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Abstract: - Independent component analysis is a generative model for observed multivariate data, 

which are assumed to be mixtures of some unknown latent variables. It is a statistical and 

computational technique for revealing hidden factors that underlies set of random variable 

measurements of signals. A common problem faced in the disciplines such as statistics, data analysis, 

signal processing and neural network is finding a suitable representation of multivariate data. The 

objective of ICA is to represent a set of multidimensional measurement vectors in a basis where the 

components are statistically independent. In the present paper we deal with a set of images that are 

mixed randomly. We apply the principle of uncorrelatedness and minimum entropy to find ICA. The 

original images are then retrieved using fixed point algorithm known as FastICA algorithm and 

compared with the original images with the help of estimated error. The outputs from the intermediate 
steps of algorithm such as PCA, Whitening matrix, Convergence of algorithm and dewhitening matrix  

are also discussed.  

 

Keywords: - PCA, ICA, Statistical independence, Non-gaussianity, Maximum Likelihood, Feature 

Extraction.  

 

 

1 Introduction 

ICA is a method for finding underlying factors 

or components from multivariate data. The 

approach that distinguishes ICA from other 

methods is that it looks for components that are 

both statistically independent and non-Gaussian. 

           In reality, the data often does not follow a 

gaussian distribution and the situation is not as 

simple as those methods of factor analysis, 

projection pursuit or PCA assumes. Many real 

world data sets have super Gaussian 

distributions. Hence the probability density of 

the data is peaked at zero and has many tails, 

when compared to a Gaussian density of the 

same variance. This is the starting point of ICA 

where we try to find statistically independent 
components in the general case where the data is 

non gaussian .In this paper we provide the 

different estimation principles of ICA and their 

algorithms. 

This emerging technique appears as a 

powerful generic tool for data analysis and the 

processing of the multi sensor data recording. In 

ICA, “independence” should be understood in 

its strong statistical sense: it is not reduced to 

decorrelation; because for the purpose of ICA. Second 
order statistics fail to capture important features of a 

data set, as there are many linear transforms which 

decorrelate the entries of a random vector. [1].  

In this paper we try to analyze the results for 

FASTICA algorithm [1], applied to the mixed data of 

4 images, for different non-linearities. The images are 

mixed in the following way: 

1 1 2 2

3 3 4 4

( )* ( )*

       ( )* ( )*

M rnd s I rnd s I

rnd s I rnd s I

= + +

+ …(1) 

 

Where Sn is the random vector of size of image. 

Thus we are taken the more generalized condition 

as compared to the condition taken in [2] where 

Sn is assumed to be a real integer  

 This paper is organized as follows. In section 

2, we try to explain the ICA and its general 

assumption for indentifiability of its model. In section 

3, we consider the different contrast function for 

maximization of non guassianity such as kurtosis and 

negentropy. Section 4 deals with the algorithm that we 

apply to mixed image to find ICA. Section 5 deals 

with the result and conclusion. 

 

WSEAS TRANSACTIONS on SIGNAL PROCESSING

Arti Khaparde, M. Madha Vilatha, M.B.L. Manasa, 

P. Anil Babu and S. Pradeep Kumar

ISSN: 1790-5052 271 Issue 5, Volume 4, May 2008



  

 

 

2 Independent Component Analysis 

 
2.1 Definitions of ICA 
In the literature there are three different basic 
definition of ICA [1] Here we are using the 

basic definition that, ICA of the random vector 

X consists of finding a linear transform  

            X AS= ----------- (2) 

so that the components si are as independent as 

possible, w.r.t. some maximum function that 

measures independence. This definition is 

known as a general definition where no-

assumptions on the data are made [1]. 

 Independent component analysis (ICA) 
is the decomposition of a random vector in 

linear components which are “as independent as 

possible”. Here, ’independence’ should be 

understood in its strong statistical sense: it goes 

beyond second order decorrelation and thus 

involves the non-gaussianity of the data. The 

ideal measure of independence is the higher 

order cumulants like kurtosis and mutual 

information and is known to be related to the 

entropy of the components. Taking this into 

consideration there has been considerable 

amount of research on the algorithms for 

performing ICA [1]-[7]. 

 

2.2    Indentifiability of the Model 
In addition to the basic assumption of 

statistically independence, by imposing the 

following fundamental restrictions, the 

indentifiability of the noise free ICA model can 

be assured. 

1. All the independent components Si, with

  the possible exemption of one  

  component, must be non-Gaussian 
2. The number of observed linear mixtures 

 m must be at least as large as the number 

 of independent components n; i.e. m> p 

3. The matrix A must be of full column rank. 

 

 

3 ICA Algorithm 

 
3.1 ICA By Maximization Of Non 

Gaussianity 
One of the simple & intuitive principles for 

estimating the model of ICA is based on 

maximization of non-gaussianity. Non Gaussian 

components are  Independent [1].Central limit 

theorem states that the distribution of a sum of 

independent random variables tends towards a 

gaussian distribution, under certain conditions. 
Estimating the independent components can be 

accomplished by finding the right linear combinations 

of the mixture variables, since we can invert the 

mixing as  

 S = A
-1

 X.                    ……(3) 

Thus to estimate one of the independent components, 

we can consider a linear combination of xi Let us 
denote this by  

                 Y= bTX = bTAS.        ……. (4) 

Hence if b were one of the rows of A-1 , this linear 

combination b
T
X would actually equal one of the 

independent components. 

 But in practice we cannot determine such ‘b’ 

exactly because we have no knowledge of matrix A, 

but we can find an estimator that gives a good 

approximation. In practice there are two different 

measures of Non- Guassianity 

 

3.1.1Kurtosis 

The classical measure of non-gaussianity is kurtosis or 
the fourth order cumulant. It is defined by  

    Kurt(y) = E {y4}– 3 ( E { y2})2    …..(5) 

As the variable y is assumed to be standardized we can 

say 

      Kurt (y) = E { y
4
} –3     ……..(6) 

Hence the kurtosis is simply a normalized version of 

the fourth moment E{y
4
}. For the gaussian case the 

fourth moment is equal to 3 and hence kurt (y) =0. 

Thus for gaussian variable kurtosis is zero but for non-

gaussian random variable it is non-zero. 

 

3.1.2 Negentropy 
Negentropy is another very important measure of non-

guassianity. To obtain a measure of non-gaussianity 
that is zero for a gaussian variable and always non 

negative for a non Gaussian random variable, we can 

use a slightly modified version of the definition of 

differential entropy called negentropy. 

Negentropy J is defined as  

J(y) = H (ygauss) – H (y)    …. (7) 

Where ygauss is a gaussian random variable of the same 

covariance matrix as y.  

 

3.2 Negentropy in terms of Kurtosis 
As the gaussian variable has the largest entropy among 

all the random variables, the negentropy for the 

random variables will always be positive and it is zero 

if and only if it is a gaussian variable. Moreover, the 

negentropy has an additional property that it is 

invariant for invertible transformation. 
But the estimation of negentropy is difficult, as it 

would require an estimate of the pdf. Therefore in 
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practice negentropy is approximated by using 

higher order moments. 

     { } 223
(y)kurt  

48

1
y E

12

1
 (y) J +≈ … (8) 

Again the random variable y is assumed to be 

standardized  

In order to increase the robustness 

another approach is to generalize the higher 

order cumulant approximation. So that it uses 

expectations of general non-quadratic functions. 

As a simple case, we can take any two non-

quadratic functions G1 & G2 s.t. G1 is add & G2 

is even & we obtain the following 

approximation.[2] 

( ) ( ){ }( )
( ){ } ( ){ }{ }

2

1 1

2

2 2 2
      

J y E y

E y E U

GK

G GK

≅

+ −

       ….(9)   

               Where K1 & K2 are positive constant & 

U is standardized gaussian variable. 

 

 

 

4  Fast Fixed Point Algorithm  

Using Negentropy    
     As with kurtosis, a much faster method for 

maximizing negentropy than that given by the 

gradient method can be found using a fixed-

point algorithm. This algorithm finds a direction 

i.e., unit vector W such that the projection W
T
Z 

maximizes non-gaussianity. Non gaussianity is 

measured by the approximation of negentropy J 

(WTZ) , where the variance of WTZ must be 

constrained to unity , for whitened data this is 

equivalent to constraining the normalization of 

W to be unity.[5,6] 

          Fast ICA is based on a fixed-point 

iteration scheme for finding a maximum of the 

non-guassianity of WTZ. It can be derived as an 

approximative Newton iteration. The fast ICA 

algorithm using negentropy combines the 

superior algorithmic properties resulting from 

the fixed-point iteration with the preferable 

statistical properties due to negentropy. 
Considering the algorithm stated in [1], we 

modified the Fast ICA algorithm using 

Negentropy is as follows:  

 

1. Center the data to make its mean zero. 

 

2. Choose m, the number of independent 
    components to estimate from the PCA. 

 

3.. Whiten the data to give Z. 

 

4. Choose the random mixing matrix W 

 
5. Orthogonalized the matrix W 

 

6. Let W1←←←← E {Zg(W
T
Z)} – E{g′′′′(W 

T
Z)}W,     

      where g is defined as  

                       g(y)= tanh(y) or                  

                       g(y)=y3  

 

7 Orthogonalized matrix W 

 

8. If not converged, go back to step 6. 

 

9.  Let W2 ← W1/ W 1 

 

10. for second ICA go to step 6 

 
11. Repeat for i= 1,2,3….m 

 

      Here convergence means that the old and new 

values of W point in the same direction i.e., the 

absolute value of their dot product is (almost) equal to 

one. 

 

  

5. Result and Conclusion  

We have taken different images for training. The code 

was written and simulated in MATLAB. Mixing 

matrix was assumed to be random. Hence every time 

we run the algorithm the mixed image coefficient was 

different. We consider the image of size 50 x 50. The 

code has been simulated many times out of which we 

are giving data for first 10 iterations. 

Table 1 shows the total number of iterations 

taken by each non-linearity to converge and the error 

estimated between initially assumed S and the S what 

we got from ICA. Figure 1 shows the estimated error 

analysis between the initial mixing matrix assumed 

and Ica found out. Figure 2 shows the number of 

iterations taken by each nonlinearity. Figure 3. Shows 

the plot of ICA we got for images using tanh.  Figure 

4. Shows the plot of ICA we got for images using y3. 

Figure 5 to Figure 11 shows the intermediate results of 

the simulation. Figure 12 shows the images given as 

the input to the mixing matrix to get the mixed image 

i.e Fig 13. Figure 14 shows the images retrieved using 

nonlinearity tanh. Figure 15 shows the images 

retrieved using nonlinearity  y3.  

 The algorithm was tested on several set of mixed 

images and the following conclusions were drawn The 

number of images mixed can be understood by seeing 

at PCA output. The number of PCA will give the 
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number of images that are mixed in the given 

input mixed matrix.  

Depending of dewhitening matrix, the 
image is obtained. If the maximum 

dewhiteneing coefficient lie in second and 

fourth quadrant, then original image is retrieve 

otherwise image retrieve is negative.  

Figure 7 and Figure 10 proves the 

convergence of algorithm because it is as per the 

definition of convergence of kurtosis, that the 
convergence takes place in the negative 

direction, where the maxima are at the points 

when exactly one of the element vectors of q is 

zero and other non-zero. Also it can be seen 

from the convergence graph that non zero 

element lie between + constant value to – 

constant value. 

Fig 16 to Fig 23 shows the result for next set 

of mixed images, It shows that if set of mixed 

images are such that, there are two or more 

images are having gaussian histogram 

distribution then, even though the convergence 

is there but retrieval of images is not good. Thus 
it support to the basic Restriction of ICA that it 

is essentially difficult if the observed variables 

have gaussian variable and hence not more that 

one gaussian variable is allowed. 

The retrieve images are not in the same 

order every time we run the algorithm and hence 

it is difficult to determine the order of the 
independent components  

It is found that the number of iterations 

required to converge the algorithm using 

nonlinearity Y
3
 is less as compared to the tanh 

nonlinearity. But it is at the expense of 

probability of getting Independent Component. 

The estimated error graph shows that the error is 
more while retrieving images with Y3 as 

compared to tanh nonlinearity. Also some post 

processing steps may require for Y3 because 

sometimes negative images get retrieved. Hence 

we conclude that for finding the ICA the 

nonlinearity which varies slowly will give better 

results.  

 

Table.1 

 

Means square error Non 

linearit

y run 

no. of  

iteratio

n I1 I2 I3 I4 

tanh 1 32 0.0020 0.0029 0.0067 0.0023 

tanh 2 14 0.0015 0.0023 0.0081 0.0020 

tanh 3 8 0.0024 0.0015 0.0080 0.0020 

tanh 4 34 0.0064 0.0030 0.0019 0.0024 

tanh 5 9 0.0015 0.0080 0.0021 0.0024 

tanh 6 40 0.0068 0.0022 0.0029 0.0019 

tanh 7 44 0.0019 0.0023 0.0065 0.0030 

tanh 8 47 0.0029 0.0023 0.0020 0.0066 

tanh 9 55 0.0019 0.0066 0.0023 0.0031 

tanh 10 15 0.0024 0.0015 0.0079 0.0021 

       

pow3 1 57 0.0068 0.0051 0.0011 0.0009 

pow4 2 17 0.0049 0.0062 0.0010 0.0020 

pow5 3 18 0.0019 0.0010 0.0061 0.0047 

pow6 4 19 0.0010 0.0020 0.0060 0.0048 

pow7 5 13 0.0047 0.0061 0.0020 0.0010 

pow8 6 19 0.0010 0.0020 0.0062 0.0048 

pow9 7 14 0.0011 0.0047 0.0062 0.0021 

pow10 8 20 0.0046 0.0010 0.0020 0.0063 

pow11 9 21 0.0010 0.0047 0.0063 0.0020 

pow12 10 18 0.0047 0.0060 0.0010 0.0021 
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Fig.1 Analysis of estimated error 
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Fig.2. No. of iteration required for convergence 
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Fig 3.ICA and histogram plot for images using     

         tanh 
 

 
Fig 4. ICA and histogram plot for image 4 using  

          y3 

 

 
  

Fig 5 PCA output 

whitened signal
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Fig 6 Whitening for  tanh nonlinearity 
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Fig 7 Plot of convergence for tanh nonlinearity 
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Fig 8 Dewhitened matrix for tanh nonlinearity 
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Fig 9 Whitening for  y
3
  nonlinearity 
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Fig 10 Plot of convergence for y3 nonlinearity 
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Fig 11 Dewhitened matrix for y3 nonlinearity 
 

  
 

 

   
 

Fig.12.Original Input Images 

 
 

Fig 13. Mixed image given as an input to the 
algorithm 

 

 

       
 

        
 

Fig.14.Output Images for Tanh nonlinearity 

 

       
 

         
 

Fig.15.Output Images For Y3 nonlinearity 
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Fig. 16 Input images with their histogram 

 

 
 

Fig 17. Mixed image given as an input to the 

algorithm 

 

 
Fig 18. PCA output 
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Fig 18 Whitening for  tanh nonlinearity 
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Fig 19. One dimensional plot for ICA 
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Fig 20. Plot of convergence for tanh nonlinearity 

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

 
 

Fig 21 Dewhitened matrix for tanh nonlinearity 
 

 

      
 

     
 

Fig 22 Output for tanh non-linearity 
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Fig 23 Output for y
3
 non-linearity 
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