
Eur. Phys. J. C (2012) 72:1896
DOI 10.1140/epjc/s10052-012-1896-2

Special Article - Tools for Experiment and Theory

FastJet user manual

(for version 3.0.2)

Matteo Cacciari1,2, Gavin P. Salam1,3,4, Gregory Soyez5,a

1LPTHE, UPMC Univ. Paris 6 and CNRS UMR 7589, Paris, France
2Université Paris Diderot, Paris, France
3Physics Department, Theory Unit, CERN, Geneva, Switzerland
4Department of Physics, Princeton University, Princeton, NJ 08544, USA
5Institut de Physique Théorique, CEA Saclay, Gif-sur-Yvette, France

Received: 6 December 2011 / Published online: 16 March 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient

native implementations of all widely used 2 → 1 sequential recombination jet algorithms for pp and e+e− collisions, as well

as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet
also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers,

as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or

suppression of noise in jets.

Contents

1 Introduction . 2

2 Quick-start guide . 5

3 Core classes . 6

3.1 fastjet::PseudoJet . 6

3.2 fastjet::JetDefinition . 8

3.3 fastjet::ClusterSequence . 9

3.4 Recombination schemes . 11

3.5 Constituents and substructure of jets . 12

3.6 Composite jets, general considerations on jet structure . 13

3.7 Version information . 14

4 FastJet native jet algorithms . 14

4.1 Longitudinally invariant kt jet algorithm . 14

4.2 Cambridge/Aachen jet algorithm . 15

4.3 Anti-kt jet algorithm . 15

4.4 Generalised kt jet algorithm . 15

4.5 Generalised kt algorithm for e+e− collisions . 16

4.6 kt algorithm for e+e− collisions . 16

5 Plugin jet algorithms . 16

5.1 Generic plugin use . 17

5.2 SISCone plugin . 17

5.3 Other plugins for hadron colliders . 19

a e-mail: gregory.soyez@cea.fr

mailto:gregory.soyez@cea.fr

Page 2 of 54 Eur. Phys. J. C (2012) 72:1896

5.4 Plugins for e+e− collisions . 23

6 Selectors . 24

6.1 Essential usage . 24

6.2 Available selectors . 25

7 Jet areas . 27

7.1 AreaDefinition . 27

7.2 ClusterSequenceArea . 30

8 Background estimation and subtraction . 30

8.1 General usage . 31

8.2 Positional dependence of background . 33

8.3 Other facilities . 34

8.4 Alternative workflows . 34

9 Jet transformers (substructure, taggers, etc.) . 35

9.1 Noise-removal transformers . 35

9.2 Boosted-object taggers . 38

10 Compilation notes . 40

Acknowledgements . 40

Appendix A: Clustering strategies and performance . 40

Appendix B: User info in PseudoJets . 41

Appendix C: Structural information for various kinds of PseudoJet . 43

Appendix D: Functions of a PseudoJet . 44

Appendix E: User-defined extensions of FastJet . 45

E.1 External Recombination Schemes . 45

E.2 Implementation of a plugin jet algorithm . 45

E.3 Implementing new selectors . 47

E.4 User-defined transformers . 48

Appendix F: Error handling . 50

Appendix G: Evolution of FastJet across versions . 51

G.1 History . 51

G.2 Deprecated and removed features . 52

G.3 Backwards compatibility of background estimation facilities . 53

References . 53

1 Introduction

Jets are the collimated sprays of hadrons that result from the fragmentation of a high-energy quark or gluon. They tend to be

visually obvious structures when one looks at an experimental event display, and by measuring their energy and direction one

can approach the idea of the original “parton” that produced them. Consequently jets are both an intuitive and quantitatively

essential part of collider experiments, used in a vast array of analyses, from new physics searches to studies of Quantum

Chromodynamics (QCD). For any tool to be so widely used, its behaviour must be well defined and reproducible: it is not

sufficient that one be able to visually identify jets, but rather one should have rules that project a set of particles onto a set

of jets. Such a set of rules is referred to as a jet algorithm. Usually a jet algorithm involves one or more parameters that

govern its detailed behaviour. The combination of a jet algorithm and its parameters is known as a jet definition. Suitable jet

definitions can be applied to particles, calorimeter towers, or even to the partonic events of perturbative QCD calculations,

with the feature that the jets resulting from these different kinds of input are not just physically close to the concept of

partons, but can be meaningfully be compared to each other.

Jet finding dates back to seminal work by Sterman and Weinberg [1] and several reviews have been written describing the

various kinds of jet finders, their different uses and properties, and even the history of the field, for example [2–6].

It is possible to classify most jet algorithms into one of two broad classes: sequential recombination algorithms and cone

algorithms.

Sequential recombination algorithms usually identify the pair of particles that are closest in some distance measure,

recombine them, and then repeat the procedure over and again, until some stopping criterion is reached. The distance measure

Eur. Phys. J. C (2012) 72:1896 Page 3 of 54

is usually related to the structure of divergences in perturbative QCD. The various sequential recombination algorithms differ

mainly in their particular choices of distance measure and stopping criterion.

Cone algorithms put together particles within specific conical angular regions, notably such that the momentum sum of the

particles contained in a given cone coincides with the cone axis (a “stable cone”). Because QCD radiation and hadronisation

leaves the direction of a parton’s energy flow essentially unchanged, the stable cones are physically close in direction and

energy to the original partons. Differences between various cone algorithms are essentially to do with the strategy taken to

search for the stable cones (e.g. whether iterative or exhaustive) and the procedure used to deal with cases where the same

particle is found in multiple stable cones (e.g. split–merge procedures).

One of the aims of the FastJet C++ library is to provide straightforward, efficient implementations for the majority

of widely used sequential-recombination algorithms, both for hadron-hadron and e+e− colliders, and easy access also to

cone-type jet algorithms. It is distributed under the terms of version 2 of the GNU General Public License (GPL) [7].

To help introduce the terminology used throughout FastJet and this manual, let us consider the longitudinally-invariant

kt algorithm for hadron colliders [8, 9]. This was the first jet algorithm to be implemented in FastJet [10] and its structure,

together with that of other sequential recombination algorithms, has played a key role in the design of FastJet’s interface.

The kt algorithm involves a (symmetric) distance measure, dij , between all pairs of particles i and j ,

dij = dji = min
(

p2
t i,p

2
tj

)
�R2

ij

R2
, (1)

where pt i is the transverse momentum of particle i with respect to the beam (z) direction and �R2
ij = (yi −yj)

2 +(φi −φj)
2,

with yi = 1
2 ln

Ei+pzi

Ei−pzi
and φi respectively i’s rapidity and azimuth. The kt algorithm also involves a distance measure between

every particle i and the beam

diB = p2
t i . (2)

R in (1), usually called the jet radius, is a parameter of the algorithm that determines its angular reach. In the original, so-

called “exclusive” formulation of the kt algorithm [8] (generally used with R = 1), one identifies the smallest of the dij and

diB . If it is a dij , one replaces i and j with a single new object whose momentum is pi + pj —often this object is called a

“pseudojet”, since it is neither a particle, nor yet a full jet.1 If instead the smallest distance is a diB , then one removes i from

the list of particles/pseudojets and declares it to be part of the “beam” jet. One repeats this procedure until the smallest dij

or diB is above some threshold dcut; all particles/pseudojets that are left are then that event’s (non-beam) jets.

In the “inclusive” formulation of the kt algorithm [9], the dij and diB distances are the same as above. The only difference

is that when a diB is smallest, then i is removed from the list of particles/pseudojets and added to the list of final “inclusive”

jets (this is instead of being incorporated into a beam jet). There is no dcut threshold and the clustering continues until no

particles/pseudojets remain. Of the final jets, generally only those above some transverse momentum are actually used.2

Because the distance measures are the same in the inclusive and exclusive algorithms, the clustering sequence is common to

both formulations (at least up to dcut), a property that will be reflected in FastJet’s common interface to both formulations.

Having seen these descriptions, the reader may wonder why a special library is needed for sequential-recombination jet

finding. Indeed, the kt algorithm can be easily implemented in just a few dozen lines of code. The difficulty that arises,

however, is that at hadron colliders, clustering is often performed with several hundreds or even thousands of particles.

Given N particles, there are N(N − 1)/2 dij distances to calculate, and since one must identify the smallest of these O(N2)

distances at each of O(N) iterations of the algorithm, original implementations of the kt algorithm [11–13] involved O(N3)

operations to perform the clustering. In practice this translates to about 1 s for N = 1000. Given that events with pileup can

have multiplicities significantly in excess of 1000 and that it can be necessary to cluster hundreds of millions of events, N3

timing quickly becomes prohibitive, all the more so in time-critical contexts such as online triggers. To alleviate this problem,

FastJet makes use of the observation [10] that the smallest pairwise distance remains the same if one uses the following

alternative (non-symmetric) dij distance measure:

dij = p2
t i

�R2
ij

R2
, dji = p2

tj

�R2
ij

R2
. (3)

1In FastJet we actually will use PseudoJet to denote any generic object with 4-momentum.
2This transverse momentum cut has some similarity to dcut in the exclusive case, since in the exclusive case pseudojets with pt <

√
dcut become

part of the beam jets, i.e. are discarded.

Page 4 of 54 Eur. Phys. J. C (2012) 72:1896

For a given i, the smallest of the dij is simply found by choosing the j that minimises the �Rij , i.e. by identifying i’s

geometrical nearest neighbour on the y–φ cylinder. Geometry adds many constraints to closest pair and nearest neighbour

type problems, e.g. if i is geometrically close to k and j is geometrically close to k, then i and j are also geometrically

close; such a property is not true for the dij . The factorisation of the problem into momentum and geometrical parts makes it

possible to calculate and search for minima among a much smaller set of distances. This is sufficiently powerful that with the

help of the external Computational Geometry Algorithms Library (CGAL) [14, 15] (specifically, its Delaunay triangulation

modules), FastJet achieves expected N lnN timing for many sequential recombination algorithms. This N lnN strategy

is supplemented in FastJet with several other implementations, also partially based on geometry, which help optimise

clustering speed up to moderately large multiplicities, N � 30000. The timing for N = 1000 is thus reduced to a few

milliseconds. The same techniques apply to a range of sequential recombination algorithms, described in Sect. 4.

At the time of writing, sequential recombination jet algorithms are the main kind of algorithm in use at CERN’s Large

Hadron Collider (LHC), notably the anti-kt algorithm [16], which simply replaces p2
t with p−2

t in (1), (2). Sequential re-

combination algorithms were also widely used at HERA and LEP. However at Fermilab’s Tevatron, and in much preparatory

LHC work, cone algorithms were used for nearly all studies. For theoretical and phenomenological comparisons with these

results, it is therefore useful to have straightforward access also to cone algorithm codes. The main challenge that would be

faced by someone wishing to write their own implementation of a given cone algorithm comes from the large number of

details that enter into a full specification of such algorithms, e.g. the precise manner in which stable cones are found, or in

which the split–merge step is carried out. The complexity is such that in many cases the written descriptions that exist of

specific cone algorithms are simply insufficient to allow a user to correctly implement them. Fortunately, in most cases, the

authors of cone algorithms have provided public implementations and these serve as a reference for the algorithm. While

each tends to involve a different interface, a different 4-momentum type, etc., FastJet has a “plugin” mechanism, which

makes it possible to provide a uniform interface to these different third party jet algorithms. Many plugins (and the corre-

sponding third party code) are distributed with FastJet. Together with the natively-implemented sequential-recombination

algorithms, they ensure easy access to all jet algorithms used at colliders in the past decade (Sect. 5). Our distribution of this

codebase is complemented with some limited curatorial activity, e.g. solving bugs that become apparent when updating

compiler versions, providing a common build infrastructure, etc.

In the past few years, research into jets has evolved significantly beyond the question of just “finding” jets. This has

been spurred by two characteristics of CERN’s LHC experimental programme. The first is that the LHC starts to probe

momentum scales that are far above the electroweak scale, MEW, e.g. in the search for new particles or the study of high-

energy WW scattering. However, even in events with transverse momenta ≫MEW, there can simultaneously be hadronic

physics occurring on the electroweak scale (e.g. hadronic W decays). Jet finding then becomes a multi-scale problem, one

manifestation of which is that hadronic decays of W ’s, Z’s and top quarks may be so collimated that they are entirely

contained within a single jet. The study of this kind of problem has led to the development of a wide array of jet substructure

tools for identifying “boosted” object decays, as reviewed in [17]. As was the situation with cone algorithms a few years ago,

there is considerable fragmentation among these different tools, with some public code available from a range of different

sources, but interfaces that differ from one tool to the next. Furthermore, the facilities provided with version 2 of FastJet
did not always easily accommodate tools to manipulate and transform jets. Version 3 of FastJet aims to improve this

situation, providing implementations of the most common jet substructure tools3 and a framework to help guide third party

authors who wish to write further such tools using a standard interface (Sect. 9). In the near future we also envisage the

creation of a FastJet “contrib” space, to provide a common location for access to these new tools as they are developed.

The second characteristic of the LHC that motivates facilities beyond simple jet finding in FastJet is the need to use

jets in high-noise environments. This is the case for proton-proton (pp) collisions, where in addition to the pp collision of

interest there are many additional soft “pileup” pp collisions, which contaminate jets with a high density of low-momentum

particles. A similar problem of “background contamination” arises also for heavy-ion collisions (also at RHIC) where the

underlying event in the nuclear collision can generate over a TeV of transverse momentum per unit rapidity, part of which

contaminates any hard jets that are present. One way of correcting for this involves the use of jet “areas”, which provide

a measure of a given jet’s susceptibility to soft contamination. Jet areas can be determined for example by examining the

clustering of a large number of additional, infinitesimally soft “ghost” particles [19]. Together with a determination of the

level of pileup or underlying-event noise in a specific event, one can then perform event-by-event and jet-by-jet subtraction

of the contamination [20, 21]. FastJet allows jet clustering to be performed in such a way that the jet areas are determined

3To some extent there is overlap here with SpartyJet [18], however we believe there are benefits to being able to easily carry jet structure manipu-
lations natively within the framework of FastJet.

Eur. Phys. J. C (2012) 72:1896 Page 5 of 54

at the same time as the jets are identified, simply by providing an “area definition” in addition to the jet definition (Sect. 7).

Furthermore it provides the tools needed to estimate the density of noise contamination in an event and to subtract the

appropriate amount of noise from each jet (Sect. 8). The interface here shares a number of characteristics with the substructure

tools, some of which also serve to remove noise contamination. Both the substructure and pileup removal make use also of

a “selectors” framework for specifying and combining simple cuts (Sect. 6).

While FastJet provides a broad range of facilities, usage for basic jet finding is straightforward. To illustrate this,

a quick-start guide is provided in Sect. 2, while the core classes (PseudoJet, JetDefinition and ClusterSe-
quence) are described in Sect. 3. For more advanced usage, one of the design considerations in FastJet has been to

favour user extensibility, for example through plugins, selectors, tools, etc. This is one of the topics covered in the appen-

dices. Further information is also available from the extensive “doxygen” documentation, available online at http://fastjet.fr.

2 Quick-start guide

For the impatient, the FastJet package can be set up and run as follows.

• Download the code and the unpack it

curl -O http://fastjet.fr/repo/fastjet-X.Y.Z.tar.gz
tar zxvf fastjet-X.Y.Z.tar.gz
cd fastjet-X.Y.Z/

replacing X.Y.Z with the appropriate version number. On some systems you may need to replace “curl -O” with

“wget”.

• Compile and install (choose your own preferred prefix), and when you’re done go back to the original directory

./configure --prefix=‘pwd‘/../fastjet-install
make
make check
make install
cd ..

If you copy and paste the above lines from one very widespread PDF viewer, you should note that the first line contains

back-quotes not forward quotes but that your PDF viewer may nevertheless paste forward quotes, causing problems down

the line (the issue arises again below).

• Now paste the following piece of code into a file called short-example.cc

#include "fastjet/ClusterSequence.hh"
#include <iostream>
using namespace fastjet;
using namespace std;

int main () {
vector<PseudoJet> particles;
// an event with three particles: px py pz E
particles.push_back(PseudoJet(99.0, 0.1, 0, 100.0));
particles.push_back(PseudoJet(4.0, -0.1, 0, 5.0));
particles.push_back(PseudoJet(-99.0, 0, 0, 99.0));

// choose a jet definition
double R = 0.7;
JetDefinition jet_def(antikt_algorithm, R);

// run the clustering, extract the jets
ClusterSequence cs(particles, jet_def);
vector<PseudoJet> jets = sorted_by_pt(cs.inclusive_jets());

http://fastjet.fr

Page 6 of 54 Eur. Phys. J. C (2012) 72:1896

// print out some info
cout << "Clustered with " << jet_def.description() << endl;

// print the jets
cout << " pt y phi" << endl;
for (unsigned i = 0; i < jets.size(); i++) {

cout << "jet " << i << ": "<< jets[i].perp() << " "
<< jets[i].rap() << " " << jets[i].phi() << endl;

vector<PseudoJet> constituents = jets[i].constituents();
for (unsigned j = 0; j < constituents.size(); j++) {

cout << " constituent " << j << "’s pt: "<< constituents[j].perp() << endl;
}

}
}

• Then compile and run it with

g++ short-example.cc -o short-example \
‘fastjet-install/bin/fastjet-config --cxxflags --libs --plugins‘

./short-example

(watch out, once again, for the back-quotes if you cut and paste from the PDF).

The output will consist of a banner, followed by the lines

Clustering with Longitudinally invariant anti-kt algorithm with R = 0.7
and E scheme recombination

pt y phi
jet 0: 103 0 0

constituent 0’s pt: 99.0001
constituent 1’s pt: 4.00125

jet 1: 99 0 3.14159
constituent 0’s pt: 99

More evolved example programs, illustrating many of the capabilities of FastJet, are available in the example/

subdirectory of the FastJet distribution.

3 Core classes

All classes are contained in the fastjet namespace. For brevity this namespace will usually not be explicitly written

below, with the possible exception of the first appearance of a FastJet class, and code excerpts will assume that a “using

namespace fastjet;” statement is present in the user code. For basic usage, the user is exposed to three main classes:

class fastjet::PseudoJet;
class fastjet::JetDefinition;
class fastjet::ClusterSequence;

PseudoJet provides a jet object with a four-momentum and some internal indices to situate it in the context of a jet-

clustering sequence. The class JetDefinition contains a specification of how jet clustering is to be performed. Clus-

terSequence is the class that carries out jet-clustering and provides access to the final jets.

3.1 fastjet::PseudoJet

All jets, as well as input particles to the clustering (optionally) are PseudoJet objects. They can be created using one of

the following constructors

Eur. Phys. J. C (2012) 72:1896 Page 7 of 54

PseudoJet (double px, double py, double pz, double E);
template<class T> PseudoJet (const T & some_lorentz_vector);

where the second form allows the initialisation to be obtained from any class T that allows subscripting to return the compo-

nents of the momentum (running from 0 . . .3 in the order px,py,pz,E). The default constructor for a PseudoJet sets the

momentum components to zero.

The PseudoJet class includes the following member functions for accessing the components

double E() const ; // returns the energy component
double e() const ; // returns the energy component
double px() const ; // returns the x momentum component
double py() const ; // returns the y momentum component
double pz() const ; // returns the z momentum component
double phi() const ; // returns the azimuthal angle in range 0 . . .2π

double phi_std() const ; // returns the azimuthal angle in range −π . . . π

double rap() const ; // returns the rapidity
double rapidity() const ; // returns the rapidity
double pseudorapidity() const ; // returns the pseudo-rapidity
double eta() const ; // returns the pseudo-rapidity
double pt2() const ; // returns the squared transverse momentum
double pt() const ; // returns the transverse momentum
double perp2() const ; // returns the squared transverse momentum
double perp() const ; // returns the transverse momentum
double m2() const ; // returns squared invariant mass

double m() const ; // returns invariant mass (−
√

−m2 if m2 < 0)

double mt2() const ; // returns the squared transverse mass = k2
t + m2

double mt() const ; // returns the transverse mass

double mperp2() const ; // returns the squared transverse mass = k2
t + m2

double mperp() const ; // returns the transverse mass
double operator[] (int i) const; // returns component i
double operator() (int i) const; // returns component i

/// return a valarray containing the four-momentum (components 0-2
/// are 3-momentum, component 3 is energy).
valarray<double> four_mom() const;

The reader may have observed that in some cases more than one name can be used to access the same quantity. This is

intended to reflect the diversity of common usages within the community.4

There are two ways of associating user information with a PseudoJet. The simpler method is through an integer called

the user index

/// set the user_index, intended to allow the user to label the object (default is -1)
void set_user_index(const int index);
/// return the user_index
int user_index() const ;

A more powerful method, new in FastJet 3, involves passing a pointer to a derived class of PseudoJet::UserInfo-
Base. The two essential calls are

/// set the pointer to user information (the PseudoJet will then own it)
void set_user_info(UserInfoBase * user_info);
/// retrieve a reference to a dynamic cast of type L of the user info
template<class L> const L & user_info() const;

Further details are to be found in Appendix B and in example/09-user_info.cc.

A PseudoJet can be reset with

4The pt(), pt2(), mt(), mt2() names are available only from version 3.0.1 onwards.

Page 8 of 54 Eur. Phys. J. C (2012) 72:1896

/// Reset the 4-momentum according to the supplied components, put the user
/// and history indices and user info back to their default values (-1, unset)
inline void reset(double px, double py, double pz, double E);
/// Reset just the 4-momentum according to the supplied components,
/// all other information is left unchanged
inline void reset_momentum(double px, double py, double pz, double E);

and similarly taking as argument a templated some_lorentz_vector or a PseudoJet (in the latter case, or when

some_lorentz_vector is of a type derived from PseudoJet, reset also copies the user and internal indices and

user-info).

Additionally, the +, -, * and / operators are defined, with +, - acting on pairs of PseudoJets and *, / acting on a

PseudoJet and a double coefficient. The analogous +=, etc., operators, are also defined.5

There are also equality testing operators: (jet1 == jet2) returns true if the two jets have identical 4-momenta,

structural information and user information; the (jet == 0.0) test returns true if all the components of the 4-momentum

are zero. The != operator works analogously.

Finally, we also provide routines for taking an unsorted vector of PseudoJets and returning a sorted vector,

/// return a vector of jets sorted into decreasing transverse momentum
vector<PseudoJet> sorted_by_pt(const vector<PseudoJet> & jets);

/// return a vector of jets sorted into increasing rapidity
vector<PseudoJet> sorted_by_rapidity(const vector<PseudoJet> & jets);

/// return a vector of jets sorted into decreasing energy
vector<PseudoJet> sorted_by_E(const vector<PseudoJet> & jets);

These will typically be used on the jets returned by ClusterSequence.

A number of further PseudoJet member functions provide access to information on a jet’s structure. They are docu-

mented below in Sects. 3.5 and 3.6.

3.2 fastjet::JetDefinition

The class JetDefinition contains a full specification of how to carry out the clustering. According to the Les Houches

convention detailed in [22], a ‘jet definition’ should include the jet algorithm name, its parameters (often the radius R) and

the recombination scheme. Its constructor is

JetDefinition(fastjet::JetAlgorithm jet_algorithm,
double R,
fastjet::RecombinationScheme recomb_scheme = E_scheme,
fastjet::Strategy strategy = Best);

The jet algorithm is one of the entries of the JetAlgorithm enum:6

enum JetAlgorithm {kt_algorithm, cambridge_algorithm,
antikt_algorithm, genkt_algorithm,
ee_kt_algorithm, ee_genkt_algorithm, ...};

5The +, - operators return a PseudoJet with default user information; the * and / operators return a PseudoJet with the same user infor-
mation as the original PseudoJet; the +=, -=, etc., operators all preserve the user information of the PseudoJet on the left-hand side of the
operator.
6As of v2.3, the JetAlgorithm name replaces the old JetFinder one, in keeping with the Les Houches convention. Backward compatibility
is assured at the user level by a typedef and a doubling of the methods’ names. Backward compatibility (with versions < 2.3) is however broken
for user-written derived classes of ClusterSequence, as the protected variables _default_jet_finder and _jet_finder have been
replaced by _default_jet_algorithm and _jet_algorithm.

Eur. Phys. J. C (2012) 72:1896 Page 9 of 54

Each algorithm is described in detail in Sect. 4. The . . . represent additional values that are present for internal or

testing purposes. They include plugin_algorithm, automatically set when plugins are used (Sect. 5) and unde-

fined_jet_algorithm, which is the value set in JetDefinition’s default constructor.

The parameter R specifies the value of R that appears in (1) and in the various definitions of Sect. 4. For one algorithm,

ee_kt_algorithm, there is no R parameter, so the constructor is to be called without the R argument. For the generalised

kt algorithm and its e+e− version, one requires R and (immediately after R) an extra parameter p. Details are to be found

in Sects. 4.4–4.6. If the user calls a constructor with the incorrect number of arguments for the requested jet algorithm,

a fastjet::Error() exception will be thrown with an explanatory message.

The recombination scheme is set by an enum of type RecombinationScheme, and it is related to the choice of how

to recombine the 4-momenta of PseudoJets during the clustering procedure. The default in FastJet is the E-scheme,

where the four components of two 4-vectors are simply added. This scheme is used when no explicit choice is made in the

constructor. Further recombination schemes are described below in Sect. 3.4.

The strategy selects the algorithmic strategy to use while clustering and is an enum of type Strategy. The default

option of Best automatically determines and selects a strategy that should be close to optimal in speed for each event, based

on its multiplicity. A discussion of the main available strategies together with their performance is given in Appendix A.

A textual description of the jet definition can be obtained by a call to the member function std::string descrip-

tion().

3.3 fastjet::ClusterSequence

To run the jet clustering, create a ClusterSequence object through the following constructor

template<class L> ClusterSequence(const std::vector<L> & input_particles,
const JetDefinition & jet_def);

where input_particles is the vector of initial particles of any type (PseudoJet, HepLorentzVector, etc.) that

can be used to initialise a PseudoJet and jet_def contains the full specification of the clustering (see Sect. 3.2).

3.3.1 Accessing inclusive jets

Inclusive jets correspond to all objects that have undergone a “beam” clustering (i.e. diB recombination) in the description

following (2). For nearly all hadron-collider algorithms, the “inclusive” jets above some given transverse momentum cut are

the ones usually just referred to as the “jets”.

To access inclusive jets, the following member function should be used

/// return a vector of all jets (in the sense of the inclusive
/// algorithm) with pt >= ptmin.
vector<PseudoJet> inclusive_jets (const double & ptmin = 0.0) const;

where ptmin may be omitted, then implicitly taking the value zero. Note that the order in which the inclusive jets are

provided depends on the jet algorithm. To obtain a specific ordering, such as decreasing pt , the user should perform a sort

themselves, e.g. with the sorted_by_pt(...) function, described in Sect. 3.1.

With a zero transverse momentum cut, the number of jets found in the event is not an infrared safe quantity (adding

a single soft particle can lead to one extra soft jet). However it can still be useful to talk of all the objects returned by

inclusive_jets() as being “jets”, e.g. in the context of the estimation underlying-event and pileup densities, cf. Sect. 8.

3.3.2 Accessing exclusive jets

There are two ways of accessing exclusive jets, one where one specifies dcut, the other where one specifies that the clustering

is taken to be stopped once it reaches the specified number of jets.

/// return a vector of all jets (in the sense of the exclusive algorithm)
/// that would be obtained when running the algorithm with the given dcut.
vector<PseudoJet> exclusive_jets (const double & dcut) const;

Page 10 of 54 Eur. Phys. J. C (2012) 72:1896

/// return a vector of all jets when the event is clustered
/// (in the exclusive sense)
/// to exactly njets. Throws an error if the event has fewer
/// than njets particles.
vector<PseudoJet> exclusive_jets (const int & njets) const;

/// return a vector of all jets when the event is clustered (in the exclusive sense)
/// to exactly njets. If the event has fewer than njets particles, it returns all
/// available particles.
vector<PseudoJet> exclusive_jets_up_to (const int & njets) const;

The user may also wish just to obtain information about the number of jets in the exclusive algorithm:

/// return the number of jets (in the sense of the exclusive algorithm) that would
/// be obtained when running the algorithm with the given dcut.
int n_exclusive_jets (const double & dcut) const;

Another common query is to establish the dmin value associated with merging from n + 1 to n jets. Two member functions

are available for determining this:

/// return the dmin corresponding to the recombination that went from n+1 to n jets
/// (sometimes known as dn,n+1).
double exclusive_dmerge (const int & n) const;

/// return the maximum of the dmin encountered during all recombinations up to the one
/// that led to an n-jet final state; identical to exclusive_dmerge, except in cases
/// where the dmin do not increase monotonically.
double exclusive_dmerge_max (const int & n) const;

The first returns the dmin in going from n+ 1 to n jets. Occasionally however the dmin value does not increase monotonically

during successive mergings and using a dcut smaller than the return value from exclusive_dmerge does not guarantee

an event with more than n jets. For this reason the second function exclusive_dmerge_max is provided—using a dcut

below its return value is guaranteed to provide a final state with more than n jets, while using a larger value will return a final

state with n or fewer jets.

For e+e− collisions, where it is usual to refer to yij = dij/Q
2 (Q is the total (visible) energy) FastJet provides the

following methods:

double exclusive_ymerge (int njets);
double exclusive_ymerge_max (int njets);
int n_exclusive_jets_ycut (double ycut);
std::vector<PseudoJet> exclusive_jets_ycut (double ycut);

which are relevant for use with the e+e− kt algorithm and with the Jade plugin (Sect. 5.4.2).

3.3.3 Other functionality

Unclustered particles Some jet algorithms (e.g. a number of the plugins in Sect. 5) have the property that not all particles

necessarily participate in the clustering. In other cases, particles may take part in the clustering, but not end up in any final

inclusive jet. Two member functions are provided to obtain the list of these particles. One is

vector<PseudoJet> unclustered = clust_seq.unclustered_particles();

which returns the list of particles that never took part in the clustering. The other additionally returns objects that are the

result of clustering but that never made it into a inclusive jet (i.e. into a “beam” recombination):

vector<PseudoJet> childless = clust_seq.childless_pseudojets();

Eur. Phys. J. C (2012) 72:1896 Page 11 of 54

Table 1 Members of the RecombinationScheme
enum; the last two refer to boost-invariant version of the
pt and p2

t schemes (as defined in Sect. 3.4)

E_scheme

pt_scheme

pt2_scheme

Et_scheme

Et2_scheme

BIpt_scheme

BIpt2_scheme

A practical example where this is relevant is with plugins that perform pruning [23], since they include a condition for

vetoing certain recombinations.7

Copying and transforming a ClusterSequence A standard copy constructor is available for ClusterSequences. Addi-

tionally it is possible to copy the clustering history of a ClusterSequence while modifying the momenta of the Pseu-

doJets at all (initial, intermediate, final) stages of the clustering, with the ClusterSequence member function

void transfer_from_sequence(const ClusterSequence & original_cs,
const FunctionOfPseudoJet<PseudoJet> * action_on_jets = 0);

FunctionOfPseudoJet<PseudoJet> is an abstract base class whose interface provides a PseudoJet

operator()(const PseudoJet & jet) function, i.e. a function of a PseudoJet that returns a PseudoJet

(cf. Appendix D). As the clustering history is copied to the target ClusterSequence, each PseudoJet in the target

ClusterSequence is set to the result of action_on_jet(original_pseudojet). One use case for this is if one

wishes to obtain a Lorentz-boosted copy of a ClusterSequence, which can be achieved as follows

#include "fastjet/tools/Boost.hh"
// ...
ClusterSequence original_cs(...);
ClusterSequence boosted_cs;
Boost boost(boost_4momentum);
boosted_cs.transfer_from_sequence(cs, &boost);

3.4 Recombination schemes

When merging particles (i.e. PseudoJets) during the clustering procedure, one must specify how to combine the momenta.

The simplest procedure (E-scheme) simply adds the four-vectors. This has been advocated as a standard in [3], was the main

scheme in use during Run II of the Tevatron, is currently used by the LHC experiments, and is the default option in FastJet.

Other choices are listed in Table 1, and are described below.

Other schemes for pp collisions Other schemes provided by earlier kt -clustering implementations [11–13] are the pt , p2
t ,

Et and E2
t schemes. They all incorporate a ‘preprocessing’ stage to make the initial momenta massless (rescaling the energy

to be equal to the 3-momentum for the pt and p2
t schemes, rescaling to the 3-momentum to be equal to the energy in the Et

and E2
t schemes). Then for all schemes the recombination pr of pi and pj is a massless 4-vector satisfying

pt,r = pt,i + pt,j , (4a)

φr = (wiφi + wjφj)/(wi + wj), (4b)

7To obtain the list of all initial particles that never end up in any inclusive jet, one should simply concatenate the vectors of constituents of all the
childless PseudoJets.

Page 12 of 54 Eur. Phys. J. C (2012) 72:1896

yr = (wiyi + wjyj)/(wi + wj), (4c)

where wi is pt,i for the pt and Et schemes, and is p2
t,i for the p2

t and E2
t schemes.

Note that for massive particles the schemes defined in the previous paragraph are not invariant under longitudinal boosts.

As a workaround for this issue, we propose boost-invariant pt and p2
t schemes, which are identical to the normal pt and p2

t

schemes, except that they omit the preprocessing stage. They are available as BIpt_scheme and BIpt2_scheme.

Other schemes for e+e− collisions On request, we may in the future provide dedicated schemes for e+e− collisions.

User-defined schemes The user may define their own, custom recombination schemes, as described in Appendix E.1.

3.5 Constituents and substructure of jets

For any PseudoJet that results from a clustering, the user can obtain information about its constituents, internal substruc-

ture, etc., through member functions of the PseudoJet class.8

Jet constituents The constituents of a given PseudoJet jet can be obtained through

vector<PseudoJet> constituents = jet.constituents();

Note that if the user wishes to identify these constituents with the original particles provided to ClusterSequence, she or

he should have set a unique index for each of the original particles with the PseudoJet::set_user_index function.

Alternatively more detailed information can also be set through the user_info facilities of PseudoJet , as discussed in

Appendix B.

Subjet properties To obtain the set of subjets at a specific dcut scale inside a given jet, one may use the following Pseu-
doJet member function:

/// Returns a vector of all subjets of the current jet (in the sense of the exclusive
/// algorithm) that would be obtained when running the algorithm with the given dcut
std::vector<PseudoJet> exclusive_subjets (const double & dcut) const;

If m jets are found, this takes a time O(m lnm) (owing to the internal use of a priority queue). Alternatively one may

obtain the jet’s constituents, cluster them separately and then carry out an exclusive_jets analysis on the resulting

ClusterSequence. The results should be identical. This second method is mandatory if one wishes to identify subjets

with an algorithm that differs from the one used to find the original jets.

In analogy with the exclusive_jets(...) functions of ClusterSequence, PseudoJet also has

exclusive_subjets(int nsub) and exclusive_subjets_up_to(int nsub) functions.

One can also make use of the following methods, which allow one to follow the merging sequence (and walk back through

it):

/// If the jet has parents in the clustering, returns true and sets parent1 and parent2
/// equal to them. If it has no parents returns false and sets parent1 and parent2 to 0
bool has_parents(PseudoJet & parent1, PseudoJet & parent2) const;

/// If the jet has a child then returns true and sets the child jet otherwise returns
/// false and sets the child to 0
bool has_child(PseudoJet & child) const;

/// If this jet has a child (and so a partner), returns true and sets the partner,
/// otherwise returns false and sets the partner to 0
bool has_partner(PseudoJet & partner) const;

8This is a new development in version 3 of FastJet. In earlier versions, access to information about a jet’s contents had to be made through its
ClusterSequence. Those forms of access, though not documented here, will be retained throughout the 3.X series.

Eur. Phys. J. C (2012) 72:1896 Page 13 of 54

Accessibility of structural information If any of the above functions are used with a PseudoJet that is not associated

with a ClusterSequence, an error will be thrown. Since the information about a jet’s constituents is actually stored

in the ClusterSequence and not in the jet itself, these methods will also throw an error if the ClusterSequence

associated with the jet has gone out of scope, been deleted, or in any other way become invalid. One can establish the status

of a PseudoJet’s associated cluster sequence with the following enquiry functions:

// returns true if this PseudoJet has an associated (and valid) ClusterSequence.
bool has_valid_cluster_sequence() const;

// returns a (const) pointer to the parent ClusterSequence (throws if inexistent
// or no longer valid)
const ClusterSequence* validated_cluster_sequence() const;

There are also has_associated_cluster_sequence() and associated_cluster_sequence() member

functions. The first returns true even when the cluster sequence is not valid, and the second returns a null pointer in that

case. Further information is to be found in Appendix C.

There are contexts in which, within some function, one might create a ClusterSequence, obtain a jet from it and

then return that jet from the function. For the user to be able to access the information about the jet’s internal structure, the

ClusterSequence must not have gone out of scope and/or been deleted. To aid with potential memory management

issues in this case, as long the ClusterSequence was created via a new operation, then one can tell the ClusterSe-

quence that it should be automatically deleted after the last external object (jet, etc.) associated with it has disappeared.

The call to do this is ClusterSequence::delete_self_when_unused(). There must be at least one external ob-

ject already associated with the ClusterSequence at the time of the call (e.g. a jet, subjet or jet constituent). Note that

ClusterSequence tends to be a large object, so this should be used with care.

3.6 Composite jets, general considerations on jet structure

There are a number of cases where it is useful to be able to take two separate jets and create a single object that is the sum of

the two, not just from the point of view of its 4-momentum, but also as concerns its structure. For example, in a search for

a dijet resonance, some user code may identify two jets, jet1 and jet2, that are thought to come from a resonance decay

and then wish to return a single object that combines both jet1 and jet2. This can be accomplished with the function

join:

PseudoJet resonance = join(jet1,jet2);

The 4-momenta are added,9 and in addition the resonance remembers that it came from jet1 and jet2. So, for example,

a call to resonance.constituents() will return the constituents of both jet1 and jet2. It is possible to join 1,

2, 3 or 4 jets or a vector of jets. If the jets being joined had areas (Sect. 7) then the joined jet will also have an area.

For a jet formed with join, one can find out which pieces it has been composed from with the function

vector<PseudoJet> pieces = resonance.pieces();

In the above example, this would simply return a vector of size 2 containing jet1 and jet2. The pieces() function also

works for jets that come from a ClusterSequence, returning two pieces if the jet has parents, zero otherwise.

Enquiries as to available structural information Whether or not a given jet has constituents, recursive substructure or pieces

depends on how it was formed. Generally a user will know how a given jet was formed, and so know if it makes sense, say, to

call pieces(). However if a jet is returned from some third-party code, it may not always be clear what kinds of structural

information it has. Accordingly a number of enquiry functions are available:

9This corresponds to E-scheme recombination. If the user wishes to have the jets joined with a different recombination scheme he/she can pass a
JetDefinition::Recombiner (cf. Appendix E.1) as the last argument to join(...).

Page 14 of 54 Eur. Phys. J. C (2012) 72:1896

bool has_structure(); // true if the jet has some kind of structural info
bool has_constituents(); // true if the jet has constituents
bool has_exclusive_subjets(); // true if there is cluster-sequence style subjet info
bool has_pieces(); // true if the jet can be broken up into pieces
bool has_area(); // true if the jet has jet-area information
string description(); // returns a textual description of the type

// of structural info associated with the jet

Asking (say) for the pieces() of a jet for which has_pieces() returns false will cause an error to be thrown. The

structural information available for different kinds of jets is summarised in Appendix C.

3.7 Version information

Information on the version of FastJet that is being run can be obtained by making a call to

std::string fastjet_version_string();

(defined in fastjet/JetDefinition.hh). In line with recommendations for other programs in high-energy physics,

the user should include this information in publications and plots so as to facilitate reproducibility of the jet-finding.10 We

recommend also that the main elements of the jet_def.description() be provided, together with citations to the

original article that defines the algorithm, as well as to this manual and, optionally, the original FastJet paper [10].

4 FastJet native jet algorithms

4.1 Longitudinally invariant kt jet algorithm

The longitudinally invariant kt jet algorithm [8, 9] comes in inclusive and exclusive variants. The inclusive variant (corre-

sponding to [9], modulo small changes of notation) is formulated as follows:

1. For each pair of particles i, j work out the kt distance11

dij = min
(

p2
t i,p

2
tj

)

�R2
ij/R

2 (5)

with �R2
ij = (yi − yj)

2 + (φi − φj)
2, where pt i , yi and φi are the transverse momentum (with respect to the beam

direction), rapidity and azimuth of particle i. R is a jet-radius parameter usually taken of order 1. For each parton i also

work out the beam distance diB = p2
t i .

2. Find the minimum dmin of all the dij , diB . If dmin is a dij merge particles i and j into a single particle, summing their

four-momenta (this is E-scheme recombination); if it is a diB then declare particle i to be a final jet and remove it from

the list.

3. Repeat from step 1 until no particles are left.

The exclusive variant of the longitudinally invariant kt jet algorithm [8] is similar, except that (a) when a diB is the smallest

value, that particle is considered to become part of the beam jet (i.e. is discarded) and (b) clustering is stopped when all dij

and diB are above some dcut. In the exclusive mode R is commonly set to 1.

The inclusive and exclusive variants are both obtained through

JetDefinition jet_def(kt_algorithm, R);
ClusterSequence cs(particles, jet_def);

10We devote significant effort to ensuring that all versions of the FastJet program give identical, correct clustering results, and that any other
changes from one version to the next are clearly indicated. However, as per the terms of the GNU General Public License (v2), under which
FastJet is released, we are not able to provide a warranty that FastJet is free of bugs that might affect your use of the program. Accordingly
it is important for physics publications to include a mention of the FastJet version number used, in order to help trace the impact of any bugs
that might be discovered in the future.
11In the soft, small angle limit for i, the kt distance is the (squared) transverse momentum of i relative to j .

Eur. Phys. J. C (2012) 72:1896 Page 15 of 54

The clustering sequence is identical in the inclusive and exclusive cases and the jets can then be obtained as follows:

vector<PseudoJet> inclusive_kt_jets = cs.inclusive_jets();
vector<PseudoJet> exclusive_kt_jets = cs.exclusive_jets(dcut);

4.2 Cambridge/Aachen jet algorithm

Currently the pp Cambridge/Aachen (C/A) jet algorithm [24–26] is provided only in an inclusive version [25, 26], whose

formulation is identical to that of the kt jet algorithm, except as regards the distance measures, which are:

dij = �R2
ij/R

2, (6a)

diB = 1. (6b)

To use this algorithm, define

JetDefinition jet_def(cambridge_algorithm, R);

and then extract inclusive jets from the cluster sequence.

Attempting to extract exclusive jets from the Cambridge/Aachen algorithm with a dcut parameter simply provides the set

of jets obtained up to the point where all dij , diB > dcut. Having clustered with some given R, this can actually be an effective

way of viewing the event at a smaller radius, Reff =
√

dcutR, thus allowing a single event to be viewed at a continuous range

of Reff within a single clustering.

We note that the true exclusive formulation of the Cambridge algorithm [24] (in e+e−) instead makes use an auxiliary

(kt) distance measure and ‘freezes’ pseudojets whose recombination would involve too large a value of the auxiliary distance

measure. Details are given in Sect. 5.4.1.

4.3 Anti-kt jet algorithm

This algorithm, introduced and studied in [16], is defined exactly like the standard kt algorithm, except for the distance

measures which are now given by

dij = min
(

1/p2
t i,1/p2

tj

)

�R2
ij/R

2, (7a)

diB = 1/p2
t i . (7b)

While it is a sequential recombination algorithm like kt and Cambridge/Aachen, the anti-kt algorithm behaves in some sense

like a ‘perfect’ cone algorithm, in that its hard jets are exactly circular on the y–φ cylinder [16]. To use this algorithm, define

JetDefinition jet_def(antikt_algorithm, R);

and then extract inclusive jets from the cluster sequence. We advise against the use of exclusive jets in the context of the

anti-kt algorithm, because of the lack of physically meaningful hierarchy in the clustering sequence.

4.4 Generalised kt jet algorithm

The “generalised kt ” algorithm again follows the same procedure, but depends on an additional continuous parameter p, and

has the following distance measure:

dij = min
(

p
2p

ti ,p
2p

tj

)

�R2
ij/R

2, (8a)

diB = p
2p

ti . (8b)

For specific values of p, it reduces to one or other of the algorithms list above, kt (p = 1), Cambridge/Aachen (p = 0) and

anti-kt (p = −1). To use this algorithm, define

JetDefinition jet_def(genkt_algorithm, R, p);

and then extract inclusive jets from the cluster sequence (or, for p ≥ 0, also the exclusive jets).

Page 16 of 54 Eur. Phys. J. C (2012) 72:1896

4.5 Generalised kt algorithm for e+e− collisions

FastJet also provides native implementations of clustering algorithms in spherical coordinates (specifically for e+e−

collisions) along the lines of the original kt algorithms [27], but extended following the generalised pp algorithm of [16] and

Sect. 4.4. We define the two following distances:

dij = min
(

E
2p

i ,E
2p

j

) (1 − cos θij)

(1 − cosR)
, (9a)

diB = E
2p

i , (9b)

for a general value of p and R. At a given stage of the clustering sequence, if a dij is smallest then i and j are recombined,

while if a diB is smallest then i is called an “inclusive jet”.

For values of R ≤ π in (9), the generalised e+e− kt algorithm behaves in analogy with the pp algorithms: when an object

is at an angle θiX > R from all other objects X then it forms an inclusive jet. With the choice p = −1 this provides a simple,

infrared and collinear safe way of obtaining a cone-like algorithm for e+e− collisions, since hard well-separated jets have a

circular profile on the 3D sphere, with opening half-angle R. To use this form of the algorithm, define

JetDefinition jet_def(ee_genkt_algorithm, R, p);

and then extract inclusive jets from the cluster sequence.

For values of R > π , FastJet replaces the factor (1 − cosR) in the denominator of (9a) with (3 + cosR). With this

choice (as long as R < 3π), the only time a diB will be relevant is when there is just a single particle in the event. The

inclusive_jets(...) will then always return a single jet consisting of all the particles in the event. In such a context

it is only the exclusive_jets(...) call that provides non-trivial information.

4.6 kt algorithm for e+e− collisions

The e+e− kt algorithm [27], often referred to also as the Durham algorithm, has a single distance:

dij = 2 min
(

E2
i ,E

2
j

)

(1 − cos θij). (10)

Note the difference in normalisation between the dij in (9) and (10), and the fact that in neither case have we normalised to

the total energy Q in the event, contrary to the convention adopted originally in [27] (where the distance measure was called

yij). To use the e+e− kt algorithm, define

JetDefinition jet_def(ee_kt_algorithm);

and then extract exclusive jets from the cluster sequence.

Note that the ee_genkt_algorithm with π < R < 3π and p = 1 gives a clustering sequence that is identical to that

of the ee_kt_algorithm. The normalisation of the dij ’s will however be different.

5 Plugin jet algorithms

It can be useful to have a common interface for a range of jet algorithms beyond the native (kt , anti-kt and Cam-

bridge/Aachen) algorithms, notably for the many cone algorithms that are in existence. It can also be useful to be able to use

FastJet features such as area-measurement tools for these other jet algorithms. In order to facilitate this, the FastJet

package provides a plugin facility, allowing almost any other jet algorithm12 to be used within the same framework.

Generic plugin use is described in the next subsection. The plugins distributed with FastJet are described afterwards

in Sects. 5.2–5.4. They are all accessible within the fastjet namespace and their code is to be found in FastJet’s

12Except those for which one particle may be assigned to more than one jet, e.g. algorithms such as ARCLUS [28], which performs 3 → 2
clustering.

Eur. Phys. J. C (2012) 72:1896 Page 17 of 54

plugins/ directory. New user-defined plugins can also be implemented, as described in Appendix E.2. Some third-party

plugins are linked to from the tools page at http://fastjet.fr/.

Not all plugins are enabled by default in FastJet. At configuration time ./configure --help will indicate

which ones get enabled by default. To enable all plugins, run configure with the argument --enable-allplugins,

while to enable all but PxCone (which requires a Fortran compiler, and can introduce link-time issues) use --enable-

allcxxplugins.

5.1 Generic plugin use

Plugins are classes derived from the abstract base class fastjet::JetDefinition::Plugin. A JetDefinition

can be constructed by providing a pointer to a JetDefinition::Plugin; the resulting JetDefinition object can

then be used identically to the normal JetDefinition objects used in the previous sections. We illustrate this with an

example based on the SISCone plugin:

#include "fastjet/SISConePlugin.hh"

// allocate a new plugin for SISCone (for other plugins, simply
// replace the appropriate parameters and plugin name)
double cone_radius = 0.7;
double overlap_threshold = 0.75;
JetDefinition::Plugin * plugin = new SISConePlugin(cone_radius, overlap_threshold);

// create a jet definition based on the plugin
JetDefinition jet_def(plugin);

// run the jet algorithm and extract the jets
ClusterSequence clust_seq(particles, jet_def);
vector<PseudoJet> inclusive_jets = clust_seq.inclusive_jets();

// then analyse the jets as for native fastjet algorithms
...

// only when you will no longer be using the jet definition, or
// ClusterSequence objects that involve it, may you delete the plugin
delete plugin;

In cases such as this where the plugin has been created with a new statement and the user does not wish to manage the

deletion of the corresponding memory when the JetDefinition (and any copies) using the plugin goes out of scope,

then the user may wish to call the JetDefinition’s delete_plugin_when_unused() function, which tells the

JetDefinition to acquire ownership of the pointer to the plugin and delete it when it is no longer needed.

5.2 SISCone plugin

SISCone [29] is an implementation of a stable-cone jet algorithm with a split–merge step (SC-SM in the notation of [5]).

As with most modern cone algorithms, it is divided into two parts: first it searches for stable cones; then, because a particle

can appear in more than one stable cone, a ‘split–merge’ procedure is applied, which ensures that no particle ends up in

more than one jet. The stable cones are identified using an O(N2 lnN) seedless approach. This (and some care in the ‘split–

merge’ procedure) ensures that the jets it produces are insensitive to additional soft particles and collinear splittings, i.e. the

algorithm is infrared and collinear safe.

The plugin library and include files are to be found in the plugins/SISCone directory, and the main header file is

SISConePlugin.hh. The SISConePlugin class has a constructor with the following structure

SISConePlugin (double cone_radius,
double overlap_threshold,
int n_pass_max = 0,
double protojet_ptmin = 0.0,

http://fastjet.fr/

Page 18 of 54 Eur. Phys. J. C (2012) 72:1896

bool caching = false,
SISConePlugin::SplitMergeScale

split_merge_scale = SISConePlugin::SM_pttilde);

A cone centred at yc, φc is stable if the sum of momenta of all particles i satisfying �y2
ic + �φ2

ic < cone_radius2

has rapidity yc, φc . The overlap_threshold is the fraction of overlapping momentum above which two protojets are

merged in a Tevatron Run II type [3] split–merge procedure. The radius and overlap parameters are a common feature of

most modern cone algorithms. Because some event particles are not to be found in any stable cone [30], SISCone can carry

out multiple stable-cone search passes (as advocated in [31]): in each pass one searches for stable cones using just the subset

of particles not present in any stable cone in earlier passes. Up to n_pass_max passes are carried out, and the algorithm

automatically stops at the highest pass that gives no new stable cones. The default of n_pass_max = 0 is equivalent to

setting it to ∞.

Concern had at some point been expressed that an excessive number of stable cones might complicate cone jets in events

with high noise [3], and in particular lead to large “monster” jets. The protojet_ptmin parameter allows one to use

only protojets with pt ≥ protojet_ptmin in the split–merge phase (all others are thrown away), so as to limit this issue.

A large value of the split–merge overlap threshold, e.g. 0.75, also helps to disfavour the production of these monster jets

through repeated merge operations.

In many cases SISCone’s most time-consuming step is the search for stable cones. If one has multiple SISConePlugin-

based jet definitions, each with caching=true, a check will be carried out whether the previously clustered event had the

same set of particles and the same cone radius and number of passes. If it did, the stable cones are simply reused from the

previous event, rather than being recalculated, and only the split–merge step is repeated, often leading to considerable speed

gains.

A final comment concerns the split_merge_scale parameter. This controls both the scale used for ordering the

protojets during the split–merge step during the split–merge step, and also the scale used to measure the degree of overlap

between protojets. While various options have been implemented,

enum SplitMergeScale {SM_pt, SM_Et, SM_mt, SM_pttilde};

we recommend using only the last of them p̃t =
∑

i∈jet |pt,i |, which is also the default scale. The other scales are included

only for historical comparison purposes: pt (used in several other codes) is IR unsafe for events whose hadronic component

conserves momentum, Et (advocated in [3]) is not boost-invariant, and mt =
√

m2 + p2
t is IR unsafe for events whose

hadronic component conserves momentum and stems from the decay of two identical particles.

An example of the use of the SISCone plugin was given in Sect. 5.1. As can be seen there, SISCone jets are to be obtained

by requesting inclusive jets from the cluster sequence. Note that it makes no sense to ask for exclusive jets from a SISCone

based ClusterSequence.

Some cone algorithms provide information beyond that simply about the jets. Such additional information, where avail-

able, can be accessed with the help of the ClusterSequence::extras() function. In the case of SISCone, one can

access that information as follows:

const fastjet::SISConeExtras * extras =
dynamic_cast<const fastjet::SISConeExtras *>(clust_seq.extras());

To determine the pass at which a given jet was found, one then uses13

int pass = extras->pass(jet);

One may also obtain a list of the positions of original stable cones as follows:

const vector<PseudoJet> & stable_cones = extras->stable_cones();

13In versions of FastJet prior to 3.0.1, a jet’s user index indicated the pass at which it had been found. The value was however incorrectly set
for single-particle jets. The current choice is to leave the user index unchanged from its default.

Eur. Phys. J. C (2012) 72:1896 Page 19 of 54

The stable cones are represented as PseudoJets, for which only the rapidity and azimuth are meaningful. The

user_index() indicates the pass at which a given stable cone was found.

SISCone uses E-scheme recombination internally and also for constructing the final jets from the list of constituents. For

the latter task, the user may instead instruct SISCone to use the jet-definition’s own recombiner, with the command

plugin->set_use_jet_def_recombiner(true);

For this to work, plugin must explicitly be of type SISConePlugin * rather than JetDefinition::Plugin *.

Since SISCone is infrared safe, it may meaningfully be used also with the ClusterSequenceArea class. Note how-

ever that in that case ones loses the cone-specific information from the jets, because of the way FastJet filters out the

information relating to ghosts in the clustering. If the user needs both areas and cone-specific information, she/he may use

the ClusterSequenceActiveAreaExplicitGhosts class (for usage information, see the corresponding .hh file).

A final remark concerns speed and memory requirements: as mentioned above, SISCone takes O(N2 lnN) time to find

jets, and the memory use is O(N2); taking N = 103 as a reference point, it runs in a few tenths of a second, making it

about 100 times slower than native FastJet algorithms. These are ‘expected’ results, i.e. valid for a suitably random set of

particles.14

Note that the underlying implementation of SISCone is optimised for large N . An alternative implementation that is faster

for N � 10 was presented in [32].

5.3 Other plugins for hadron colliders

Most of the algorithms listed below are cone algorithms. They are usually either infrared (IR) or collinear unsafe. The details

are indicated for each algorithm following the notation of Ref. [5]: IRn+1 means that the hard jets may be modified if, to

an ensemble of n hard particles in a common neighbourhood, one adds a single soft particle; Colln+1 means that for n hard

particles in a common neighbourhood, the collinear splitting of one of them may modify the hard jets. The FastJet authors

(and numerous theory-experiment accords) advise against the use of IR and/or collinear unsafe jet algorithms. Interfaces to

these algorithms have been provided mainly for legacy comparison purposes.

Except where stated, the usual way to access jets from these plugins is through ClusterSequence::inclusive_

jets().

5.3.1 CDF Midpoint

This is one of the two cone algorithms used by CDF in Run II of the Tevatron, based on [3]. It is a midpoint-type iterative

cone with a split–merge step.

#include "fastjet/CDFCones.hh"
// ...
CDFMidPointPlugin(double R,

double overlap_threshold,
double seed_threshold = 1.0,
double cone_area_fraction = 1.0);

The overlap threshold (f) used by CDF is usually 0.5, the seed threshold is 1 GeV. With a cone area fraction α < 1, the

search for stable cones is performed with a radius that is R ×
√

α, i.e. it becomes the searchcone algorithm of [30]. CDF has

used both α = 0.25 and α = 1.0. It is our understanding that the particular choice of α is not always clearly documented in

the corresponding publications.

Further control over the plugin can be obtained by consulting the header file.

14In area determinations, the ghost particles are not entirely random, but distributed close to a grid pattern, all with similar transverse momenta.
Run times and memory usage are then, in practice, somewhat larger than for a normal QCD event with the same number of particles. We therefore
recommend running with not too small a ghost_area (e.g. ∼0.05) and using grid_scatter=1 (cf. Sect. 7), which helps to reduce the
number of stable cones (and correspondingly, the time and memory usage of the subsequent split–merge step). An alternative, which has been
found to be acceptable in many situations, is to use a passive area, since this is relatively fast to calculate with SISCone.

Page 20 of 54 Eur. Phys. J. C (2012) 72:1896

The original underlying code for this algorithm was provided on a webpage belonging to Joey Huston [33] (with minor

modifications to ensure reasonable run times with optimising compilers for 32-bit Intel processors—these modifications do

not affect the final jets).

This algorithm is R3+1 unsafe in the limit of zero seed threshold [29] (with α
= 1 it becomes IR2+1 unsafe [31]). With

a non-zero seed threshold (and no preclustering into calorimeter towers) it is collinear unsafe. It is to be deprecated for new

experimental or theoretical analyses.

5.3.2 CDF JetClu

JetClu is the other cone algorithm used by CDF during Run II, as well as their main algorithm during Run I [34]. It is an

iterative cone with split-merge and optional “ratcheting” if iratch == 1 (particles that appear in one iteration of a cone

are retained in future iterations). It can be obtained as follows:

#include "fastjet/CDFCones.hh"
// ...
CDFJetCluPlugin (double cone_radius,

double overlap_threshold,
double seed_threshold = 1.0,
int iratch = 1);

The overlap threshold is usually set to 0.75 in CDF analyses. Further control over the plugin can be obtained by consulting

the header file.

The original underlying code for this algorithm was provided on a webpage belonging to Joey Huston [33].

This algorithm is IR2+1 unsafe (for zero seed threshold; some IR unsafety persists with non-zero seed threshold). It is to

be deprecated for new experimental or theoretical analyses. Note also that the underlying implementation groups particles

together into calorimeter towers, with CDF-type geometry, before running the jet algorithm.

5.3.3 DØ Run I cone

This is the main algorithm used by DØ in Run I of the Tevatron [35]. It is an iterative cone algorithm with a split-merge step.

It comes in two versions

#include "fastjet/D0RunIpre96ConePlugin.hh"
// ...
D0RunIpre96ConePlugin (double R,

double min_jet_Et,
double
split_ratio = 0.5);

and

#include "fastjet/D0RunIConePlugin.hh"
// ...
D0RunIConePlugin (double R,

double min_jet_Et,
double split_ratio = 0.5);

corresponding to versions of the algorithm used respectively before and after 1996. They differ only in the recombination

scheme used to determine the jet momenta once each jet’s constituents have been identified. In the pre-1996 version, a

hybrid between an E-like scheme and an Et scheme recombination is used, while in the post-1996 version it is just the Et

scheme [35].

The algorithm places a cut on the minimum Et of the cones during iteration (related to min_jet_Et). The

split_ratio is the same as the overlap threshold in other split-merge based algorithms (DØ usually use 0.5). It is the

FastJet authors’ understanding that the value used for min_jet_Et was 8 GeV, corresponding to a cut of 4 GeV on

cones. The publication that describes this algorithm [35] mentions the use of a 1 GeV seed threshold applied to preclustered

Eur. Phys. J. C (2012) 72:1896 Page 21 of 54

calorimeter towers in order to obtain the seeds for the stable cone finding. Such a threshold and the pre-clustering appear not

to be included in the code distributed with FastJet.

The underlying code for this algorithm was provided by Lars Sonnenschein. Permission to redistribute this code with

FastJet has been granted by the DØ Collaboration under the terms of the GPL license.

Note: this algorithm is R2+1 unsafe. It is recommended that it be used only for the purpose of comparison with Run I data

from DØ. It is to be deprecated for new experimental or theoretical analyse

5.3.4 DØ Run II cone

This is the main algorithm used by DØ in Run II of the Tevatron. It is a midpoint type iterative cone with split-merge step. The

DØ collaboration usually refers to Ref. [3] when introducing the algorithm in its articles. That generic Tevatron document

does not reflect all details of the actual DØ algorithm, and for a complementary description the reader is referred to Ref. [36].

#include "fastjet/D0RunIIConePlugin.hh"
// ...
D0RunIIConePlugin (double R,

double min_jet_Et,
double split_ratio = 0.5);

The parameters have the same meaning as in the DØ Run I cone. There is a cut on the minimum Et of the cones during

iteration, which by default is half of min_jet_Et. It is the FastJet authors’ understanding that two values have been

used for min_jet_Et, 8 GeV (in earlier publications) and 6 GeV (in more recent publications).

As concerns seed thresholds and preclustering, DØ describes them as being applied to calorimeter towers in data and in

Monte Carlo studies that include detector simulation [36]. However, for NLO calculations and Monte Carlo studies based on

stable particles, no seed threshold is applied. The code distributed with FastJet does not allow for seed thresholds.

The underlying code for this algorithm was provided by Lars Sonnenschein. Permission to redistribute this code with

FastJet has been granted by the DØ Collaboration under the terms of the GPL license.

Note: this algorithm is R3+1 unsafe (R2+1 for jets with energy too close to min_jet_Et). It is to be deprecated for new

experimental or theoretical analyses.

5.3.5 ATLAS iterative cone

This iterative cone algorithm, with a split-merge step, was used by ATLAS during the preparation for the LHC.

#include "fastjet/AtlasConePlugin.hh"
// ...
ATLASConePlugin (double R,

double seedPt = 2.0,
double f = 0.5);

f is the overlap threshold

The underlying code for this algorithm was extracted from an early version of SpartyJet [18] (which itself was distributed

under the GPL license). Since version 3.0 of FastJet it is a slightly modified version that we distribute, where an in-

ternal sort function has been replaced with a stable_sort, to ensure reproducibility of results across compilers and

architectures (results are unchanged when the results of the sort are unambiguous).

Note: this algorithm is IR2+1 unsafe (in the limit of zero seed threshold). It is to be deprecated for new experimental or

theoretical analyses.

5.3.6 CMS iterative cone

This iterative cone algorithm with progressive removal was used by CMS during the preparation for the LHC.

#include "fastjet/CMSIterativeConePlugin.hh"
// ...
CMSIterativeConePlugin (double ConeRadius, double SeedThreshold=0.0);

Page 22 of 54 Eur. Phys. J. C (2012) 72:1896

The underlying code for this algorithm was extracted from the CMSSW web site, with certain small service routines

having been rewritten by the FastJet authors. Permission to redistribute the resulting code with FastJet has been

granted by CMS under the terms of the GPL license. The code was validated by clustering 1000 events with the original

version of the CMS software and comparing the output to the clustering performed with the FastJet plugin. The jet

contents were identical in all cases. However the jet momenta differed at a relative precision level of 10−7, related to the

use of single-precision arithmetic at some internal stage of the CMS software (while the FastJet version is in double

precision).

Note: this algorithm is Coll3+1 unsafe [16]. It is to be deprecated for new experimental or theoretical analyses.

5.3.7 PxCone

The PxCone algorithm is an iterative cone with midpoints and a split-drop procedure:

#include "fastjet/PxConePlugin.hh"

// ...

PxConePlugin (double cone_radius,
double min_jet_energy = 5.0 ,

double overlap_threshold = 0.5,

bool E_scheme_jets = false);

It includes a threshold on the minimum transverse energy for a cone (jet) to be included in the split-drop stage. If

E_scheme_jets is true then the plugin applies an E-scheme recombination to provide the momenta of the final jets

(by default an Et type recombination scheme is used).

The base code for this plugin is written in Fortran and, on some systems, problems have been reported at the link stage due

to mixing Fortran and C++. The Fortran code has been modified by the FastJet authors to provide the same jets regardless

of the order of the input particles. This involved a small modification of the midpoint procedure, which can have a minor

effect on the final jets and should make the algorithm correspond to the description of [37].

The underlying code for this algorithm was written by Luis del Pozo and Michael Seymour with input also from David

Ward [38] and they have granted permission for their code to be distributed with FastJet under the terms of the GPL

license.

This algorithm is IR3+1 unsafe. It is to be deprecated for new experimental or theoretical analyses.

5.3.8 TrackJet

This algorithm has been used at the Tevatron for identifying jets from charged-particle tracks in underlying-event studies [39].

#include "fastjet/TrackJetPlugin.hh"

// ...

TrackJetPlugin (double radius,
RecombinationScheme jet_recombination_scheme=pt_scheme,

RecombinationScheme track_recombination_scheme=pt_scheme);

Two recombination schemes are involved: the first one indicates how momenta are recombined to provide the final jets (once

particle-jet assignments are known), the second one indicates how momenta are combined in the procedure that constructs

the jets.

The underlying code for this algorithm was written by the FastJet authors, based on code extracts from the (GPL) Rivet

implementation, written by Andy Buckley with input from Manuel Bahr and Rick Field. Since version 3.0 of FastJet it

is a slightly modified version that we distribute, where an internal sort function has been replaced with a stable_sort,

to ensure reproducibility of results across compilers and architectures (results are unchanged when the results of the sort are

unambiguous, which is the usual case).

Note: this algorithm is believed to be Coll3+1 unsafe. It is to be deprecated for new experimental or theoretical analyses.

Eur. Phys. J. C (2012) 72:1896 Page 23 of 54

5.3.9 GridJet

GridJet allows you to define a grid and then cluster particles such that all particles in a common grid cell combine to form a

jet. Its main interest is in providing fast clustering for high multiplicities (the clustering time scales linearly with the number

of particles). The jets that it forms are not always physically meaningful: for example, a genuine physical jet may lie at the

corner of 4 grid cells and so be split up somewhat arbitrarily into 4 pieces. It is therefore not intended to be used for standard

jet finding. However for some purposes (such as background estimation) this drawback is offset by the greater uniformity of

the area of the jets. Its interface is as follows

#include "fastjet/GridJetPlugin.hh"
// ...
GridJetPlugin (double ymax, double requested_grid_spacing);

creating a grid that covers |y| <ymax with a grid spacing close to the requested_grid_spacing: the spacings chosen

in φ and y are those that are closest to the requested spacing while also giving an integer number of grid cells that fit exactly

into the rapidity and 0 < φ < 2π ranges.

Note that for background estimation purposes the GridMedianBackgroundEstimator is much faster than using

the GridJetPlugin with ghosts and a JetMedianBackgroundEstimator.

The underlying code for this algorithm was written by the FastJet authors.

5.4 Plugins for e+e− collisions

5.4.1 Cambridge algorithm

The original e+e− Cambridge [24] algorithm is provided as a plugin:

#include "fastjet/EECambridgePlugin.hh"
// ...
EECambridgePlugin (double ycut);

This algorithms performs sequential recombination of the pair of particles that is closest in angle, except when yij =
2 min(E2

i ,E2
j)

Q2 (1 − cos θ) > ycut, in which case the less energetic of i and j is labelled a jet, and the other member of the

pair remains free to cluster.

To access the jets, the user should use the inclusive_jets(), i.e. as they would for the majority of the pp algorithms.

The underlying code for this algorithm was written by the FastJet authors.

5.4.2 Jade algorithm

The JADE algorithm [40, 41], a sequential recombination algorithm with distance measure dij = 2EiEj (1 − cos θ), is

available through

#include "fastjet/JadePlugin.hh"
// ...
JadePlugin ();

To access the jets at a given ycut = dcut

Q2 , the user should call ClusterSequence::exclusive_jets_ycut(double
ycut).

Note: the JADE algorithm has been used with various recombination schemes. The current plugin will use whatever

recombination scheme the user specifies with for the jet definition. The default E-scheme is what was used in the original

JADE publication [40]. To modify the recombination scheme, the user may first construct the jet definition and then use

either of

void JetDefinition::set_recombination_scheme(RecombinationScheme recomb_scheme);
void JetDefinition::set_recombiner(const Recombiner * recomb)

(cf. Sect. 3.4, Appendix E.1) to modify the recombination scheme.

The underlying code for this algorithm was written by the FastJet authors.

Page 24 of 54 Eur. Phys. J. C (2012) 72:1896

5.4.3 Spherical SISCone algorithm

The spherical SISCone algorithm is an extension [42] to spherical coordinates of the hadron-collider SISCone algorithm [29].

#include "fastjet/SISConeSphericalPlugin.hh"
// ...
SISConeSphericalPlugin(double R,

double overlap_threshold
double protojet_Emin = 0.0,
bool caching = false,
SISConeSphericalPlugin::SplitMergeScale

split_merge_scale = SISConeSphericalPlugin::SM_Etilde,
double split_merge_stopping_scale = 0.0);

The functionality follows directly that of SISConePlugin.

Note that the underlying implementation of spherical SISCone is optimised for large N . An alternative implementation

that is faster for N � 10 was presented in [32]. That reference also contains a nice description of the algorithm.

6 Selectors

Analyses often place constraints (cuts) on jets’ transverse momenta, rapidity, maybe consider only some N hardest jets, etc.

There are situations in which it is convenient to be able to define a basic set of jet cuts in one part of a program and then have

it used elsewhere. To allow for this, we provide a fastjet::Selector class, available through

#include "fastjet/Selector.hh"

6.1 Essential usage

As an example of how Selectors are used, suppose that we have a vector of jets, jets, and wish to select those that have

rapidities |y| < 2.5 and transverse momenta above 20 GeV. We might write the following:

Selector select_rapidity = SelectorAbsRapMax(2.5);
Selector select_pt = SelectorPtMin(20.0);
Selector select_both = select_pt && select_rapidity;

vector<PseudoJet> selected_jets = select_both(jets);

Here, Selector is a class, while SelectorAbsRapMax and SelectorPtMin are functions that return an instance of

the Selector class containing the internal information needed to carry out the selection. Selector::operator(const

vector<PseudoJet> & jets) takes the jets given as input and returns a vector containing those that pass the selection

cuts. The logical operations &&, || and ! enable different selectors to be combined.

Nearly all selectors, like those above, apply jet by jet (the function Selector::applies_jet_by_jet() returns

true). For these, one can query whether a single jet passes the selection with the help of the function bool Selec-

tor::pass(const PseudoJet &).

There are also selectors that only make sense applied to an ensemble of jets. This is the case specifically for SelectorN-

Hardest(unsigned int n), which, acting on an ensemble of jets, selects the n jets with largest transverse momenta.

If there are fewer than n jets, then all jets pass.

When a selector is applied to an ensemble of jets one can also use

Selector::sift(vector<PseudoJet> & jets,
vector<PseudoJet> & jets_that_pass,
vector<PseudoJet> & jets_that_fail)

Eur. Phys. J. C (2012) 72:1896 Page 25 of 54

to obtain the vectors of PseudoJets that pass or fail the selection.

For selectors that apply jet-by-jet, the selectors on either side of the logical operators && and || naturally commute. For

operators that act only on the ensemble of jets the behaviour needs specifying. The design choice that we have made is that

SelectorNHardest(2) && SelectorAbsRapMax(2.5)
SelectorAbsRapMax(2.5) && SelectorNHardest(2)

give identical results: in logical combinations of selectors, each constituent selector is applied independently to the ensemble

of jets, and then a decision whether a jet passes is determined from the corresponding logical combination of each of the

selectors’ results. Thus, here only jets that are among the 2 hardest of the whole ensemble and that have |y| < 2.5 will be

selected. If one wishes to first apply a rapidity cut, and then find the 2 hardest among those jets that pass the rapidity cut,

then one should instead use the * operator:

SelectorNHardest(2) * SelectorAbsRapMax(2.5)

In this combined selector, the right-hand selector is applied first, and then the left-hand selector is applied to the results of

the right-hand selection.

A complementary selector can also be defined using the negation operator. For instance

Selector sel_allbut2hardest = !SelectorNHardest(2);

Note that, if directly applying (as opposed to first defining) a similar negated selector to a collection of jets, one should write

vector<PseudoJet> allbut2hardest = (!SelectorNHardest(2))(jets);

with the brackets around the selector definition being now necessary due to () having higher precedence in C++ than

Boolean operators.

A user can obtain a string describing a given Selector’s action by calling its description() member function.

This behaves sensibly also for compound selectors.

New selectors can be implemented as described in Appendix E.3.

6.1.1 Other information about selectors

Selectors contain a certain amount of additional information that can provide useful hints to the functions using them.

One such piece of information is a selector’s rapidity extent, accessible through a get_rapidity_extent(rapmin,
rapmax) call, which is useful in the context of background estimation (Sect. 8). If it is not sensible to talk about a rapidity

extent for a given selector (e.g. for SelectorPtMin) the rapidity limits that are returned are the largest (negative and

positive) numbers that can be represented as doubles. The function is_geometric() returns true if the selector places

constraints only on rapidity and azimuth.

Selectors may also have areas associated with them (in analogy with jet areas, Sect. 7). The has_finite_area()
member function returns true if a selector has a meaningful finite area. The area() function returns this area. In some cases

the area may be computed using ghosts (by default with ghosts of area 0.01; the user can specify a different ghost area as an

argument to the area function).

6.2 Available selectors

6.2.1 Absolute kinematical cuts

A number of selectors have been implemented following the naming convention Selector{Var}{LimitType}. The {Var}
indicates which variable is being cut on, and can be one of

pt, Et, E, Mass, Rap, AbsRap, Eta, AbsEta

The {LimitType} indicates whether one places a lower-limit on the variable, an upper limit or a range, corresponding to the

choices

Page 26 of 54 Eur. Phys. J. C (2012) 72:1896

Min, Max, Range

A couple of examples are

SelectorPtMin(25.0) // Selects pt > 25 (units are user’s default for momenta)
SelectorRapRange(1.9,4.9) // Selects 1.9 < y < 4.9

Following a similar naming convention, there are also SelectorPhiRange(φmin, φmax) and SelectorRapPhi-

Range(ymin, ymax, φmin, φmax).

6.2.2 Relative kinematical cuts

Some selectors take a reference jet. They have been developed because it is can be useful for a selector to make its decision

based on information about some other jet. For example one might wish to select all jets within some distance of a given

reference jet; or all jets whose transverse momentum is at least some fraction of a reference jet’s. That reference jet may

change from event to event, or even from one invocation of the Selector to the next, even though the Selector is fundamentally

performing the same underlying type of action.

The available selectors of this kind are:

SelectorCircle(R) // a circle of radius R around the reference jet
SelectorDoughnut(Rin, Rout) // a doughnut between Rin and Rout

SelectorStrip(half_width) // a rapidity strip 2*half_width large
SelectorRectangle(half_rap_width, half_phi_width) // a rectangle in rapidity and phi

SelectorPtFractionMin(f) // pt larger than fpref
t

One example of selectors taking a reference jet is the following. First, one constructs the selector,

Selector sel = SelectorCircle(1.0);

Then if one is interested in the subset of jets near jet1, and then those near jet2, one performs the following operations:

sel.set_reference(jet1);
vector<PseudoJet> jets_near_jet1 = sel(jets);

sel.set_reference(jet2);
vector<PseudoJet> jets_near_jet2 = sel(jets);

If one uses a selector that takes a reference without the reference having been actually set, an exception will be thrown. If

one sets a reference for a compound selector, the reference is automatically set for all components that take a reference. One

can verify whether a given selector takes a reference by calling the member function

bool Selector::takes_reference() const;

Attempting to set a reference for a Selector that returns false here will cause an exception to be thrown.

6.2.3 Other selectors

The following selectors are also available:

SelectorNHardest(n) // selects the n hardest jets
SelectorIsPureGhost() // selects jets that are made exclusively of ghost particles
SelectorIsZero() // selects jets with zero momentum
SelectorIdentity() // selects everything. Included for completeness

Eur. Phys. J. C (2012) 72:1896 Page 27 of 54

7 Jet areas

Jet areas provide a measure of the surface in the y–φ plane over which a jet extends, or, equivalently, a measure of a jet’s

susceptibility to soft contamination.

Since a jet is made up of only a finite number of particles, one needs a specific definition in order to make its area an

unambiguous concept. Three definitions of area have been proposed in [19] and implemented in FastJet:

• Active areas add a uniform background of extremely soft massless ‘ghost’ particles to the event and allow them to par-

ticipate in the clustering. The area of a given jet is proportional to the number of ghosts it contains. Because the ghosts

are extremely soft (and sensible jet algorithms are infrared safe), the presence of the ghosts does not affect the set of user

particles that end up in a given jet. Active areas give a measure of a jet’s sensitivity to diffuse background noise.

• Passive areas are defined as follows: one adds a single randomly placed ghost at a time to the event. One examines which

jet (if any) the ghost ends up in. One repeats the procedure many times and the passive area of a jet is then proportional to

the probability of it containing the ghost. Passive areas give a measure of a jet’s sensitivity to point-like background noise.

• The Voronoi area of a jet is the sum of the Voronoi areas of its constituent particles. The Voronoi area of a particle is

obtained by determining the Voronoi diagram for the event as a whole, and intersecting the Voronoi cell of the particle

with a circle of radius R centred on the particle. Note that for the kt algorithm (but not in general for other algorithms) the

Voronoi area of a jet coincides with its passive area.

In the limit of very densely populated events, all area definitions lead to the same jet-area results [19].15

The area of a jet can be calculated either as a scalar, or as a 4-vector. Essentially the scalar case corresponds to counting

the number of ghosts in the jet; the 4-vector case corresponds to summing their 4-vectors, normalised such that for a narrow

jet, the transverse component of the 4-vector is equal to the scalar area.

To access jet areas, the user is exposed to two main classes:

class fastjet::AreaDefinition;
class fastjet::ClusterSequenceArea;

with input particles, a jet definition and an area definition being supplied to a ClusterSequenceArea in order to obtain

jets with area information. Typical usage would be as follows:

#include "fastjet/ClusterSequenceArea.hh"
// ...
double ghost_maxrap = 5.0; // e.g. if particles go up to y=5
AreaDefinition area_def(active_area, GhostedAreaSpec(ghost_maxrap));
ClusterSequenceArea clust_seq(input_particles, jet_def, area_def);
vector<PseudoJet> jets = sorted_by_pt(clust_seq.inclusive_jets());
double area_hardest_jet = jets[0].area();

Details are to be found below and an example program is given as example/06-area.cc.

When jet areas are to be used to establish the level of a diffuse noise that might be present in the event (e.g. from underlying

event particles or pileup), and maybe subtract it from jets, further classes such as fastjet::JetMedianBackground

Estimator and fastjet::Subtractor are useful. This topic is discussed in Sect. 8 and an example program is given

in example/07-subtraction.cc.

7.1 AreaDefinition

Area definitions are contained in the AreaDefinition class. Its two main constructors are:

AreaDefinition(fastjet::AreaType area_type,
fastjet::GhostedAreaSpec ghost_spec);

15This can be useful when one area is particularly expensive to calculate: for example active areas for SISCone tend to be memory and CPU
intensive; however, for dense events, they can be adequately replaced with passive areas, which, for SISCone, are computationally more straight-
forward.

Page 28 of 54 Eur. Phys. J. C (2012) 72:1896

Fig. 1 Two choices for ghost placement. The grey area in each plot indicates the region containing ghosts, while the dots are particles, which here
are accepted up to |y| < 3. The circular regions indicate the areas that will be found for two particular jets. In the left-hand case, with ghosts that
extend well beyond the acceptance for particles, jet areas are unaffected by the particle acceptance; in the right-hand case, with ghosts placed only
up to the acceptance limit, jet areas are clipped at the edge of the acceptance

for the various active and passive areas (which all involve ghosts) and

AreaDefinition(fastjet::VoronoiAreaSpec voronoi_spec);

for the Voronoi area. A default constructor exists, and provides an active area with a ghost_spec that is acceptable for a

majority of area measurements with clustering algorithms and typical Tevatron and LHC rapidity coverage.

Information about the current AreaDefinition can be retrieved with the help of description(), area_type(),

ghost_spec() and voronoi_spec() member functions.

7.1.1 Ghosted areas (active and passive)

There are two variants each of the active and passive areas, as defined by the AreaType enum:

enum AreaType{ [...],
active_area,
active_area_explicit_ghosts,
one_ghost_passive_area,
passive_area,
[...]};

The two active variants give identical results for the areas of hard jets. The second one explicitly includes the ghosts when

the user requests the constituents of a jet and also leads to the presence of “pure ghost” jets. The first of the passive variants

explicitly runs through the procedure mentioned above, i.e. it clusters the events with one ghost at a time, and repeats this for

very many ghosts. This can be quite slow, so we also provide the passive_area option, which makes use of information

specific to the jet algorithm in order to speed up the passive-area determination.16

In order to carry out a clustering with a ghosted area determination, the user should also create an object that specifies

how to distribute the ghosts.17 This is done via the class GhostedAreaSpec whose constructor is

GhostedAreaSpec(double ghost_maxrap,
int repeat = 1, double ghost_area = 0.01,
double grid_scatter = 1.0, double pt_scatter = 0.1,
double mean_ghost_pt = 1e-100);

16This ability is provided for kt , Cambridge/Aachen, anti-kt and the SISCone plugin. In the case of kt it is actually a Voronoi area that is used,
since this can be shown to be equivalent to the passive area [19] (though some approximations are made for 4-vector areas). For other algorithms
it defaults back to the one_ghost_passive_area approach.
17Or accept a default—which uses the default values listed in the explicit constructor and ghost_maxrap= 6.

Eur. Phys. J. C (2012) 72:1896 Page 29 of 54

The ghosts are distributed on a uniform grid in y and φ, with small random fluctuations to avoid clustering degeneracies.

The ghost_maxrap variable defines the maximum rapidity up to which ghosts are generated. If one places ghosts well

beyond the particle acceptance (at least R beyond it), then jet areas also stretch beyond the acceptance, giving a measure

of the jet’s full extent in rapidity and azimuth. If ghosts are placed only up to the particle acceptance, then the jet areas

are clipped at that acceptance and correspond more closely to a measure of the jet’s susceptibility to contamination from

accepted soft particles. This is relevant in particular for jets within a distance R of the particle acceptance boundary. The two

choices are illustrated in Fig. 1. To define more complicated ghost acceptances it is possible to replace ghost_maxrap
with a Selector, which must be purely geometrical and have finite rapidity extent.

The ghost_area parameter in the GhostedAreaSpec constructor is the area associated with a single ghost. The

number of ghosts is inversely proportional to the ghost area, and so a smaller area leads to a longer CPU-time for clustering.

However small ghost areas give more accurate results. We have found the default ghost area given above to be adequate for

most applications. Smaller ghost areas are beneficial mainly for high-precision determinations of areas of jets with small R.

By default, one set of ghosts is generated for each event that is clustered. The small random fluctuations in ghost positions

and pt ’s, introduced to break clustering degeneracies, mean that for repeated clustering of the same event a given hard jet’s

area will be different after each clustering. This is especially true for sparse events, where a jet’s particle content fails to accu-

rately delineate the boundaries of the jet. For the active_area choice (and certain passive areas), specifying repeat> 1

causes FastJet to directly cluster the same hard event with multiple ghost sets. This results in a pseudo-Monte Carlo type

evaluation of the jet areas. A statistical uncertainty on the area is available for each jet, through the jet.area_error()
call. It is calculated as the standard deviation of areas obtained for that jet, divided by

√
repeat− 1. While there are

situations in which this facility is useful, for most applications of jet areas it is sufficient to use repeat= 1.18

After initialisation, the parameters can be modified and retrieved respectively with calls such as set_ghost_area(...)
and ghost_maxrap() (similarly for the other parameters19). A textual description of the GhostedAreaSpec can be

obtained, as usual, with the description() member function.

7.1.2 Voronoi Areas

The Voronoi areas of jets are evaluated by summing the corresponding Voronoi areas of the jets’ constituents. The latter are

obtained by considering the intersection between the Voronoi cell of each particle and a circle of radius R centred on the

particle’s position in the rapidity-azimuth plane.

The jets’ Voronoi areas can be obtained from ClusterSequenceArea by passing the proper VoronoiAreaSpec
specification to AreaDefinition. Its constructors are

/// default constructor (effective_Rfact = 1)
VoronoiAreaSpec() ;

/// constructor that allows you to set effective_Rfact
VoronoiAreaSpec(double effective_Rfact) ;

The second constructor allows one to modify (by a multiplicative factor effective_Rfact) the radius of the circle which

is intersected with the Voronoi cells. With effective_Rfact= 1, for the kt algorithm, the Voronoi area is equivalent to

the passive area. Information about the specification in use is returned by effective_Rfact() and description()
member functions.

The Voronoi areas are calculated with the help of Fortune’s (N lnN) Voronoi diagram generator for planar static point

sets [43].

One use for the Voronoi area is in background determination with the kt algorithm (see below, Sect. 8): with the choice

effective_Rfact ≃ 0.9 it provides an acceptable approximation to the kt algorithm’s active area and is often signifi-

cantly faster to compute than the active area. Note that it is not currently possible to clip Voronoi areas with a given particle

18Several parameters are available to control the properties and randomness of the ghosts: each ghost’s position differs from an exact grid vertex

by a random amount distributed uniformly in the range ± 1
2grid_scatter times the grid spacing in both the rapidity and azimuth direc-

tions. Each ghost’s pt is distributed randomly in the range (1 ± 1
2pt_scatter) times mean_ghost_pt. For nearly all applications, it makes

sense to use the default values. Facilities are also available to set and retrieve the seeds for the random-number generator, notably through the
set_random_status(...) and get_random_status(...) members of GhostedAreaSpec.
19In versions of FastJet prior to 3.0.1, the names mean_ghost_kt and kt_scatter should be used rather than mean_ghost_pt and
pt_scatter. The former names will be maintained for the foreseeable future.

Page 30 of 54 Eur. Phys. J. C (2012) 72:1896

acceptance. As a result, given particles up to |y| < ymax, only jets with |y| � ymax − R will have areas that reflect the jets’

sensitivity to accepted particle contamination. It is only these jets that should then be used for background determinations.

7.2 ClusterSequenceArea

This is the class20 used for producing a cluster sequence that also calculates jet areas. Its constructor is

template<class L> ClusterSequenceArea(const std::vector<L> & input_particles,
const JetDefinition & jet_def,
const AreaDefinition & area_def);

and the class includes the methods

/// Return a reference to the area definition
virtual const AreaDefinition & area_def() const;

/// Returns an estimate of the area contained within the selector that is free of jets.
/// The selector needs to have a finite area and be applicable jet by jet.
/// The function returns 0 if active_area_explicit_ghosts was used.
virtual double empty_area(const Selector & selector) const;

As long as an instance of this class is in scope, a user can access information about the area of its jets using the following

methods of PseudoJet:

/// Returns the scalar area associated with the given jet
double area = jet.area();

/// Returns the error (uncertainty) associated with the determination of the
/// scalar area of the jet; gives zero when the repeat=1 and for passive/Voronoi areas
double area_error = jet.area_error();

/// Returns a PseudoJet whose 4-vector is defined by the following integral
///
///

∫

dydφ PseudoJet(y,φ,pt = 1) * �("y,φ inside jet boundary")
///
/// where PseudoJet(y,φ,pt = 1) is a 4-vector with the given rapidity (y),
/// azimuth (φ) and pt = 1, while �("y,φ inside jet boundary") is 1
/// when y,φ define a direction inside the jet boundary and 0 otherwise.
PseudoJet area_4vector = jet.area_4vector();

/// When using active_area_explicit_ghosts, returns true for jets made
/// exclusively of ghosts and for ghost constituents.
bool is_pure_ghost = jet.is_pure_ghost();

8 Background estimation and subtraction

Events with hard jets are often accompanied by a more diffuse “background” of relatively soft particles, for example from

the underlying event (in pp or PbPb collisions) or from pileup (in pp collisions). For many physical applications, it is useful

20ClusterSequenceArea is derived from ClusterSequenceAreaBase (itself derived from ClusterSequence) and makes use of one
among ClusterSequenceActiveAreaExplicitGhosts, ClusterSequenceActiveArea, ClusterSequencePassiveArea,
ClusterSequence1GhostPassiveArea or ClusterSequenceVoronoiArea (all of them in the fastjet namespace of course),
according to the choice made with AreaDefinition. The user can also use these classes directly. ClusterSequenceActiveAreaEx-
plicitGhosts is particularly useful in that it allows the user to specify their own set of ghost particles. This is exploited to provide area support
in a number of the transformers of Sect. 9.

Eur. Phys. J. C (2012) 72:1896 Page 31 of 54

to be able to estimate characteristics of the background on an event-by-event basis, for example the pt per unit area (ρ),

or fluctuations from point to point (σ). One use of this information is to correct the hard jets for the soft contamination, as

discussed below in Sect. 8.1.2.

One of the issues in characterising the background is that it is difficult to introduce a robust criterion to distinguish “back-

ground” jets from hard jets. The main method that is available in FastJet involves the determination of the distribution of

pt/A for the jets in a given event (or region of the event) and then taking the median of the distribution as an estimate of ρ,

as proposed in [20] and studied in detail also in [44, 45]. This is largely insensitive to the presence of a handful of hard jets,

and avoids any need for introducing a pt scale to distinguish hard and background jets.

The original form of this method used the kt or Cambridge/Aachen jet algorithms to find the jets. These algorithms have

the advantage that the resulting jets tend to have reasonably uniform areas.21 In the meantime a variant of the approach that

has emerged is to cluster the particles into rectangular grid cells in y and φ and determine their median pt/A. This has the

advantage of simplicity and much greater speed. One may worry that a hard jet will sometimes lie at a corner of multiple

grid cells, inducing larger biases in the median than with a normal jet finder jets, however we have found this not to be an

issue in practice [45].

8.1 General usage

8.1.1 Background estimation

The simplest workflow for background estimation is first, outside the event loop, to create a background estimator. For the

jet-based method, one creates a fastjet::JetMedianBackgroundEstimator,

#include "fastjet/tools/JetMedianBackgroundEstimator.hh"
// ...
JetMedianBackgroundEstimator bge(const Selector & selector,

const JetDefinition & jet_def,
const AreaDefinition & area_def);

where the selector is used to indicate which jets are used for background estimation (for simple use cases, one just specifies

a rapidity range, e.g. SelectorAbsRapMax(4.5) to use all jets with |y| < 4.5), together with a jet definition and an

area definition. We have found that the kt or Cambridge/Aachen jet algorithms with R = 0.4–0.6 generally provide adequate

background estimates, with the lower range of R values to be preferred if the events are likely to be busy [44, 45]. An active

area with explicit ghosts is generally recommended.22

For the grid based method one creates a fastjet::GridMedianBackgroundEstimator,

#include "fastjet/tools/GridMedianBackgroundEstimator.hh"
// ...
GridMedianBackgroundEstimator bge(double max_rapidity,

double requested_grid_spacing);

We have found grid spacings in the range 0.5–0.7 to be adequate [45], with lower values preferred for events that are likely

to have high multiplicities.

Both of the above background estimators derive from a fastjet::BackgroundEstimatorBase class and the

remaining functionality is common to both. In particular, for each event, one tells the background estimator about the event

particles,

bge.set_particles(event_particles);

21Whereas anti-kt and SISCone suffer from jets with near zero areas or, for SISCone, sometimes huge, “monster” jets, biasing the ρ determination.
They are therefore not recommended.
22With the kt algorithm one may also use a Voronoi area (effective_Rfact = 0.9 is recommended), which has the advantage of being
deterministic and faster than ghosted areas. In this case however one must use a selector that is geometrical and selects only jets well within the
range of event particles. E.g. if particles are present up to |y| = ymax one should only use jets with |y| � ymax −R. When using ghosts, the selector
can instead go right up to the edge of the acceptance, if the ghosts also only go right up to the edge, as in the right-hand plot of Fig. 1.

Page 32 of 54 Eur. Phys. J. C (2012) 72:1896

where event_particles is a vector of PseudoJet, and then extracts the background density and a measure of its

fluctuations with the two following calls

// the median of (pt/area) for grid cells, or for jets that pass the selection cut,
// making use also of information on empty area in the event (in the jets case)
rho = bge.rho();

// an estimate of the fluctuations in the pt density per unit
√

A,
// which is obtained from the 1-sigma half-width of the distribution of pt/A.
// To be precise it is defined such that a fraction (1-0.6827)/2 of the jets
// (including empty jets) have pt/A < ρ − σ

√
〈A〉

sigma = bge.sigma();

Note that ρ and σ determinations count empty area within the relevant region as consisting of jets of zero pt . Thus (roughly

speaking), if more that half of the area covered by the jets selector or grid rapidity range is empty, the median estimate for ρ

will be zero, as expected and appropriate for quiet events.

8.1.2 Background subtraction

A common use of an estimation of the background is to subtract its contamination from the transverse momentum of hard

jets, in the form

psub
t,jet = praw

t,jet − ρAjet (11)

or its 4-vector version

psub
μ,jet = praw

μ,jet − ρAμ,jet, (12)

as first proposed in [20].

To this end, the Subtractor class is defined in include/tools/Subtractor.hh. Its constructor takes a pointer

to a background estimator:

JetMedianBackgroundEstimator bge(....); // or a grid-based estimator
Subtractor subtractor(&bge);

(it is also possible to construct the Subtractor with a fixed value for ρ). The subtractor can then be used as follows:

PseudoJet jet;
vector<PseudoJet> jets;
// ...
PseudoJet subtracted_jet = subtractor(jet);
vector<PseudoJet> subtracted_jets = subtractor(jets);

The subtractor normally returns

jet - bge.rho(jet)*jet.area_4vector().

If

jet.perp() < bge.rho(jet)*jet.area_4vector().perp(),

then the subtractor instead returns a jet with zero 4-momentum (so that (subtracted_jet==0) returns true). In both

cases, the returned jet retains the user and structural information of the original jet.

An example program is given in example/07-subtraction.cc.

Note that Subtractor derives from the Transformer class (see Sect. 9) and hence from FunctionOfPseudoJet

<PseudoJet> (cf. Appendix D).

Eur. Phys. J. C (2012) 72:1896 Page 33 of 54

8.2 Positional dependence of background

The background density in pp and heavy-ion collisions usually has some non-negligible dependence on rapidity (and some-

times azimuth). This dependence is not accounted for in the standard estimate of ρ based on all jets or grid cells from (say)

|y| < 4.5. Two techniques are described below to help alleviate this problem. In each case the properties of the background

are to be obtained through the methods (available for both JetMedianBackgroundEstimator and GridMedian-

BackgroundEstimator)

double rho (const PseudoJet & jet); // pt density per unit area A near jet
double sigma(const PseudoJet & jet); // fluctuations in the pt density near jet

8.2.1 Local estimation

The first technique, “local estimation”, available for now only in the case of the jet-based estimator, involves the use of a

more local range for the determination of ρ, with the help of a Selector that is able to take a reference jet, e.g. Selec-

torStrip(�y), a strip of half-width �y (which might be of order 1) centred on whichever jet is set as its reference. With

this kind of selector, when the user calls either rho(jet) or sigma(jet) a selector.set_reference(jet) call

is made to centre the selector on the specified jet. Then only the jets in the event that pass the cut specified by this newly

positioned selector are used to estimate ρ or σ .23 This method is adequate if the number of jets that pass the selector

is much larger than the number of hard jets in the range (otherwise the median pt/A will be noticeably biased by the hard

jets). It therefore tends to be suitable for dijet events in pp or PbPb collisions, but may fare less well in event samples such

as hadronically decaying t t̄ which may have many central hard jets. One can attempt to remove some given number of hard

jets before carrying out the median estimation, e.g. with a selector such as

selector = SelectorStrip(�y) * (!SelectorNHardest(2))

which removes the 2 hardest jets globally and then, of the remainder, takes the ones within the strip.24 This is however not

always very effective, because one may not know how many hard jets to remove.

8.2.2 Rescaling method

A second technique to account for positional dependence of the background is “rescaling”. First one parametrises the average

shape of the rapidity dependence from some number of pileup events. Then for subsequent event-by-event background de-

terminations, one carries out a global ρ determination and then applies the previously determined average rescaling function

to that global determination to obtain an estimate for ρ in the neighbourhood of a specific jet.

The rescaling approach is available for both grid and jet-based methods. To encode the background shape, one defines an

object such as

// gives rescaling(y) = 1.16 + 0 · y − 0.023 · y2 + 0 · y3 + 0.000041 · y4

fastjet::BackgroundRescalingYPolynomial rescaling(1.16, 0, -0.023, 0, 0.000041);

(for other shapes, e.g. parametrisation of elliptic flow in heavy ion collisions, with both rapidity and azimuth dependence,

derive a class from FunctionOfPseudoJet<double>—see Appendix D). Then one tells the background estimator

(whether jet or grid based) about the rescaling with the call

// tell JetMedianBackgroundEstimator or GridMedianBackgroundEstimator about the rescaling
bge.set_rescaling_class(&rescaling);

23If the selector does not take a reference jet, then these calls give identical results to the plain rho() and sigma() calls (unless a manual
rapidity rescaling is also in effect, cf. Sect. 8.2.2).
24If you use non-geometric selectors such as this in determining ρ, the area must have explicit ghosts in order to simplify the determination of the
empty area. If it does not, an error will be thrown.

Page 34 of 54 Eur. Phys. J. C (2012) 72:1896

Subsequent calls to rho() will return the median of the distribution pt/A/rescaling(y) (rather than pt/A). Any calls

to rho(jet) and sigma(jet) will include an additional factor of rescaling(yjet). Note that any overall factor in

the rescaling function cancels out for rho(jet) and sigma(jet), but not for calls to rho() and sigma() (which are

in any case less meaningful when a rapidity dependence is being assumed for the background).

In ongoing studies [45], we have found that despite its use of an average background shape, the rescaling method generally

performs comparably to local estimation in terms of its residual pt dispersion after subtraction. Additionally, it has the

advantage of reduced sensitivity to biases in events with high multiplicities of hard jets.

8.3 Other facilities

The JetMedianBackgroundEstimator has a number of enquiry functions to access information used internally

within the median ρ and σ determination.

// Returns the mean area of the jets used to actually compute the background properties,
// including empty area and jets (available also in grid-based estimator)
double mean_area() const;

// Returns the number of jets used to actually compute the background properties
// (including empty jets)
unsigned int n_jets_used() const;

// Returns the estimate of the area (within the range defined by the selector)
// that is not occupied by jets.
double empty_area() const;

// Returns the number of empty jets used when computing the background properties.
double n_empty_jets() const;

For area definitions with explicit ghosts the last two functions return 0. For active areas without explicit ghosts the results

are calculated based on the observed number of internally recorded pure ghost jets (and unclustered ghosts) that pass the

selector; for Voronoi and passive areas, they are calculated using the difference between the total range area and the area of

the jets contained in the range, with the number of empty jets then being calculated based on the average jet area for ghost

jets (0.55πR2 [19]). All four function above return a result corresponding to the last call to rho or sigma (as long as the

particles, cluster sequence or selector have not changed in the meantime).

8.4 Alternative workflows

To allow flexibility in the user’s workflow, alternative constructors to JetMedianBackgroundEstimator are provided.

These can come in useful if, for example, the user wishes to carry out multiple background estimations with the same

particles but different selectors, or wishes to take care of the jet clustering themselves, e.g. because the results of that same

jet clustering will be used in multiple contexts and it is more efficient to perform it just once. These constructors are:

// create an estimator that uses the inclusive jets from the supplied cluster sequence
JetMedianBackgroundEstimator(const Selector & rho_range,

const ClusterSequenceAreaBase & csa);
// a default constructor that requires all information to be set later
JetMedianBackgroundEstimator();

In the first case, the background estimator already has all the information it needs. Instead, if the default constructor has been

used, one can then employ

// (re)set the selector to be used for future calls to rho() etc.
void set_selector(const Selector & rho_range_selector);
// (re)set the cluster sequence to be used by future calls to rho() etc.
// (as with the cluster-sequence based constructor, its inclusive jets are used)
void set_cluster_sequence(const ClusterSequenceAreaBase & csa);

Eur. Phys. J. C (2012) 72:1896 Page 35 of 54

to set the rest of the necessary information. If a list of jets is already available, they can be submitted to the background

estimator in place of a cluster sequence:

// (re)set the jets to be used by future calls to rho() etc.
void set_jets(const std::vector<PseudoJet> & jets);

Note that the jets passed via the set_jets() call above must all originate from a common ClusterSequence-

AreaBase type class.

9 Jet transformers (substructure, taggers, etc.)

Performing post-clustering actions on jets has in recent years become quite widespread: for example, numerous techniques

have been introduced to tag boosted hadronically decaying objects, and various methods also exist for suppressing the

underlying event and pileup in jets, beyond the subtraction approach discussed in Sect. 8. FastJet 3 provides a common

interface for such tools, intended to help simplify their usage and to guide authors of new ones. Below, we first discuss

generic considerations about these tools, which we call fastjet::Transformers. We then describe some that have

already been implemented. New user-defined transformers can be implemented as described in Appendix E.4.

A transformer derived from Transformer, e.g. the class MyTransformer, will generally be used as follows:

MyTransformer transformer;
PseudoJet transformed_jet = transformer(jet);

Often, transformers provide new structural information that is to be associated with the returned result. For a given trans-

former, say MyTransformer, the new information that is not already directly accessible from PseudoJet (like its

constituents, pieces or area when they are relevant), can be accessed through

transformed_jet.structure_of<MyTransformer>()

which returns a reference to an object of type MyTransformer::StructureType. This is illustrated below on a case-

by-case basis for each of the transformers that we discuss. Using the Boolean function transformed_jet.has_struc-

ture_of<MyTransformer>() it is possible to check if transformed_jet is compatible with the structure provided

by MyTransformer.

A number of the transformers that we discuss below are “taggers” for boosted objects. In some cases they will determine

that a given jet does not satisfy the tagging conditions (e.g., for a top tagger, because it seems not to be a top jet). We will

adopt the convention that in such cases the result of the transformer is a jet whose 4-momentum is zero, i.e. one that satisfies

jet == 0. Such a jet may still have structural information however (e.g. to indicate why the jet was not tagged).

9.1 Noise-removal transformers

In Sect. 8.1.2 we already saw one transformer for noise removal, i.e. Subtractor. Others have emerged in the context of

jet substructure studies and are described here.

9.1.1 Jet filtering and trimming using Filter

Filtering was first introduced in [46] to reduce the sensitivity of a boosted Higgs-candidate jet’s mass to the underlying event.

Generally speaking, filtering clusters a jet’s constituents with a smaller-than-original jet radius Rfilt. It then keeps just the nfilt

hardest of the resulting subjets, rejecting the others. Trimming [47] is similar, but selects the subjets to be kept based on a

pt cut. The use of filtering and trimming has been advocated in number of contexts, beyond just the realm of boosted object

reconstruction.

The fastjet::Filter class derives from Transformer, and can be constructed using a JetDefinition, a Se-

lector and (optionally) a value for the background density,

Page 36 of 54 Eur. Phys. J. C (2012) 72:1896

#include "fastjet/tools/Filter.hh"
// ...
Filter filter(subjet_def, selector, rho);

This reclusters the jet’s constituents with the jet definition subjet_def25 and then applies selector on the inclu-

sive_jets resulting from the clustering to decide which of these (sub)jets have to be kept. If rho is non-zero, each of

the subjets is subtracted (using the specified value for the background density) prior to the selection of the kept subjets.

Alternatively, the user can set a Subtractor (see Sect. 8.1.2), e.g.

GridMedianBackgroundEstimator bge(...);
Subtractor sub(&bge);
filter.set_subtractor(sub);

When this is done, the subtraction operation is performed using the Subtractor, independently of whether a value had

been set for rho.

If the jet definition to be used to recluster the jet’s constituents is the Cambridge/Aachen algorithm, two additional con-

structors are available:

Filter(double Rfilt, Selector selector, double rho = 0.0);
Filter(FunctionOfPseudoJet<double> * Rfilt_dyn, Selector selector, double rho = 0.0);

In the first one, only the radius parameter is specified instead of the full subjet definition. In the second, one has to provide

a (pointer to) a class derived from FunctionOfPseudoJet<double> which dynamically computes the filtering radius

as a function of the jet being filtered (as was originally used in [46] where Rfilt = min(0.3,Rbb̄/2), with Rbb̄ the distance

between the parents of the jet).

As an example, a simple filter, giving the subjets obtained clustering with the Cambridge/Aachen algorithm with radius

Rfilt and keeping the nfilt hardest subjets found, can be set up and applied using

Filter filter(Rfilt, SelectorNHardest(nfilt));
PseudoJet filtered_jet = filter(jet);

The pieces() of the resulting filtered/trimmed jet correspond to the subjets that were kept:

vector<PseudoJet> kept = filtered_jet.pieces();

Additional structural information is available as follows:

// the subjets (on the scale Rfilt) not kept by the filtering
vector<PseudoJet> rejected = filtered_jet.structure_of<Filter>().rejected();

Trimming, which keeps the subjets with a pt larger than a fixed fraction of the input jet, can be obtained defining

Filter trimmer(Rfilt, SelectorPtFractionMin(pt_fraction_min));

and then applying trimmer similarly to filter above.

Note that the jet being filtered must have constituents. Furthermore, if rho is non-zero or if a Subtractor is set,

the input jet must come from a cluster sequence with area support and explicit ghosts. If any of these requirements fail,

an exception is thrown. In cases where the filter/trimmer has been defined with just a jet radius, the reclustering of the jet

is performed with the same recombination scheme as was used in producing the original jet (assuming it can be uniquely

determined).

25When the input jet was obtained with the Cambridge/Aachen algorithm and the subjet definition also involves the Cambridge/Aachen algorithm,
the Filter uses the exclusive subjets of the input jet to avoid having to recluster its constituents.

Eur. Phys. J. C (2012) 72:1896 Page 37 of 54

9.1.2 Jet pruning

Pruning was introduced in [23]. It works by reclustering a jet’s constituents with some given sequential recombination

algorithm, but vetoing soft and large-angle recombinations between pseudojets i and j , specifically when the two following

conditions are met

1. The geometric distance between i and j is larger than a parameter Rcut, with Rcut = Rcut_factor×2m/pt , where

m and pt are the mass and transverse momentum of the original jet being pruned.

2. One of pi
t ,p

j
t is < zcut×p

i+j
t .

When the veto condition occurs, the softer of i and j is discarded, while the harder one continues to participate in the

clustering.

Pruning bears similarity to filtering in that it reduces the contamination of soft noise in a jet while aiming to retain hard

perturbative radiation within the jet. However, because by default the parameters for the noise removal depend on the original

mass of the jet, the type of radiation that is discarded depends significantly on the initial jet structure. As a result pruning, in

its default form, is better thought of as a noise-removing boosted-object tagger (to be used in conjunction with a pruned-jet

mass cut) rather than a generic noise-removal procedure.

The fastjet::Pruner class, derived from Transformer, can be used as follows, using a JetAlgorithm and

two double parameters:

#include "fastjet/tools/Pruner.hh"
// ...
Pruner pruner(jet_algorithm, zcut, Rcut_factor);
// ...
PseudoJet pruned_jet = pruner(jet);

The pruned_jet will have a valid associated cluster sequence, so that one can, for instance, ask for its constituents with

pruned_jet.constituents(). In addition, the subjets that have been rejected by the pruning algorithm (i.e. have

been ‘pruned away’) can be obtained with

vector<PseudoJet> rejected_subjets = pruned_jet.structure_of<Pruner>().rejected();

and each of these subjets will also have a valid associated clustering sequence.

When using the constructor given above, the jet radius used by the pruning clustering sequence is set internally to the

functional equivalent of infinity. Alternatively, a pruner transformer can be constructed with a JetDefinition instead of

just a JetAlgorithm:

JetDefinition pruner_jetdef(jet_algorithm, Rpruner);
Pruner pruner(pruner_jetdef, zcut, Rcut_factor);

In this situation, the jet definition pruner_jetdef should normally have a radius Rpruner large enough to ensure that

all the constituents of the jet being pruned are reclustered into a single jet. If this is not the case, pruning is applied to the

entire reclustering and it is the hardest resulting pruned jet that is returned; the others can be retrieved using

vector<PseudoJet> extra_jets = pruned_jet.structure_of<Pruner>().extra_jets();

Finally, note that a third constructor for Pruner exists, that allows one to construct the pruner using functions that

dynamically compute zcut and Rcut for the jet being pruned:

Pruner (const JetDefinition &jet_def,
FunctionOfPseudoJet< double > *zcut_dyn,
FunctionOfPseudoJet< double > *Rcut_dyn);

Page 38 of 54 Eur. Phys. J. C (2012) 72:1896

9.2 Boosted-object taggers

A number of the taggers developed to distinguish 2- or 3-pronged decays of massive objects from plain QCD jets (see the

review [17]) naturally fall into the category of transformers. Typically they search for one or more hard branchings within

the jet and then return the part of the jet that has been identified as associated with those hard branchings. They share the

convention that if they were not able to identify suitable substructure, they return a jet with zero momentum, i.e. one that

has the property jet == 0.

At the time of writing, we provide only a small set of taggers. These include one main two-body tagger, the fast-
jet::MassDropTagger introduced in [46] and one main boosted top tagger, fastjet::JHTopTagger from [48]

(JHTopTagger derives from the fastjet::TopTaggerBase class, expressly included to provide a common frame-

work for all top taggers capable of also returning a W). In addition, to help provide a more complete set of exam-

ples of coding methods to which users may refer when writing their own taggers, we have also included the fast-
jet::CASubJetTagger introduced in [49], which illustrates the use of a WrappedStructure (cf. Appendix E.4)

and the rest-frame fastjet::RestFrameNSubjettinessTagger from Ref. [50], which makes use of facilities to

boost a cluster sequence.

We refer the reader to the original papers for a more extensive description of the physics use of these taggers.

More taggers may be provided in the future, either through native implementations or, potentially, through a “contrib”

type area. Users are invited to contact the FastJet authors for further information in this regard.

9.2.1 The mass-drop tagger

Introduced in [46] for the purpose of identifying a boosted Higgs decaying into a bb̄ pair, this is a general 2-pronged tagger.

It starts with a fat jet obtained with a Cambridge/Aachen algorithm (originally, R = 1.2 was suggested for boosted Higgs

tagging). Tagging then proceeds as follows:

1. The last step of the clustering is undone: j → j1, j2, with mj1 > mj2 .

2. If there is a significant mass drop, μ ≡ mj1/mj < μcut, and the splitting is sufficiently symmetric, y ≡ min(p2
tj1

,p2
tj2

) ×
�R2

j1j2
/m2

j > ycut, then j is the resulting heavy particle candidate with j1 and j2 its subjets.

3. Otherwise, redefine j to be equal to j1 and go back to step 1.

The tagger can be constructed with

#include "fastjet/tools/MassDropTagger.hh"
// ...
MassDropTagger mdtagger(double μcut, double ycut);

and applied using

PseudoJet tagged_jet = mdtagger(jet);

This tagger will run with any jet that comes from a ClusterSequence. A warning will be issued if the Clus-
terSequence is not based on the C/A algorithm. If the JetDefinition used in the ClusterSequence involved a

non-default recombiner, that same recombiner will be used when joining the final two prongs to form the boosted particle

candidate.

For a jet that is returned by the tagger and has the property that tagged_jet != 0, two enquiry functions can be used

to return the actual value of μ and y for the clustering that corresponds to the tagged structure:

tagged_jet.structure_of<MassDropTagger>.mu();
tagged_jet.structure_of<MassDropTagger>.y();

Note that in [46] the mass-drop element of the tagging was followed by a filtering stage using min(0.3,Rjj/2) as the

reclustering radius and selecting the three hardest subjects. That can be achieved with

vector<PseudoJet> tagged_pieces = tagged_jet.pieces();
double Rfilt = min(0.3, 0.5 * pieces[0].delta_R(pieces[1]));
PseudoJet filtered_tagged_jet = Filter(Rfilt, SelectorNHardest(3))(tagged_jet);

(It is also possible to use the Rfilt_dyn option to the filter discussed in Sect. 9.1.1.)

Eur. Phys. J. C (2012) 72:1896 Page 39 of 54

9.2.2 The Johns Hopkins top tagger

The Johns Hopkins top tagger [48] is a 3-pronged tagger specifically designed to identify top quarks. It recursively breaks a

jet into pieces, finding up to 3 or 4 subjets and then looking for a W candidate among them. The parameters used to identify

the relevant subjets include a momentum fraction cut and a minimal separation in Manhattan distance (|�y|+ |�φ|) between

subjets obtained from a declustering.

The tagger will run with any jet that comes from a ClusterSequence , however to conform with the original formu-

lation of [48], the ClusterSequence should be based on the C/A algorithm. A warning will be issued if this is not the

case. If the JetDefinition used in the ClusterSequence involves a non-default recombiner, that same recombiner

will be used when joining the final two prongs to form the boosted particle candidate. The tagger can be used as follows:

#include "fastjet/tools/JHTopTagger.hh"
// ...
double delta_p = 0.10; // subjets must carry at least this fraction of original jet’s pt

double delta_r = 0.19; // subjets must be separated by at least this Manhattan distance
double cos_theta_W_max = 0.7; // the maximal allowed value of the W helicity angle
JHTopTagger top_tagger(delta_p, delta_r, cos_theta_W_max);
// indicate the acceptable range of top, W masses
top_tagger.set_top_selector(SelectorMassRange(150,200));
top_tagger.set_W_selector (SelectorMassRange(65, 95));
// now try and tag a jet
PseudoJet top_candidate = top_tagger(jet); // jet should come from a C/A clustering
if (top_candidate != 0) { // successful tagging

double top_mass = top_candidate.m();
double W_mass = top_candidate.structure_of<JHTopTagger>().W().m();

}

Other information available through the structure_of<JHTopTagger>() call includes: W1() and W2(), the harder

and softer of the two W subjets; non_W(), the part of the top that has not been identified with a W (i.e. the candidate for the

b); and cos_theta_W(). The top_candidate.pieces() call will return 2 pieces, where the first is the W candidate

(identical to structure_of<JHTopTagger>().W()), while the second is the remainder of the top jet (i.e. non_W).

Note the above calls to set_top_selector() and set_W_selector(). If these calls are not made, then the

tagger places no cuts on the top or W candidate masses and it is then the user’s responsibility to verify that they are in a

suitable range.

Note further that JHTopTagger does not derive directly from Transformer, but from the fastjet::TopTagger

Base class instead. This class (which itself derives from Transformer) has been included to provide a proposed common

interface for all the top taggers. In particular, TopTaggerBase provides (via the associated structure)

top_candidate.structure_of<TopTaggerBase>().W()
top_candidate.structure_of<TopTaggerBase>().non_W()

and standardises the fact that the resulting top candidate is a PseudoJet made of these two pieces.

The benefits of the base class for top taggers will of course be more evident once more than a single top tagger has been

implemented.

9.2.3 The Cambridge/Aachen subjet tagger

The Cambridge/Aachen subjet tagger [49], originally implemented in a 3-pronged context, is really a generic 2-body tagger,

which can also be used in a nested fashion to obtained multi-pronged tagging. It can be obtained through the include

#include "fastjet/tools/CASubjetTagger.hh"

As it is less widely used than the taggers mentioned above, we refer the user to the online doxygen documentation for further

details.

Page 40 of 54 Eur. Phys. J. C (2012) 72:1896

9.2.4 The rest-frame N -subjettiness tagger

The rest-frame N -subjettiness tagger [50], meant to identify a highly boosted colour singlet particle decaying to 2 partons,

can be obtained through the include

#include "fastjet/tools/RestFrameNSubjettinessTagger.hh"

As it is less widely used than the taggers mentioned above, we refer the user to the online doxygen documentation for further

details.

10 Compilation notes

Compilation and installation make use of the standard

% ./configure
% make
% make check
% make install

procedure. Explanations of available options are given in the INSTALL file in the top directory, and a list can also be obtained

running ./configure --help.

In order to access the NlnN strategy for the kt algorithm, the FastJet library needs to be compiled with support

for the Computational Geometry Algorithms Library CGAL [14, 15]. This same strategy gives N lnN performance for

Cambridge/Aachen and N3/2 performance for anti-kt (whose sequence for jet clustering triggers a worst-case scenario for

the underlying computational geometry methods). CGAL can be enabled with the --enable-cgal at the configure
stage. CGALmay be obtained in source form from http://www.cgal.org/ and is also available in binary form for many common

Linux distributions. For CGAL versions 3.4 and higher, the user can specify --with-cgaldir=... if the CGAL files

are not installed in a standard location.26

The NlnNCam strategy does not require CGAL, since it is based on a considerably simpler computational-geometry

structure [51].

Acknowledgements Many people have provided bug reports, suggestions for development and in some cases explicit code for plugin algorithms.
We would in particular like to thank Vanya Belyaev, Andy Buckley, Timothy Chan, Pierre-Antoine Delsart, Olivier Devillers, Robert Harris, Joey
Huston, Sue Ann Koay, Andreas Oehler, Sal Rappoccio, Juan Rojo, Sebastian Sapeta, Mike Seymour, Jessie Shelton, Lars Sonnenschein, Hartmut
Stadie, Mark Sutton, Chris Vermilion, Markus Wobisch.

Since its inception, this project has been supported in part by grants ANR-05-JCJC-0046-01, ANR-09-BLAN-0060 and ANR-10-CEXC-009-
01 from the French Agence Nationale de la Recherche, PITN-GA-2010-264564 from the European Commission and DE-AC02-98CH10886 from
the US Department of Energy.

We would also like to thank the numerous institutes that have hosted us for shorter or longer stays while FastJet was being developed,
including the GGI in Florence, KITP at Santa Barbara, Rutgers University and Brookhaven National Laboratory.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the source are credited.

Appendix A: Clustering strategies and performance

The constructor for a JetDefinition can take a strategy argument (cf. Sect. 3.2), which selects the algorithmic “strategy”

to use while clustering. It is an enum of type Strategy with relevant values listed in Table 2. Nearly all strategies are based

on the factorisation of energy and geometrical distance components of the dij measure [10]. In particular they involve the

dynamic maintenance of a nearest-neighbour graph for the geometrical distances. They apply equally well to any of the

internally implemented hadron-collider jet algorithms. The one exception is NlnNCam, which is based on a computational

geometry algorithm for dynamic maintenance of closest pairs [51] (rather than the more involved nearest neighbour graph),

and is suitable only for the Cambridge algorithm, whose distance measure is purely geometrical.

26For events with near degeneracies in their Delaunay triangulation, issues have been found with versions 3.7 and 3.8 of CGAL. We recommend
the use of earlier or later versions.

http://www.cgal.org/

Eur. Phys. J. C (2012) 72:1896 Page 41 of 54

Table 2 The more interesting of the various algorithmic strategies for clustering. Other strategies are given JetDefinition.hh—note how-
ever that strategies not listed in the above table may disappear in future releases. For jet algorithms with spherical distance measures (those whose
name starts with “ee_”), only the N2Plain strategy is available

N2Plain a plain N2 algorithm (fastest for N � 30)

N2Tiled a tiled N2 algorithm (fastest for 30 � N � 400)

N2MinHeapTiled a tiled N2 algorithm with a heap for tracking the minimum of dij (fastest for 400 � N � 15 000)

NlnN the Voronoi-based N lnN algorithm (fastest for N � 15 000)

NlnNCam based on Chan’s N lnN closest pairs algorithm (fastest for N � 6000), suitable only for the
Cambridge jet algorithm

Best automatic selection of the best of these based on N and R

The N2Plain strategy uses a “nearest-neighbour heuristic” [52] approach to maintaining the geometrical nearest-

neighbour graph; N2Tiled tiles the y–φ cylinder to limit the set of points over which nearest-neighbours are searched

for,27 and N2MinHeapTiled differs only in that it uses an N lnN (rather than N2) data structure for maintaining in order

the subset of the dij that involves nearest neighbours. The NlnN strategy uses CGAL’s Delaunay Triangulation [14, 15]

for the maintenance of the nearest-neighbour graph. Note that N lnN performance of is an expected result, and it holds in

practice for the kt and Cambridge algorithms, while for anti-kt and generalised-kt with p < 0, hub-and-spoke (or bicycle-

wheel) type configurations emerge dynamically during the clustering and these break the conditions needed for the expected

result to hold (this however has a significant impact only for N � 105). A further comment about the N lnN strategy is that

it currently has the limitation that it cannot be used in events with perfectly collinear particles. This is related to the fact

that the underlying computation geometry structures cannot cleanly accommodate multiple particles in the same location,

because of the degeneracies that are induced. A workaround for this problem may be provided on request.

If strategy is omitted then the Best option is set. Note that the N ranges quoted in Table 2 for which a given strategy

is optimal hold for R = 1; the general R dependence can be significant and non-trivial. While some attempt has been made

to account for the R-dependence in the choice of the strategy with the “Best” option, there may exist specific regions of

N and R in which a manual choice of strategy can give faster execution. Furthermore the NlnNCam strategy’s timings may

depend strongly on the size of the cache. Finally for a given N and R, the optimal strategy may also depend on the event

structure.

Illustrative timings for the Best strategy are shown as a function of N in Fig. 2 for the anti-kt , kt and the Cam-

bridge/Aachen algorithms. Results for the SISCone plugin are given for comparison purposes. Kinks in the timings of the

native algorithms are visible at the N values where there is a switch from one strategy to another. There can be imperfections

in this choice, e.g. as seen for the kt algorithm near N = 20 000. While their impact is generally modest, depending on event

structure there can be cases where a manual choice of strategy can have significant benefits.

We note that there are a few places where there remains scope for timing improvements. In particular at low N the

overheads related to copying and sorting of a vector of PseudoJet objects are a substantial fraction of the total time, and

could be reduced. Additionally, for the Cambridge/Aachen algorithm at moderate to large N , the use of multiple grid sizes

could bring an O(1) benefit; for the anti-kt algorithm one can envisage O(1) improvements at moderate to large N when N is

dominated by ghost particles, making use of the fact that for the anti-kt algorithm one may neglect the ghosts’ self clustering

in the determination of hard jets’ areas. Should users have applications where such improvements would be critical, they are

encouraged to contact the FastJet authors.

Appendix B: User info in PseudoJets

One method for associating extra user information with a PseudoJet is via its user index (Sect. 3.1). This is adequate

for encoding simple information. such as an input particle’s barcode in a HepMC event. However, it can quickly show its

limitations; for example, when simulating pileup one might have several HepMC events and it is then useful for each particle

to additionally store information about which HepMC event it comes from.

A second method for supplementing a PseudoJet with extra user information is for the user to derive a class from

PseudoJet::UserInfoBase and associate the PseudoJet with a pointer to an instance of that class:

27Tiling is a textbook approach in computational geometry, where it is often referred to as bucketing. It has been used also in certain cone jet
algorithms, notably at trigger level and in [53].

Page 42 of 54 Eur. Phys. J. C (2012) 72:1896

Fig. 2 Time required to perform the clustering of N particles in FastJet 3.0.1 with the Best strategy. The anti-kt , kt , and Cambridge/Aachen
(C/A) native algorithms are shown, together with the SISCone plugin. All use R = 0.7. Shown for an Intel i5 760 processor with 8 MB of cache.
For small N , N was varied by taking a single hard dijet event generated with Pythia 6 [54] and extracting the N hardest particles. Large N values
were obtained by taking a single hard dijet event and adding simulated minimum-bias events to it. The results include the time to extract the
inclusive jets with pt > 5 GeV and sort them into decreasing pt

void set_user_info(UserInfoBase * user_info);
const UserInfoBase* user_info_ptr() const;

The function set_user_info(...) transfers ownership of the pointer to the PseudoJet. This is achieved internally

with the help of a shared pointer. Copies of the PseudoJet then point to the same user_info. When the PseudoJet

and all its copies go out of scope, the user_info is automatically deleted. Since nearly all practical uses of user_info

require it to be cast to the relevant derived class of UserInfoBase, we also provide the following member function for

convenience:

template<class L> const L & user_info() const;

which explicitly performs the cast of the extra info to type L. If the cast fails, or the user info has not been set, an error will

be thrown.28

The user may wonder why we have used shared pointers internally (i.e. have ownership transferred to the PseudoJet)

rather than normal pointers. An example use case where the difference is important is if, for example, one wishes to write

a Recombiner that sets the user_info in the recombined PseudoJet . Since this is likely to be new information, the

Recombiner will have to allocate some memory for it. With a normal pointer, there is then no easy way to clean up that

memory when the PseudoJet is no longer relevant (e.g. because the ClusterSequence that contains it has gone out

of scope). In contrast, with a shared pointer the memory is handled automatically.29

The shared pointer type in FastJet is a template class called SharedPtr, available through

#include "fastjet/SharedPtr.hh"

It behaves almost identically to the C++0x shared_ptr.30 The end-user should not usually need to manipulate the

SharedPtr, though the SharedPtr to user_info is accessible through PseudoJet ’s user_info_shared_

ptr() member.

28For clustering with explicit ghosts, even if the particles being clustered have user information, the ghosts will not. The user should take
care therefore not to ask for user information about the ghosts, e.g. with the help of the PseudoJet::is_pure_ghost() or Pseudo-
Jet::has_user_info<L>() calls. The SelectorIsPureGhost() can also be used for this purpose.
29The user may also wonder why we didn’t simply write a templated version of PseudoJet in order to contain extra information. The answer
here is that to introduce a templated PseudoJet would imply that every other class in FastJet should then also be templated.
30Internally it has been designed somewhat differently, in order to limit the memory footprint of the PseudoJet that contains it. One consequence
of this is that dynamic casts of SharedPtr’s are not supported.

Eur. Phys. J. C (2012) 72:1896 Page 43 of 54

An example of the usage might be the following. First you define a class MyInfo, derived from

PseudoJet::UserInfo,

class MyInfo: public PseudoJet::UserInfoBase {
MyInfo(int id) : _pdg_id(id);
int pdg_id() const {return _pdg_id;}
int _pdg_id;

};

Then you might set the info as follows

PseudoJet particle(...);
particle.set_user_info(new MyInfo(its_pdg_id));

and later access the PDG id through the function

particle.user_info<MyInfo>().pdg_id();

More advanced examples can be provided on request, including code that helps handle particle classes from third party tools

such as Pythia 8 [55].

Appendix C: Structural information for various kinds of PseudoJet

Starting with FastJet version 3.0, a PseudoJet can access information about its structure, for example its constituents

if it came from a ClusterSequence , or its pieces if it was the result of a join(...) operation. In this appendix, we

summarise what the various structural access methods will return for different types of PseudoJets: input particles, jets

resulting from a clustering, etc. Table 3 provides the information for the most commonly-used methods.

Additionally, all the methods that access information related to the clustering (has_partner(), is_inside(),

has_exclusive_subjets(), exclusive_subjets(), n_exclusive_subjets(),

exclusive_subdmerge(), and exclusive_subdmerge_max) require the presence of an associated cluster se-

quence and throw an error if none is available (except for has_exclusive_subjets() which just returns false).

For area-related calls, has_area() will be false unless the jet is obtained from a ClusterSequenceAreaBase

or is a composite jet made from such jets. All other area calls (validated_csab(), area(), area_error(),

area_4vector(), is_pure_ghost()) will return the information from the ClusterSequenceAreaBase, or

from the pieces in case of a composite jet. An error will be thrown if the jet does not have area information.

Table 3 Summary of the behaviour obtained when requesting structural information from different kinds of PseudoJet. A particle (also p1,p2)
is a PseudoJet constructed by the user, without structural information; a “jet” (also j1, j2) is the output from a ClusterSequence; “from
CS” means that the information is obtained from the associated ClusterSequence. A “jet (no CS)” is one whose ClusterSequence has
gone out of scope. All other entries should be self-explanatory

Particle Jet Jet (no CS) Constituent join(j1, j2) join(p1,p2)

has_associated_cs() false true true true false false
associated_cs() NULL CS NULL CS NULL NULL
has_valid_cs() false true false true false false
validated_cs() throws CS throws CS throws throws

has_constituents() false true true true true true
constituents() throws from CS throws itself recurse pieces
has_pieces() false true throws false true true
pieces() throws parents throws empty pieces pieces
has_parents(...) throws from CS throws from CS throws throws

has_child(...) throws from CS throws from CS throws throws

contains(...) throws from CS throws from CS throws throws

Page 44 of 54 Eur. Phys. J. C (2012) 72:1896

Internal storage of structural information The means by which information about a jet’s structure is stored is generally

transparent to the user. The main exception that arises is when the user wishes to create jets with a new kind of structure, for

example when writing boosted-object taggers. Here, we simply outline the approach adopted. For concrete usage examples

one can consult Sect. 9 and Appendix E.4, where we discuss transformers and taggers.

To be able to efficiently access structural information, each PseudoJet has a shared pointer to a class of type fast-
jet::PseudoJetStructureBase. For plain PseudoJet s the pointer is null. For PseudoJet s obtained from

a ClusterSequence the pointer is to a class fastjet::ClusterSequenceStructure, which derives from

PseudoJetStructureBase. For PseudoJet s obtained from a join(...) operation, the pointer is to a class

fastjet::CompositeJetStructure, again derived from PseudoJetStructureBase. It is these classes that

are responsible for answering structural queries about the jet, such as returning its constituents, or indicating whether it

has_pieces(). Several calls are available for direct access to the internal structure storage, among them

const PseudoJetStructureBase* structure_ptr() const;
PseudoJetStructureBase* structure_non_const_ptr();
template<typename StructureType> const StructureType & structure() const;
template<typename TaggerType> const TaggerType::StructureType & structure_of() const;

where the first two return simply the structure pointer, while the last two cast the pointer to the desired derived structure type.

Appendix D: Functions of a PseudoJet

A concept that is new to FastJet 3 is that of a fastjet::FunctionOfPseudoJet. Functions of PseudoJets arise

in many contexts: many boosted-object taggers take a jet and return a modified version of a jet; background subtraction does

the same; so does a simple Lorentz boost. Other functions return a floating-point number associated with the jet: for example

jet shapes, but also the rescaling functions used to provide local background estimates in Sect. 8.2.

To help provide a uniform interface for functions of a PseudoJet , FastJet has the following template base class:

// a generic function of a PseudoJet
template<typename TOut> class FunctionOfPseudoJet{

// the action of the function (this _has_ to be overloaded in derived classes)
virtual TOut result(const PseudoJet &pj) const = 0;

};

Derived classes should implement the result(...) function. In addition it is good practice to overload the descrip-
tion() member,

virtual std::string description() const {return "";}

Usage of a FunctionOfPseudoJet is simplest through the operator(...) member functions

TOut operator()(const PseudoJet & pj) const;
vector<TOut> operator()(const vector<PseudoJet> & pjs) const;

which just call result(...) either on the single jet, or separately on each of the elements of the vector of Pseudo-
Jets.31

The FunctionOfPseudoJet framework makes it straightforward to pass functions of PseudoJets as arguments.

This is, e.g., used for the background rescalings in Sect. 8.2, which are just derived from FunctionOfPseudo-
Jet<double>. It is also used for the Transformers of Sect. 9, which all derive from FunctionOfPseudoJet
<PseudoJet>. The use of a class for these purposes, rather than a pointer to a function, provides the advantage that the

class can be initialised with additional arguments.

31Having result(...) and operator(...) doing the same thing may seem redundant, however, it allows one to redefine only result in
derived classes. If we had a virtual operator(...) instead, both the PseudoJet and vector<PseudoJet> versions would have had to
be overloaded.

Eur. Phys. J. C (2012) 72:1896 Page 45 of 54

Appendix E: User-defined extensions of FastJet

E.1 External Recombination Schemes

A user who wishes to introduce a new recombination scheme may do so by writing a class derived from JetDefini-

tion::Recombiner:

class JetDefinition::Recombiner {
public:

/// return a textual description of the recombination scheme implemented here
virtual std::string description() const = 0;

/// recombine pa and pb and put result into pab
virtual void recombine(const PseudoJet & pa, const PseudoJet & pb,

PseudoJet & pab) const = 0;

/// routine called to preprocess each input jet (to make all input
/// jets compatible with the scheme requirements (e.g. massless).
virtual void preprocess(PseudoJet & p) const {};

/// a destructor to be replaced if necessary in derived classes...
virtual ~Recombiner() {};

};

A jet definition can then be constructed by providing a pointer to an object derived from JetDefinition::Recombiner

instead of the RecombinationScheme index:

JetDefinition(JetAlgorithm jet_algorithm,
double R,
const JetDefinition::Recombiner * recombiner,
Strategy strategy = Best);

The derived class JetDefinition::DefaultRecombiner is what is used internally to implement the various recom-

bination schemes if an external Recombiner is not provided. It provides a useful example of how to implement a new

Recombiner class.

The recombiner can also be set with a set_recombiner(...) call. If the recombiner has been created with a new

statement and the user does not wish to manage the deletion of the corresponding memory when the JetDefinition (and

any copies) using the recombiner goes out of scope, then the user may wish to call the delete_recombiner_when_
unused() function, which tells the JetDefinition to acquire ownership of the pointer to the recombiner and delete it

when it is no longer needed.

E.2 Implementation of a plugin jet algorithm

The base class from which plugins derive has the following structure:

class JetDefinition::Plugin{
public:

/// returns a textual description of the jet-definition implemented in this plugin
virtual std::string description() const = 0;
/// given a ClusterSequence that has been filled up with initial particles,
/// the following function should fill up the rest of the ClusterSequence,
/// using the following member functions of ClusterSequence:
/// - plugin_do_ij_recombination(...)
/// - plugin_do_iB_recombination(...)
virtual void run_clustering(ClusterSequence &) const = 0;

Page 46 of 54 Eur. Phys. J. C (2012) 72:1896

/// a destructor to be replaced if necessary in derived classes...
virtual ~Plugin() {};

//------- ignore what follows for simple usage! ---------
/// returns true if passive areas can be efficiently determined by
/// (a) setting the ghost_separation scale (see below)
/// (b) clustering with many ghosts with pt ≪ ghost_separation_scale
/// (c) counting how many ghosts end up in a given jet
virtual bool supports_ghosted_passive_areas() const {return false;}

/// sets the ghost separation scale for passive area determinations
/// in future runs (NB: const, so should set internal mutable var)
virtual void set_ghost_separation_scale(double scale) const;
virtual double ghost_separation_scale() const;

};

Any plugin class must define the description and run_clustering member functions. The former just returns a

textual description of the jet algorithm and its options (e.g. radius, etc.), while the latter does the hard work of running the

user’s own jet algorithm and transferring the information to the ClusterSequence class. This is best illustrated with an

example:

using namespace fastjet;

void CDFMidPointPlugin::run_clustering(ClusterSequence & clust_seq) {

// when run_clustering is called, the clust_seq.jets() has already been
// filled with the initial particles
const vector<PseudoJet> & initial_particles = clust_seq.jets();

// it is up to the user to do their own clustering on these initial particles
// ...

Once the plugin has run its own clustering it must transfer the information back to the clust_seq. This is done

by recording mergings between pairs of particles or between a particle and the beam. The new momenta are stored

in the clust_seq.jets() vector, after the initial particles. Note though that the plugin is not allowed to modify

clust_seq.jets() itself. Instead it must tell clust_seq what recombinations have occurred, via the following

(ClusterSequence member) functions

/// record the fact that there has been a recombination between jets()[jet_i]
/// and jets()[jet_j], with the specified dij, and return the index (newjet_k)
/// allocated to the new jet. The recombined PseudoJet is determined by
/// applying the JetDefinition’s recombiner to the two input jets.
/// (By default E-scheme recombination, i.e. a 4-vector sum)
void plugin_record_ij_recombination(int jet_i, int jet_j, double dij, int & newjet_k);

/// as for the simpler variant of plugin_record_ij_recombination, except
/// that the new jet is attributed the momentum and user information of newjet
void plugin_record_ij_recombination(int jet_i, int jet_j, double dij,

const PseudoJet & newjet, int & newjet_k);

/// record the fact that there has been a recombination between jets()[jet_i]
/// and the "beam", with the specified diB; this jet will then be returned to
/// the user when they request inclusive_jets() from the cluster sequence.
void plugin_record_iB_recombination(int jet_i, double diB);

The dij recombination functions return the index newjet_k of the newly formed pseudojet. The plugin may need to keep

track of this index in order to specify subsequent recombinations.

Eur. Phys. J. C (2012) 72:1896 Page 47 of 54

Certain (cone) jet algorithms do not perform pairwise clustering—in these cases the plugin must invent a fictitious series

of pairwise recombinations that leads to the same final jets. Such jet algorithms may also produce extra information that

cannot be encoded in this way (for example a list of stable cones), but to which one may still want access. For this purpose,

during run_clustering(...), the plugin may call the ClusterSequence member function:

inline void plugin_associate_extras(std::auto_ptr<ClusterSequence::Extras> extras);

where ClusterSequence::Extras is an abstract base class, which the plugin should derive from so as to provide the

relevant information:

class ClusterSequence::Extras {
public:

virtual ~Extras() {}
virtual std::string description() const;

};

A method of ClusterSequence then provides the user with access to the extra information:

/// returns a pointer to the extras object (may be null) const
ClusterSequence::Extras * extras() const;

The user should carry out a dynamic cast so as to convert the extras back to the specific plugin extras class, as illustrated for

SISCone in Sect. 5.2.

E.2.1 Building new sequential recombination algorithms

To enable users to more easily build plugins for new sequential recombination algorithms, FastJet also provides a class

NNH, which provides users with access to an implementation of the nearest-neighbour heuristic for establishing and main-

taining information about the closest pair of objects in a dynamic set of objects (see [56] for an introduction to this and other

generic algorithms). In good cases (C/A-like) this allows one to construct clustering that runs in N2 time, though its worst

case can be as bad as N3 (e.g. anti-kt). It is a templated class and the template argument should be a class that stores the

minimal information for each jet so as to be able to calculate interjet distances. It underlies the implementations of the Jade

and e+e− Cambridge plugins. The interested user should consult those codes for more information, as well as the header for

the NNH class.

E.3 Implementing new selectors

Technically a Selector contains a shared pointer to a SelectorWorker. Classes derived from SelectorWorker

actually do the work. So, for example, the call to the function SelectorAbsRapMax(2.5) first causes a new instance

of the internal SW_AbsRapMax class to be constructed with the information that the limit on |y| is 2.5 (SW_AbsRapMax

derives from SelectorWorker). Then a Selector is constructed with a pointer to the SW_AbsRapMax object, and it

is this Selector that is returned to the user:

Selector SelectorAbsRapMax(double absrapmax) {
return Selector(new SW_AbsRapMax(absrapmax));

}

Since Selector is really nothing more than a shared pointer to the SW_AbsRapMax object, it is a lightweight ob-

ject. The fact that it’s a shared pointer also means that it looks after the memory management issues associated with the

SW_AbsRapMax object.

If a user wishes to implement a new selector, they should write a class derived from SelectorWorker. The base is

defined with sensible defaults, so for simple usage, only two SelectorWorker functions need to be overloaded:

Page 48 of 54 Eur. Phys. J. C (2012) 72:1896

/// returns true if a given object passes the selection criterion.
pass(const PseudoJet & jet) const = 0;

/// returns a description of the worker
virtual std::string description() const {return "missing description";}

For information on how to implement more advanced workers (for example workers that do not apply jet-by-jet, or that take

a reference), users may wish to examine the extensive in-code documentation of SelectorWorker, the implementation

of the existing workers and/or consult the authors. A point to be aware of in the case of constructors that take a reference is

the need to implement the SelectorWorker::copy() function.

E.4 User-defined transformers

All transformers are derived from the Transformer base class, declared in the fastjet/tools/Transformer.hh
header:

class Transformer : public FunctionOfPseudoJet<PseudoJet> {
public:

// the result of the Transformer acting on the PseudoJet.
// this has to be overloaded in derived classes
virtual PseudoJet result(const PseudoJet & original) const = 0;

// should be overloaded to return a description of the Transformer
virtual std::string description() const = 0;

// information about the associated structure type
typedef PseudoJetStructureBase StructureType;

// destructor is virtual so that it can be safely overloaded
virtual ~Transformer(){}

};

Relative to the FunctionOfPseudoJet<PseudoJet> (cf. Appendix D) from which it derives, the Transformer’s

main additional feature is that the jets resulting from the transformation are generally expected to have standard struc-

tural information, e.g. constituents, and will often have supplemental structural information, which the StructureType
typedef helps access. As for a FunctionOfPseudoJet<PseudoJet>, the action of a Transformer is to be im-

plemented in the result(...) member function, though typically it will be used through the operator() function, as

discussed in Appendix D.

To help understand how to create user-defined transformers, it is perhaps easiest to consider the example of a filtering/trim-

ming class. The simplest form of such a class is the following:32

/// a simple class to carry out filtering and/or trimming
class SimpleFilter: public Transformer {
public:

SimpleFilter(const JetDefinition & subjet_def, const Selector & selector) :
_subjet_def(subjet_def), _selector(selector) {}

virtual std::string description() const {
return "Filter that finds subjets with " + _subjet_def.description()

+ ", using a (" + _selector.description() + ") selector" ;}
virtual PseudoJet result(const PseudoJet & jet) const;

// CompositeJetStructure is the structural type associated with the
// join operation that we use shall use to create the returned jet below
typedef CompositeJetStructure StructureType;

32The actual Filter class is somewhat more elaborate than this, since it also handles areas, pileup subtraction and avoids reclustering when the
jet and subjet definitions are C/A based.

Eur. Phys. J. C (2012) 72:1896 Page 49 of 54

private:
JetDefinition _subjet_def;
Selector _selector;

};

The function that does the work in this class is result(...):

PseudoJet SimpleFilter::result(const PseudoJet & jet) const {
// get the subjets
ClusterSequence * cs = new ClusterSequence(jet.constituents(), _subjet_def);
vector<PseudoJet> subjets = cs->inclusive_jets();

// signal that the cluster sequence should delete itself when
// there are no longer any of its (sub)jets in scope anywhere
cs->delete_self_when_unused();

// get the selected subjets
vector<PseudoJet> selected_subjets = _selector(subjets);
// join them using the same recombiner as was used in the subjet_def
PseudoJet joined = join(selected_subjets, *_subjet_def.recombiner());
return joined;

}

This provides almost all the basic functionality that might be needed from a filter, including access to the pieces() of the

filtered jet since it is formed with the join(...) function. The one part that is potentially missing is that the user does not

have any way of accessing information about the subjets that were not kept by the filter. This requires adding to the structural

information that underlies the returned jet. The join(...) function creates a structure of type CompositeJetStruc-

ture. There is also a templated version, join<ClassDerivedFromCompositeJetStructure>(...), which

allows the user to choose the structure created by the join function. In this case we therefore create

#include "fastjet/CompositeJetStructure.hh"
class SimpleFilterStructure: public CompositeJetStructure {
public:

// the form of constructor expected by the join<...> function
SimpleFilterStructure(const vector<PseudoJet> & pieces,

const Recombiner *recombiner = 0) :
CompositeJetStructure(pieces, recombiner) {}

// provide access to the rejected subjets from the filtering
const vector<PseudoJet> & rejected() const {return _rejected;}

private:
vector<PseudoJet> _rejected;
friend class SimpleFilter;

};

and then replace the last few lines of the SimpleFilter::result(...) function with

// get the selected and rejected subjets
vector<PseudoJet> selected_subjets, rejected_subjets;
_selector.sift(subjets, selected_subjets, rejected_subjets);

// join the selected ones, now with a user-chosen structure
PseudoJet joined = join<SimpleFilterStructure>(selected_subjets, *_subjet_def.recombiner());

// and then set the structure’s additional elements
SimpleFilterStructure * structure =

static_cast<SimpleFilterStructure *>(joined.structure_non_const_ptr());
structure->_rejected = rejected_subjets;
return joined;

Page 50 of 54 Eur. Phys. J. C (2012) 72:1896

Finally, with the replacement of the typedef in the SimpleFilter class with

typedef SimpleFilterStructure StructureType;

then on a jet returned by the SimpleFilter one can simply call

filtered_jet.structure_of<SimpleFilter>().rejected();

as with the fully fledged Filter of Sect. 9.1.1.

A second way of extending the structural information of an existing jet is to “wrap” it. This can be done with the help of

the WrappedStructure class.

#include "fastjet/WrappedStructure.hh"
/// a class to wrap and extend existing jet structures with information about
/// "rejected" pieces
class SimpleFilterWrappedStructure: public WrappedStructure {
public:

SimpleFilterWrappedStructure(const SharedPtr<PseudoJetStructureBase> & to_be_wrapped,
const vector<PseudoJet> & rejected_pieces) :

WrappedStructure(to_be_wrapped), _rejected(rejected_pieces) {}

const vector<PseudoJet> & rejected() const {return _rejected;}
private:

vector<PseudoJet> _rejected;
};

The WrappedStructure’s constructor takes a SharedPtr to an existing structure and simply redirects all standard

structural queries to that existing structure. A class derived from it can then reimplement some of the standard queries, or

implement non-standard ones, as done above with the rejected() call. To use the wrapped class one might proceed as in

the following lines:

// create a jet with some existing structure
PseudoJet joined = join(selected_subjets, *_subjet_def.recombiner());
// create a new structure that wraps the existing one and supplements it with new info
SharedPtr<PseudoJetStructureBase> structure(new

SimpleFilterWrappedStructure(joined.structure_shared_ptr(), rejected_subjets));
// assign the new structure to the original jet
joined.set_structure_shared_ptr(structure);

The SharedPtrs ensure that memory allocated for the structural information is released when no jet remains that refers to

it. For the above piece of code to be used in the SimpleFilter it would then suffice to include a

typedef SimpleFilterWrappedStructure StructureType;

line in the SimpleFilter class definition.

In choosing between the templated join<...> and WrappedStructure approaches to providing advanced struc-

tural information, two elements are worth considering: on one hand, the WrappedStructure can be used to extend

arbitrary structural information; on the other, while join<...> is more limited in its scope, it involves fewer pointer

indirections when accessing structural information and so may be marginally more efficient.

Appendix F: Error handling

FastJet provides warning and error messages through the classes fastjet::LimitedWarning and fastjet::

Error respectively. A user does not normally need to interact with them, however, they do provide some customisation

facilities, especially to redirect and summarise their output.

Eur. Phys. J. C (2012) 72:1896 Page 51 of 54

Each different kind of warning is written out a maximum number of times (the current default is 5) before its output is

suppressed. The program is allowed to continue.

At the end of the run (or at any other stage) it is possible to obtain a summary of all warnings encountered, both explicit

or suppressed, through the following static member function of the LimitedWarning class:

#include "fastjet/LimitedWarning.hh"
// ...
cout << LimitedWarning::summary() << endl;

The throwing of an Error aborts the program. One can use

/// controls whether the error message (and the backtrace, if its printing is enabled)
/// is printed out or not
static void Error::set_print_errors(bool print_errors);

/// controls whether the backtrace is printed out with the error message or not.
/// The default is "false".
static void Error::set_print_backtrace(bool enabled);

to control whether an error message is printed (default = true) and whether a full backtrace is also given (default = false).

Switching off the printing of error messages can be useful, for example, if the user expects to repeatedly catch FastJet

errors. The message() member function can then be used to access the specific error message.

The output of both LimitedWarning and Error, which by default goes to std::cerr, can be redirected to a file

using their set_default_stream(std::ostream * ostr) functions. For instance,

#include "fastjet/LimitedWarning.hh"
#include "fastjet/Error.hh"
#include <iostream>
#include <fstream>
// ...
ostream * myerr = new ofstream("warnings-and-errors.txt");
LimitedWarning::set_default_stream(myerr);
Error::set_default_stream(myerr);
Error::set_print_backtrace(true);
// ...
cout << LimitedWarning::summary() << endl;

will send the output of both classes to the file warnings-and-errors.txt (as well as provide the backtrace of errors).

Note that the output of LimitedWarning::summary() will only be present if the program did not abort earlier due to

an error.

With a suitable design of the output stream, the output redirection facility can also be used by the user to record additional

information when an error or warning occurs, for example the event number. One only stream « string type operation

is performed for each warning or error, so as to help with formatting in such cases.

As well as performing output of warnings and errors, FastJet also outputs a banner the first time that clustering is

performed. If the user wishes to have the banner appear before the first clustering (e.g. during the initialisation phase of their

program), they may call the static ClusterSequence::print_banner() function.

Appendix G: Evolution of FastJet across versions

G.1 History

Version 1 of FastJet provided the first fast implementation of the longitudinally invariant kt clustering [8, 9], based on

the factorisation of momentum and geometry in that algorithm’s distance measure [10].

Page 52 of 54 Eur. Phys. J. C (2012) 72:1896

Table 4 Summary of interfaces and features of earlier versions that have been deprecated and/or removed. For brevity we have used the fol-
lowing abbreviations: Dep. = version since which a feature has been deprecated, Rem. = version where removed, CS = ClusterSequence, JD =
JetDefinition, CSAB = ClusterSequenceAreaBase, GAS = GhostedAreaSpec

Feature, class or include file Dep. Rem. Suggested replacement

FjClusterSequence.hh 2.0 3.0 Fastjet/ClusterSequence.hh

FjPseudoJet.hh 2.0 3.0 Fastjet/PseudoJet.hh

CS::set_jet_finder(. . .) 2.1 3.0 Pass a JetDefinition to constructor

CS::set_jet_algorithm(. . .) 2.1 3.0 Pass a JetDefinition to constructor

CS::CS(particles, R, . . .) 2.1 3.0 CS::CS(particles, jet_def)

JD(jet_alg, R, strategy) 2.1 – JD(jet_alg, R, recomb_scheme, strategy)

JetFinder 2.3 – JetAlgorithm

SISConePlugin.hh 2.3 3.0 Fastjet/SISConePlugin.hh (idem. other plugins)

ActiveAreaSpec 2.3 – AreaDefinition & GhostedAreaSpec

ClusterSequenceWithArea 2.3 – ClusterSequenceArea

default f = 0.5 in some cone plugins – 2.4 Include f explicitly in constructor

default R = 1 in JetDefinition – 2.4 Include R explicitly in constructor

RangeDefinition 3.0 – Selector(s)

CircularRange 3.0 – SelectorCircle

CSAB::median_pt_per_unit_area(. . .) 3.0 – BackgroundEstimator

CSAB::parabolic_pt_per_unit_area(. . .) 3.0 – BackgroundEstimator (cf. Sect. 8.2)

GAS::set_fj2_placement(. . .) 3.0 – Use new default ghost placement instead

Version 2.0 brought the implementation of the inclusive Cambridge/Aachen algorithm [24–26] and of jet areas and back-

ground estimation [19, 20]; other changes include a new interface,33 and new algorithmic strategies that could provide a

factor of two improvement in speed for events whose number N of particles was ∼104. Choices of recombination schemes

and plugins for external jet algorithms were new features of version 2.1. The initial set of plugins included SISCone [29], the

CDF midpoint [3] and JetClu [34] cones and PxCone [37, 38]. The plugins helped provide a uniform interface to a range of

different jet algorithms and made it possible to overlay FastJet features such as areas onto the external jet algorithms. Ver-

sion 2.2 never made it beyond the beta-release stage, but introduced a number of the features that eventually were released in

2.3. The final 2.3 release included the anti-kt algorithm [16], a broader set of area measures, improved access to background

estimation, means to navigate the ClusterSequence and a new build system (GNU autotools). Version 2.4 included the new

version 2.0 of SISCone (including the spherical variant), as well as plugins to the DØ Run II cone, the ATLAS cone, the

CMS cone, TrackJet and a range of e+e− algorithms, and also further tools to help investigate jet substructure. It also added

a wrapper to FastJet allowing one to run SISCone and some of the sequential recombination algorithms from Fortran

programs.

A major practical change in version 3.0 was that PseudoJet acquired knowledge (where relevant) about its underlying

ClusterSequence, allowing one to write e.g. jet.constituents(). It also became possible to associate extra informa-

tion with a PseudoJet beyond just a user index. It brought the first of a series of FastJet tools to help with advanced

jet analyses, namely the Selector class, filters, pruners, taggers and new background estimation classes. Version 3 also

added the D0-Run I cone [35] plugin and support for native jet algorithms to be run with R > π/2.

G.2 Deprecated and removed features

While we generally aim to maintain backwards compatibility for software written with old versions of FastJet, there are

occasions where old interfaces or functionality no longer meet the standards that are demanded of a program that is increas-

ingly widely used. Table 4 lists the cases where such considerations have led us to deprecate and/or remove functionality.

33The old one was retained through v2.

Eur. Phys. J. C (2012) 72:1896 Page 53 of 54

G.3 Backwards compatibility of background estimation facilities

The JetMedianBackgroundEstimator and GridMedianBackgroundEstimator classes are new to

FastJet 3. In FastJet versions 2.3 and 2.4, the background estimation tools were instead integrated into the

ClusterSequenceAreaBase class. Rather than using selectors to specify the jets used in the background estimation,

they used the RangeDefinition class. For the purpose of backwards compatibility, these facilities will remain present

in all 3.0.x versions. Note that ClusterSequenceAreaBase now actually uses a selector in its background estimation

interface, and that a RangeDefinition is automatically converted to a selector.

An explicit argument in ρ-determination calls in FastJet 2.4 concerned the choice between the use of scalar areas and

the transverse component of the 4-vector area in the denominator of pt/A. The transverse component gives the more accurate

ρ determination and that is now the default in JetMedianBackgroundEstimator. The behaviour can be changed with

a member function call of the form

set_use_area_4vector(false);

Finally, the calculation of σ in FastJet 2.x incorrectly handled the limit of a small number of jets. This is now fixed

in FastJet 3, but a call to set_provide_fj2_sigma(true) causes JetMedianBackgroundEstimator to

reproduce that behaviour.

FastJet 2.x also placed the ghosts differently, resulting in different event-by-event rho estimates, and possibly a small

systematic offset (scaling as the square-root of the ghost area) when ghosts and particles both covered identical (small)

regions. This offset is no longer present with the FastJet 3 ghost placement. If the old behaviour is needed, a call to a

specific GhostedAreaSpec’s set_fj2_placement(true) function causes ghosts to placed as in the 2.x series.

References

1. G. Sterman, S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977)
2. S. Moretti, L. Lonnblad, T. Sjostrand, New and old jet clustering algorithms for electron positron events. J. High Energy Phys. 9808, 001

(1998). arXiv:hep-ph/9804296
3. G.C. Blazey et al., hep-ex/0005012
4. S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch, M. Tonnesmann, Prog. Part. Nucl. Phys. 60, 484 (2008). arXiv:0712.2447 [hep-ph]
5. G.P. Salam, Eur. Phys. J. C 67, 637–686 (2010). arXiv:0906.1833 [hep-ph]
6. A. Ali, G. Kramer, Eur. Biophys. J. 36, 245–326 (2011). arXiv:1012.2288 [hep-ph]
7. http://www.gnu.org/licenses/gpl-2.0.html
8. S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Nucl. Phys. B 406, 187 (1993)
9. S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993). hep-ph/9305266

10. M. Cacciari, G.P. Salam, Phys. Lett. B 641, 57 (2006). hep-ph/0512210
11. M. Seymour, http://hepwww.rl.ac.uk/theory/seymour/ktclus/
12. http://hepforge.cedar.ac.uk/ktjet/
13. J.M. Butterworth, J.P. Couchman, B.E. Cox, B.M. Waugh, Comput. Phys. Commun. 153, 85 (2003). hep-ph/0210022
14. A. Fabri et al., Softw. Pract. Exp. 30, 1167 (2000)
15. J.-D. Boissonnat et al., Comput. Geom. 22, 5 (2001); http://www.cgal.org/
16. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 063 (2008). arXiv:0802.1189 [hep-ph]
17. A. Abdesselam, E.B. Kuutmann, U. Bitenc, G. Brooijmans, J. Butterworth, P. Bruckman de Renstrom, D. Buarque Franzosi, R. Buckingham

et al., Eur. Phys. J. C 71, 1661 (2011). arXiv:1012.5412 [hep-ph]
18. P.A. Delsart, K. Geerlings, J. Huston, B. Martin, C. Vermilion, SpartyJet, http://projects.hepforge.org/spartyjet
19. M. Cacciari, G.P. Salam, G. Soyez, J. High Energy Phys. 0804, 005 (2008). arXiv:0802.1188 [hep-ph]
20. M. Cacciari, G.P. Salam, Phys. Lett. B 659, 119 (2008). arXiv:0707.1378 [hep-ph]
21. M. Cacciari, J. Rojo, G.P. Salam, G. Soyez, Eur. Phys. J. C 71, 1539 (2011). arXiv:1010.1759 [hep-ph]
22. C. Buttar et al., arXiv:0803.0678 [hep-ph]
23. S.D. Ellis, C.K. Vermilion, J.R. Walsh, Phys. Rev. D 80, 051501 (2009). arXiv:0903.5081 [hep-ph]
24. Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, J. High Energy Phys. 9708, 001 (1997). hep-ph/9707323
25. M. Wobisch, T. Wengler, Hadronization corrections to jet cross sections in deep-inelastic. arXiv:hep-ph/9907280
26. M. Wobisch, Measurement and QCD analysis of jet cross sections in deep-inelastic, DESY-THESIS-2000-049
27. S. Catani, Y.L. Dokshitzer, M. Olsson, G. Turnock, B.R. Webber, Phys. Lett. B 269, 432 (1991)
28. L. Lonnblad, Z. Phys. C 58, 471–478 (1993)
29. G.P. Salam, G. Soyez, J. High Energy Phys. 0705, 086 (2007). arXiv:0704.0292 [hep-ph]; standalone code available from http://projects.

hepforge.org/siscone
30. S.D. Ellis, J. Huston, M. Tonnesmann, in Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics, ed. by N. Graf,

Snowmass (2001), p. P513. hep-ph/0111434

http://arxiv.org/abs/arXiv:hep-ph/9804296
http://arxiv.org/abs/hep-ex/0005012
http://arxiv.org/abs/arXiv:0712.2447
http://arxiv.org/abs/arXiv:0906.1833
http://arxiv.org/abs/arXiv:1012.2288
http://www.gnu.org/licenses/gpl-2.0.html
http://arxiv.org/abs/hep-ph/9305266
http://arxiv.org/abs/hep-ph/0512210
http://hepwww.rl.ac.uk/theory/seymour/ktclus/
http://hepforge.cedar.ac.uk/ktjet/
http://arxiv.org/abs/hep-ph/0210022
http://www.cgal.org/
http://arxiv.org/abs/arXiv:0802.1189
http://arxiv.org/abs/arXiv:1012.5412
http://projects.hepforge.org/spartyjet
http://arxiv.org/abs/arXiv:0802.1188
http://arxiv.org/abs/arXiv:0707.1378
http://arxiv.org/abs/arXiv:1010.1759
http://arxiv.org/abs/arXiv:0803.0678
http://arxiv.org/abs/arXiv:0903.5081
http://arxiv.org/abs/hep-ph/9707323
http://arxiv.org/abs/arXiv:hep-ph/9907280
http://arxiv.org/abs/arXiv:0704.0292
http://projects.hepforge.org/siscone
http://projects.hepforge.org/siscone
http://arxiv.org/abs/hep-ph/0111434

Page 54 of 54 Eur. Phys. J. C (2012) 72:1896

31. TeV4LHC QCD Working Group et al., hep-ph/0610012
32. S. Weinzierl, Comput. Phys. Commun. 183, 813 (2012), arXiv:1108.1934 [hep-ph]
33. The CDF code has been taken from http://www.pa.msu.edu/~huston/Les_Houches_2005/JetClu+Midpoint-StandAlone.tgz
34. F. Abe et al. (CDF Collaboration), Phys. Rev. D 45, 1448 (1992)
35. B. Abbott et al. (D0 Collaboration), FERMILAB-PUB-97-242-E
36. V.M. Abazov et al. (D0 Collaboration), arXiv:1110.3771 [hep-ex]
37. M.H. Seymour, C. Tevlin, J. High Energy Phys. 0611, 052 (2006). arXiv:hep-ph/0609100
38. L.A. del Pozo, M.H. Seymour, unpublished
39. T. Affolder et al. (CDF Collaboration), Phys. Rev. D 65, 092002 (2002)
40. W. Bartel et al. (JADE Collaboration), Z. Phys. C 33, 23 (1986)
41. S. Bethke et al. (JADE Collaboration), Phys. Lett. B 213, 235 (1988)
42. G.P. Salam, G. Soyez, April 2009, unpublished
43. S. Fortune, Algorithmica 2, 1 (1987)
44. M. Cacciari, G.P. Salam, S. Sapeta, J. High Energy Phys. 1004, 065 (2010). arXiv:0912.4926 [hep-ph]
45. M. Cacciari, G.P. Salam, G. Soyez, Contribution in preparation to proceedings of “Workshop on TeV Colliders”, Les Houches, June 2011
46. J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Phys. Rev. Lett. 100, 242001 (2008). arXiv:0802.2470 [hep-ph]
47. D. Krohn, J. Thaler, L.T. Wang, J. High Energy Phys. 1002, 084 (2010). arXiv:0912.1342 [hep-ph]
48. D.E. Kaplan, K. Rehermann, M.D. Schwartz, B. Tweedie, Phys. Rev. Lett. 101, 142001 (2008). arXiv:0806.0848 [hep-ph]
49. J.M. Butterworth, J.R. Ellis, A.R. Raklev, G.P. Salam, Phys. Rev. Lett. 103, 241803 (2009). arXiv:0906.0728 [hep-ph]
50. J.H. Kim, Phys. Rev. D 83, 011502 (2011). arXiv:1011.1493 [hep-ph]
51. T.M. Chan, in Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2002), p. 472
52. M.R. Anderberg, Cluster Analysis for Applications. Probability and Mathematical Statistics vol. 19 (Academic Press, New York, 1973)
53. L. Sonnenschein, Ph.D. Thesis, RWTH Aachen 2001; http://cmsdoc.cern.ch/documents/01/doc2001_025.ps.Z
54. T. Sjostrand, S. Mrenna, P. Skands, J. High Energy Phys. 0605, 026 (2006). arXiv:hep-ph/0603175
55. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852–867 (2008). arXiv:0710.3820 [hep-ph]
56. D. Eppstein, ACM J. Exp. Algorithmics 5, 1–23 (2000). arXiv:cs.DS/9912014

http://arxiv.org/abs/hep-ph/0610012
http://arxiv.org/abs/arXiv:1108.1934
http://www.pa.msu.edu/~huston/Les_Houches_2005/JetClu+Midpoint-StandAlone.tgz
http://arxiv.org/abs/arXiv:1110.3771
http://arxiv.org/abs/arXiv:hep-ph/0609100
http://arxiv.org/abs/arXiv:0912.4926
http://arxiv.org/abs/arXiv:0802.2470
http://arxiv.org/abs/arXiv:0912.1342
http://arxiv.org/abs/arXiv:0806.0848
http://arxiv.org/abs/arXiv:0906.0728
http://arxiv.org/abs/arXiv:1011.1493
http://cmsdoc.cern.ch/documents/01/doc2001_025.ps.Z
http://arxiv.org/abs/arXiv:hep-ph/0603175
http://arxiv.org/abs/arXiv:0710.3820
http://arxiv.org/abs/arXiv:cs.DS/9912014

	FastJet user manual
	Introduction
	Quick-start guide
	Core classes
	fastjet::PseudoJet
	fastjet::JetDefinition
	fastjet::ClusterSequence
	Accessing inclusive jets
	Accessing exclusive jets
	Other functionality
	Unclustered particles
	Copying and transforming a ClusterSequence

	Recombination schemes
	Other schemes for pp collisions
	Other schemes for e+e- collisions
	User-defined schemes

	Constituents and substructure of jets
	Jet constituents
	Subjet properties
	Accessibility of structural information

	Composite jets, general considerations on jet structure
	Enquiries as to available structural information

	Version information

	FastJet native jet algorithms
	Longitudinally invariant kt jet algorithm
	Cambridge/Aachen jet algorithm
	Anti-kt jet algorithm
	Generalised kt jet algorithm
	Generalised kt algorithm for e+e- collisions
	kt algorithm for e+e- collisions

	Plugin jet algorithms
	Generic plugin use
	SISCone plugin
	Other plugins for hadron colliders
	CDF Midpoint
	CDF JetClu
	DØ Run I cone
	DØ Run II cone
	ATLAS iterative cone
	CMS iterative cone
	PxCone
	TrackJet
	GridJet

	Plugins for e+e- collisions
	Cambridge algorithm
	Jade algorithm
	Spherical SISCone algorithm

	Selectors
	Essential usage
	Other information about selectors

	Available selectors
	Absolute kinematical cuts
	Relative kinematical cuts
	Other selectors

	Jet areas
	AreaDefinition
	Ghosted areas (active and passive)
	Voronoi Areas

	ClusterSequenceArea

	Background estimation and subtraction
	General usage
	Background estimation
	Background subtraction

	Positional dependence of background
	Local estimation
	Rescaling method

	Other facilities
	Alternative workflows

	Jet transformers (substructure, taggers, etc.)
	Noise-removal transformers
	Jet filtering and trimming using Filter
	Jet pruning

	Boosted-object taggers
	The mass-drop tagger
	The Johns Hopkins top tagger
	The Cambridge/Aachen subjet tagger
	The rest-frame N-subjettiness tagger

	Compilation notes
	Acknowledgements
	Appendix A: Clustering strategies and performance
	Appendix B: User info in PseudoJets
	Appendix C: Structural information for various kinds of PseudoJet
	Internal storage of structural information

	Appendix D: Functions of a PseudoJet
	Appendix E: User-defined extensions of FastJet
	External Recombination Schemes
	Implementation of a plugin jet algorithm
	Building new sequential recombination algorithms

	Implementing new selectors
	User-defined transformers

	Appendix F: Error handling
	Appendix G: Evolution of FastJet across versions
	History
	Deprecated and removed features
	Backwards compatibility of background estimation facilities

	References

