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Abstract. We consider suffix tree construction for situations with missing suffix links. Two ex-
amples of such situations are suffix trees for parameterized strings and suffix trees for two-dimensional
arrays. These trees also have the property that the node degrees may be large. We add a new back-
propagation component to McCreight’s algorithm and also give a high probability hashing scheme
for large degrees. We show that these two features enable construction of suffix trees for general sit-
uations with missing suffix links in O(n) time, with high probability. This gives the first randomized
linear time algorithm for constructing suffix trees for parameterized strings.
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1. Introduction. The suffix tree of a given string of length n is the compacted
trie of all its suffixes. This tree has size O(n) and can be constructed in O(n) time [12,
16, 15]. Suffix trees have several applications (see [8]). One of the main applications
of suffix trees is to preprocess a text in linear time so as to answer pattern occurrence
queries in time proportional to the length of the query and independent of the length
of the preprocessed text. The preprocessing involves building the suffix tree for the
text. Next, given a query pattern, the unique path down the suffix tree traced by this
pattern is determined; each leaf of the tree which lies further down from this path
corresponds to an occurrence of the pattern.

Parameterized suffix trees. Baker [1] generalized the definition of suffix trees to
parameterized strings, i.e., strings having variable characters or parameters in addition
to the usual fixed symbols. The set of parameters and the set of symbols are disjoint.
Two parameterized strings are said to match each other if the parameters in one can
be consistently replaced with the parameters in the other to make the two strings
identical. Here, consistency demands that all occurrences of a particular parameter
are replaced by the same parameter and distinct parameters are replaced by distinct
parameters. Baker [1] gave a definition of suffix trees for parameterized text strings
t so as to facilitate answering pattern occurrence queries in time independent of the
text length |t|.

Two-dimensional suffix trees. Giancarlo [7] generalized suffix trees to two-
dimensional (2D) texts t in order to answer pattern occurrence queries (i.e., find
all occurrences of a given square array p in the square text t) in time independent of
|t|.
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Suffix tree construction. There are several algorithms for constructing the suffix
tree of a string drawn from a constant-sized alphabet set in O(n) time. These include
the algorithms by McCreight [12], Weiner [16], and Ukkonen [15]. All these algorithms
exploit an important property of suffix trees; namely, each node has an outgoing suffix
link.

Farach [5] showed how to construct suffix trees in O(n) time even when the
alphabet size was not constant but some polynomial in n. This algorithm differs
from the others above in that it is not sweep-based and seems to be less critically
dependent on the existence of outgoing suffix links. However, it requires renaming
pairs of adjacent characters to get a string of size half that of the original string. The
suffix tree for this smaller string is built recursively; Farach shows how the suffix tree
of the original string can be obtained from the suffix tree of this smaller string in O(n)
time.

In contrast to suffix trees for strings, suffix trees for both parameterized strings
and 2D arrays lack the suffix link property; i.e., there could be nodes in the tree
without an outgoing suffix link defined. In addition, the node degrees in these suffix
trees need not be bounded by a constant. Due to these two problems, the best
constructions known until recently for suffix trees for parameterized strings [1, 11]
and 2D arrays [7] took O(n log n) time in the worst case, where n is the size of
the input string/array. In each case (i.e., in [1] and [7]; [11] uses a different data
structure), the problem of missing suffix links was handled by using a dynamic tree
data structure [14]; this data structure is used to find the insertion site of the next
suffix in O(log n) time. Further, the problem of large node degrees was handled by
the standard approach of maintaining a binary search tree, which also gave a Θ(logn)
overhead.

We mention here that Baker [1] gives two algorithms for constructing suffix trees
for parameterized strings, one with time complexity O(n log n), as mentioned above,
and another with time complexity O(n(|Π|+log |Σ|)), where Π is the set of parameters
and Σ is the set of symbols. Kosaraju [11] gave a faster algorithm with time complexity
O(n(log |Π|+ log |Σ|)), which is O(n log n) when |Π| = Θ(n).

Recently, Kim and Park [10] used the paradigm of Farach [5] to give an O(n) time
algorithm for 2D suffix tree construction (for polynomially bounded alphabet size).
However, it is not clear how to apply this paradigm to the case of parameterized
strings. In particular, it is not clear how the renaming of pairs of adjacent characters
mentioned above can be accomplished in such a way that the suffix tree of the given
string can be obtained from the suffix tree of the renamed string in O(n) time.

Our contribution. We present two new tools in this paper.

(i) The first tool is aimed at tackling the problem of missing suffix links. We
augment McCreight’s algorithm with a new feature which copies nodes back-
wards (imagine suffix links as going forwards), thus adding additional nodes
and suffix links to the suffix tree. Using a nontrivial accounting procedure,
we show that this back-propagation adds only O(n) extra nodes and accom-
plishes the construction of the suffix tree in O(n) time even with missing
suffix links. The back-propagation is similar to fractional cascading, as used
in many pointer-based data structures of bounded degree (when viewed as
graphs); the difficulty here is that the degrees are potentially unbounded,
which appears to necessitate quite a different analysis.

(ii) The time analysis in (i) assumes that given a node x and a character a, the
unique edge from x to a child of x starting with the character a is com-



28 RICHARD COLE AND RAMESH HARIHARAN

putable in O(1) time. To enable this for high degree nodes x, we give an
extension of the dynamic version of the Fredman–Komlos–Szemerédi (FKS)
perfect hashing scheme [6] which supports insertion of n items from a poly-
nomial sized range in amortized constant time and linear space, with close

to inverse exponential, i.e., O(log n)

2Θ(n1−ε/ log n)
, failure probability. This is in con-

trast to the previous expected time result of Dietzfelbinger et al. [3] and the
previous result of Dietzfelbinger and Meyer auf der Heide [4], which achieves
inverse polynomial failure probability. Searching for an item requires worst-
case constant time. In fact, the items being in a polynomial sized range is
not necessary for our hashing scheme; it suffices if they can be hashed into a
polynomial sized range in linear time.

The above two tools provide a unified framework from which randomized O(n)
time algorithms for constructing suffix trees for regular strings, parameterized strings,
and 2D arrays are easily derived. These algorithms work with high probability (for
2D arrays, the failure probability is only inverse polynomial and not close to inverse
exponential as in the case of regular and parameterized strings; this higher failure
probability arises in the process of casting the 2D array problem in the above unified
framework). This is the first O(n) time randomized algorithm for parameterized suffix
tree construction; the previous best algorithms [1, 11] took O(n log n) deterministic
time. The suffix trees we construct also have the property that the unique path in the
tree corresponding to a given pattern string p can be found in O(p) time, regardless
of the degrees of the nodes.

2. The general setting. Before describing our algorithm, we describe the gen-
eral setting for which our algorithm works. We need the following definitions.

Compacted trie. A compacted trie is a tree data structure defined on a collection
of strings. This tree has one leaf per string in this collection, and each internal node
has at least two children. Therefore, the number of nodes is linear in the number of
strings in the given collection. Each edge of the tree is associated with (or labeled
with) some substring of one of the strings in the given collection. The key property
is that for every pair of leaves, the string formed by concatenating the edge labels on
the path from the root to the least common ancestor of these two leaves is the longest
common prefix of the strings associated with the two leaves.

In this paper, we are interested in compacted tries for certain kinds of string
collections.

Quasi-suffix collections. An ordered collection of strings s1, s2, . . . , sn is called a
quasi-suffix collection if and only if the following conditions hold. Let |s| denote the
length of string s.

1. |s1| = n and |si| = |si−1| − 1. Therefore, |sn| = 1.
2. No si is a prefix of another sj .
3. Suppose strings si and sj have a common prefix of length l > 0. Then si+1

and sj+1 have a common prefix of length at least l − 1.
We will assume that all the strings are drawn from an alphabet of size polynomial in
n.

Character oracles. Note that the total length of the strings in a quasi-suffix
collection of n strings is O(n2), while our aim is to achieve O(n) time construction
for the compacted trie. Therefore, we cannot afford to read the collections explicitly.
Instead, we will assume an oracle which supplies the ith character of the jth string
of the collection on demand in O(1) time.

Multiple quasi-suffix collections. Consider several distinct quasi-suffix collections
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having l strings in all. These quasi-suffix collections constitute a multiple quasi-suffix
collection if conditions 2 and 3 above hold for any pair of strings si, sj over all the
collections (in other words, these conditions hold for pairs within each collection and
for pairs drawn from distinct collections as well).

Our main result will be the following.

Theorem 1. Let ε be any positive constant. The compacted trie of a quasi-suffix
collection of n strings can be constructed in O(n) time and space with failure probability

at most O(log n)

2Θ(n1−ε/ log n)
, given the above character oracle. Further, the compacted trie

of a multiple quasi-suffix collection comprising l strings in all can be constructed in

O(l) time and space with failure probability at most O(log l)

2Θ(l1−ε/ log l)
,

2.1. Examples of quasi-suffix collections. The significance of the above the-
orem comes from the following examples of quasi-suffix collections. The simplest
example is the collection of all suffixes of a string s with a special end-of-string sym-
bol. This is a quasi-suffix collection but with a stronger property; namely, condition
3 in the definition of quasi-suffix collections is satisfied with equality. The compacted
trie of these suffixes is the well-known suffix tree of the string s. Next, we give two
more significant examples for which equality need not hold in condition 3.

2.1.1. Suffix trees for parameterized strings. Recall from the introduction
that a parameterized string s has parameters and symbols. The alphabet from which
parameters are derived is disjoint from the alphabet from which symbols are derived.
Further, both alphabet sizes are polynomial in n, the length of s. As is standard,
assume that s ends in a symbol $ which does not occur elsewhere in s. From s, Baker
[1] defined the following collection of strings.

Each suffix s′ of s is mapped to a string num(s′) with parameters replaced by
numbers and symbols retained as such (assume that symbols are not numbers). The
replacement of parameters is done as follows. The first occurrence of each parameter
in s′ gets value 0 in num(s′). Subsequent occurrences of a parameter get values
equal to the distance from the previous occurrence of the same parameter. Consider
the collection of strings {num(s′)|s′ suffix of s} in decreasing length order. Baker
[1] defined the suffix tree of parameterized string s to be the compacted trie of this
collection. That this collection of strings is indeed a quasi-suffix collection can be seen
as follows.

Condition 1 clearly holds, and condition 2 follows from the occurrence of the
special symbol $ at the end of s. Condition 3 is shown to hold next. Note that
if s′i and s′i+1 are two consecutive suffixes of s, then num(s′i+1) can be obtained
from num(s′i) as follows: for each well-defined index k > 0, set num(s′i+1)[k] to
num(s′i)[k + 1] if num(s′i)[k + 1] �= k, and set num(s′i+1)[k] to 0 otherwise. Next,
consider two suffixes s′i and s′j of s. From the above observation, it follows that if
num(s′i) and num(s′j) have a common prefix of length k + 1, then num(s′i+1) and
num(s′j+1) have a common prefix of length k. Further, if num(s′i) and num(s′j) differ
at location k + 1, then num(s′i+1) and num(s′j+1) could be identical at location k if
one of num(s′i)[k+1], num(s′j)[k+1] equals k and the other equals 0. Condition 3 is
now easily seen to hold.

The character oracle for the above quasi-suffix collection is easily implemented in
O(1) time after the following precomputation: for each occurrence of a parameter in s,
determine the previous occurrence, if any, of this parameter in s. This precomputation
is easily done in O(n) time.
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2.1.2. Suffix trees for 2D arrays. Consider a 2D array s having size m × n,
m ≥ n and characters drawn from some polynomial range. For each square subarray s′

of s which is maximal (i.e., touches either the right boundary or the bottom boundary
or both boundaries of s), Giancarlo [7] defined a string num(s′) as follows.

Defining num(s′). Partition s′ into L’s as in [7] (an L is formed by taking a prefix
of a row and a prefix of a column, with the common point being at the bottom-right;
both prefixes have equal lengths; the resulting shape is actually the image of the
character L reflected about a vertical axis). num(s′) will be a sequence of numbers,
with one number for each such L; these numbers are arranged in increasing order of L
sizes. The number for a particular L is obtained by reading this L as a string and then
mapping strings to integers in such a way that distinct strings map to distinct integers
(by using, for example, the Karp–Rabin fingerprinting scheme [9], which ensures this
property with inverse polynomial failure probability). Finally, a special end-of-string
symbol $ is appended to num(s′), as was done for parameterized strings.

The quasi-suffix collections. Consider a particular top-left to bottom-right diag-
onal and consider all maximal square subarrays of s with top-left point on this diag-
onal. The num() strings corresponding to these subarrays are easily seen to form a
quasi-suffix collection. Thus each top-left to bottom-right diagonal gives a quasi-suffix
collection of strings. Since there arem+n−1 diagonals, we havem+n−1 = O(m) dis-
tinct quasi-suffix collections in all. It is easy to check that these m+n−1 quasi-suffix
collections together constitute a multiple quasi-suffix collection (we will use distinct
end-of-string symbols for each diagonal to satisfy condition 2 for pairs of strings drawn
from distinct collections). Note that the number of strings in each collection is at most
n. Giancarlo [7] defined the common compacted trie of these m+n− 1 collections to
be the suffix tree of s.

The character oracle. A character oracle which works with inverse polynomial
failure probability in O(1) time after O(mn) preprocessing is easy to implement using
the Karp–Rabin fingerprinting scheme. The preprocessing involves computing prefix
sums for each row and column.

2.2. Proving Theorem 1. The rest of the paper is devoted to proving Theorem
1. First, we will describe how to construct the compacted trie of a single quasi-suffix
collection of n strings in O(n) time with high probability. This algorithm can easily be
extended to multiple quasi-suffix collections (such as those resulting from 2D arrays).
This extension is sketched briefly in section 6.

Our algorithm for a single quasi-suffix collection will have two components. The
first component is a modification of McCreight’s algorithm and is described in section
4 and section 5. In these sections, we will assume that the unique child of any given
node with edge label beginning with a given character can be determined in O(1) time.
The second component, i.e., a dynamic perfect hashing scheme described below, will
handle this problem.

Note that in all the above examples of quasi-suffix collections, the alphabet size is
a polynomial in n (while a radix sort followed by relabeling could reduce this to size
at most n, the difficulty would be to subsequently process searches in the suffix tree,
as the search string would be written using the “old” alphabet). Thus to access the
unique edge with a particular starting character from a node, we need to perfectly hash
O(n) pairs, where the first entry in the pair is a node number and the second entry
is a character from the alphabet. Each such pair can be treated as a number from
a range polynomial in n. In section 7, we give a dynamic hashing scheme which will
perfectly hash items from a polynomial in n range with close to inverse exponential
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failure probability.
Before giving our algorithms, we need an outline of McCreight’s algorithm for

constructing the suffix tree of a string.

3. McCreight’s algorithm. The use of suffix links is crucial to this algorithm.
Suffix links are defined as follows.

Definitions. For a node x, let str(x) denote the substring associated with the
path from the root of the tree to x. A suffix link points from a node x to a node y
such that str(y) is just str(x) with the first character removed. Let link(x) denote
this node y. Let par(x) denote the parent of x. For a string u, define node(u) to be
that node x, if any, for which str(x) = u.

Since condition 3 in the definition of quasi-suffix collections is satisfied with equal-
ity for the collection of suffixes of a string, suffix links are defined for each node x in
the suffix tree; i.e., for each node x, a node y = link(x) with the above description
exists.

McCreight’s construction inserts suffixes into the suffix tree one by one in order
of decreasing length. For each suffix i, one new leaf and possibly one new internal
node are inserted. The algorithm for inserting suffix i+1, given that suffix i inserted
leaf y as a child of an existing or new internal node x, is as follows.

The search for the insertion site of suffix i+1 begins from link(par(x)). It involves
two stages: a rescanning stage and, possibly, a scanning stage.

In the rescanning stage, the tree is rescanned downwards from link(par(x)) until
the right position for link(x) is found. Rescanning requires determining that path
down the tree from link(par(x)) whose edge labels form the same substring as the
label on the edge between par(x) and x. Such a path is guaranteed to exist by
condition 3 in the definition of quasi-suffix collections. By virtue of this guarantee,
it suffices to examine just the first character on each edge to determine this path, as
opposed to examining all the characters comprising the edge label; thus we have the
term rescanning (as opposed to scanning, which involves examining all the characters
in the labels at each edge encountered).

Next, there are two cases depending on whether or not a node is already present
at the position for link(x) identified above. If no node is currently present, then
equality in condition 3 in the definition of quasi-suffix collections demands that a new
internal node be inserted at this location and a new leaf corresponding to suffix i+ 1
be inserted as its child; there is no scanning stage in this case. On the other hand, if
a node is indeed present at the above position, then the algorithm involves scanning
downwards from this position. In either case, note that link(x) is now well defined.

The two key facts used to show O(n) time performance over all suffixes are as
follows. Consider the portions of the suffix tree traversed in the scanning stages for
the various suffixes (we will call them scanned portions). These scanned portions
correspond to disjoint portions of the input string, and, therefore, they sum up to
O(n) in length (the length of a scanned portion is the number of characters, not
nodes, encountered in the path scanned). Further, the total time taken in rescan
stages between any two consecutive scanning stages is bounded by the time taken in
the first of these two scanning stages.

Two problems. Two related problems arise in generalizing the above algorithm
to quasi-suffix collections. The first is that link(par(x)) may not be defined. The
second is that the lack of a node at the right position for link(x) (as located in the
rescanning stage) no longer requires a new node to be inserted at this location (this is
due to the lack of equality in condition 3 in the definition of quasi-suffix collections);
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backing up to
find suffix link

nanc(x)

x

suffix link pointing forwards

Imaginary Node

Back-propagated Node

Real Node

newly inserted node

with
rescanning

back-propagation

Fig. 1. Backing up and back-propagation.

we note that if a new node is not inserted, then a scanning stage will begin from this
position.

4. Our algorithm. As in McCreight’s algorithm, we will insert the strings in
the given collection s1, . . . , sn in the compacted trie in decreasing order of length.
Much of the algorithm remains the same; however, we make two key modifications.
The first involves traversing the path up the tree from a newly inserted node to
find an ancestor with a suffix link. The second involves copying nodes backwards
while rescanning down the tree from the destination of the above suffix link. These
changes affect only the rescanning algorithm; the scanning part remains unchanged.
We describe these changes in detail next.

Defining suffix links. For a node x, link(x) is now defined to be that node y such
that if str(x) is the longest common prefix of some si and sj , then str(y) is a common
prefix of si+1 and sj+1; further, |str(y)| = |str(x)| − 1. Note that since condition 3
in the definition of quasi-suffix collections need not be satisfied with equality, link(x)
need not be defined for every node x. Also note that if link(x) exists, then it is
unique.

Backing up. Recall McCreight’s algorithm above. Now, since link(par(x)) need
not exist, we must traverse up the tree from x until a node with a suffix link is
found. We call this node nanc(x) (nanc stands for nearest ancestor). It may be that
nanc(x) = x. Next, the tree is rescanned downwards from link(nanc(x)), as before,
but with one modification to be described shortly. See Figure 1.
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Real and imaginary nodes. Recall our description of McCreight’s algorithm above.
If a new scanning stage begins from the position identified for link(x) in the rescanning
stage, and there is no node at this position, we introduce an imaginary node at this
position. Note that this imaginary node has only one child. Internal nodes which
are not imaginary will be called real. Real nodes will have at least two children each;
in addition, they will also have outgoing suffix links pointing, possibly, to imaginary
nodes.

Note that there are just O(n) real nodes and O(n) imaginary nodes (at most one
real internal node, one leaf, and one imaginary node are inserted per suffix). Since
real nodes have at least two children each, imaginary nodes have just one child each,
and the number of leaves is n, the total number of children over all real and imaginary
nodes is O(n). Also note that the total length of the scanned portions of the tree
in McCreight’s algorithm is O(n), and this remains the same for our algorithm. We
state these facts below for future reference.

Fact 1.

(i) The number of real and imaginary nodes together is O(n).
(ii) The total number of children of real and imaginary nodes together is O(n).
(iii) The total length of the scanned portions of the tree is O(n) (the length of a

single scanned portion is the number of characters, not nodes, encountered in
the path scanned).

We need to add one more feature to McCreight’s algorithm to get linear time
complexity for quasi-suffix collections.

Back-propagated nodes. Other than real and imaginary nodes, our construction
will involve internal nodes of a third kind, called back-propagated nodes. Back-
propagated nodes will always have suffix links and only one child each. They are
defined as follows. In the following, think of suffix links as pointing forwards (i.e., to
the right; see Figure 1).

When the appropriate path starting at link(nanc(x)) is rescanned in order to
determine the position for link(x), several nodes could be encountered in the process.
If more than two nodes are encountered, then alternate nodes are propagated back
to the path (nanc(x), x) (i.e., new nodes with suffix links pointing to the traversed
nodes are set up on this path), taking care that the first and the last nodes traversed
are not propagated back. The new nodes are called back-propagated nodes.

Direction of back-propagation. Note that a node could be back-propagated in
several different directions; i.e., several back-propagated nodes could have their suffix
links pointing to this node. Further, a back-propagated node could be propagated
backwards further, forming a chain of back-propagated nodes.

Definitions. For a node x, let prev(x) be a set of strings defined as follows. For
each si in the given quasi-suffix collection having prefix str(x), prev(x) contains the
prefix of si−1 of length |str(x)| + 1. Note that prev(x) is a set and not a multiset;
therefore all strings in it are distinct. Direction u is said to be valid for node x if
string u appears in prev(x). Node x is said to be back-propagated in direction u if
there exists a string u in prev(x) such that node(u) exists and is a back-propagated
node (see Figure 2). Note that the suffix link of node(u) points to x under these
conditions, i.e., link(node(u)) = x.

The following invariant is maintained by our algorithm by virtue of the fact that
only alternate nodes encountered are back-propagated and the first and last nodes
encountered are not back-propagated.
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str(x)

x

si

si−1

sj−1
sjback-propagated in direction v

back-propagated in direction u

u

v

Fig. 2. Direction of back-propagation.

Invariant 1. If a node x is back-propagated in direction u, then its parent is not
back-propagated in direction u′, where u′ is a prefix of u. The algorithm is presented
in pseudocode below.

The algorithm is presented in pseudocode in Figure 3.

5. Time complexity. There are two aspects to the time taken to insert a partic-
ular string si from the given quasi-suffix collection. The first involves backing up from
x to nanc(x), subsequent to the insertion of x. The second involves rescanning the
appropriate path down from link(nanc(x)) until the position for link(x) is located.
We account for these two aspects of the time separately.

We make a few remarks on the second aspect here. Each step taken here involves
one of the following:

1. Creating a new back-propagated node.
2. Adding a suffix link to an already existing node. This happens when one seeks

to back-propagate a node but the site of this back-propagation is already
occupied by some other node. For this to happen, the latter node must not
have a suffix link; i.e., it must be an imaginary node. A suffix link is now
added to this imaginary node.

3. Creating a new real or imaginary node. This is the node link(x).

Since only one real or imaginary node is added when rescanning from link(nanc(x)) to
link(x), the time taken in this rescanning is proportional to O(1) plus the number of
nodes back-propagated in this process plus the number of imaginary nodes for which
suffix links are set up in this process. Since each imaginary node can get only one
suffix link during the course of the entire algorithm, bounding the above time boils
down to bounding the number of back-propagated nodes by O(n).

5.1. Bounding back-propagated nodes. This will use a charging argument,
where each back-propagated node will be charged to either some real/imaginary node
or to some character in the string s1. Each real/imaginary node and each character
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//Insert suffix s1

Create a single edge (x1, y1) with x1 as the root, labeled s1.

for i = 2 to n do

//Insert suffix si

Let yi−1 be the leaf inserted for si−1, and let xi−1 be its parent.

Find nanc(xi−1), the nearest ancestor of xi−1 with a suffix link, if any;
nanc(xi−1) is the root node otherwise.

Rescan the path starting at link (nanc(xi−1)) until the location for link (xi−1)
is reached.

If link (xi−1) is a new node, split the label on the edge previously containing
link (xi−1)’s location so that |string(link(xi−1))| = |string(xi−1)| − 1.

As the rescan proceeds, back propagate every second node encountered, starting
two nodes after link(nanc(xi−1)) and stopping two nodes before link(xi−1).

If node b is the back propagation of node c, split the label on the edge previously
containing b’s location so that |string(b)| = |string(c)|+ 1.

If link(xi−1) was already present, scan from link(xi−1) to find the location for yi.

Add a label for the edge to node yi so that string(yi) = si.

od

Fig. 3. Algorithm for quasi-suffix tree construction.

in s1 will be charged O(1) in the process. The O(n) bound will follow from Fact
1. It may be that a node created by back-propagation subsequently becomes real or
imaginary. These nodes are not counted; only nodes that are not real or imaginary
when the full tree is built are counted.

Note that a back-propagation chain always starts at a real or an imaginary node.
We will define a tree for each real or imaginary node x as follows.

Defining BP − tree(x). All nodes in this tree other than the root x are back-
propagated nodes. Those back-propagated nodes which are back-propagated from
x (i.e., have suffix links pointing to x) are children of x in this tree. Trees rooted
at these children are defined recursively; i.e., children of a node are those which are
back-propagated from that node. The leaves of this tree are those nodes from which
no further back-propagation occurs.

Consider the forest of BP − trees(∗) rooted at the various real/imaginary nodes
that are back-propagated. Each back-propagated node appears in exactly one tree in
this forest.

Decomposing BP − tree(x) into paths. We partition the nodes of this tree into
paths. The first path is the minimal path starting from the root x and ending on a
node y with the following property: either there exists a valid direction u such that
y has not been back-propagated in this direction or there is no valid direction for
y. Clearly, such a node y must exist. But for the termination restriction, the path
starting at the root is chosen arbitrarily. Once nodes in this path are removed, the
subtrees hanging off this path are decomposed recursively.

Clearly, each back-propagated node will belong to exactly one of the various paths
formed above. Think of each path as going backwards from its start node.

Accounting for long paths. We show that the sum of the lengths of all the paths
obtained above is proportional to the number of such paths plus O(n). It will then
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suffice to bound the number of such paths.

Consider any path obtained above. Let x be any node on this path other than its
start node. link(x) is the node from which x was back-propagated, say in direction u.
Note that link(x) will precede x in the path being considered (as paths go backwards).

By Invariant 1, the parent par(link(x)) of link(x) in the compacted trie has not
been back-propagated in the direction u′, where u′ is the prefix of u such that |u′|
equals |str(par(link(x)))|+ 1; u′, of course, is a valid direction for par(link(x)) (be-
cause u is valid for link(x) itself). It follows that either par(link(x)) is a real/imaginary
node or par(link(x)) is a back-propagated node and the last node in its path (for if
there is a direction in which a node is not back-propagated, then by construction that
node is the last node on its path). In either case, we charge par(link(x)) for x.

Clearly, in this process each real/imaginary node and each back-propagated node
which is the last node in its respective path will be charged an amount bounded by the
number of its children. From Fact 1(ii), this charge sums to O(n) for real/imaginary
nodes. Note that back-propagated nodes have only one child each. Thus, it now
suffices to bound the total number of paths.

Bounding the total number of paths. We will extend the above paths backwards
to form a collection of extended paths, as below.

Consider any one path, and let x be the last node on this path. The extension
to this path is performed as follows. Start at x and follow that direction backwards
along which x was not back-propagated (there is at least one such direction, unless
there are no valid directions for x). Next, repeatedly follow any arbitrarily chosen
valid direction backwards. This extension need not always encounter a node (in fact
we will stop when we hit a node); it is allowed to cut through edges.1 So if a particular
step of this extension leads to the middle of an edge e, take an arbitrary valid direction
back from that point on e. Continue this extension until either a node is reached or
there is no valid direction along which to continue.

Thus an extended path consists of an initial prefix of nodes (i.e., the path itself),
followed by a walk which cuts through edges, and possibly terminates on a node.
Again, note that we think of a path as going backwards. We have the following
claims.

Lemma 5.1. Two distinct extended paths cannot intersect (i.e., they cannot cut
through the same point on some edge or have a node in common), except that the last
node of one can be the first node of the other.

Proof. Since forward directions are always unique, two extended paths can inter-
sect otherwise only if the start node of one path is contained in the other path and is
not the last node on that path. This is a contradiction since all the unextended paths
begin at nodes, the unextended paths are node disjoint, and the extension of a path
terminates as soon as a node is reached.

Lemma 5.2. If an extended path terminates by reaching a node y (and not by
running out of valid directions), then y cannot be a back-propagated node.

Proof. Let x be the last node of the path whose extension is under consideration.
Suppose y is a back-propagated node. As forward links are unique, clearly x must
have been back-propagated in the direction implied by y. But we started the exten-
sion of this path by choosing a direction along which x was not back-propagated, a
contradiction.

1We have defined valid directions only for nodes in the compacted trie. However, this definition
can be extended for points in the middle of an edge in the obvious way, i.e., by imagining a node to
be present at that point.
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Lemma 5.3. The total number of paths is O(n), and hence the total number of
back-propagated nodes is O(n).

Proof. Consider a particular extended path. If it ends at a node without running
out of valid directions, this node must be real/imaginary by Lemma 5.2; the current
path is then charged to this node. By Lemma 5.1, each real/imaginary node is just
charged once.

On the other hand, if this extended path ends because all further valid directions
backwards are exhausted, then the substring associated with the termination point
is a prefix of s1. Further, by Lemma 5.1, different extended paths which end in this
way are associated with distinct prefixes of s1. Thus the number of paths is O(n).

The lemma follows from the argument given earlier that the number of back-
propagated nodes is proportional to the number of paths plus O(n).

5.2. Backing-up time. It remains to account for the time taken to determine
nanc(x) after the insertion of a leaf as a child of x. Note that all such nodes x for
which nanc(x) will be determined are real nodes (because x has at least two children).

This computation requires traversing upwards from x until the nearest node with
a suffix link is found. All nodes encountered on the way must be imaginary (real and
back-propagated nodes have suffix links), and we need to account for the time taken
to traverse these nodes.

The key claim is the following. Note that an imaginary node y signals the begin-
ning of a new scanning phase in McCreight’s algorithm, in which the tree is scanned
downwards starting at y, until a new leaf is inserted as a child of a new or existing
internal node z.

Lemma 5.4. The total number of times imaginary node y can be encountered
while determining nanc(∗) over the entire algorithm is at most |str(z)| − |str(y)|.

Proof. Note that z is a real node after the above scanning phase starting at y
finishes. y could be encountered once while setting up link(z). Subsequently, since
link(z) is in place, y will be encountered only when finding nanc(z′), where z′ is real
and on the path from y to z. There can be at most |str(z)| − |str(y)| such distinct
real nodes z′.

Corollary 5.5. The total time taken in traversing imaginary nodes while de-
termining nanc(∗) is O(n).

Proof. |str(z)|− |str(y)| equals the number of characters scanned in the scanning
phase following the insertion of imaginary node y. By Fact 1(iii), summed over all
y, this is O(n) characters. But by Lemma 5.4, summed over all y, this is also the
number of imaginary nodes encountered while determining nanc(∗).

Theorem 1 now follows for quasi-suffix collections, assuming that the correct
child of a particular node can be found in O(1) time. The extension to quasi-suffix
collections is sketched next.

6. Algorithm for multiple quasi-suffix collections. We sketch how to ex-
tend the above algorithm to a multiple quasi-suffix collection having l strings in all.
The time taken will be O(l).

Suffix links and back-propagation directions need to be redefined appropriately
as follows. Let ski denote the ith string in the kth quasi-suffix collection under con-
sideration (assume an arbitrary ordering on the various quasi-suffix collections).

Suffix links. For a node x, link(x) is now defined to be that node y such that if
str(x) is the longest common prefix of some ski and slj , then str(y) is a common prefix

of ski+1 and slj+1; further, |str(y)| = |str(x)| − 1. Note that since condition 3 in the
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definition of quasi-suffix collections need not be satisfied with equality, link(x) need
not be defined for every node x. Also note that if link(x) exists, then it is unique;
this follows because if str(x) is a prefix of ski and of sk

′
j , then ski+1 and sk

′
j+1 agree in

the first |str(x)| − 1 characters.

Back-propagation directions. For a node x, let prev(x) be a set of strings defined
as follows. For each ski having prefix str(x), prev(x) contains the prefix of ski−1 of
length |str(x)|+1. Note that prev(x) is a set and not a multiset; therefore all strings
in it are distinct. Direction u is said to be valid for node x if string u appears in
prev(x).

The algorithm. The algorithm inserts each collection in turn into the current com-
pacted trie. The first string of each quasi-suffix collection starts a new scanning stage
beginning at the root of the compacted trie. The subsequent strings in the collection
are inserted as in the previous algorithm. Note that the size of the compacted trie will
now be Θ(l). Fact 1 continues to hold with O(n) replaced by O(l). The analysis is as
before with the following two changes. All O(n) terms are replaced by O(l). Further,
in Lemma 5.3, if an extended path ends because all further valid directions backwards
are exhausted, then the substring associated with the termination point is a prefix of
the first string in one of the several quasi-suffix collections being considered.

7. The hashing scheme. Recall from section 2.2 that we need to perfectly hash
O(n) pairs, where the first entry in each pair is a node number and the second entry
is a character from the alphabet. Each such pair can be treated as a number from a
range polynomial in n. We give a dynamic hashing scheme which will perfectly hash
an item from a polynomial in n range in amortized O(1) time, with close to inverse
exponential failure probability. The time taken to access a particular item will be
O(1), and the total space is O(n).

Fredman, Komlos, and Szemerédi [6] showed how n items from the range
[0 . . . poly(n)] can be hashed into the range [0 . . . s] without any collisions, where
s = Θ(n). Their algorithm takes O(n) time and space and works by choosing ran-
domly from a family of almost-universal hash functions (assuming constant time arith-
metic on O(log n) bits). It ensures no collisions with probability at least 1/2.

This was generalized by Dietzfelbinger et al. [3] to the dynamic setting. The
expected amortized insertion/deletion time for their algorithm is O(1); searching
takes O(1) worst-case time. Subsequently, Dietzfelbinger and Meyer auf der Heide
[4] achieved O(1) worst-case insertion/deletion/search time with inverse polynomial
failure probability. We achieve close to inverse exponential failure probability but
with O(1) amortized insertion/deletion times and O(1) worst-case search time. This
is done by modifying the FKS perfect hashing scheme to make it work with high
probability, first in the static setting and then in the dynamic setting.

First, we present the static algorithm. The key idea is to create several perfect
hashing subproblems and to apply the FKS scheme on each independently to obtain
a high success probability.

7.1. The static hashing scheme. The following steps are performed. Let ε be
any positive constant. The time and space taken by our data structure will be linear
but with a 1

ε constant factor. The failure probability will decrease as ε gets closer to
0.

Step 1. Start with an imaginary array A of size nc, where the n items to be
hashed come from the range 1 . . . nc. Each item indexes into a unique element in this
array. Next, repeatedly partition this array as in Step 2.
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Step 2. Construct a partition tree as described below. Each node in this tree will
have a subarray of A associated with it. The depth of this tree will be a constant, and
the number of nodes will be O(n). The root of this tree is A itself. It has nε children,
each associated with a distinct subarray of A of size nc−ε obtained by partitioning
A into nε disjoint pieces. Each subarray with more than nε items is recursively
partitioned; the remaining subarrays become leaves. Each leaf has at most nε items.
Clearly, the number of levels in this tree is O( cε ) = O(1), and the total size in O(n).
The total time taken to set up the tree is easily seen to be O(n).

Step 3. Next, we consider each leaf of the above tree in turn and the items in
the subarray associated with this leaf. We perfect-hash these items using the FKS
perfect hashing scheme. Since this scheme succeeds only with probability 1/2, several
trials may be required before these items are perfectly hashed. We show that with
high probability, the total time taken in this process over all leaves is O(n).

7.2. Time complexity. We need to bound the time taken to perform several
FKS perfect hashings, where the total sizes of all subproblems is n, each subproblem
has size at most nε, and a subproblem is performed successfully in linear time with
probability 1/2.

Size categories. Divide the leaves into O(log n) categories quadrupling by size
(i.e., the number of items associated with the leaf). Consider just leaves in any one
size category, namely, the category in which leaf sizes are in the range nε

4i+1 · · · nε

4i ,
i ≥ 0. We will show that the time taken for this category is proportional to the sum

of the sizes of leaves in this category plus O( n
2i ), with failure probability O(log n)

2
Θ( 2in1−ε

log n
)
.

It follows that the total time taken over all categories is O(n), with failure probability
O(log n)

2
Θ(n1−ε

log n
)
.

A leaf is said to succeed when the items in it are perfectly hashed. A round refers
to one trial for each of the relevant leaves. The trials for the various leaves can be
imagined to have proceeded in rounds, with leaves succeeding in one round dropping
out of the subsequent rounds. We organize the rounds into groups.

Grouping rounds. The 0th group comprises rounds performed before the number

of unsuccessful leaves in this size category drops below n1−ε2i

log n . For j ≥ 1, the jth
group comprises rounds performed after the number of unsuccessful leaves in this size

category drops below n1−ε2i

2j−1 logn but before this number drops below n1−ε2i

2j log n .

We show that group 0 has O(i+ log logn) rounds and that each group j ≥ 1 has

O(2j) rounds, with failure probability O(log n)

2
Θ(n1−ε2i

log n
)
(over all groups). Further, we show

that with the same failure probability, every two consecutive rounds in group 0 reduce
the number of unsuccessful leaves by half. The total time taken for rounds in group
0 is then proportional to the sum of leaf sizes in this category. The time taken for
rounds in the other groups is

O




Θ(log n)∑
j=1

[2j
n1−ε2i

2j−1 log n

nε

4i
]


 = O

( n

2i

)
,

as required.
The key property. To show the above claims on the number of rounds in each

group, we will need the following property, obtained using the Chernoff bound [2].
If there are #u unsuccessful leaves at some instant of time, then half these leaves
succeed in the next 2k rounds, with failure probability 1

2Θ(#uk) .



40 RICHARD COLE AND RAMESH HARIHARAN

Group 0. First, consider group 0. If the number of unsuccessful leaves at some

instant is at least n1−ε2i

logn , then two rounds will halve the number of unsuccessful leaves,

with failure probability at most 1

2
Θ(n1−ε2i

log n
)
(apply the above property with k = 1 and

#u ≥ n1−ε2i

logn ). Note that the number of leaves in the size category being considered is

at most n
nε/4i+1 = n1−ε4i+1 to begin with. It follows that group 0 has 2(i+2+log logn)

rounds, and halving occurs in each pair of consecutive rounds, with failure probability

at most (i+2+log log n)

2
Θ(n1−ε2i

log n
)

= O(log n)

2
Θ(n1−ε2i

log n
)
.

Other groups. Next, consider group j, j ≥ 1. Applying the above property with

k = 2j and #u ≥ n1−ε2i

2j logn , we get that group j has 2 ·2j rounds, with failure probability
1

2
Θ(n1−ε2i2j

2j log n
)
= 1

2
Θ(n1−ε2i

log n
)
. Finally, adding up the failure probability over all O(log n)

groups gives O(log n)

2
Θ(n1−ε2i

log n
)
, as required.

The total time and space taken above is thus O(n), with high probability. Search-
ing for an element requires following the unique path down the partition tree to reach
the relevant perfect-hash table. These operations are easily seen to take O(1) worst-
case time.

Comment. This analysis can also be applied to the second stage of the standard
FKS scheme, assuming the first stage has succeeded (i.e., the initial hash has parti-
tioned the items so that the expected number of pairwise collisions is O(n), and so
every bucket holds O(n1/2) items). We then conclude that the second stage fails with
close to exponentially small probability.

This might lead one to consider a high probability 3-stage FKS-like scheme. The
first stage will be the standard FKS first stage, but it will be decreed to succeed
if the number of pairwise collisions is at most n3/2. This happens with probability
1 − O(1/n1/2) by Markov’s inequality. This step can be repeated up to 2d times
to obtain a failure probability of O(1/nd). The sets resulting from the first stage
are then hashed using a standard 2-stage FKS scheme, but as each of these sets has
size O(n3/4), by an analysis similar to the one of this section one obtains a close to
exponentially small failure probability. Thus the overall failure probability is O(1/nd).
Note that as the first stage is repeated only if necessary, this appears to entail fewer
arithmetic steps than using a 2d-independent hash function.

7.3. The dynamic hashing scheme. The dynamic version of the above static
scheme maintains the partition tree described in Step 2 above at each instant (with
the same parameters; i.e., A has size nc and the branching factor is nε; here n is the
total number of items which will ever be inserted).

Initially, the partition tree will have just an empty root node. This tree will
build up as insertions are made. The size of the partition tree at any instant will be
proportional to the number of items in it. Further, at each instant, the perfect-hash
structure at any leaf will have an associated capacity. This capacity will be at least
the number of items at that leaf but no more than twice this quantity. It follows that
the total space required at any instant will be proportional to the number of items
present.

The algorithm for an insertion is described next. Note that our compacted tree
application involves only insertions and no deletions.

Insertions. On an insertion x, the path down this partition tree to the appropriate
leaf v is traced in O(1) time. Subsequently, there are two cases depending upon how
many items are already present in this leaf v.
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First, suppose v has more than nε items, including x. Then the subarray associ-
ated with v is subdivided as in Step 2 of the static algorithm, and the subtree rooted
at v is developed. Each leaf in this tree will have at most nε elements in it. The
elements in each of these leaves are then perfect-hashed.

Next, suppose v has at most nε items, including x. Then the items already in
v would have been perfect-hashed; further, this perfect-hash structure will have a
certain capacity. If this capacity is equaled by the insertion of x, then all the items
in v (including x) are rehashed into a perfect-hash structure of twice the capacity.
Otherwise, if this capacity is not equaled, then v is perfect-hashed. If there is no
collision, then v’s insertion is complete. Otherwise, if there is a collision, then all the
items in v along with x are perfect-hashed again.

Time analysis. We will show that the total time taken to perform n insertions is

O(n), with failure probability at most O(log n)

2Θ(n1−ε/ log n)
. To show the above, the following

facts need to be noted.

1. The height of the partition tree isO(1); therefore, the time spent in developing
leaves into subtrees on insertion is just O(n) over all n insertions.

2. The perfect-hash structure at any leaf in the partition tree begins with ca-
pacity which is twice the number of items currently in the structure. Future
insertions increase this number until it equals the capacity. Until this hap-
pens, this perfect-hash structure stays in place, though it may have to be
rebuilt as many times as collisions are caused by insertions. Once the num-
ber of items matches the capacity, this perfect-hash structure is abandoned,
and a new perfect-hash structure with twice the capacity is put in place.

3. The total capacities of all perfect-hash structures which were ever in existence
at any time during the n insertions is O(n) (note that when a perfect-hash
structure at a leaf is replaced by a new structure with twice the capacity,
each structure is counted separately in the above sum). This follows from the
doubling of capacities at a leaf and from the constant depth of the partition
tree.

4. When the capacity of a perfect-hash structure at a leaf is doubled, the prob-
ability that this structure needs rebuilding before the number of items in it
equals the new capacity is at most 1/2. Further, the time taken for rebuilding
a particular perfect-hash structure is proportional to its capacity.
Note the difference from the static case, where a perfect-hash trial succeeds
on the items currently present with probability 1/2. Now, this is replaced by
the fact that a perfect-hash trial succeeds with probability 1/2 even on future
insertions as long as the capacity is not equaled.

Thus, to establish the total time bound above, it suffices to bound the total
time taken for rebuilding the perfect-hash structures at the various leaves. This in
turn boils down to the following question: What is the total time taken to perform
several FKS perfect hashings, where the total sizes of all subproblems is Θ(n), each
subproblem has size at most nε, and a subproblem is performed successfully in linear
time with probability 1/2? The analysis is now identical to the static case.

We conclude with two remarks on generalizing the above scheme when the number
of items is unknown and deletions need to be performed as well. Neither of these is
relevant to our application of constructing suffix trees.

Unknown number of items. Suppose the number of items to be hashed is an
unknown quantity m, with each item coming from the range 1 . . . nc. Then we start
with an initial estimate of 1 and double the estimate each time it is equaled by
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insertions. Suppose the current estimate is 2e, and the number of items inserted is
e. We first hash these items into an imaginary array A of size (2e)c. No collisions
occur, with inverse polynomial (in e) failure probability (using families of almost-
universal hash functions). We repeatedly try new hash functions until no collisions
occur. Subsequently, we build the partition tree with degree (2e)ε. When the number
of insertions equals 2e, we double our estimate to 4e and rebuild the entire structure.
If the total number of insertions is m, then the total time and space required is O(m),
with probability 1 minus an inverse polynomial in m. This failure probability can be
reduced to 1

mΘ(log m) by using a family of hash functions defined by Siegel [13], instead
of a family of almost-universal hash functions.

Deletions. Deletions can be easily handled as follows. A deleted item is just
marked as deleted, without causing any other change to the data structure. Whenever
the number of items marked as deleted becomes a constant fraction of the number of
items currently in the data structure the entire structure is rebuilt on the undeleted
items. The running time remains O(m) for m insertions and deletions, with the same
failure probability as above. The space at any instant is proportional to the number
of undeleted items.
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