
 Open access  Journal Article  DOI:10.1109/TCAD.2005.846365

FastPlace: efficient analytical placement using cell shifting, iterative local
refinement,and a hybrid net model — Source link 

Natarajan Viswanathan, Chris Chu

Institutions: Iowa State University

Published on: 01 May 2005 - IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (IEEE)

Topics: Quadratic programming, Solver, Placement and Iterative method

Related papers:

 GORDIAN: VLSI placement by quadratic programming and slicing optimization

 Generic global placement and floorplanning

 Dragon2000: standard-cell placement tool for large industry circuits

 Can recursive bisection alone produce routable placements

 Multilevel generalized force-directed method for circuit placement

Share this paper:    

View more about this paper here: https://typeset.io/papers/fastplace-efficient-analytical-placement-using-cell-shifting-
5g0mtxniv2

https://typeset.io/
https://www.doi.org/10.1109/TCAD.2005.846365
https://typeset.io/papers/fastplace-efficient-analytical-placement-using-cell-shifting-5g0mtxniv2
https://typeset.io/authors/natarajan-viswanathan-1zafms5acs
https://typeset.io/authors/chris-chu-21izu3rued
https://typeset.io/institutions/iowa-state-university-a6g8atpr
https://typeset.io/journals/ieee-transactions-on-computer-aided-design-of-integrated-3lng4yft
https://typeset.io/topics/quadratic-programming-pq0mas70
https://typeset.io/topics/solver-3rpiu7zh
https://typeset.io/topics/placement-1qas1okk
https://typeset.io/topics/iterative-method-u2i3yazt
https://typeset.io/papers/gordian-vlsi-placement-by-quadratic-programming-and-slicing-3ncyqeb79x
https://typeset.io/papers/generic-global-placement-and-floorplanning-1wzsme9cw7
https://typeset.io/papers/dragon2000-standard-cell-placement-tool-for-large-industry-19dcaw7z00
https://typeset.io/papers/can-recursive-bisection-alone-produce-routable-placements-znzvuyrdw7
https://typeset.io/papers/multilevel-generalized-force-directed-method-for-circuit-hv28w5sj0i
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fastplace-efficient-analytical-placement-using-cell-shifting-5g0mtxniv2
https://twitter.com/intent/tweet?text=FastPlace:%20efficient%20analytical%20placement%20using%20cell%20shifting,%20iterative%20local%20refinement,and%20a%20hybrid%20net%20model&url=https://typeset.io/papers/fastplace-efficient-analytical-placement-using-cell-shifting-5g0mtxniv2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fastplace-efficient-analytical-placement-using-cell-shifting-5g0mtxniv2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fastplace-efficient-analytical-placement-using-cell-shifting-5g0mtxniv2
https://typeset.io/papers/fastplace-efficient-analytical-placement-using-cell-shifting-5g0mtxniv2


IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2005 1

FastPlace: Efficient Analytical Placement using Cell Shifting,

Iterative Local Refinement and a Hybrid Net Model
Natarajan Viswanathan, Member, IEEE, and Chris Chong-Nuen Chu, Member, IEEE

Abstract— In this paper, we present FastPlace – a fast, iterative, flat

placement algorithm for large-scale standard cell designs. FastPlace is
based on the quadratic placement approach. The quadratic approach

formulates the wirelength minimization problem as a convex quadratic

program that can be solved efficiently by some analytical techniques.

However it suffers from some drawbacks. First, the resulting placement
has a lot of overlap among cells. Second, the resulting total wirelength

may be long as the quadratic wirelength objective is only an indirect

measure of the linear wirelength. Third, existing net models tend to
create a lot of non-zero entries in the connectivity matrix that slows

down the quadratic program solver. To handle the above problems

we propose: (1) An efficient Cell Shifting technique to remove cell

overlap from the quadratic program solution and also accelerate the
convergence of the solver. This technique produces a global placement

with even cell distribution in a very short time. (2) An Iterative Local
Refinement technique to reduce the wirelength according to the half-

perimeter measure. (3) A Hybrid Net Model that is a combination of
the traditional clique and star models. This net model greatly reduces

the number of non-zero entries in the connectivity matrix and results

in a significant speedup of the solver. Experimental results show that
FastPlace is on average 13.4

�
, 102

�
and 19.9

�
faster than state-of-the

art academic placers Capo, Dragon and Gordian-Domino respectively on

a set of IBM benchmarks.

Index Terms— Computer-aided design, analytical placement, standard

cell placement, net models.

I. INTRODUCTION

In recent years the role of placement in the physical design of

large chips has grown dramatically [1], [2]. The main reason is that

placement of circuit modules determines to a large extent interconnect

length, and hence interconnect delay and routing resource demand.

Interconnect delay has become the determining factor of circuit

performance in present day Integrated Circuits. Hence, placement has

become a major contributor to timing closure results. Current circuits

often contain over a million placeable components, and it is predicted

that circuit sizes will continue to double every three years [3]. Also,

Cong et al. [4], [5] showed that existing placement algorithms are not

scalable and stable. Therefore, it is likely that existing approaches

may not be able to handle future circuits much larger in size. Hence,

it is very essential to have extremely effi cient placement algorithms.

Over the last few years, many placement algorithms have been

proposed to handle the objective of wirelength minimization. These

algorithms apply various approaches including analytical placement

[6]–[13], simulated annealing [14], [15], and partitioning/clustering

[16]–[18]. Analytical placement is a very promising approach for

fast placement algorithm design. Analytical placement algorithms

commonly utilize a quadratic wirelength objective function. Although

the quadratic objective is only an indirect measure of the wirelength,

its main advantage is that it can be minimized quite effi ciently. As

a result, analytical placement algorithms are relatively effi cient in

handling large problems. They typically employ a flat methodology

so as to maintain a global view of the placement problem [7]–

[11], [13]. For simulated annealing and partitioning/clustering based

approaches, a hierarchical methodology is almost always employed

The authors are with the Department of Electrical and Computer Engineer-
ing, Iowa State University, Ames, IA 50011 USA (email: nataraj@iastate.edu;
cnchu@iastate.edu).

to reduce the problem size and speed up the resulting algorithms

[14]–[18]. Note that, when the placement problem is so large that

a flat analytical approach cannot handle it effectively, a hierarchical

analytical approach is benefi cial. One way to convert to a hierarchical

approach is to incorporate the fi ne granularity clustering technique

proposed by Hu et al. [19]. This technique essentially introduces

a two-level hierarchy to reduce the size of large-scale placement

problems.

A major concern with the quadratic objective is that it results

in a placement with a large amount of overlap among cells. Also,

the quadratic objective by itself does not give the best possible

wirelength. To handle these problems, Kleinhans et al. [10] used a

placement-based bisection technique to recursively divide the circuit

and add linear constraints to pull the cells in each partition to the

center of the corresponding region. The FM [20] min-cut algorithm

was used to improve the bisection and hence the wirelength. Vygen

[13] applied a position-based quadrisection technique instead. A

splitting-up technique to modify the netlist was also proposed to

ensure that cells will stay in the assigned region. This technique

also breaks down long nets and hence makes the objective behave

like a linear function to some extent. Eisenmann et al. [7] introduced

additional constant forces to each cell based on cell distribution to

pull cells away from dense regions. Etawil et al. [8] added repelling

forces for cells sharing a net to maintain a target distance between

them and attractive forces by fi xed dummy cells to pull cells from

dense to sparse regions. Hu et al. [9] introduced the idea of fi xed-

point as a more general way to add forces for cell spreading. Hur

et al. [12] used the spreading force of [7] to direct and control

the ripple move optimization of Mongrel [21] to spread the cells.

Kahng et al. [6] combined the cell spreading objective of [22] with

a wirelength objective to achieve simultaneous cell spreading and

wirelength optimization.

In this paper, we present a fast, iterative, flat placement algorithm

called FastPlace for large-scale standard cell designs. FastPlace is

based on the quadratic placement approach. The main contributions

of our work are:
✁ An effi cient Cell Shifting technique to remove cell overlap and

accelerate the convergence of the quadratic program solver. The

cell shifting technique roughly maintains the relative order of

the cells in both horizontal and vertical directions as we believe

that the quadratic objective function can determine a proper cell

ordering. Hence, a high-quality global placement with even cell

distribution can be produced in a short time.
✁ An Iterative Local Refinement technique to reduce the wire-

length according to the half-perimeter measure. This technique

is interleaved with Cell Shifting and Global Optimization during

the fi nal iterations of global placement. It makes use of the

wirelength and cell distribution information provided by a coarse

global placement and hence is very effective.
✁ A Hybrid Net Model that is a combination of the traditional

clique and star [23] net models. We prove the equivalence of the

Hybrid Net Model to the clique and star models. On average, the

Hybrid Net Model results in a 2.95 ✂ reduction in the number

of non-zero entries in the connectivity matrix as compared to
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the clique model. Consequently, it results in a 1.5 ✂ speed-up of

the quadratic program solver.

The rest of the paper is organized as follows: Section II provides

an overview of the algorithm. Section III describes the Global

Optimization step. Section IV describes the Hybrid Net Model.

Section V describes the Cell Shifting technique. Section VI describes

the Iterative Local Refi nement technique and Section VII describes

the Detailed Placement technique. Experimental results are presented

in Section VIII followed by Conclusions in Section IX.

II. OVERVIEW OF THE ALGORITHM

FastPlace essentially consists of three stages. The aim of the fi rst

stage is to simultaneously minimize the wirelength and spread the

cells over the placement region to obtain a coarse global placement. It

is composed of an iterative procedure in which we alternate between

Global Optimization and Cell Shifting. Global Optimization involves

minimizing the quadratic objective function. During Cell Shifting,

the entire placement region is divided into equal sized bins and

the utilization of each bin is determined. This gives a measure of

the current placement distribution. The cells are then shifted around

the placement region based on their respective bins and its current

utilization. Finally, a spreading force is added to the cells to account

for their movement during shifting. This is done to prevent the cells

from collapsing back to their original positions during the next Global

Optimization step.

The second stage is to refi ne the global placement by interleaving

an Iterative Local Refi nement technique with Global Optimization

and Cell Shifting. This is done during the fi nal stages of global

placement. The Iterative Local Refi nement technique is employed

to reduce the wirelength based on the half-perimeter measure and

to speed up the convergence of the algorithm. This stage of global

placement yields a very well distributed placement solution with a

very good value for the total wirelength.

The third stage is that of Detailed Placement. This consists of

legalizing the current placement by assigning cells to pre-defi ned

rows in the placement region. Within each row, the cells are then

assigned to legal positions and any overlap among them is removed. It

also consists of further reducing the wirelength by a greedy heuristic.

The algorithm FASTPLACE is summarized in Figure 1 and the

individual components of the flow are discussed in more detail in

Sections III–VII.

III. GLOBAL OPTIMIZATION

This section describes the quadratic programming step of global

placement refered as Global Optimization, which is the terminology

used in [10]. The quadratic placement approach uses springs to model

the connectivity of the circuit. The total potential energy of the

springs, that is a quadratic function of their length, is minimized1

to produce a placement solution. In order to model the circuit by a

spring system, each multi-pin net needs to be transformed into a set

of two-pin nets by a suitable net model. In the following, we assume

that this transformation has been applied. The net model used will

be discussed in Section IV.

Let � be the number of movable cells in the circuit and
✁✄✂✆☎✞✝✠✟✡☎☞☛

the coordinates of the center of cell ✌ . A placement of the circuit

is given by the two � -dimensional vectors ✍✏✎ ✁✄✂✒✑✓✝✠✂✕✔✖✝✓✗✘✗✘✝✙✂✕✚✛☛
and✜ ✎ ✁✄✟ ✑ ✝✞✟ ✔ ✝✢✗✘✗✘✝✠✟ ✚ ☛

. Consider the net between two movable cells ✌
and ✣ in the circuit. Let ✤ ☎ ✥ be its weight. Then the cost of the net

between the cells is:✦
✧ ✤ ☎ ✥✩★ ✁✄✂ ☎✫✪ ✂ ✥ ☛

✔✭✬ ✁✄✟ ☎✮✪ ✟ ✥ ☛ ✔✙✯
(1)

1Equivalently, a force equilibrium state of the spring system is found.

 Algorithm FASTPLACE 

Stage 1: Coarse Global Placement (CGP) 

1. Repeat 

2. Perform Global Optimization. 

3. Perform Cell Shifting and Add Spreading Forces. 

4. Until the placement is roughly even. 

Stage 2: Wirelength Improved Global Placement (WIGP) 

1. Repeat 

2. Perform Global Optimization. 

3. Perform Iterative Local Refinement. 

4. Perform Cell Shifting and Add Spreading Forces. 

5. Until the placement is very even. 

Stage 3: Detailed Placement (DP) 

1. Repeat 

2. Further reduce wirelength using a greedy heuristic. 

3. Legalize the current placement solution. 

4. Until no significant improvement in wirelength. 

Fig. 1. The FASTPLACE algorithm.

If a cell ✰ is connected to a fi xed cell ✱ with coordinates ✲✄✳✵✴✷✶✠✸✩✴✡✹ ,
the cost of the net is given by:✺

✻✒✼✾✽ ✴✷✿✘✲✄✳✕✽✆❀❁✳✕✴✩✹✠❂❄❃❅✲✄✸✡✽✆❀❁✸✡✴✡✹✠❂❇❆ (2)

The objective function that sums up the cost of all the nets can be

written in matrix notation as [24]:

❈ ✲✄✳❉✶✞✸✛✹❋❊
✺
✻✮✳❍●❉■❏✳❑❃✏▲▼●◆✫✳❖❃

✺
✻✆✸✷●✮■❏✸P❃◗▲▼●❘❉✸❙❃ constant (3)

where ■ is an ❚❱❯❲❚ symmetric positive defi nite matrix and ▲ ◆ ,▲ ❘ are ❚ -dimensional vectors. Since equation (3) is separable into❈ ✲✄✳❉✶✠✸✷✹❋❊ ❈ ✲✄✳✆✹✕❃ ❈ ✲✄✸✷✹ , only the the ✳ -dimension is considered for

subsequent discussion, which is:

❈ ✲✄✳✆✹❳❊
✺
✻✫✳❍●❉■❏✳❑❃✏▲▼●◆ ✳❑❃ constant (4)

Let ❨ ✽ ❩ be the entry in row ✰ and column ❬ of matrix ■ . From

expression (1), the cost in the ✳ -direction between two movable cells ✰
and ❬ is ❭❂ ✼ ✽ ❩ ✲✄✳ ❂✽ ❃P✳ ❂❩ ❀

✻ ✳ ✽ ✳ ❩ ✹ . The fi rst and second terms contribute✼ ✽ ❩ to ❨ ✽❪✽ and ❨ ❩❫❩ respectively. The third term contributes ❀ ✼ ✽ ❩ to❨✢✽ ❩ and ❨✠❩❇✽ . From expression (2), the cost in the ✳ -direction between

a movable cell ✰ and a fi xed cell ✱ is ❭❂ ✼ ✽ ✴ ✲✄✳ ❂✽ ❃❴✳ ❂✴ ❀ ✻ ✳ ✽ ✳ ✴ ✹ .
The fi rst term contributes ✼❵✽ ✴ to ❨✢✽❪✽ . The third term contributes❀ ✼❛✽ ✴❜✳✆✴ to the vector ▲ ◆ at row ✰ and the second term contributes

to the constant part of equation (4). The objective function (4) is

minimized by solving the system of linear equations represented by:

■❏✳❝❃❲▲ ◆ ❊❡❞❣❢ (5)

Equation (5) gives the solution to the unconstrained problem of

minimizing the quadratic function in (4). In FastPlace, we solve such

an unconstrained minimization problem throughout the placement

process. We do not add any constraint to the problem formulation.

This is because the spreading forces added during Cell Shifting are

produced by pseudo nets connecting the cells to the chip boundary.

This only introduces some terms in the form of expression (2) and

causes some changes to the diagonal of matrix ■ and the vector ▲ ◆
as described above.
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IV. HYBRID NET MODEL

To handle the large placement problem size, a fast and accurate

technique is needed to solve equation (5). Since matrix � is sparse,

symmetric and positive defi nite, we solve equation (5) by the pre-

conditioned Conjugate Gradient method. The Incomplete Cholesky

Factorization of matrix � is used as the preconditioner [25], [26].

The runtime of the solver is directly proportional to the number of

non-zero entries in matrix � . This in turn is equal to the number of

two-pin nets in the circuit. Hence, it becomes imperative to choose a

good net model so as to have minimal non-zero entries in matrix � .

We propose a Hybrid Net Model that is a combination of the clique

and star net models. We show experimentally in Section VIII that the

Hybrid Net Model reduces the number of non-zero entries in matrix� by 2.95 ✂ over the traditional clique model. In the subsequent

discussion, we give a brief overview of the clique and star net models,

and introduce the Hybrid Net Model. Then, we prove the equivalence

of the clique and star models, and hence the consistency of the Hybrid

Net Model.

A. Clique, Star and Hybrid Net Models

The clique model is the traditional model used in analytical

placement algorithms. In the clique model, a ✁ -pin net is replaced

by ✁ ✁ ✁ ✪ ✦ ☛✄✂ ✧
two-pin nets forming a clique. Let ✤ be the weight

of the ✁ -pin net. Some commonly used values for the weight of the

two-pin nets are ✤ ✂❣✁ ✁ ✪ ✦ ☛
(e.g., [13]) and

✧ ✤ ✂ ✁ (e.g., [7], [10]).

The clique model for a 5-pin net is illustrated in Figure 2(a).

 

k (= 5) Pin Net 
(a) Clique Model 

(x1,y1) (x2,y2) 

(x3,y3) 

(x4,y4) 
(x5,y5) 

(b) Star Model 

Star Node 

(xc,yc) 
(x3,y3) 

(x2,y2) 
(x1,y1) 

(x5,y5) 
(x4,y4) 

Fig. 2. Net models.

Recently, Mo et al. [23] utilized the star net model in a macro-cell

placer. In the star model, each net has a star node to which all pins

of the net are connected. Hence, a ☎ -pin net will yield ☎ two-pin

nets. The star model for a 5-pin net is illustrated in Figure 2(b). Mo

et al. [23] create a star node even for two-pin nets and point out that

the clique model generates on average 30% more two-pin nets than

the star model for the MCNC92 macro block benchmarks. Vygen

[13] also switches to a star model for very large nets to reduce the

number of terms in the objective function, but has not shown the

validity of mixing the clique and star models in quadratic placement.

In addition, neither paper has discussed the method to set the weight

of the nets introduced by the star model.

In the following subsection we prove that for a ☎ -pin net of weight✼ , if we set the weight of the two-pin nets introduced, to ✆ ✼ in the

clique model and ☎✝✆ ✼ in the star model for any ✆ , the clique model

is equivalent to the star model in quadratic placement. Therefore, the

two models can be used interchangeably.

We propose a Hybrid Net Model that uses a clique model for

two-pin and three-pin nets, and a star model for nets with four or

more pins. We set ✆ to
✺✟✞ ✲✠☎ ❀ ✺ ✹ in FastPlace as it works well

experimentally. By using the star model for nets with four or more

pins, we will generate much fewer two-pin nets and consequently

fewer non-zero entries in the matrix ■ than the clique model. By

using the clique model for two-pin nets, we will not introduce one

extra net and two extra variables (corresponding to the ✳ and ✸
dimensions) per two-pin net as in [23]. We choose to use the clique

model for three-pin nets because it is better than the star model for

the following reasons: First, if two cells are connected by more than

one two-pin or three-pin net in the original netlist, the two-pin nets

generated by the clique model between the two cells can be combined

and will only introduce a single non-zero entry in the matrix ■ .

Second, it will not introduce an extra pair of variables.

B. Equivalence of the Hybrid Net Model to the Clique and Star Net

Models

In this subsection, we show that the clique model is equivalent

to the star model in quadratic placement if net weights are set

appropriately. It follows that the clique, star and Hybrid net models

are all equivalent.

Lemma 1: For any net in the star model, the star node under force

equilibrium is at the center of gravity of all pins of the net.

Proof: Consider a ☎ -pin net. Let ✳☛✡ be the ✳ -coordinate of the

star node and let ✼ ✡ be the weight of the two-pin nets introduced.

Then the total force on the star node by all the pins is given by:☞ ❊
✌✍
❩✏✎ ❭ ✼✑✡ ✲✄✳▼❩ ❀❛✳ ✡ ✹❇❢

Under force equilibrium, the total force
☞ ❊❅❞ . Therefore,

✳✒✡ ❊✔✓ ✌❩✕✎ ❭ ✳▼❩☎ ❢ (6)

Hence the lemma follows.

Theorem 1: For a ☎ -pin net, if the weight of the two-pin nets

introduced is set to ✼✗✖ in the clique model and ☎ ✼✗✖ in the star

model, the clique model is equivalent to the star model in quadratic

placement.

Proof: For the clique model, the total force on a pin ✰ by all

the other pins is given by:☞ ✖✙✘ ✽✛✚✢✜✤✣✽ ❊ ✼✥✖ ✌✍
❩✏✎ ❭✄✦ ❩★✧✎✫✽ ✲✄✳▼❩ ❀❛✳✕✽ ✹ (7)

For the star model, all the pins of the net are connected to the star

node. The force on a pin ✰ due to the star node is given by:☞ ✡✙✩✫✪✭✬✽ ❊ ☎ ✼✥✖ ✲✄✳ ✡ ❀❛✳✕✽☞✹
❊ ☎ ✼✥✖✯✮✰✓ ✌❩✕✎ ❭ ✳ ❩☎ ❀❛✳✕✽✲✱ by Lemma 1

❊ ✼ ✖ ✮ ✌✍ ❩✏✎ ❭ ✳ ❩ ❀✑☎❣✳ ✽ ✱
❊ ✼✗✖ ✌✍

❩✕✎ ❭✄✦ ❩✳✧✎✆✽ ✲✄✳▼❩ ❀❁✳✕✽☞✹
❊ ☞ ✖✙✘ ✽✛✚✢✜★✣✽

As the forces are same in both models for all pins, the lemma follows.

A combination of the clique and star models has been used in

the industry and academia. Previously, the star model has been only

used for high degree nets, so as to reduce the number of non-zero

entries in matrix ■ and speed-up the solver. But, the validity of

mixing the clique and star models in quadratic placement has not



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2005 4

been proven. Also, there has been no mention about the method to

set the weights of the two-pin nets introduced by the two models if

they are combined. Gordian [10] also uses a star node to formulate the

problem for multi-pin nets. But, to reduce the number of variables,

they explicitly state that they substitute the co-ordinates of the star

nodes with the mean values of the co-ordinates of the pins. In doing

so, even though they have fewer variables, they still have the same

number of non-zero entries in matrix � as the traditional clique

model.

In the star model used in our algorithm, we introduce two extra

variables (one for each
✂

and
✟

dimension) in the matrix correspond-

ing to the star node. By introducing these variables, even though the

total number of variables has increased, the total number of non-zero

entries in the matrix has been greatly reduced. Considering the case

of a ✁ -pin net, our approach will only introduce ✁ non-zero entries

in the matrix for the star model. Whereas, the approach followed in

[10] will still introduce ✁ ✁ ✁ ✪ ✦ ☛✄✂ ✧
non-zero entries in the matrix.

Also, in this paper, we have described the method to set the

weights of the two-pin nets introduced by the clique and star models.

Consequently, based on the weights of the two-pin nets, we have

proven the equivalence of the two models and hence the validity of

mixing them in quadratic placement. Based on the proof, the main

novelty of our Hybrid Net Model is that we can use the star model

even for nets with just four or more pins. We no longer have to

restrict its usage to only high-degree nets. If a combination of the

clique and star models are used, the Hybrid Net Model will give the

minimum possible non-zero entries in matrix � .

To the best of our knowledge, the aforementioned proof and

treatment of the star model has not been reported in prior literature.

V. CELL SHIFTING

Global Optimization essentially minimizes the quadratic objective

function. However, it does not consider the overlap among cells.

Therefore, the resulting placement has a lot of cell overlap and is

not distributed over the placement region. Cell Shifting evens out

the placement by distributing the cells over the placement region

while retaining their relative ordering obtained from the Global

Optimization step. In the next sub-sections we describe the steps

involved in Cell Shifting.

A. Calculation of Bin Utilization

 

Fig. 3. Regular bin structure.

Initially, the placement region is divided into equal sized bins

(Figure 3). Each bin can accommodate an average of 4 cells. Based

on the placement obtained from Global Optimization, the utilization

of each bin �✂✁☎✄✝✆ is then computed. ✁☎✄ is defi ned as the total area of

all the cells inside bin ✞ divided by the bin area. In calculating the

total area of all the cells, we sum the areas of all cells completely

covered by bin ✞ and the overlap area between the bin and the cell

for cells that partially overlap with bin ✞ . The cells are then shifted

around the placement region based on their respective bins and its

current utilization.

B. Shifting of Cells

Let us consider the case where the cells are shifted in the ✟ -

dimension. To shift cells, we go through every row of the regular

bin structure and move cells present in the row. Shifting of cells

is a two step process. First, based on the current utilization of all

the bins in a particular row an unequal bin structure reflecting the

current bin utilization is constructed. Second, every cell belonging to

a particular bin in the regular bin structure is then linearly mapped

to the corresponding bin in the unequal bin structure. As a result of

this mapping, cells in bins with a high utilization will shift in a way

so as to reduce their utilization and the overlap among themselves.

Once all the rows of the regular bin structure have been considered,

we go through every column and shift the cells in the ✠ -dimension

by following the two steps mentioned above.

 

(b) Distribution 
     After  
     Spreading 

Bin i 

Bin i+1 

OBi OBi - 1 OBi + 1 

NBi 

(a) Distribution 
     Before  
     Spreading Utilization 

Fig. 4. (a) Regular bin structure (b) Unequal bin structure and utilization
after shifting.

To illustrate the shifting in the x-dimension, consider a particular

row in the regular bin structure (shaded row in Figure 3). The

utilization of all the bins in this row is given in Figure 4(a). The

unequal bin structure constructed from the regular bin structure

is illustrated in Figure 4(b). To get the equation for the new bin

structure, from Figure 4 let,
✡☞☛✍✌ ✄ : ✟ -coordinate of the boundary of bin ✞ corresponding to

the regular bin structure
✡☞✎✏✌ ✄ : ✟ -coordinate of the boundary of bin ✞ corresponding to

the unequal bin structure

Then,

✎✏✌ ✄✒✑
☛✍✌ ✄✔✓✖✕ �✂✁ ✄✘✗✙✕✒✚✜✛ ✆ ✚ ☛✍✌ ✄✢✗✙✕ �✂✁ ✄✣✚✜✛ ✆

✁ ✄✣✚ ✁ ✄✢✗✒✕✙✚☞✤✥✛ (8)

The idea behind Cell Shifting is to even out the utilization among

adjacent bins. Hence, the intuition behind the above formula is to

construct the new bin such that it averages the utilization of bin ✞
and bin ✞ ✚✧✦ . The reason for having the parameter ✛ is as follows:

Let, ✛ ✑✩★ and ✁ ✄✢✗✒✕ ✑✧★ , then from equation (8) it can be seen that,
✎✏✌ ✄✒✑ ☛✍✌ ✄✘✗✙✕ and ✎✏✌ ✄✢✗✒✕✪✑ ☛✍✌ ✄ . This results in a cross-over of

bin boundaries in the unequal bin structure that results in improper

mapping of the cells. To avoid this problem, we need the parameter

✛ , that is set to a value of 1.5.

For performing the linear mapping of cells, If,
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✁ ✂▼✥
:
✂

-coordinate of cell ✣ in bin ✌ before mapping (obtained

from the Global Optimization step)
✁ ✂✁� ✥

:
✂

-coordinate of cell ✣ in bin ✌ after mapping

Then, ✂ ✥ ✪✄✂✆☎❙☎✞✝ ✑✂✆☎❙☎✮✪✄✂✆☎❙☎✞✝ ✑ ✎ ✂✁� ✥ ✪✄✟✠☎❙☎✞✝ ✑✟✠☎❙☎✫✪✡✟✠☎❵☎☛✝ ✑
or, ✂✁� ✥ ✎ ✟✠☎❵☎ ✁✄✂ ✥ ✪✄✂✆☎❵☎☛✝ ✑ ☛ ✬ ✟✠☎❙☎✞✝ ✑ ✁ ✂✆☎❵☎✮✪ ✂ ✥ ☛✂✆☎❵☎✮✪☞✂✆☎❙☎✞✝ ✑ (9)

During the initial placement iterations a few bins in the placement

region will have an extremely high bin utilization. Consequently, cells

in these bins will have a tendency to shift over large distances. This

will perturb the current placement solution by a large amount. This

effect will get added over iterations and result in a fi nal placement

with a high value of the total wirelength. Therefore, to control the

actual distance moved by any cell during shifting, we introduce two

movement control parameters, ✌✎✍ and ✌✑✏ ✁✓✒ ✦ ☛
for the x and y

dimensions. ✌✑✍ and ✌✔✏ are increasing functions that are inversely

proportional to the maximum bin utilization and have a very small

value during the initial placement iterations. In the x-dimension say,

once the position of cell ✣ has been determined after mapping, the

actual distance moved by the cell is ✌ ✍✖✕ ✂✁� ✥ ✪ ✂ ✥ ✕ .
Thus, the cells are shifted over very small distances during the ini-

tial placement iterations. During the fi nal stages of global placement,

the cells will be distributed quite evenly, and not have a tendency to

shift over large distances. Then, ✌ can take a larger value to accelerate

convergence. The expressions for ✌ ✍ and ✌ ✏ are:✌✑✏P✎✘✗ ✗ ✗ ✧ ✬ ✗ ✗ ✙✚✜✛ ✂❉✁✣✢❳☎ ☛
✌ ✍ ✎✘✗ ✗ ✗ ✧ ✬✥✤ ✗ ✗ ✙✚✦✛ ✂✒✁✣✢ ☎ ☛★✧ ✤ ✛✪✩✪✫✭✬✮✛✰✯✱✫✳✲✴✫✶✵✷✵ ✤ ✌☛✸✺✹✼✻✽✾✫✶✵✷✵✷✿❀✫ ✌ ✯ ✻❁✹ ✧

We use the maximum utilization among all bins as a measure of the

evenness of cell distribution. The lesser the maximum utilization, the

more distributed are the cells. The maximum bin utilization can also

be used as a measure of the effi ciency of the Cell Shifting technique.

Figure 5 shows the change in the maximum bin utilization value

over placement iterations for the circuit ibm01. It can be seen that

within 19 iterations of global placement the cells are spread out quite

evenly over the placement region and the maximum bin utilization

reaches the required threshold for us to begin detailed placement.

This also shows that Cell Shifting is very effective in accelerating

the convergence of the quadratic program solver. Correspondingly,

Figure 6 gives the change in the wirelength over global placement

iterations. This fi gure also includes the fi nal wirelength obtained after

detailed placement shown as iteration number 20. We can see a jump

in the wirelength value between iterations 9 and 11. This is when the

algorithm transitions from the CGP to the WIGP stage.

C. Addition of Spreading Forces

After the cells have been shifted in the x and y dimensions,

additional forces need to be added to them so that they do not collapse

back to their previous positions during the next Global Optimization

step. This is achieved by connecting each cell to a corresponding

pseudo pin added at the boundary of the placement region. The

pseudo pin and pseudo net addition is illustrated in Figure 7.

Let
✁✄✂❃❂✥ ✝✙✟❁❂✥ ☛

be the target position of cell ✣ after Cell Shifting.

When it is moved to the target position, it will experience a force due

to its connectivity with the other cells or star nodes in the placement

region. This force can also be viewed as the force required to move

the cell from its original position (before Cell Shifting) to the target
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position. The spreading force added to the cell corresponds to this

force experienced by the cell in its target position.

To illustrate the addition of the spreading force, consider Figure 7.

When cell ✣ (solid circle) is moved to its target position, it will

experience a force due to the other cells connected to it (empty

circles). When determining this force, we assume that all cells

connected to cell ✣ are still in their original positions (before Cell

Shifting). The resultant force due to the cells connected to cell ✣ is

given by the ”Resultant Force” vector. The spreading force has the

same magnitude as the ”Resultant Force” vector but is in the opposite

direction.

To determine the position of the pseudo pin and the spring constant

of the pseudo net, If,
✁✁�✄✂ ✍ :

✂
-component of the spreading force.

✁✁�✄✂ ✏ :
✟

-component of the spreading force
✁✁�✄☎ ✍ :

✂
-component of the distance between the pseudo pin and

target position of cell ✣
✁✁�✄☎ ✏ :

✟
-component of the distance

Then, the position of the pseudo pin can be determined by the

intersection of the ”Spreading Force” vector with the chip boundary.

A pseudo net for cell ✣ is one that connects the cell from its target

position to its pseudo pin. The spring constant for the pseudo net is

given by ✆◗✎✞✝ �✄✂ ✔✍ ✬ �✄✂ ✔✏ ✂ ✝ �✄☎ ✔✍ ✬ �✄☎ ✔✏ . During each iteration

of Global Placement, a new spreading force and corresponding

pseudo pin position is determined for every cell.

Since the pseudo pin is a fi xed pin present at the boundary, we

know from expression (2) and the subsequent analysis in Section III,

that only the diagonal of matrix � and the ✸✱✍ and ✸✪✏ vectors need to

be updated for every cell. Hence, it takes only a single pass of
✂ ✁ � ☛

time, where � is the total number of movable cells in the circuit, to

regenerate the connectivity matrix for the next Global Optimization

step.

Thus we have incorporated an extremely fast Cell Shifting tech-

nique to distribute the cells over the placement region.

VI. ITERATIVE LOCAL REFINEMENT

Since the quadratic objective function is only an indirect measure

of the linear wirelength, it does not yield the best possible result in

terms of wirelength. To offset this disadvantage, we incorporate an

Iterative Local Refi nement technique to further reduce the wirelength.

The Iterative Local Refi nement technique is interleaved with the

Global Optimization and Cell Shifting steps during the WIGP stage.

This technique acts on a coarse global placement obtained from

the previous stage and hence is very effective in minimizing the

wirelength. Unlike other approaches, this technique uses the actual

position of a cell and the half-perimeter bounding rectangle measure

of all nets connected to the cell to move it around the placement

region. The technique is based on a greedy heuristic that mainly tries

to minimize the wirelength while trying to reduce the maximum bin

utilization so as to speed-up the convergence of the algorithm.

A. Bin Structure

This technique also employs a regular bin structure to estimate the

current utilization of a placement region for performing wirelength

improvement. Cells are then moved from source to target bins based

upon the wirelength improvement and target bin utilization. During

the fi rst iteration of the WIGP stage, the width and height of each bin

for the Refi nement is set to 5 times that of the bin used during Cell

Shifting. Such large bins are constructed to enable cell movement

over large distances. This is to minimize the wirelength of long nets

that might span a large part of the placement area. The width and

height of the bins are gradually brought down to the values used in

the Cell Shifting step over subsequent iterations of the WIGP stage.

B. Description of the Technique

Once the utilization of all the bins in the placement region has been

determined, we traverse through all the cells in the placement region

and determine their respective source bins. For every cell present in

a bin we compute four scores corresponding to the four possible cell

movement directions. For calculating the score, we assume that a

cell is moving from its current position in a source bin to the same

position in a target bin that is adjacent to it. That is, we move the cell

by one bin width. Each score is a weighted sum of two components.

The fi rst being the wirelength reduction for the move and the second

being a function of the utilization of the source and target bins. For

the fi rst component, the wirelength is computed as the total half-

perimeter of the bounding rectangle of all nets connected to the cell.

Hence, it is much more accurate than the quadratic objective function.

Since the Local Refi nement technique is mainly used to reduce the

wirelength, a higher weight is used for the fi rst component. If all

the four scores are negative, the cell will remain in the current bin.

Otherwise, it will move to the target bin with the highest score for

the move. During one iteration of the Local Refi nement, we traverse

through all the bins in the placement region and follow the above

steps for cell movement. Subsequently, this iteration is repeated until

there is no signifi cant improvement in the wirelength. The Iterative

Local Refi nement technique is then followed by Cell Shifting wherein

we add the spreading forces as described previously to reflect the

current placement.

To judge the contribution of the Iterative Local Refi nement tech-

nique on the overall runtime and wirelength, we ran two differ-

ent flows of the algorithm: (a) the original flow incorporating the

technique (b) without the technique. Table IV summarizes the total

runtime and fi nal wirelength results for the two flows. It can be seen

that the flow without Iterative Local Refi nement showed an average

reduction of 32.3% in the total runtime, but resulted in a 15.1%

increase in the fi nal wirelength. Also, the increase in wirelength is

more prominent with an increase in the circuit size. This shows that

the Iterative Local Refi nement technique is quite effective in reducing

the wirelength of the placement.

VII. DETAILED PLACEMENT

The Detailed Placement stage legalizes the solution obtained from

global placement. It assigns all the standard cells to pre-defi ned rows

in the placement region. Once the cells have been assigned to the rows

any remaining overlap among them is removed and they are assigned

to legal positions within the rows. During legalization, the detailed

placement also tries to further reduce the wirelength by employing

a technique similar to Iterative Local Refi nement. The difference is

that during detailed placement, the technique acts on cells that have

been assigned to the actual rows of the placement region. Besides,

it puts a higher weight on the utilization factor than the wirelength

factor as the emphasis is on removal of overlap among cells to obtain

a legalized placement.

VIII. EXPERIMENTAL RESULTS

A. Benchmarks and other placers

FastPlace is implemented in C and has been tested on a set of

benchmarks derived from the ISPD-02 IBM-MS Mixed-size Place-

ment benchmark suite [27], [28] and the PEKO suite [4], [29]. The

ISPD-02 IBM-MS benchmarks consist of macro blocks and hence

had to be modifi ed to be tested on FastPlace. The height of all the

macro blocks was brought down to the standard cell height. The

average width of all the modules in the original benchmark was

computed and the width of all macros exceeding 4 times the average

width was assigned to a value of ✟ ✂ average width. All designs in the
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TABLE I

PLACEMENT BENCHMARK STATISTICS.

Ckt #Nodes #Pads #Nets #Pins #Rows Ckt #Nodes #Pads #Nets #Pins #Rows

ibm01 12506 246 14111 50566 96 Peko01 12506 488 14111 50566 113

ibm02 19342 259 19584 81199 109 Peko02 19342 608 19584 81199 140

ibm03 22853 283 27401 93573 121 Peko03 22853 660 27401 93573 152

ibm04 27220 287 31970 105859 136 Peko04 27220 718 31970 105859 166

ibm05 28146 1201 28446 126308 139 Peko05 28146 732 28446 126308 169

ibm06 32332 166 34826 128182 126 Peko06 32332 784 34826 128182 181

ibm07 45639 287 48117 175639 166 Peko07 45639 932 48117 175639 215

ibm08 51023 286 50513 204890 170 Peko08 51023 984 50513 204890 227

ibm09 53110 285 60902 222088 183 Peko09 53110 1004 60902 222088 231

ibm10 68685 744 75196 297567 234 Peko10 68685 1144 75196 297567 263

ibm11 70152 406 81454 280786 208 Peko11 70152 1154 81454 280786 266

ibm12 70439 637 77240 317760 242 Peko12 70439 1156 77240 317760 266

ibm13 83709 490 99666 357075 224 Peko13 83709 1260 99666 357075 290

ibm14 147088 517 152772 546816 305 Peko14 147088 1672 152772 546816 385

ibm15 161187 383 186608 715823 303 Peko15 161187 1748 186608 715823 402

ibm16 182980 504 190048 778823 347 Peko16 182980 1864 190048 778823 429

ibm17 184752 743 189581 860036 379 Peko17 184752 1872 189581 860036 431

ibm18 210341 272 201920 819697 361 Peko18 210341 1998 201920 819697 460

derived set have a whitespace of 10%. The IBM-Place Benchmarks

used in Dragon [15] cannot be used because they do not have any

connectivity information between the movable cells and the fi xed

pads, present on the placement boundary. This information is essential

for a quadratic placement approach. These modifi ed benchmarks are

now available online at [30]. Statistics for the placement benchmarks

are given in Table I.

In our experiments we have compared FastPlace with state-of-

the-art academic placers - Capo 8.8 [16], Dragon 2.2.3 [15] and

Gordian-Domino [10], [31].

B. Comparison between Net Models

To determine the effect of the Hybrid net model on the number of

entries in matrix � and the runtime, we consider two implementations

of FastPlace: (a) incorporating the clique model (b) incorporating the

Hybrid net model. Table II gives the results for the two implementa-

tions. It can be seen that on average, the Hybrid model leads to 2.95 ✂
fewer non-zero entries in matrix � as compared to the clique model

over the 18 IBM benchmarks. Also, on average, the total runtime of

the placer is 1.5 ✂ less for the Hybrid net model.

C. Runtime Analysis of the Algorithm

Table III gives the total number of global placement iterations and a

break-up of the total runtime of FastPlace. The table shows the results

for two flows (a) incorporating the Iterative Local Refi nement (b)

without the Iterative Local Refi nement. Also, Table IV summarizes

the total runtime and fi nal wirelength results for both the flows. It can

be seen from Column 2 of Table III that within 31 iterations of global

placement (required for ibm16) the algorithm converges to a solution

for all benchmark circuits. This demonstrates the effectiveness of the

Cell Shifting and Iterative Local Refi nement techniques to accelerate

the convergence of the conjugate gradient solver so as to obtain a fast

global placement solution. From Table III for flow (a) it can be seen

that on average the Cell Shifting and Refi nement techniques account

for 9.9% and 46.1% of the total runtime. Even though, the refi nement

technique takes up 46.1% of the total runtime, the average speed-up

obtained for flow (b) as seen from Table IV is 32.3%. This shows

that the Refi nement technique also aids in the convergence of the

algorithm and hence, in its absence, the other steps of the algorithm

take up more time to compensate for it.

TABLE II

CLIQUE NET MODEL VS HYBRID NET MODEL.

#Non-zero Entries Ratio Runtime
Circuit (#Clique/ (Clique/

(Clique) (Hybrid) #Hybrid) Hybrid)

ibm01 109183 41164 2.65 1.5

ibm02 343409 70014 4.90 2.4

ibm03 206069 74680 2.76 1.4

ibm04 220423 84556 2.61 1.2

ibm05 349676 108282 3.23 1.3

ibm06 321308 106835 3.01 1.6

ibm07 373328 147009 2.54 1.3

ibm08 732550 173541 4.22 2.0

ibm09 478777 185102 2.59 1.4

ibm10 707969 251101 2.82 1.6

ibm11 508442 230865 2.20 1.2

ibm12 748371 270849 2.76 1.6

ibm13 744500 295048 2.52 1.5

ibm14 1125147 456474 2.46 1.3

ibm15 1751474 607289 2.88 1.4

ibm16 1923995 668491 2.88 1.3

ibm17 2235716 753507 2.97 1.4

ibm18 2221860 711702 3.12 1.4

Avg 2.95 1.5

D. Comparison Between Placement Tools

The comparison results between Capo, Dragon and FastPlace

are generated on a Sun Sparc-2, 750 MHz machine. The results

between Gordian-Domino and FastPlace are generated on a Intel

Xeon, 3.06 GHz machine. We run MetaPl-Capo8.8 for Solaris, which

incorporates Capo, orientation optimizer and row ironing, in the

default mode. Dragon is run in the default mode, Gordian is run

in the best mode and Domino is run in the default mode.

The half-perimeter wirelength (HPWL) and runtime results for

Capo, Dragon and FastPlace are given in Table V. For the IBM

benchmarks, on average, FastPlace is 13.4 ✂ faster than Capo with

the average wirelength being 1.7% less than Capo. On average,

FastPlace is 102 ✂ faster than Dragon with the average wirelength

being 6.9% more. Dragon was also ran in the fi xed-die mode and the

average wirelength of FastPlace was actually 2.3% less than Dragon

for this case. For the PEKO benchmarks, on average, FastPlace is

7.6 ✂ faster than Capo with the average wirelength being 6.6% more.

On average, FastPlace is 71.5 ✂ faster than Dragon with the average

wirelength being 4.7% less than Dragon.
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TABLE III

GLOBAL PLACEMENT ITERATIONS AND BREAK-UP OF TOTAL RUNTIME.

With Iterative Local Refi nement Without Iterative Local Refi nement
Ckt GP. Global Cell ILR Det. Total HPWL GP. Global Cell Det. Total HPWL

Iters. Opt. Shifting Place (sec) (
�

10e6) Iters. Opt. Shifting Place (sec) (
�

10e6)

ibm01 19 3.73 1.42 6.83 1.17 13.15 1.89 19 4.06 1.43 1.62 7.11 2.10

ibm02 22 7.93 2.81 15.49 2.90 29.13 3.90 24 8.54 3.28 4.61 16.43 4.40

ibm03 21 9.24 3.23 17.94 2.00 32.41 5.25 22 10.07 3.54 3.73 17.34 6.06

ibm04 21 10.1 4.06 17.81 2.54 34.51 6.22 26 11.22 6.30 5.31 22.83 7.10

ibm05 24 9.18 5.74 26.53 6.61 48.06 10.72 24 10.4 5.7 9.61 25.71 11.94

ibm06 21 14.77 4.43 23.57 3.13 45.90 5.44 21 16.4 4.41 7.84 28.65 6.04

ibm07 24 30.78 8.39 29.24 5.08 73.49 9.01 27 33.77 10.46 8.87 53.1 10.17

ibm08 23 29.26 8.91 43.64 5.01 86.82 9.78 26 32.88 11.34 14.24 58.46 11.12

ibm09 29 44.45 13.90 36.72 7.30 102.37 10.84 30 46.37 14.72 11.06 72.15 12.35

ibm10 22 64.85 11.78 62.69 10.07 149.39 18.89 27 66.68 16.88 17.18 100.74 21.87

ibm11 25 61.83 15.21 50.05 7.15 134.24 15.54 28 62.68 17.89 15.70 96.27 17.56

ibm12 25 66.31 14.42 73.58 6.27 160.58 24.48 31 74.67 21.30 18.07 114.05 27.79

ibm13 24 77.26 15.74 71.12 11.66 175.78 19.08 28 85.15 20.99 22.97 129.11 22.02

ibm14 25 159.86 31.12 118.51 15.74 325.23 35.67 30 241.87 41.85 36.46 320.18 42.56

ibm15 31 221.53 47.82 258.74 21.12 549.21 43.99 37 240.18 63.12 50.76 354.06 52.59

ibm16 31 250.32 56.50 236.10 34.08 577.00 46.59 34 261.55 65.60 71.41 398.56 54.01

ibm17 26 261.87 41.91 260.00 38.24 602.02 67.66 41 316.33 87.00 96.13 499.46 81.41

ibm18 25 265.08 48.70 401.93 54.57 770.29 46.39 33 311.84 79.58 95.97 487.39 56.91

TABLE IV

COMPARISON BETWEEN THE FLOWS WITH AND WITHOUT ITERATIVE

LOCAL REFINEMENT.

Total Runtime (sec) HPWL (
�

10e6)
Ckt With Without % dec With Without % inc

ILR ILR ILR ILR

ibm01 13.15 7.11 45.9 1.89 2.10 11.1

ibm02 29.13 16.43 43.6 3.90 4.40 12.8

ibm03 32.41 17.34 46.5 5.25 6.06 15.4

ibm04 34.51 22.83 33.9 6.22 7.10 14.2

ibm05 48.06 25.71 46.5 10.72 11.94 11.4

ibm06 45.90 28.65 37.6 5.44 6.04 11.0

ibm07 73.49 53.1 27.8 9.01 10.17 12.9

ibm08 86.82 58.46 32.7 9.78 11.12 13.7

ibm09 102.37 72.15 29.5 10.84 12.35 13.9

ibm10 149.39 100.74 32.6 18.89 21.87 15.8

ibm11 134.24 96.27 28.3 15.54 17.56 13.0

ibm12 160.58 114.05 29.0 24.48 27.79 13.5

ibm13 175.78 129.11 26.5 19.08 22.02 15.4

ibm14 325.23 320.18 1.55 35.67 42.56 19.3

ibm15 549.21 354.06 35.5 43.99 52.59 19.5

ibm16 577.00 398.56 30.9 46.59 54.01 15.9

ibm17 602.02 499.46 17.0 67.66 81.41 20.3

ibm18 770.29 487.39 36.7 46.39 56.91 22.7

Average 32.3 15.1

Table VI gives the half-perimeter wirelength and runtime results

for Gordian-Domino and FastPlace. Also, included are results when

FastPlace was run for global placement and Domino was run for

detailed placement. For the IBM benchmarks, on average, FastPlace

is 19.9 ✂ faster than Gordian-Domino with the average wirelength

being just 1.0% more. For the PEKO benchmarks, on average,

FastPlace is 5.0 ✂ faster than Gordian-Domino with the average

wirelength being 7.2% more.

We believe that FastPlace generates a very good global placement

solution. Our detailed placement technique on the other hand is a

fast, greedy legalizer that needs further improvement. To illustrate

the quality of the global placement solution generated by FastPlace,

we run the Domino detailed placer on FastPlace global placements.

The results are summarized below:

First, compared to FastPlace, the FastPlace-Domino flow achieves

an average reduction of 5.9% and 14.8% (column 6 of Table VI)

in the fi nal half-perimeter wirelength for the IBM and PEKO suites

respectively.

Second, excluding Peko03, FastPlace-Domino generates better

results than Gordian-Domino for every other benchmark of the IBM

and PEKO suites. On average, the FastPlace-Domino wirelength is

4.7% and 6.4% less than Gordian-Domino for the IBM and PEKO

suites respectively. The corresponding speed-up obtained is 2.7 ✂ and

1.4 ✂ respectively.

Third, Domino takes less runtime on FastPlace global placements

as compared to Gordian global placements. It achieves an average

speed-up of 1.3 ✂ and 1.1 ✂ on FastPlace placements as compared to

Gordian placements for the IBM and PEKO suites respectively.

E. Scalability Analysis of the Algorithms

The total number of pins in a circuit is a good measure of the

circuit size. To determine the scalability factor of FastPlace, we

plot the runtime of the algorithm vs the total number of pins, in

logarithmic scale for all 18 benchmarks of the IBM suite in Figure 8.

The data points can be closely approximated by a straight line with

slope 1.38. Hence, the runtime of FastPlace is roughly
✂ ✁ �

✑✁� ✂✁✄ ☛
,

where � is the circuit size given by the number of pins. Based on

the above procedure the runtime of the other placement algorithms

are approximately: Capo -
✂ ✁ �

✑✁� ✑✆☎ ☛
, Dragon -

✂ ✁ �
✑✁� ✂✁✝ ☛

, Gordian-

Domino -
✂ ✁ �

✑✁� ✔✟✞ ☛
. Capo happens to be the fastest among the other

three placers. Also, the scalability factor of Capo is better than that

of FastPlace. For the circuits tested, FastPlace is faster than Capo.

Using the scalability data for FastPlace and Capo we determine that

the runtime of FastPlace will be equal to that of Capo when the

circuit size is approximately 17 billion pins.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we propose FastPlace, an effi cient and scalable flat

placement algorithm for large-scale standard cell circuits. FastPlace is

based on the analytical placement approach and utilizes the quadratic

wirelength objective. The current implementation handles the wire-

length minimization problem. It produces comparable placement

solutions to state-of-the-art academic placers, but in a signifi cantly

lesser runtime. Such an ultra-fast placement tool is very much needed

for the timing convergence of the layout phase of IC design.
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TABLE V

COMPARSION OF PLACEMENT RESULTS WITH CAPO 8.8 AND DRAGON 2.2.3.

HPWL (
�

10e6) HPWL Ratio RunTime Speed-up
Ckt Capo Dragon FastPlace Capo Dragon FastPlace

�✂✁☎✄✝✆✟✞✡✠ ✁☞☛✝✌
✍ ✁✏✎✒✑

�✂✁☎✄✝✆✟✞✡✠ ✁☞☛✝✌
✓✕✔✖✁☞✗✘✑

✚ ✍ ✁✏✎✒✑
�✂✁☎✄✝✆✙✞✚✠ ✁☞☛✛✌

✓✜✔✖✁☞✗✘✑
✚

�✂✁☎✄✝✆✙✞✚✠ ✁☞☛✛✌

ibm01 1.86 1.75 1.89 1.02 1.08 3m 59s 29m 08s 13s
�

18.4
�

134.5

ibm02 4.06 3.68 3.90 0.96 1.06 7m 15s 32m 26s 29s
�

15.0
�

67.1

ibm03 5.11 4.81 5.25 1.03 1.09 8m 23s 33m 49s 32s
�

15.7
�

63.4

ibm04 6.39 5.79 6.22 0.97 1.07 10m 46s 1h 10m 35s
�

18.5
�

120.0

ibm05 10.56 9.84 10.72 1.01 1.09 10m 44s 1h 53m 48s
�

13.4
�

141.2

ibm06 5.50 5.04 5.44 0.99 1.08 12m 08s 1h 21m 46s
�

15.8
�

105.7

ibm07 9.63 8.60 9.01 0.94 1.05 18m 32s 1h 39m 1m 13s
�

15.2
�

81.4

ibm08 10.26 9.25 9.78 0.95 1.06 19m 53s 4h 32m 1m 27s
�

13.7
�

187.6

ibm09 10.56 9.92 10.84 1.03 1.09 22m 50s 3h 51m 1m 42s
�

13.4
�

135.9

ibm10 19.70 18.10 18.89 0.96 1.04 29m 04s 3h 29m 2m 29s
�

11.7
�

84.2

ibm11 15.73 14.40 15.54 0.99 1.08 31m 11s 2h 21m 2m 14s
�

14.0
�

63.1

ibm12 25.83 23.36 24.48 0.95 1.05 30m 41s 3h 43m 2m 41s
�

11.4
�

83.1

ibm13 18.73 17.76 19.08 1.02 1.07 39m 27s 3h 07m 2m 56s
�

13.5
�

63.8

ibm14 36.69 33.20 35.67 0.97 1.07 1h 12m 7h 58m 5m 25s
�

13.3
�

88.2

ibm15 43.85 40.10 43.99 1.00 1.10 1h 30m 10h 21m 9m 09s
�

9.8
�

67.9

ibm16 49.63 44.22 46.59 0.94 1.05 1h 31m 12h 17m 9m 37s
�

9.5
�

76.6

ibm17 69.07 65.36 67.66 0.98 1.04 1h 43m 27h 05m 10m 02s
�

10.3
�

162.0

ibm18 47.46 43.42 46.39 0.98 1.07 1h 44m 23h 35m 12m 50s
�

8.1
�

110.3

Average 0.983 1.069
�

13.4
�

102.0

Peko01 1.47 1.63 1.53 1.04 0.94 2m 25s 18m 31s 13s
�

11.2
�

85.5

Peko02 2.28 2.45 2.32 1.02 0.95 3m 55s 31m 46s 40s
�

5.9
�

47.7

Peko03 2.69 2.98 2.91 1.08 0.98 4m 55s 36m 21s 36s
�

8.2
�

60.6

Peko04 3.32 4.30 3.29 0.99 0.77 6m 09s 1h 10m 32s
�

11.5
�

131.2

Peko05 3.60 4.03 3.90 1.08 0.97 6m 36s 1h 46m 47s
�

8.4
�

135.3

Peko06 4.00 4.09 3.91 0.98 0.96 7m 24s 1h 27m 47s
�

9.4
�

111.1

Peko07 5.11 6.36 5.67 1.11 0.89 10m 44s 1h 02m 1m 22s
�

7.9
�

45.4

Peko08 5.77 6.01 6.08 1.05 1.01 12m 08s 2h 39m 1m 40s
�

7.3
�

95.4

Peko09 6.66 8.22 6.77 1.02 0.82 13m 27s 2h 13m 1m 25s
�

9.5
�

93.9

Peko10 8.95 9.05 9.81 1.10 1.08 18m 35s 3h 00m 2m 34s
�

7.2
�

70.1

Peko11 8.78 8.97 9.35 1.06 1.04 18m 14s 2h 19m 2m 19s
�

7.9
�

60.0

Peko12 9.52 9.56 9.70 1.02 1.01 19m 25s 3h 12m 2m 24s
�

8.1
�

80.0

Peko13 11.23 12.44 12.73 1.13 1.02 23m 23s 3h 02m 2m 57s
�

7.9
�

61.7

Peko14 17.06 18.26 20.55 1.20 1.12 44m 14s 4h 03m 7m 54s
�

5.6
�

30.8

Peko15 22.68 25.10 22.86 1.01 0.91 53m 18s 5h 33m 8m 17s
�

6.4
�

40.2

Peko16 24.59 29.18 26.29 1.07 0.90 1h 02m 6h 07m 11m 55s
�

5.2
�

30.8

Peko17 26.13 33.16 27.79 1.06 0.84 1h 04m 12h 28m 11m 56s
�

5.4
�

62.7

Peko18 25.04 31.01 29.32 1.17 0.95 1h 11m 11h 18m 15m 13s
�

4.7
�

44.6

Average 1.066 0.953
�

7.6
�

71.5

Runtime (s)

# of pins (K)

20

50

100

200

500

50 100 200 500 1000

Fig. 8. Runtime of FastPlace vs number of pins in logarithmic scale.

The runtime of FastPlace can be further reduced by: (a) Employing

a hierarchical framework (e.g. [19]) to reduce the problem size. The

reduced problem can then be solved by FastPlace. We show em-

pirically that the time complexity of FastPlace is roughly
✂ ✁ �

✑✁� ✂✁✄ ☛
.

Hence, if the circuit size is reduced by half, the runtime of FastPlace

can be reduced by a factor of 2.6. (b) By using the algebraic multigrid

method [32] to solve the system of linear equations (5).

The FastPlace algorithm can also be extended to consider other

placement objectives like mixed-mode placement, timing driven

placement, routability driven placement, variable whitespace alloca-

tion, etc. Future extensions to the algorithm would be in dealing with

the above objectives.
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TABLE VI

COMPARSION OF PLACEMENT RESULTS WITH GORDIAN-DOMINO AND FASTPLACE-DOMINO.

HPWL (
�

10e6) HPWL Ratio RunTime Speed-up
Ckt Gordian FastPlace FastPlace Gordian FastPlace FastPlace

Domino Domino
� ✞

✁✄✂✆☎ ✓✞✝
�✚✞

� ✞ ☎ ✓✟✝ Domino Domino
✁✠✂✞☎ ✓✟✝
� ✞

� ✞ ☎ ✓✟✝
�✚✞

ibm01 1.85 1.70 1.89 1.02 1.11 2m 04s 44s 5s
�

24.8
�

8.8

ibm02 3.94 3.69 3.93 1.00 1.07 5m 07s 1m 56s 15s
�

20.5
�

7.7

ibm03 5.13 4.95 5.27 1.03 1.06 5m 24s 1m 36s 14s
�

23.1
�

6.9

ibm04 6.31 5.79 6.15 0.97 1.06 5m 56s 1m 59s 15s
�

23.7
�

7.9

ibm05 10.51 10.30 10.59 1.00 1.03 10m 02s 2m 28s 19s
�

31.7
�

7.8

ibm06 5.17 5.04 5.41 1.05 1.07 9m 08s 5m 01s 22s
�

24.9
�

13.7

ibm07 9.33 8.64 9.10 0.98 1.05 13m 40s 5m 29s 39s
�

21.0
�

8.4

ibm08 9.79 9.34 9.80 1.00 1.05 21m 19s 6m 03s 52s
�

24.6
�

7.0

ibm09 10.34 10.17 10.79 1.04 1.06 14m 27s 6m 57s 46s
�

18.9
�

9.1

ibm10 19.41 18.13 18.97 0.98 1.05 27m 06s 10m 37s 1m 30s
�

18.1
�

7.1

ibm11 15.57 14.56 15.52 1.00 1.07 21m 12s 11m 04s 1m 18s
�

16.3
�

8.5

ibm12 23.72 23.51 24.56 1.04 1.04 28m 29s 11m 46s 1m 28s
�

19.4
�

8.0

ibm13 18.44 17.71 18.92 1.03 1.07 29m 12s 13m 16s 1m 54s
�

15.4
�

7.0

ibm14 36.27 33.91 35.68 0.98 1.05 52m 50s 25m 24s 3m 22s
�

15.7
�

7.5

ibm15 42.97 42.16 44.38 1.03 1.05 1h 07m 27m 24s 5m 21s
�

12.5
�

5.1

ibm16 47.88 44.25 46.93 0.98 1.06 1h 17m 32m 20s 5m 06s
�

15.1
�

6.3

ibm17 65.96 64.35 67.44 1.02 1.05 1h 35m 40m 33s 5m 59s
�

15.9
�

6.8

ibm18 44.61 43.63 46.26 1.04 1.06 1h 50m 32m 09s 6m 31s
�

16.9
�

4.9

Average 1.010 1.059
�

19.9
�

7.7

Peko01 1.29 1.28 1.53 1.19 1.20 40s 23s 6s
�

6.7
�

3.8

Peko02 2.03 2.03 2.31 1.14 1.14 1m 21s 1m 03s 16s
�

5.1
�

3.9

Peko03 2.59 2.61 2.86 1.10 1.10 1m 27s 59s 14s
�

6.2
�

4.2

Peko04 3.07 3.01 3.28 1.07 1.09 1m 46s 1m 08s 17s
�

6.2
�

4.0

Peko05 3.32 3.16 3.95 1.19 1.25 2m 04s 1m 32s 22s
�

5.6
�

4.2

Peko06 3.75 3.65 3.86 1.03 1.06 2m 08s 1m 36s 23s
�

5.6
�

4.2

Peko07 5.57 5.43 5.70 1.02 1.05 3m 23s 2m 36s 43s
�

4.7
�

3.6

Peko08 6.03 5.81 6.04 1.00 1.04 5m 17s 3m 46s 1m 02s
�

5.1
�

3.7

Peko09 7.13 6.54 6.88 0.96 1.05 4m 13s 4m 06s 57s
�

4.4
�

4.3

Peko10 9.10 8.34 9.72 1.07 1.17 7m 06s 5m 30s 1m 30s
�

4.7
�

3.7

Peko11 9.28 8.64 9.30 1.00 1.08 7m 27s 5m 51s 1m 18s
�

5.7
�

4.5

Peko12 9.35 8.51 9.99 1.07 1.17 7m 13s 5m 11s 1m 22s
�

5.3
�

3.8

Peko13 11.72 10.53 11.68 1.00 1.11 8m 48s 7m 02s 1m 53s
�

4.7
�

3.7

Peko14 18.15 17.85 20.28 1.12 1.14 16m 15s 12m 46s 4m 31s
�

3.6
�

2.8

Peko15 22.81 18.91 22.98 1.01 1.22 20m 57s 16m 31s 5m 23s
�

3.9
�

3.1

Peko16 24.19 20.79 26.53 1.10 1.28 26m 58s 17m 27s 6m 33s
�

4.1
�

2.7

Peko17 26.05 21.72 28.53 1.10 1.31 32m 31s 18m 22s 7m 22s
�

4.4
�

2.5

Peko18 26.07 24.19 29.38 1.13 1.21 31m 16s 20m 07s 8m 37s
�

3.6
�

2.3

Average 1.072 1.148
�

5.0
�

3.7
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