly
(
m−n
k−n

)
times in the sum. (c) follows by applying the Cauchy–Binet formula

again and the fact that for symmetric positive-definite matrices the determinant is
equal to the product of the eigenvalues.

As for the numerator, we have∑
S∈C([m],k),rank(XS)=n

n∑
i=1

det((Yi)S(Yi)
T

S)

(a)

≤
∑

S∈C([m],k)

n∑
i=1

det((Yi)S(Yi)
T

S)

=
n∑

i=1

∑
S∈C([m],k)

det((Yi)S(Yi)
T

S)

(b)
=

n∑
i=1

∑
S∈C([m],k)

∑
T ∈C(S,n−1)

det((Yi)T (Yi)
T

T )

(c)
=

n∑
i=1

(
m− n+ 1

k − n+ 1

) ∑
T ∈C([m],n−1)

det((Yi)T (Yi)
T

T )
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(d)
=

(
m− n+ 1

k − n+ 1

) n∑
i=1

det(YiY
T

i )

(e)
=

(
m− n+ 1

k − n+ 1

) n∑
i=1

∏
j �=i

σ2
i .

(a) follows because we are adding only positive terms in the sum. (b) follows by
applying the Cauchy–Binet formula. (c) follows from observing that each set in
C ([m], n− 1) is repeated exactly

(
m−n+1
k−n+1

)
times in the sum. (d) follows by applying

the Cauchy–Binet formula again. Finally, in (e), the matrices YiY
T

i are equal to the
matrix obtained by deleting the ith column and the ith row of XXT, so according to
Lemma 2.4,

n∑
i=1

det(YiY
T

i ) =

n∑
i=1

∏
j �=i

σ2
i .

We now conclude the first part of the proof as follows:

E

[
‖X†

S‖2F
]
≤
(
m−n+1
k−n+1

)∑n
i=1

∏
j �=i σ

2
i(

m−n
k−n

)∏n
i=1 σ

2
i

=

(
m−n+1
k−n+1

)
‖X†‖2F(

m−n
k−n

) =
m− n+ 1

k − n+ 1
· ‖X†‖2F .

(If XS is full-rank for every S ∈ C ([m], n), then (a) in the previous calculations is an
equality.)

We now prove the bounds for the singular values of XS . Let T be any subset of
[m] of cardinality k such that XT has full rank, and let T̄ = [m]− T . Notice that T̄
has cardinality m− k. Let

W =

(
Ik X†

T XT̄
0(m−k)×k Im−k

)
∈ R

m×m .

(Note that X†
T XT̄ ∈ R

k×(m−k).) Since XT has full rank, we have(
XT 0n×(m−k)

)
W =

(
XT XT̄

)
= XΠ,

where Π ∈ R
m×m is an appropriate permutation matrix. Clearly W is nonsingular

(it is a triangular matrix with a nonzero diagonal), so for i = 1, . . . , n,

σ−2
i (XT ) = σ−2

i

((
XT 0n×(m−k)

))
= σ−2

i

(
XΠW−1

)
≤ ‖W‖22 · σ−2

i (XΠ) ≤ ‖W‖22 · σ−2
i (X) .

In the above, the two inequalities are a simple application of Theorem 3.1 in [26]; we
also used the fact that ‖Π‖2 = 1. To bound ‖W‖22 we observe that

‖W‖22 ≤ 1 + ‖X†
T XT̄ ‖22 ≤ 1 + ‖X†

T XT̄ ‖2F.

Now, if S ∼ VolSamp(X, k), then only S’s for which XS is full-rank have positive
probability of being sampled. This implies that for i = 1, . . . , n,

E
[
σ−2
i (XS)

]
≤ E

[(
1 + ‖X†

SXS̄‖2F
)]
· σ−2

i (X) .
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The above bound is obtained as follows. Recall the two inequalities proved above for
any T :

σ−2
i (XT ) ≤ ‖W‖22 · σ−2

i (X)

and

‖W‖22 ≤ 1 + ‖X†
T XT̄ ‖2F.

To get the bound, combine these two inequalities, apply the resulting inequality to
T = S (recall that S takes only values for which XS is full-rank), and take expectation
on both sides.

We now bound E
[
(1 + ‖X†

SXS̄‖2F
)]
. Let X = UΣVT be an SVD of X, and let

us denote Y = VT. Then, it is easy to verify that X†
SXS̄ = Y†

SYS̄ . To bound the

expected value of ‖Y†
SYS̄‖2F we observe that

Y†
SYΠ =

(
Y†

SYS Y†
SYS̄

)
.

This implies that

‖Y†
SYΠ‖2F = ‖Y†

SYS‖2F + ‖Y†
SYS̄‖2F.

Notice that Y†
SYS is a projection; so, ‖Y†

SYS‖2F = n. We now have ‖Y†
SYΠ‖2F =

n+‖Y†
SYS̄‖2F. YΠ has orthonormal rows; so, ‖Y†

SYΠ‖2F = ‖Y†
S‖2F. So, ‖Y

†
SYS̄‖2F =

‖Y†
S‖2F−n. Since VolSamp(X, k) = VolSamp(Y, k), the Frobenius norm bound in the

lemma guarantees that

E

[
‖Y†

S‖2F
]
≤ n(m− n+ 1)

k − n+ 1
.

Plugging that into the previously established equality ‖Y†
SYS̄‖2F = ‖Y†

S‖2F − n, we
find that

E

[
‖Y†

SYS̄‖2F
]
≤ n(m− k)

k − n+ 1
.

This immediately gives a bound on E
[
(1+‖X†

SXS̄‖2F)
]
, which concludes the proof.

We can now prove the following corollary, which was previously stated as Lemma 3.2.
Corollary 3.10 (restatement of Lemma 3.2). Let X ∈ R

n×m (m ≥ n) be a
full-rank matrix. There exists a subset S ⊂ [m] of cardinality m− 1 such that XS is
full-rank and

‖X†
S‖2F ≤

m− n+ 1

m− n
· ‖X†‖2F .

Proof. Let T ∼ VolSamp(X,m− 1). According to Lemma 3.9 we have

E

[
‖X†

T ‖2F
]
≤ m− n+ 1

m− n
· ‖X†‖2F .

The random variable ‖X†
T ‖2F is discrete, so it must assume at least one value larger

than the expectancy with nonzero probability. Let S be one such set, so

‖X†
S‖2F ≤

m− n+ 1

m− n
· ‖X†‖2F .
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Algorithm 5. A randomized volume-based sampling algorithm for subset selection
(Theorem 3.11).

Input: X ∈ R
n×m (m > n, rank(X) = n), parameter η > 0.

Output: Set S ⊆ [m] of cardinality n.

1: Let α = (1 + η) · (m− n+ 1) · ‖X†‖2F.
2: repeat
3: Apply VolumeSample from [35] to sample a subset S from VolSamp(X, n).
4: until ‖X−1

S ‖2F ≤ α
5: return S

XS must be full-rank since T assumes it with some nonzero probability, but the
distribution VolSamp(X,m− 1) gives a zero probability to every subset R for which
XR is rank deficient.

If there exists a subset S of columns of cardinality k such that these columns are
linearly dependent, then (3.3) might be a strict inequality. For example, let

Y =
(
In×n 0n×(m−n)

)
.

There is only one set of cardinality n that has positive volume (i.e., the set of columns
is full-rank): T = [n]. Since this is the only set with positive probability we have

E

[
‖Y†

S‖2F
]
= n = ‖Y†‖2F < (m− n+ 1)‖Y†‖2F = (m− n+ 1)n .

3.5.3. Volume sampling subset selection. To use Lemma 3.9 in an algo-
rithm one needs a method to sample a subset from VolSamp(X, k). Computing the
probabilities for all

(
m
k

)
subsets and sampling according to them is not efficient; there

are too many such sets. However, this is not necessary, since one can simulate volume
sampling using a polynomial number of operations using recent results from [21, 35].
More precisely, using the algorithmVolumeSample from [35] we can sample a subset
S from VolSamp(X, n) using O(n3m) operations. Current determinant-based sam-
pling algorithms [21, 35] can sample only k = n columns from X. We leave it as an
open question whether one can efficiently sample from VolSamp(X, k) for arbitrary
k ≥ n.

A complete pseudocode description of our algorithm appears as Algorithm 5. Al-
gorithm 5 proceeds as follows. It starts by using VolumeSample from [35] to sample
a subset S from VolSamp(X, n) using O(n3m) operations. We then compute ‖X−1

S ‖2F
(note that VolumeSample must return a full-rank XS) using O(n3) operations and
compare it to (1+η)·(m− n+ 1)·‖X†‖2F. If it is smaller than the bound, we return S,
otherwise we repeat this procedure until we find a satisfactory S.

We now present the analysis of Algorithm 5.
Theorem 3.11. Fix X ∈ R

n×m (m ≥ n, rank(X) = n). Choose a parameter
η > 0. Upon termination, Algorithm 5 outputs a set S ⊆ [m] of cardinality n such
that

‖X−1
S ‖2F ≤ (1 + η) · (m− n+ 1) · ‖X†‖2F; ‖X−1

S ‖22 ≤ (1 + η) · (m− n+ 1) · n · ‖X†‖22.

For every 0 < δ < 1, the algorithm will terminate after O
(
mn3 log (1/δ)/ log (1 + η)

)
operations with probability at least 1− δ.

Proof. We first prove the approximation bound, and then bound the number of
operations.
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We need only prove the approximation bound for the Frobenius norm. The bounds
for the spectral norm follow by the fact that for any matrix B of rank n, ‖B‖22 ≤
‖B‖2F ≤ n‖B‖22. Notice that we repeat step 3 t = 1, 2, . . . times (see step 3 in the
algorithm), constructing sets S1, S2 . . . . We stop only if we find a subset for which the
approximation bound holds (the threshold α is exactly the one that appears in the
theorem statement), so the bounds are satisfied upon termination of the algorithm.

We now turn our attention to the number of operations. Lemma 3.9 indicates
that if S is sampled from VolSamp(X, n), then E

[
‖X†

S‖2F
]
≤ (m− n+ 1) · ‖X†‖2F.

For the first iteration t = 1, by Markov’s inequality, we find that, with probability
at most 1/(1 + η), ‖X†

S1
‖2F > (1 + η) (m− n+ 1) · ‖X†‖2F. Therefore, for a finite

number of iterations 
 > 1, the probability that all t = 1, . . . , 
 satisfy ‖X†
St
‖2F >

(1+η) (m− n+ 1) ·‖X†‖2F is at most 1/(1+η)�. So, for any 0 < δ < 1 the probability
that � log (1/δ)/ log (1 + η) 	 successive iterations fail is smaller than δ.

Each iteration (line 3) takes O(n3m). Combining this with the analysis in the
previous paragraph reveals that for any 0 < δ < 1, Algorithm 5 will finish after
O
(
mn3 log (1/δ)/ log (1 + η)

)
operations with probability at least 1− δ.

4. Lower bounds. This section provides lower bounds for the subset selection
problem of Definition 1.1. By lower bounds, we mean that there exists a matrix
X ∈ R

n×m such that for every S of cardinality k ≥ n for ξ = 2 or ξ = F, we have
‖X†

S‖2ξ ≥ γ‖X†‖2ξ for some value of γ which we call lower bound.

4.1. Lower bound for the spectral norm version of the subset selection
problem. Recall that the problem of Definition 1.1 is defined for both ξ = 2 and
ξ = F. Here we focus on the ξ = 2 case and provide a lower bound of the form

‖X†
S‖22 ≥ γ‖X†‖22.

We first state two known results that will be used in our proof.
Proposition 4.1 (see [10, Theorem 19]). Let A = [e1 + αe2, e1 + αe3, . . . , e1 +

αem+1] ∈ R
(m+1)×m for some α > 0. If m > 2, then for every subset S ⊆ [m] of

cardinality k, we have

‖A−ASA
†
SA‖22 =

m+ α2

k + α2
· ‖A−An‖22,

where An ∈ R
(m+1)×m is the best rank n approximation to A.

Proposition 4.2 (Lemma 7 in [10]). Let W ∈ R
d×m, parameter n < rank(W),

and sampling parameter n ≤ k ≤ m. Let W = UΣVT be the SVD of W. Let Z be
the first n rows of VT. For every subset S ⊆ [m] of cardinality k for which ZS has
full-rank, we have

‖W−WSW
†
SW‖22 ≤ ‖W−Wn‖22+‖ (W −Wn)S Z†

S‖22 ≤
(
1 + ‖Z†

S‖22
)
·‖W−Wn‖22 .

Here, Wn ∈ R
d×m is the best rank n approximation to W.

Theorem 4.3 (spectral norm). For any α > 0, n > 0, m > 2 with m > n, and
k with n ≤ k ≤ m, there exists a full-rank n×m matrix X such that, for any subset
S ⊆ [m] of cardinality k ≥ n with rank(XS) = n,

‖X†
S‖22 ≥

(
m+ α2

k + α2
− 1

)
· ‖X†‖22.
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Proof. We construct the matrixX as follows. Let A = [e1+αe2, e1+αe3, . . . , e1+
αem+1] ∈ R

(m+1)×m, and let A = UΣVT be the SVD decomposition of A. Let X
consist of the first n rows of VT. We prove the bound using Theorem 17 and Lemma 7
from [10] (see the two previous propositions).

Applying Lemma 7 from [10] on A and X and combining it with the bound from
Theorem 17 of [10] mentioned above gives

‖X†
S‖22 ≥

‖A−ASA
†
SA‖22

‖A−An‖22
− 1 =

m+ α2

k + α2
− 1 =

(
m+ α2

k + α2
− 1

)
‖X†‖22.

As α→ 0, the bound in the above theorem is m/k−1. If k = (1+Ω(1))n, then the
upper bound of the deterministic algorithm of Theorem 3.5 asymptotically matches
this lower bound. The upper bounds of the algorithms in Theorems 3.1, 3.7, and 3.11
and Corollary 3.3 are—asymptotically—slightly worse. However, if k = (1 + o(1))n,
there is a gap between the lower bound and the best upper bound.

4.2. Lower bound for the Frobenius norm version of the subset selec-
tion problem. Recall that the problem of Definition 1.1 is defined for both ξ = 2
and ξ = F. Here we focus on the ξ = F case and provide a lower bound of the form
‖X†

S‖2F ≥ γ‖X†‖2F. We first state a known result that will be used in our proof.
Proposition 4.4 (see [10, Theorem 19]). Consider a block diagonal matrix B ∈

R
d×m: a matrix A ∈ R

d/n×m/n of the form that appears in the proof of Theorem 4.3
is repeated n times on B’s main diagonal. For any n ≤ rank(B), and k ≥ n, any
subset S of k columns of B satisfies

‖B−BSB
†
SB‖2F =

m− k

m− n
·
(
1 +

n

k + α2

)
· ‖B−Bn‖2F.

Theorem 4.5 (Frobenius norm). For any α > 0, n, m with m > n, mod (m,n)
= 0, and m/n > 2, and k with n ≤ k ≤ m, there is a full-rank n×m matrix X such
that, for any subset S ⊆ [m] of cardinality k ≥ n with rank(XS) = n, we have

‖X†
S‖2F ≥

(
m− k

k + α2
+ 1− k

n

)
· ‖X†‖2F.

Proof. We construct the matrix X as follows. Consider a block diagonal matrix
B ∈ R

d×m: a matrix A ∈ R
d/n×m/n of the form that appears in the proof of Theo-

rem 4.3 is repeated n times on B’s main diagonal. Let B = UΣVT be the SVD of B.
X is the first n rows of VT.

To prove the bound we use Theorem 19 and Lemma 7 from [10].
Using

σ1(B) = σ2(B) = · · · = σn(B) = n+ α2;

σn+1(B) = σn+2(B) = · · · = σm = α2; ‖B−Bn‖22 = α2; and ‖B−Bn‖2F = (m−n)α2,
we obtain

‖B−BSB
†
SB‖2F = (m− k) ·

(
1 +

n

k + α2

)
· ‖B−Bn‖22.

Now, Lemma 7 of [10] implies that, for any matrix W ∈ R
d×m, rank parameter

n < rank(W), and sampling parameter n ≤ k ≤ m, for any S of cardinality k, if ZS
has full rank (Z is defined shortly), then

‖W −WSW
†
SW‖2F ≤ ‖W −Wn‖2F + ‖ (W −Wn)S Z†

S‖2F.
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Here, Wn is the best-rank n approximation to W. Z is defined as follows. Let
W = UΣVT be the SVD of W. Z is the first n rows of VT. Applying spectral
submultiplicativity to this relation, we obtain

‖W −WSW
†
SW‖2F ≤ ‖W −Wn‖2F + ‖Z†

S‖2F · ‖W −Wn‖22.

We now apply Lemma 7 from [10] on B and X and combine it with the bound from
Theorem 19 of [10],

‖X†
S‖2F ≥

‖W −WSW
†
SW‖2F

‖W −Wn‖22
− ‖W −Wn‖2F
‖W −Wn‖22

= (m− k) ·
(
1 +

n

k + α2

)
− (m− n)

=

(
m− k

k + α2
+ 1− k

n

)
· ‖X†‖2F.

As α → 0 and k = O (n), this bound is m/k − O(1). If k = (1 + Ω(1))n, the
Frobenius norm bounds in Theorems 3.1 and 3.5 asymptotically match this lower
bound. However, if k = (1 + o(1))n, there is then a gap between the lower bound
and the best upper bound. There is also a gap when k = ω(n). We believe that the
gap for k = ω(n) is the result of looseness in the lower bound, but we were unable to
prove a bound tighter than Theorem 4.5.

5. Low-stretch spanning trees and subset selection. Let G = (V,E,w)
be a weighted undirected connected graph. Unless otherwise stated, in this section
we denote the number of vertices of G by n, and the number of edges by m. Let
T = (V, F, w) be a spanning tree of G, where F is a subset of E having exactly n− 1
edges. A spanning tree of a graph is a tree that spans all vertices of the given graph.
We use the same weight function w because the edges in T have the same weights as
the corresponding edges in G. Since T is a tree, every pair of vertices in T is connected
by a unique path in T . For any edge e ∈ E, let us denote by pT (e) the set of edges on
the unique path in T between the incident vertices of e. The stretch of e with respect

to T is StT(e) =
∑

e′∈pT (e)
w(e)
w(e′) . The stretch of the graph G with respect to T is [2]

StT (G) =
∑
e∈E

StT (e) .

The problem of finding a low-stretch spanning tree is the problem of finding
a spanning tree T of G such that StT (G) is minimized, among all possible span-
ning trees of G. Let St(n) = maxG∈Gn minT StT (G), where Gn is the family of
graphs with n vertices. The following bounds are known: St(n) = Ω(m logn) [2];
St(n) = O(m logn · log logn · (log log logn)3) [1]. In this section we show that finding
a low-stretch spanning tree is, in fact, an instance of the Frobenius norm version of
Problem 1.1.

Finding a low-stretch spanning tree has quite a few uses. One important ap-
plication is the solution of symmetric diagonally dominant (SDD) linear systems of
equations. Boman and Hendrickson [6] were the first to suggest the use of low-stretch
spanning trees to build preconditioners for SDD matrices. Spielman and Teng [51]
later showed how to use low-stetch spanning trees to solve SDD systems using a nearly
linear amount of operations. Currently, the most efficient algorithm for solving SDD
systems [42] uses a low stretch spanning tree as well. One of the many obstacles in gen-
eralizing these algorithms for wider classes of matrices (e.g., finite-element matrices)
is the lack of an equivalent concept, like the stretch, for such matrices. By studying
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the purely linear-algebraic nature of the low-stretch spanning tree problem (i.e., the
Frobenius norm version of Problem 1.1), our hope is to glean new insights on how to
generalize the concept of low-stretch trees, or to substitute it with something else.

Other applications of low-stretch spanning trees include the Alon–Karp–Peleg–
West game, MCT approximation, and message-passing model. See [27] for details.

Next, we show that finding a low-stretch spanning tree is an instance of subset
selection. We first relate graphs to matrices.

Definition 5.1 (edge-vertex incidence matrix/Laplacian matrix). Let G =
(V,E,w) be a weighted undirected graph. Assume, without loss of generality, that
V = {1, 2, . . . , n}, E = {(u1, v1), (u2, v2), . . . , (um, vm)}. The edge-vertex incidence
matrix of G is ΠG ∈ R

n×m, where column i of ΠG is
√
w(ui, vi)(eui − evi). Here

e1, e2, . . . , en are the identity (standard basis) vectors. The Laplacian matrix of G is
LG = ΠGΠ

T

G.
Every column in ΠG represents an edge in G. A spanning tree T is a group

of edges that span G and form a graph. The set of edges in T correspond to a set
of columns in ΠG, which we denote by S(T ). Notice that if the indices are kept
consistently, then ΠT = (ΠG)S(T ). If S ⊆ [m] is a subset of columns, then there is
a subgraph H of G that contains the edges corresponding to the columns in S. We
denote this subgraph by H(S). We are now ready to connect low-stretch spanning
trees and subset selection.

Theorem 5.2. Let G be a weighted undirected connected graph. Let ΠG =
UΣVT be the SVD of ΠG with U ∈ R

n×(n−1), Σ ∈ R
(n−1)×(n−1), and V ∈ R

m×(n−1)

(G is connected, so rank(ΠG) = n− 1). For notational convenience, let Y = VT.
1. If T is a spanning tree of G, then StT (G) = ‖Y−1

S(T )‖2F.
2. If S ⊆ [m] has cardinality n−1 and YS has full rank, then H(S) is a spanning

tree of G.
Proof. To prove the first part of Theorem 5.2, we need a result of Spielman and

Woo [52], who recently connected the stretch of G with respect to T to the matrix

LGL
†
T . More precisely, Theorem 2.1 in [52] shows that if T is a spanning tree, then

StT (G) = Tr(LGL
†
T ). Here, G is a weighted undirected connected graph and T is a

spanning tree of G.
Let us denote S = S(T ). Since T is a tree we have rank(ΠT ) = n− 1 (it is well

known that the edge incidence matrix of a connected graph has rank |V | − 1). Since
ΠT = (ΠG)S = UΣYS , YS must be full rank. Now

StT (G)
(a)
= Tr

(
LGL

†
T

)
(b)
= Tr

(
ΠGΠ

T

G

(
(ΠG)S(ΠG)

T

S
)†)

(c)
= Tr

(
UΣ2UT(UΣYSY

T

SΣUT)†
)

(d)
= Tr

(
UΣ2UTUΣ−1

(
YSY

T

S

)−1

Σ−1UT

)
(e)
= Tr

(
Σ
(
YSY

T

S

)−1

Σ−1

)
(f)
= Tr

((
YSY

T

S

)−1
)

= ‖Y−1
S(T )‖

2
F .

(a) follows by the Spielman–Woo result. (b) follows by replacing the Laplacian matri-
ces with the product of their edge-incidence matrices. (c) follows by introducing the
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SVD of ΠG and the equality (ΠG)S = UΣYS . (d) follows since all three matrices
involved (U, YS , and Σ) are full-rank. (e) follows since U has orthonormal columns.
(f) follows since Tr(AB) = Tr(BA).

We now prove the second part of the theorem. For H(S) to be a spanning tree, it
has to be a connected graph with n− 1 edges. The last condition is met since S has
cardinality n−1, and the number of edges in H(S) is equal to the cardinality of S. As
for connectivity, notice that ΠH(S) = (ΠG)S = UΣYS . Now, since YS has full rank,
we have rank(ΠH(S)) = |V | − 1. This directly implies that H(S) is connected.

The algorithms that we presented in Theorems 3.1 and 3.11 in section 3 can
be used to find a low-stretch spanning tree (run these algorithms on the matrix
Y of the above theorem), but they are not competitive both in terms of operation
count and in terms of approximation bounds. Both these algorithms can guarantee
StT (G) ≤ (n−1)(m−n+2). The operation count is (m2n) and O(mn3), respectively.
This upper bound also holds for the easily computable maximum weight spanning tree.
Koutis, Miller, and Peng describe in [42] an algorithm which gives the available state-
of-the-art upper bound StT (G) ≤ O(m log n · log logn · (log log logn)3), and has an
operation count of O(m log(n) + n log(n) log log(n)). The main reason for this gap is
that our algorithms are designed for general matrices, while [1, 42] describe a graph
algorithm, which better exploits the unique structure of the problem. Nevertheless,
when reinterpreting our algorithms as algorithms for constructing low-stretch span-
ning trees yields interesting connections that sheds light on both problems, as we
discuss below.

5.1. Low-stretch spanning trees via the greedy removal algorithm. The-
orem 5.2 along with Theorem 3.1 suggests a greedy removal algorithm for constructing
a spanning tree with low stretch: start with a full set of edges H = E; then at each it-
eration, find the edge e such that ‖Y†

S(H−{e})‖2F is minimized, and set H ←− H−{e}.
Finish once H has n − 1 edges. That is, we apply the algorithm of Theorem 3.1 on
Y (see Theorem 5.2 for the definition of Y). We note that this algorithm is differ-
ent from the natural greedy removal algorithm, which would remove edges to keep
the stretch of the subgraph minimal in each step. It is possible to define the stretch
StH(G) of a subgraph H ; we refer the reader to chapter 18 of [46] for the definition.

It is also possible to show that for a spanning subgraph H , ‖Y†
S(H)‖2F ≤ StH(G) (we

omit the proof), but an equality does not hold. In fact, our algorithmic results imply

that it is possible to find a subgraph with O(n) edges such that ‖Y†
S(H)‖2F = O(m),

but there exists a graph for which we have StH(G) = Ω(m log(n)) for every subgraph
H of O(n) edges (Corollary 18.1.5 in [46]).

We conducted some simple experiments with our greedy removal algorithm. In
the first experiment, we used greedy removal to generate a spanning tree Tn of the
complete graph Kn on n with equal weights vertices for n = 10, 11, . . . , 50. We
then computed the stretch of Tn. We found that StTn(Kn) ≈ 0.6m log2 n. We then
repeated this experiment with random weights on the edges of Kn. We found that
in almost all runs, StTn(Kn) ≈ 0.3m log2 n. These values are much better than our
theoretical bounds, and are closer to what it is possible to find using state-of-the-art
algorithms for low-stretch trees. These experiments, although far from exhaustive,
suggest that our theoretical worst-case upper bounds for greedy removal are rather
pessimistic for the matrices relevant to finding a low-stretch spanning tree.

5.2. Maximum weight spanning trees and maximum volume subsets.
The volume corresponding to a set S has a very natural interpretation when S is a
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subset of columns in ΠG, and it corresponds to a tree. Let ΠG = UΣVT be the
SVD of ΠG (U ∈ R

n×(n−1), Σ ∈ R
(n−1)×(n−1), and V ∈ R

m×(n−1); G is connected
so rank(ΠG) = n− 1). For notational convenience, let Y = VT. Define Ū to be the
first n− 1 rows of U; Ū is a square matrix.) Define Π̄G to be the first n− 1 rows of
ΠG. Notice that Π̄G = ŪΣY. This implies that VolSamp(Y, k) = VolSamp(Π̄G, k)
and also that the set S that maximizes det(YS)

2 also maximizes det((Π̄G)S)
2.

Let T be a spanning tree of G. Determinants of the form det((Π̄G)S(T )(Π̄G)
T

S(T ))

have a very natural interpretation. The matrix (Π̄G)S(T )(Π̄G)
T

S(T ) is a Laplacian of
a graph for which a column and row of some vertex have been removed. It is well
known that the determinant of such matrices, when the graph is a tree, is equal to
the product of the weights of the tree edges. That is,

det((Π̄G)S(T )(Π̄G)
T

S(T )) =
∏
e∈T

w(e) .

The subset of columns S that maximizes the volume also maximizes
∏

e∈H(S) w(e).
This trivially implies that the corresponding tree is a maximum weight spanning tree.
So, for edge-incidence matrices one can use an efficient maximum weight spanning
tree algorithm to find the maximum volume subset of columns efficiently. The bound
we obtain is StT (G) < (n− 1)(m− n + 2). We are unaware of any other analysis of
the stretch of a maximum weight spanning tree, but this bound can be easily proven
using much simpler arguments.

5.3. Low-stretch spanning trees via volume sampling. Recall Problem 1.1,
and let the input matrix be the matrix Y from Theorem 5.2. Using volume sampling
(Lemma 3.9) to sample a subset of columns from this Y corresponds to sampling a
random spanning tree, where a tree T is sampled with relative probability

∏
e∈T w(e).

We denote this probability distribution on spanning trees of G by Γ(G). Lemma 3.9
provides a bound on the stretch of a random spanning tree sampled from Γ(G). Notice
that it is a strict upper bound. The reason is that not every subgraph H is a tree. We
conjecture that this bound is pessimistic, and leave for future work the refinement of
the bound.

Corollary 5.3. Let G be a weighted undirected connected graph, and let T be
a random spanning tree, where tree T is sampled with relative probability

∏
e∈T w(e).

Then,

E [StT (G)] < (n− 1)(m− n+ 2) .

One can use VolumeSample from [35] to generate such a spanning tree in
O(n3m) operations. However, the problem of generating a sample from Γ(G) is a
well-studied problem, and there exists algorithms that can generate a random span-
ning tree faster than O(n3m). See [56] for a short review.

5.4. Towards better bounds for low-stretch spanning trees. State-of-the-
art algorithms for finding low-stretch spanning trees attain theoretical worst-case
bounds that are better those we obtain for a general matrix. We now provide a
preliminary explanation for this gap.

Consider a matrix X ∈ R
n×m with orthonormal rows such that for every subset

S ⊆ [m] of cardinality n, det(XS)
2 = 0 or det(XS)

2 = C for some constant C. The
second inequality of Lemma 3.8 is

‖X−1
S ‖2F =

∑m
j=1

∑n
i=1 det (XS(i→ xj))

2

det (XS)
2
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(here it is an equality because X is orthonormal; also, ‖X†‖22 = 1). Since all determi-
nants are 0 or C, we find that

‖X−1
S ‖2F = #{T : rank(XT ) = n, T = (S − {i}) ∪ {j} for i ∈ S, j ∈ [m]} .

That is, for a subset S such that the columns of X in S form a basis for the column
space of X, ‖X−1

S ‖2F is equal to the number of bases that can be obtained by replacing
a single column. The last quantity can only be bounded universally by n(m− n+1),
and that quantity is obtained for all Ss if XT has full rank for every subset T .
However, if there exist at least one subset T for which XT is singular, then there is
a subset S for which the n(m− n+ 1) bound is strict. If many such sets exist, then
the bound is probably very loose.

Now, let us consider the incidence matrix of a complete graph with equal weights.
If for a subset S the subgraph H(S) is not a tree, then det(YS) = 0 (Y is defined in
Theorem 5.2) . Every tree has exactly the same weight, so for all S’s that correspond
to trees we have the same det(YS)

2. We see that Y falls into the case discussed above.
We conclude that the reason that Y has a subset of column S for which ‖Y−1

S ‖2F is
small is the fact that for some subsets T the matrix YT does not have full rank. In
fact, for the complete graph, most cardinality n− 1 subsets of edges will not result in
a tree or a full rank YS . If we could enumerate these subsets exactly, we could give
a better upper bound for this special matrix.

6. Other applications.

6.1. Column-based low-rank matrix reconstruction. Suppose we want to
build a low-rank approximation of A ∈ R

d×m. For a rank parameter r < rank(A),
let Ar ∈ R

d×m denote the best-rank r approximation to A. That is, Ar minimizes
‖A − B‖2 over B, where B ranges on all-rank r d × m matrices. It is well known
that Ar can be computed via the SVD of A. However, SVD uses all the columns
of A to compute Ar. In some applications it is desirable to use only a small set of
columns to build the low-rank approximation (see [10] and references therein for such
applications). Let S ⊆ [m], and AS contains a subset of columns of A indicated in S.
Define ΠS,r(A) ∈ R

d×m to be the best-rank r approximation of A within the columns
space of AS , with respect to the spectral norm (if S = [m], then ΠS,r(A) = Ar).
The so-called column-based low-rank matrix reconstruction problem is: given A,
r < rank(A), and a sampling parameter k ≥ r, find a subset S of cardinality at most
k such that ‖A−ΠS,r(A)‖2 is minimized among all the possible choices for the subset
S.

It is natural to evaluate ΠS,r(A) in terms of Ar. That is, provide approximation
bounds of the form ‖A − ΠS,r(A)‖2 ≤ α · ‖A − Ar‖2. Currently, the best such
deterministic algorithms are available in [10]. These algorithms achieve asymptotically
optimal upper bounds, but there is still room for improvement in terms of lowering
the operation count.

The algorithm of Corollary 3.3 can be used to obtain a new deterministic algo-
rithm for the column-based low-rank matrix reconstruction problem. First, construct
an SVD decomposition A = UΣVT. Let X ∈ R

r×m be the first r rows of VT. We
now use the algorithm of Corollary 3.3 on X to generate a subset S ⊆ [m] of size k,
which is the result of the algorithm. The following bound holds:

‖A−ΠS,r(A)‖2 ≤
√
2 +

r(m − k)

k − r + 1
· ‖A−Ar‖2 .
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We omit the proof, which follows by combining Lemma 7 from [9] and Corollary 3.3.
The algorithm is deterministic and the operation count is TSVD + O(mr(m − k)),
where TSVD is the number of operations needed to compute the top r right singular
vectors of A. Our approximation bound is slightly worse than the bounds in [10] but
the bound on the number of operations can sometimes be better, depending on the
size of the input matrix. We refer the interested reader to [10] to conduct their own
comparison.

6.2. Sparse solutions to least-squares regression problems. Fix inputs
A ∈ R

d×m and b ∈ R
d; consider the following least-squares problem, minx∈Rm ‖Ax−

b‖2. Since there is no assumption on d and m, or that A is full rank, the minimizer of
‖Ax−b‖2 might not be unique; there might be a full subspace of minimizers. Even if
there is a unique minimizer, it might have a huge norm, while there exists an almost-
minimizer with small norm. What exactly is needed depends on the application,
but often some kind of regularization is used to address the issues just mentioned.
One popular regularization technique is truncated SVD [36]: for r < rank(A), let
Ar ∈ R

d×m of rank r denote the rank-r SVD ofA; then the truncated SVD regularized
solution is given by xsvd(r) = A†

rb ∈ R
m.

However, sometimes a different regularization is sought: requiring the solution
vector to be sparse. That is, we are interested in constructing a vector xk ∈ R

m that
has at most k nonzeros for some k. Since truncated SVD is arguably the most natural
regularizer, it makes sense to compare xk to xsvd(r) for some r ≤ k. More specifically,
we are interested in bounds of the form

‖Axk − b‖2 ≤ ‖Axsvd(r) − b‖2 + α .

The idea of obtaining sparse solutions with approximation bounds of the above type
can be traced to [15]. Currently, the best deterministic method is in [8] (k > r) with

α =

(
1 +

√
r

k

)
‖b‖2‖A−Ar‖F/σr(A) .

For the k = r case, see section 5.5.8 in [30].
The algorithm of Corollary 3.3 (Algorithm 2) can be used to design a new de-

terministic algorithm. First, construct an SVD decomposition A = UΣVT. Let
X ∈ R

r×m be the first r rows of VT. We now use the algorithm of Corollary 3.3 on
X to generate a subset S ⊆ [m] of size k. We now compute x̂k = A†

Sb ∈ R
k. We now

form xk as follows. For i ∈ S let ji be the column in AS that correspond to column
i in A. Now, for every i ∈ S, we set the ith entry of xk to the value of the jith entry
in x̂k. All other entries are set to zero. The following bound holds:

‖Axk − b‖2 ≤ ‖Axsvd(r) − b‖2 +
(
1 +

√
r(m− k)

k − r + 1

)
‖b‖2

σr+1(A)

σr(A)
.

We omit the proof since it follows immediately by combining Lemma 3 from [8] with
Corollary 3.3 in our paper. The algorithm is deterministic and the operation count is
O(dmmin{d,m}+mr(m− k)).

Our bound essentially contains the term
√
m− k · σr+1(A) in place of the term

‖A −Ar‖F in the bound of [8]. It is always the case that ‖A − Ar‖F ≤
√
m− r ·

σr+1(A), but since k ≥ r, our bound might be better in some cases (e.g., when
k → m).
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6.3. Feature selection in k-means clustering. The deterministic algorithm
of Corollary 3.3 can also be used for deterministic feature selection in k-means cluster-
ing. We refer the reader to [11] for an introduction to this problem. Theorem 4 of [11]
gives such a polynomial-time deterministic unsupervised feature selection algorithm,
which selects features from the data and then rescales them. Using Corollary 3.3, one
can design a deterministic unsupervised feature selection algorithm without rescaling.
We omit the details, since the algorithm is similar to the one described for sparse least
squares, and the analysis is a combination of Lemma 10 from [11] with Corollary 3.3.
The approximation bound that is obtained is comparable to the bound in [11].

7. Open problems and future directions. Several interesting questions re-
main unanswered and we leave them for future investigation. First, is the Frobenius-
norm version of Problem 1.1 NP-hard? Second, is it possible to close the existing gaps
between lower and upper bounds for Problem 1.1? Third, is it possible to extend the
strong Rank Revealing QR method of [33] to sample arbitrary k ≥ n columns? Fourth,
is it possible to extend the polynomial implementations of volume sampling in [21, 35]
to sample arbitrary number of columns from short-fat matrices? Finally, is it possible
to derandomize the algorithm of Theorem 3.11?
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