
DATA RESOURCES

I
n the last few years, there has been a substantial increase 
in research activity in the area of machine learning for 

MR image reconstruction (1–7), predominantly with 
the goal to accelerate MRI examinations by reducing 
the number of acquired k-space lines while still provid-
ing images with diagnostic quality or to enable imaging 
of dynamic processes with higher temporal resolution. 
These approaches train machine learning models with 
the goal of identifying the patterns of image artifacts that 
are introduced in the reconstructed images in accelerated 
acquisitions. The trained models are then used to recon-
struct images from undersampled k-space data. Howev-
er, the field has so far been constrained by the lack of a 
large-scale public dataset that includes raw k-space data. 
In the field of machine learning, large public datasets are 
routinely used for annual competitions and benchmark-
ing (8). By contrast, MR image reconstruction studies are 
generally trained and validated on small isolated datas-
ets compiled by independent groups and, in many cases, 
not shared with the greater research community. This has 
made it challenging to reproduce, validate, and meaning-
fully compare different approaches, and has limited the 
engagement of researchers outside of large centers where 
such data are available. The purpose of the fastMRI data-
set is to provide the first step toward addressing this issue. 
Here we describe our recent release of the first large-scale 
dataset tailored to the problem of image reconstruction 
using machine learning techniques. Our dataset includes 
both raw MRI k-space data and magnitude Digital Imag-
ing and Communications in Medicine (DICOM) imag-
es. The k-space data comprises 1594 measurement data-
sets obtained in knee MRI examinations from a range of 
MRI systems and clinical patient populations, with cor-
responding images derived from the k-space data using 
reference image reconstruction algorithms. The DICOM 
data represent an additional 10 012 clinical image data-
sets from 9290 patients undergoing similar knee MRI 
examinations.

Description of the Dataset
The focus of our initial data release is to enable accel-
erated MRI acquisitions of two-dimensional (2D) fast-
spin-echo sequences that are commonly used in mus-
culoskeletal examinations. We include data from five 
sequences for different contrasts and image orientations 
that are used in the standard clinical knee examinations 
of our institution: (a) coronal proton density weighted, 
(b) coronal proton density weighted with fat suppression, 
(c) axial T2 weighted with fat suppression, (d) sagittal 
proton density weighted, and (e) sagittal T2 weighted 
with fat suppression.

The k-space dataset only contains the coronal acquisi-
tions, and the range of sequence parameters are given in 
Table 1. The DICOM dataset contains data from all five 
sequences. Sequence parameters can be found directly in 
the DICOM headers of the data.

Curation of the dataset was part of a study approved 
by our local institutional review board. The k-space data 
were deidentified via conversion to the vendor-neutral In-
ternational Society for Magnetic Resonance in Medicine 
(ISMRM) raw data format (9). DICOM data were deiden-
tified by using the Radiological Society of North America’s 
clinical trial processor tool (http://mircwiki.rsna.org/index.
php?title=CTP-The_RSNA_Clinical_Trial_Processor). All 
metadata, as well as the DICOM images themselves, were 
manually inspected to ensure that no protected health in-
formation remained in the dataset.

The dataset is hosted in the cloud via Amazon web ser-
vices and is available for download at https://fastmri.med.
nyu.edu/. The total size of the k-space data is approximately 
1.35 TB. It is split up into the following files for download: 
multicoil_train (931 GB), multicoil_val (192 GB), multi-
coil_test (109 GB), singlecoil_train (88 GB), singlecoil_val 
(19 GB), and singlecoil_test (7 GB). The total size of the 
combined DICOM image files is approximately 164 GB, 
and the files are stored with lossless JPEG 2000 image com-
pression. The data are split up into the following files for 
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reconstructions are shown in Figure 1. The data are provided 
together with metadata that allow reconstruction of images 
by means of a simple inverse Fourier transform. In particular, 
the individual k-space lines are already correctly sorted accord-
ing to their position in the acquisition trajectory. No further 
preprocessing steps were performed on the data. An overview 
of the most relevant metadata fields is given in Table 2. For a 
complete list of the metadata that is included in the ISMRM 
raw data format, we refer the reader to Inati et al (9). The ar-
ticle that describes the k-space data format is also accompanied 
by an online code repository that provides tools to load and 
reconstruct the data for most commonly used programming 
languages and computing environments (C/C11, Matlab, 
Python). k-Space data from the fastMRI dataset can be pro-
cessed with any of these code resources. Vendor-specific meta-
data about the pulse sequences used for data acquisition are not 
included. Because the data were acquired with a multichannel 
receive array coil, a proper combination of the individual coil 
images is a necessary step in the image reconstruction process. 
The most straightforward approach, which is also commonly 
used in clinical MRI protocols, is to use a sum-of-squares com-
bination of the individual coil images. Image reconstruction 
of accelerated acquisitions via parallel imaging requires an ad-
ditional calibration step to obtain coil sensitivity information. 
This can be done either explicitly by obtaining maps of the 
coil sensitivity profiles (11,12) or by estimating convolution 
kernels in k-space (13,14). Coil sensitivity profiles are not in-
cluded in the database for two reasons. First, we want to avoid 
any bias toward a particular method for coil sensitivity esti-
mation. The most common strategies for parallel imaging are 
described in the references cited above and several open-source 
software implementations for them are available online. Sec-
ond, this would double the size of the dataset.

We also provide simulated single-coil k-space data derived 
from the acquired multicoil k-space data using an “emulated 
single-coil” combination algorithm (15). The rationale for pro-
viding simulated single-coil data—even though reconstruction 

download: DICOMs_batch1 (134 GB) and DICOMs_batch2 
(30 GB). The dataset is hosted as tar.gz files, and the total size 
of these files is 4 GB smaller than the uncompressed files sizes. 
The dataset is open and available to anyone for educational and 
research purposes, with no requirement to submit a research pro-
posal to access the data. However, users must sign up and agree 
to the data sharing agreement. The complete data sharing agree-
ment is available on the download webpage. In general, while 
we do not allow any commercial use of the dataset itself, we do 
not explicitly discourage the development or testing of software, 
algorithms, or other intellectual property with the dataset.

k-Space Dataset

Fully sampled k-space data from 1594 consecutive clini-
cal MRI proton density–weighted acquisitions of the knee 
in the coronal plane with and without 
frequency-selective fat saturation are in-
cluded. The measurement identifiers in 
the k-space data were generated to be 
random integers. No examinations were 
excluded owing to presence of imaging 
artifacts from motion, pulsatile flow, and 
so forth. No contrast agents were injected 
at any of these examinations. Scans were 
performed on three clinical 3-T systems 
(Siemens Magnetom Skyra, Prisma, and 
Biograph-mMR) and one clinical 1.5-T 
system (Siemens Magnetom Aera) using 
clinical multichannel receive coils. Car-
tesian 2D turbo spin-echo sequences that 
are part of the routine clinical protocol at 
our institution were used. The publicly 
available software package Yarra (10) was 
used to gather k-space data from the MRI 
scanners. Example images from reference 

Abbreviations
DICOM = Digital Imaging and Communications in Medicine, 
ISMRM = International Society for Magnetic Resonance in Medi-
cine, 2D = two dimensional

Summary
A publicly available dataset containing k-space and image data of 
knee examinations for accelerated MR image reconstruction using 
machine learning is presented.

Key Points
 n The goal of this study was to share the fast MRI dataset to pro-

mote methodologic advances to enable large-scale validation of 
new algorithms and enhance reproducibility of scientific results in 
the field of MR image reconstruction.

 n The fastMRI dataset contains both MRI k-space and DICOM 
(Digital Imaging and Communications in Medicine) image data 
obtained on knee MRI examinations.

 n Increasing accessibility of MR images nationally and internation-
ally can lead to the development of methods to reduce MRI scan 
time and image quality, which can both improve patient care and 
comfort.

Table 1: Acquisition Parameters for the Imaging Protocols Used to Acquire 
Knee MRI Data Represented in the k-Space Dataset

Parameter
Coronal PD–weighted 
Protocol 

Coronal PD–weighted FS 
Protocol 

Sequence 2D turbo spin echo 2D turbo spin echo

FOV (mm2) 140 3 140 140 3 140 

Matrix size 320 × 320 320 × 320

Turbo factor 4–5 4

Slice thickness (mm) 3 3 

TR (msec) 2750–3000 2850–3000 

TE (msec) 27–32 33

No. of slices 27–48 28–50

Receive coil 15 channel Tx-Rx 15 channel Tx-Rx

Note.—Because not all parameters are completely identical for the different MRI scan-
ners that were used during data acquisition, a range of sequence parameters is shown in 
some cases. FOV = field of view, FS = fat saturation, PD = proton density, TE = echo 
time, TR = repetition time, Tx-Rx = transmit-receive, 2D = two dimensional.

http://radiology-ai.rsna.org
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Figure 1: Coronal proton density−weighted images with fat suppression (left) and without fat suppression (right). Both images were reconstructed 
from fully sampled k-space data using a sum-of-squares combination of component coil images.

Examples in the test and challenge sets contain undersampled 
k-space data. The undersampling is performed by retrospectively 
masking k-space lines from a fully sampled acquisition. k-Space 
lines are omitted only in the phase-encoding direction to simu-
late physically realizable accelerations in 2D data acquisitions. 
The same undersampling mask is applied to all slices of an ex-
ample. To provide diverse undersampling patterns across the 
datasets, the undersampling mask is chosen randomly for each 
example, subject to constraints on the number of fully sampled 
central lines and the overall undersampling factor. Figure 2 
shows details on the undersampling procedure.

from multicoil data is expected to be more precise and closer 
to most clinical acquisition and reconstruction pipelines—is 
threefold: (a) To lower the barrier of entry for researchers who 
may not be familiar with MRI data, since the use of a single 
coil removes a layer of complexity, (b) to include a task that is 
relevant for the single-coil MRI machines still in use through-
out the world, and (c) to separate out the aspects of reconstruc-
tion related to compressed sensing rather than parallel imaging. 
The 1594 k-space data examples are partitioned into the fol-
lowing six components: (a) training—coronal proton density 
weighted (484 examinations, average of 36 images) and coro-
nal proton density weighted with fat suppression (489 exami-
nations, average of 36 images); (b) validation—coronal proton 
density weighted (100 examinations, average of 36 images) and 
coronal proton density weighted with fat suppression (99 ex-
aminations, average of 36 images); (c) multicoil testing—coro-
nal proton density weighted (59 examinations, average of 36 
images) and coronal proton density weighted with fat suppres-
sion (59 examinations, average of 36 images); (d) single-coil 
testing—coronal proton density weighted (54 examinations, 
average of 36 images) and coronal proton density weighted 
with fat suppression (54 examinations, average of 36 images).

The remaining 196 examinations are held back for a planned 
image reconstruction challenge. The training and validation 
datasets may be used to fit model parameters and to optimize 
hyperparameter values. The test dataset is used to compare the 
results across different approaches. Evaluation on the test set is 
accomplished by uploading results to the public leaderboard at 
https://fastmri.org/. The first official challenge associated with the 
dataset is forthcoming.

The examples in the training and validation set are identi-
cal for the single-coil and multicoil datasets. For the challenge 
and test set, unique examples are provided for the single-coil and 
the multicoil dataset. This ensures that information cannot be 
shared between the two challenges at the test stage.

Table 2: Overview of Selected Metadata Fields That 
Are Included Together with the Raw k-Space Data

Category
Raw Data Metadata Field  
(unit, if applicable)

Acquisition hardware System vendor

System model

Field strength (T)

Type of receive coil and number 
of elements

Encoded k-space Matrix size (x,y,z)

Field of view (x,y,z) (mm)

Reconstruction image space Matrix size (x,y,z)

Field of view (x,y,z) (mm)

Sequence parameters Repetition time (msec)

Echo time (msec)

Inversion time (msec)

Flip angle (degree)

TSE echo spacing (msec)

Note.—A complete list of provided metadata in the Internation-
al Society for Magnetic Resonance in Medicine raw data format 
is given in Inati et al (9). TSE = turbo spin echo.

http://radiology-ai.rsna.org
https://fastmri.org


4 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 2: Number 1—2020

fastMRI: Raw k-Space and DICOM Dataset of Knee MR Images

The fastMRI dataset is specialized at the moment because it 
is focused on 2D knee imaging data. We are planning to pro-
gressively add new data to the repository during future releases. 
Our next planned release will be for brain data and will follow 
an identical structure of both fully sampled k-space data and ac-
companying DICOM images. The dataset consists of consecu-
tive examinations and therefore does include pathologic findings 
at a rate that is representative for a clinical patient population. 
However, because our focus in this project is on image recon-
struction, we are currently not providing any diagnostic label-
ing segmentations, text reports, statistics on the prevalence of 
pathology, information on metal implants, or demographic 
information.

The number of cases included as DICOM images in our fast-
MRI dataset is substantially larger than the number of cases with 
k-space data. The DICOM portion of the dataset is also more 
heterogeneous, with data coming from a wider range of MRI 
systems and protocols. It is worth noting that a Fourier transform 
of these DICOM images does not directly correspond to the 
originally measured raw data. Many of the clinical images were 
acquired with accelerated acquisitions and reconstructed using 
approaches such as parallel imaging. In the context of machine 
learning for image reconstruction, our motivation to include the 
DICOM data is to answer the question of whether training on 
a larger number of imperfect examples can outperform training 
on a smaller number of high-quality examples. Complete details 
regarding this dataset, as well as relevant background material 
intended to empower investigators to tackle problems in image 
reconstruction, can be found in Zbontar et al (19).

We hope that the availability of this dataset can accelerate 
research in MR image reconstruction, much as the computer 
vision field was supercharged by well-curated large-scale natural 
image datasets such as ImageNet (8). In particular, we hope that 

DICOM Dataset

In addition to the k-space data, 
fastMRI also includes 10 012 
consecutive DICOM image da-
tasets from 9290 patients under-
going clinical knee MRI exami-
nations with a full complement 
of clinical acquisitions repre-
sented, including a range of tis-
sue contrasts and different planes 
of imaging. The total number 
of examinations and average 
number of images per sequence 
are: (a) coronal proton density 
weighted: 9947 examinations, 
average of 33 images; (b) coro-
nal proton density weighted 
with fat suppression: 10 192 
examinations, average of 31 im-
ages; (c) axial T2 weighted with 
fat suppression: 9640 examina-
tions, average of 33 images; (d) 
sagittal proton density weighted: 
10 491 examinations, average of 31 images; and (e) sagittal T2 
weighted with fat suppression: 7311 examinations, average of 
29 images.

This also includes contrast agent−enhanced examinations. 
Both pre- and postcontrast images are included. There is no 
overlap between the examinations in the DICOM dataset and 
the k-space dataset. No examinations were excluded owing to 
the presence of imaging artifacts from motion, pulsatile flow, 
and so forth. The DICOM data are produced using a wide range 
of scanners within our institution. They are not partitioned into 
training, validation, testing, and challenge sets. Instead, they are 
provided as a single dataset, for example, for the purpose of aux-
iliary training or to test generalizability of techniques developed. 
The DICOM patient identifiers were generated to be random 
integers.

Discussion
To our knowledge, this is the largest public dataset that in-
cludes raw k-space data and DICOM data from a clinical 
population. While public datasets of reconstructed images do 
exist—for example, the Human Connectome project (16), the 
Alzheimer’s Disease Neuroimaging Initiative (17), and the Os-
teoarthritis Initiative (18)—they are generally specialized by 
already targeting a specific translational research question in 
which imaging serves as a tool to seek answers. The goal of 
our dataset is much broader: to provide a resource to improve 
image acquisition and reconstruction itself. Recent efforts have 
been devoted to collecting and publicly releasing datasets con-
taining k-space data (http://mridata.org and https://github.com/
VLOGroup/mri-variationalnetwork). However, the number of 
examinations that are provided in these datasets range between 
10 and 100 and consequently might be too small for some 
machine learning–based reconstruction methods.

Figure 2: Examples of binary sampling masks (white = included, black = omitted) for pseudorandomly undersampled 
k-space data with fourfold acceleration (left) and eightfold acceleration (right). The overall acceleration factor is set randomly 
either to four or to eight (representing a fourfold or an eightfold acceleration, respectively), with equal probability for each 
example. The undersampling mask is then generated by first including some number of adjacent low-frequency k-space lines 
to provide a fully sampled central region of k-space. When the acceleration factor equals four, the fully sampled central region 
includes 8% of all k-space lines; when the acceleration factor equals eight, 4% of all k-space lines are included. The remaining 
k-space lines are included at random, by drawing samples from a uniform random distribution with the probability set such that 
the correct number of total k-space lines is achieved.
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this dataset can serve as a benchmark for training and evaluation 
of new developments in image reconstruction, and that it can 
also serve as an example and a stimulus for the release of similar 
publicly available datasets in the future.
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