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ABSTRACT
Because of the increasing dominance of interconnect issues in ad-
vanced IC technology, placement has become a critical step in the
IC design flow. To get accurate interconnect information during
the placement process, it is desirable to incorporate global rout-
ing into it. However, previous global routers are computationally
expensive. It is impractical to perform global routing repeatedly
during placement.

In this paper, we present an extremely fast and high-quality
global router called FastRoute. In traditional global routing ap-
proaches, congestion is not considered during Steiner tree construc-
tion. So they have to rely on the time-consuming maze routing
technique to eliminate routing congestion. Different from tradi-
tional approaches, we proposed a congestion-driven Steiner tree
topology generation technique and an edge shifting technique to
determine the good Steiner tree topologies and Steiner node posi-
tions. Based on the congestion-driven Steiner trees, we only need
to apply maze routing to a small percentage of the two-pin nets
once to obtain high quality global routing solutions. We also pro-
posed a new cost function based on logistic function to direct the
maze routing.

Experimental results show that FastRoute generates less con-
gested solutions in 132× and 64× faster runtimes than the state-
of-the-art academic global routers Labyrinth [1] and Chi Dispersion
router [2], respectively. It is even faster than the highly-efficient
congestion estimator FaDGloR [3]. The promising results make
it possible to incorporate global routing directly into placement
process without much runtime penalty. This could dramatically
improve the placement solution quality. We believe this work will
fundamentally change the way the EDA community look at and
make use of global routing in the whole design flow.

1. INTRODUCTION
Placement has become a critical step in VLSI design flow. The

two major causes are both related to the increasing dominance of
interconnect in nanometer-scale IC technologies. First, placement
largely determines the performance of a circuit. As feature size in
advanced VLSI technology continues to shrink, interconnect delay
has become the determining factor of circuit performance. Place-
ment decides the length and hence the delay of interconnect wires
to a large extent. Many recent articles reported that intercon-
nect delay can consume as much as 75% of clock cycle in modern
designs. Therefore, a good placement solution can substantially
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improve the performance of a circuit. Second, placement also de-
termines the chip size. Because of the shrinking of device size,
the chip area is no longer determined by total cell area, but by
the limited routing resources. Extra “white space” is commonly
added to provide enough wire tracks to resolve routing congestion.
It is typical that more than half of the modern chip is occupied
by white space. A good placement needs to allocate white space
appropriately to use the chip area effectively.

Because it is very difficult to incorporate circuit delay or routing
congestion directly into the placement objective function, timing-
driven and congestion-driven placement algorithms typically em-
ploy iterative improvement approaches [4] [5] [6]. First, a place-
ment solution is produced. Next, timing/congestion information
are estimated based on the current placement. Then the estimated
information are fed back to direct the placer to generate a better
placement. This process iterates until there is no significant im-
provement on timing or congestion objective. To estimate timing,
interconnect delay is obtained from very rough interconnect mod-
els such as half-perimeter of the bounding box or star-model. Due
to lack of routing information, it is impossible to get accurate in-
terconnect topology, wirelength, and possible buffer positions and
sizes. Hence, interconnect delay cannot be estimated accurately.
To estimate routing congestion, previous works proposed generic
estimators which aim at predicting the behavior of all routers con-
sistently. However, as we point out in Section 2, routing solutions
generated by different routers are very different. Therefore, it is
not possible for an estimator to accurately predict congestion of
all routers.

In order to get accurate interconnect information during the
placement process, it is desirable to incorporate global routing
into it. Global routing allocates the routing demand globally over
the chip area. It generates interconnect information very close to
the final routing implementation and can be used for accurate es-
timation of interconnect topology, wirelength, delay, congestion,
buffering solution, etc. However, due to the high runtime of the
traditional global routers, it is impractical to perform global rout-
ing repeatedly during placement.

In this work, we develop an extremely fast high-quality global
router called FastRoute. Experimental results show that FastRoute
can generate less congested global routing solutions with 132×
and 64× speedup over the state-of-the-art academic global routers
Labyrinth [1] and Chi Dispersion router [2], respectively. Very
surprisingly, FastRoute is even faster than the highly-efficient con-
gestion estimation algorithm FaDGloR [3].

The runtime of FastRoute is only 1/934 and 1/2229 of the run-
time of state-of-the-art academic placers Capo9.1 [7] and Dragon3.01
[8], respectively. The promising runtime makes it possible to in-
corporate global routing directly into the placement process with-
out much runtime penalty. This could dramatically improve the
placement solution quality because accurate interconnect informa-
tion becomes available during the placement process. Note that
although we emphasis on the application in placement, we can ap-
ply our global router in any early design stage which has the pin
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locations fixed, e.g., floorplanning and trial placement in physi-
cal synthesis loop. We believe that this work will fundamentally
change the way the EDA community look at and make use of global
routing in the whole design flow.

FastRoute can achieve superior quality and speed because of the
following techniques.

• A congestion-driven Steiner tree topology construction method
to distribute routing demand according to the congestion
map.

• An edge shifting technique to move the horizontal or vertical
tree edges in a Steiner tree from congested regions to less
congested regions without changing wirelength of the tree.

• A new cost function based on logistic function to direct the
maze routing to find less congested paths.

Traditional global routing approaches do not explore the flexi-
bility of tree structures to resolve routing congestion. They just
employ spanning tree or Steiner tree algorithms to construct trees
for multi-pin nets. Then the tree structure of each net is fixed
and broken into into a set of two-pin nets. After that, they rely
on the maze routing to route the two-pin nets to resolve the rout-
ing congestion. The global routing runtime is dominated by maze
routing. Different from them, we shift the burden of maze routing
to Steiner tree construction. We focus on determining good Steiner
tree topology and Steiner nodes locations according to congestion
information. As a result, the maze routing has a good initial solu-
tion to work with and less effort is needed.

The remainder of the paper is organized as follows. In Section 2,
we review the previous work in global routing, timing estimation
and congestion estimation, as well as the problems with current
estimation techniques. In Section 3, we describe the flow of Fas-
tRoute and explain its underlying idea. Next in Section 4, 5 and 6,
we present the three major steps of FastRoute in detail. In Section
7, we perform extensive experiments and show the comparison re-
sults. Finally, the paper concludes with a summary of results and
directions of future work.

2. PREVIOUS WORK AND SOME DISCUSSION

2.1 Global Router
The grid graph model is widely used in global routing [1] [2] [9].

In this model, the chip area is partitioned into rectangular regions
called global bins and all the pins in a global bin are assumed
to be at the center of the bin. Each global bin corresponds to
a node in grid graph. The boundaries of global bins are called
global edges, which correpond to the edges in grid graph. The
capacity of an edge represents the number of routing tracks for the
corresponding boundary. These notions are illustrated in Figure 1.
The major optimization objective in global routing is to minimize
the total overflow on all the edges in the grid graph. The overflow
on a global edge e is defined as how much the routing demand de

exceeds the edge capacity ce. If de > ce, overflowe = de − ce;
otherwise overflowe = 0.

Most academic and industrial global routers [1] [2] first decom-
pose every multi-pin net into a set of two-pin nets by spanning tree
or Steiner tree algorithms. After the decomposition, each two-pin
net is routed by maze routing. To further improve the solution
quality, those routers utilize rip-up and reroute technique. Al-
brecht [9] proposed a new multi-commodity flow approximation
algorithm to solve the global routing problem. The approximation
algorithm uses fractional flows. Hence, it is necessary to perform
randomized rounding, followed by traditional rip-up and reroute
to complete the process.
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Figure 1: (a) Global bins. (b) Corresponding grid graph.

2.2 Timing Estimation
Previous timing-driven placement algorithms generally employ

iterative approaches. For a given placement, the critical path infor-
mation are obtained by timing analysis. Then the timing informa-
tion obtained is fed back to the placement engine to generate a new
placement solution favoring the critical path. The common meth-
ods are adding weight to the critical nets/paths in the objective
function [5] [10], adding constraints to the critical nets/paths [4],
or adding penalty for the critical nets/paths to the simulated an-
nealing cost function [11] [12]. The basic assumption here is that
the timing information obtained are accurate and can be used to
direct the placement process.

As interconnect delay becomes the dominant part of circuit de-
lay, accurate interconnect information is needed for timing analysis.
However, since there is no routing information, it is impossible to
get accurate estimate for interconnect. Early works neglect the in-
terconnect delay in timing analysis. Many recent works [5] [11] [12]
employ the half-perimeter of the bounding box to estimate the in-
terconnect length. For multi-pin nets, they first lump all sinks of
a net together and assume the lumped sink is driven by the driver
through a single wire. The wire length is estimated by the half-
perimeter of the bounding box. Hence, they can compute the wire
capacitance and resistance using this length. In [10] [13], authors
used a star-model to approximate a multi-pin net. An star point is
put at the center of gravity of all pins of the net. However, consid-
ering the real implementation, multi-pin nets are typically routed
as Steiner trees, and global nets are inserted with buffers to min-
imize the delay. Hence, both half-perimeter of the bounding box
model and star-model is far from accurate for interconnect timing
estimation.

2.3 Congestion Estimation
Fast congestion estimation is essential for congestion reduction

techniques at different stages of the design flow. Post-placement
congestion estimation methods try to predict the routing conges-
tion for a given placement. In recent years, a number of probabilis-
tic methods for congestion estimation have been proposed. Lou et
al. [14] break mult-pin nets into two-pin wires. Probabilistic us-
ages are then assigned to tiles according to the probability that a
two-pin wire will be routed through the tile. Based on the obser-
vation that detours are rare, each detour-free path connecting the
two pins is assigned an equal probability. Westra et al. [15] and
Kahng et al. [16] observed that routes with one or two bends are
more likely to occur than multi-bend routes. Consequently, proba-
bilities for the occurence of L-shapes and Z-shapes are emperically
derived from industrial designs and are used to improve upon [14].
In [3], Westra et al. presented two congestion estimation tools. The
first one, called pce, is an implementation of a probabilistic method
which is very fast in comparison with other probabilistic methods.
The second one, called FaDGloR, is new and based on degener-
ate global routing techniques. Experiments show that FaDGloR
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is about as fast as pce. They concluded that global routing based
methods are probably more worthwhile than probabilistic meth-
ods in congestion estimation. However, unlike the normal global
routers, FaDGloR does not generating the feasible global routing
solutions that minimize overflow.

We notice that for the same circuit, different routers can give
very different routing solutions, hence very different congestion dis-
tribution. So we have a basic question - is it possible for a generic
congestion estimator to accurately predict the routing congestion
for all routers? To answer this question, we investigate the routing
solutions generated by two global routers - Labyrinth and Chi Dis-
persion router, also the routing solutions generated by Labyrinth
but using different parameters. For a global edge in the grid graph
model, if the routing demand on it is greater than its capacity, we
say it is congested. Otherwise, it is uncongested. If a global edge
is congested in one routing solution and uncongested in the other,
we call it a congestion mismatch. The total number of congestion
mismatches gives the similarity of congestion distribution between
two routing solutions. Note that congestion mismatch is similar
to the “wrongly congested” and “wrongly uncongested” notions
in [3]. There, congestion is defined as the ratio of routing demand
and capacity. The “wrongly congested” happens if the estimated
congestion c is greater than 1.1 but real congestion C is lower than
1.1; the “wrongly uncongested” happens if the estimated conges-
tion c is lower than 0.9 but real congestion C is higher than 0.9.
We notice that this metric is not proper. Assume that the esti-
mator simply gives the congestion estimation of c = 1.0 over the
whole grid graph. In this metric, both the number of “wrongly
congested” and “wrongly uncongested” edges are 0. Hence, we
propose the congestion mismatch as the metric.

We perform the experiments as follows. We use the benchmark
circuits provided by the authors of [1]. For each circuit, we generate
a routing solution using Labyrinth (70% shortest nets use pattern
routing) and make it as the standard. Then, we also generate
two other routing solutions using Labyrinth (50% shortest nets use
pattern routing) and Chi Dispersion router. We find the number
of congestion edges for all three routing solutions, as well as the
number of congestion mismatches between the standard solution
and each of the other two solutions. Table 1 shows the number of
congestion edges and the number of congestion mismatches. Lab
(70%) and Lab (50%) means the routing solutions generated by
Labyrinth with 70% and 50% shortest nets pattern routed, respec-
tively. And #Mismatch in Lab (50%) and Chi Dispersion columns
are the number of congestion mismatch compared to (Lab (70%)).

Table 1: Comparison of number of congestion edges and Con-

gestion Mismatch

Lab (70%) Lab (50%) Chi Dispersion
#Con #Con #Mismatch #Con #Mismatch

ibm01 238 268 398 122 272
ibm02 368 390 580 46 400
ibm03 247 214 367 1 248
ibm04 588 596 662 273 539
ibm06 367 391 596 9 374
ibm07 568 643 887 122 580
ibm08 486 655 865 30 480
ibm09 377 399 638 12 383
ibm10 501 376 691 27 496

From the table we can see that the number of congestion mis-
matches is so significant that it is even more than the number of
congestion edges in routing solutions in almost all cases. If we code
the congested edge as 1 and uncongested edge as 0, the congestion
of a routing solution can be represented as a binary pattern (con-
gestion pattern). The number of congestion mismatches of two
routing solutions is the Hamming distance [17] between their cor-
responding congestion patterns. Hamming distance satisfies the

triangle inequality: dH(x, y) ≤ dH(x, z)+dH(y, z). Assume we use
a congestion estimator with the congestion pattern z to estimate
the congestion, the numbers of the congestion mismatches over the
two routing solutions with congestion patterns x and y are dH(x, z)
and dH(y, z), respectively. From the triangle inequality, we know
that the sum of dH(x, z) and dH(y, z) is at least dH(x, y), which
is the number of congestion mismatches between the two routing
solutions. Hence, at least one of dH(x, z) and dH(y, z) is bigger
than 0.5dH(x, y). Since dH(x, y) is more than the number of con-
gested edges in either routing solutions, at least for one routing
solution, the number of wrongly estimated edges is more than 50%
of the number of congested edges in that solution. Therefore, it is
impossible for an estimator to claim it can estimate both routing
solutions accurately. In fact, the results also show that even using
one global router to predict the behavior of another global router
(or using one global router with a set of parameters to predict it-
self with a different set of parameters) is not possible. Therefore,
the only possible way to predict congestion accurately is to use the
same technique and parameters in both congestion estimation and
global routing.

3. OUTLINE OF FASTROUTE
Our goal is to develop a very fast high-quality global router which

can be used as both interconnect estimator and traditional routing
tool. Hence, we care a lot about the runtime of the router. Maze
routing is effective in directing routes away from congested region.
However as pointed out by many works (e.g, [1]), maze routing is
the major contributor of global routing runtime. If we want to
achieve orders of magnitude faster runtime, a lot of maze routing
has to be cut down.

As far as we know, previous global routers do not consider the
effect of routing tree structures on reducing congestion. RSMT
or minimum spanning tree is constructed for each net and broken
into two-pin nets. Later, every two-pin net is routed independently
without touching the original tree structure. In contrast, our ap-
proach focuses mainly on the Steiner tree structures to construct
good Steiner trees for better congestion results. The routing de-
mand is allocated by these Steiner trees according to congestion
map to alleviate the burden of later maze routing phase.

The main flow of FastRoute includes three phases:

1. Congestion map generation.
2. Congestion-driven Steiner tree construction.
3. Routing two-pin nets using pattern routing and maze rout-

ing.

In the following sections, we will discuss the three phases in
detail.

4. CONGESTION MAP GENERATION
In this section, we will describe how to generate the congestion

map in the first phase.
We mentioned in Section 3 that we will construct the Steiner

tree according to routing congestion. Hence, before the congestion-
driven Steiner tree construction, we need congestion information.
Since we are aiming at a very fast global routing algorithm, we
need a very fast but fairly good congestion estimation technique.

First, we generate the Steiner minimal trees for all the nets using
FLUTE [18]. FLUTE is a very fast and accurate rectilinear Steiner
minimal tree (RSMT) algorithm. It generates optimal RSMT for
nets up to degree 9 and is still very accurate for nets up to degree
100, and is much faster than other RSMT techniques. It is very
suitable for our application. Second, after generating the Steiner
trees, we break all Steiner trees into two-pin nets. For every two-
pin net, we assign the demand to the global edges in the grid graph
in the following way. If the two pins of a net have the same x
coordinates or y coordinates, we assign demand 1.0 to each global
edge on the straight line connecting the two pins. If the two pins
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of a net have different x and y coordinates, we assume two possible
L-shape (sometimes called 1-bend) routings for it - the upper L
or lower L. For each edge on the two L-shape routings, we assign
demand 0.5 to it. In this way, we get the very first congestion map.
Finally, in order to make the congestion map more accurate, we
perform a fast rip-up and reroute using L-shaped pattern routing.
For each two-pin net, we first remove its routing demand from
the congestion map which is added in the second stage. Then we
perform routing based on the current congestion map by taking the
L-shape which passes through a less congested region. After a full
round of L-shaped pattern routing for all the two-pin nets, we get
a solution and its corresponding congestion information. We use it
as the congestion map for the following congestion-driven Steiner
tree construction. Of course, we can use maze routing here, but
it will consume a lot of runtime. Since we will change the Steiner
tree structures later, it is not worthy to spend the time to perform
maze routing in this phase.

5. CONGESTION-DRIVEN STEINER TREE
CONSTRUCTION

In this section, we focus on the Steiner tree structures to al-
leviate routing congestion. This is the key phase in the whole
flow of FastRoute. First, we discribe the two major techniques,
Congestion-driven Topology Generation in Section 5.1, and Edge
Shifting in Section 5.2. Then the flow for the congestion-driven
Steiner tree construction phase (phase 2) is given in Section 5.3.

5.1 Congestion-driven Topology Generation
There is a lot of research on Steiner tree problem. Previous works

in global routing apply RSMT algorithms to find Steiner trees to
minimize routing tree length. However, our goal is to construct
the Steiner tree in favor of congestion reduction.
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Figure 2: Three ways of reallocating routing demand.

Routing congestion happens when there is more routing demand
than the capacity of global edges. Global routing essentially allo-
cates routing demand over the global edges. The total routing
demand of a net is its routing tree length. If a net routed with
minimum wirelength uses a congested edge, we have no way to
simply eliminate the routing demand on that edge. We have to
reallocate it to some other global edges. Without loss of general-
ity, assume a vertical global edge a is congested. There are three
ways to reallocate some routing demand on a. (1) Reallocate the
demand to another vertical global edge in the same row as a. For
example, in Figure 2(i), global edge b is used instead of a. (2)
Reallocate the demand to another vertical global edge not in the
same row as a. For example, in Figure 2(ii), global edge b is used
instead of a. (3) Reallocate the demand to a horizontal edge. For
example, in Figure 2(iii), global edge b is used instead of a.

We observe that the widely used pattern routing and maze rout-
ing are applying the first way only. For example, in Figure 3, the
route from X to Y (solid line) goes through a congested global edge
a. To avoid congestion, we can take an alternative route (dashed

a b
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X
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a b
Y

X
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f

Figure 3: Pattern/maze routing example.

line) to reallocate the demand to b from a. However, we also need
to reallocate the demand from c to d, and from e to f at the same
time. Notice that pattern routing and maze routing are not able
to reduce the routing demand on any row of vertical global edges
or any column of horizontal global edges. On the other hand, ways
(2) and (3) can help. Way (2) could move the demand in a specific
row (column) of global edges to another row (column) of global
edges. Way (3) could transfer the demand from one direction to
the other direction.
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Figure 4: Different Steiner trees topologies.

One important observation we make is that Steiner tree topolo-
gies can supply a lot of flexibility in avoiding routing congestion
by applying way (2) and (3). For a multi-pin net, there are many
different Steiner tree topologies to connect all the pins in the net.
Each topology corresponds to some specific routing demand distri-
bution. We notice that different topologies can have very different
routing demand in two directions and in different rows/columns of
global edges. For example, in Figure 4, we show 8 minimal wire-
length Steiner tree topologies for a 6-pin net. For each topology,
we only show one of the possible embeddings on the routing grids.
The number below each column of global edges is the routing de-
mand over all the horizontal global edges in that column. The
number right to each row of global edges is the routing demand
over all the vertical global edges in that row. It is clear that al-
though all these Steiner trees have the same wirelength, they have
very different routing demand distribution, hence very different
congestion results. Therefore, we can make use of this flexibility
in topology and try to find good topology for each net in terms
of congestion metric. For example, for the net shown in Figure 4,
if it is congested in horizontal direction, we want to pick topology
(a) which has less routing demand in horizontal direction. On the
contrary, if it is congested in vertical direction, (h) would be the
best choice. This applies way (3) of reallocating demand. In ad-
dition to transferring routing demand between two directions, way
(2) of reallocating demand is also enabled by changing topology.
Comparing topology (b) with (e), instead of having more routing
demand in the 2nd row (from left) and 2nd column (from top)
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of global edges as in (e), topology (b) have more routing demand
in the 4th row and 4th column of global edges. So whether use
topology (b) or (e) depends on the congestion of these rows and
columns of global edges.

With this flexibility of topology in mind, our main idea is to
construct good Steiner tree topology for each net according to the
congestion map. We encourage to use the topology with less rout-
ing demand in the congested direction, and also less routing de-
mand in the congested regions. To achieve this goal, we construct
Steiner tree topologies as follows. First, we define the row/column
region between two Hanan grid lines [19] for a net as the rectangu-
lar region between the two grid lines and the bounding rectangle
of the net. As illustrated in Figure 5, the shaded region in (a) is
the row region between the Hanan grid lines GH1 and GH2, and
the distance between GH1 and GH2 is v2. Similarly, the shaded re-
gion in (b) is the column region between the Hanan grid lines GV 1

and GV 2, and the distance between GV 1 and GV 2 is h2. For each
row/column region between two hanan grid lines of the original
net, we compute its corresponding “average congestion” (we will
discribe how to compute it in detail later). Then, the distance be-
tween the corresponding two hanan grid lines is scaled proportional
to the “average congestion”. We use these scaled distances instead
of their original distances to measure the routing tree wirelength.
Hence, we transform the congestion-driven Steiner tree problem
into a RSMT problem in scaled wirelength measure. Finally, we
apply FLUTE to find the RSMT topology in terms of this scaled
wirelength. This topology with minimal scaled wirelength leads
to the best congestion result. In this way, we maintain a balance
between wirelength and congestion when constructing the Steiner
tree rather than just minimize wirelength.
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Figure 5: (a) The row region between GV 1 and GV 2. (b) The

column region between GH1 and GH2.

So far we have presented the general flow to find a good topology.
Now we describe what the “average congestion” for a row/column
region is and how to compute it. For a row/column region between
two Hanan grid lines, if it is congested in vertical/horizontal global
edges, we discourage to use the segments across the region in the
direction perpendicular to the two Hanan grid lines. Hence, we
scale up the distance between the two Hanan grid lines. The scal-
ing factor we use is the “average congestion”. For a row/column
region, it is defined as the ratio between the total demand and total
capacity on all vertical/horizontal global edges in the correspond-
ing row/column region. “Average congestion” indicates on average
how congested a row/column region is. For example, in Figure 5
(a), “average congestion” for the shaded row region is computed
as the total demand divided by the total capacity on all vertical
global edges in the region. Note that we are not just considering
the global edges on Hanan grid, but all the global edges in this re-
gion because all these global edges are possibly used by our Steiner
trees. In this technique, we only try to control the frequency to
use different segments between Hanan grid lines in the topology
but not the exact position of these segments in the Steiner tree. In
fact, it is not necessary to specify the position of segments here.
After we fix the Steiner tree topology in this phase, the segments
still have a lot of flexibility to change locations. Hence, what we
want is the “average” congestion for a row/column region instead

of congestion on some specific global edges.
Finally, we want to point out that this congestion-driven Steiner

tree construction technique has great impact on the routing so-
lution quality. It explores the solution space out of the scope of
pattern routing and maze routing.

5.2 Edge Shifting
In Section 5.1, we present the congestion-driven Steiner tree

topology construction technique. The topology only specify the
connections between the pins and Steiner nodes for the net. After
fixing the topology, there is still flexibility left for congestion op-
timization. For example, in Figure 6, we focus on the bold edge
in the Steiner tree. With different congestion scenarios, the edge
should be shifted to different positions to avoid congestion.

Figure 6: Edge Shifting for less Congestion

Bottom four cases: shaded regions are congested.

If possible, we want to move tree edges out of congested regions
without increasing Steiner tree wirelength. The reason is that the
total wirelength is related to the overall congestion. If the total
wirelength is more, it is very likely to have more overall congestion.
We observe that if the two pins of a horizontal or vertical tree
edge are both Steiner nodes, we can shift this edge freely within a
“safe range” without increasing the Steiner tree length. In order
to find the “safe range”, for a horizontal/vertical edge between a
pair of Steiner nodes S1 and S2, we define the “sliding range” as
the range of y/x coordinates so that S1 and S2 will not pass any
node (including pins and Steiner nodes) in the tree when shifting
the tree edge S1-S2. As illustrated in Figure 7, the “sliding range”
of (a) a horizontal edge, or (b) a vertical edge S1-S2 is R12. We
only consider shifting edge S1-S2 when both S1 and S2 have degree
3. A Steiner node can only have degree 3 or 4. For any degree 4
Steiner node, we can break it into two connected degree 3 Steiner
nodes. The way to get this “sliding range” is as follows. We
consider the two neighbors for S1/S2 which are not S2/S1. If
S1-S2 is horizontal, the range for safely sliding S1-S2 is between
the y coordinates of two neighbor nodes (R1 and R2 in Figure
7(a)). Otherwise, the range for safely sliding S1-S2 is between the
x coordinates of two neighbor nodes (R1 and R2 in Figure 7(b)).
The “sliding range” of S1-S2 is the common part of R1 and R2,
which is R12 in Figure 7. In R12, the edge S1-S2 can be shifted
freely without changing tree length.

We want to point out that the “sliding range” may not always be
the “safe range”. Sometimes, it is just part of the “safe range”. For
example, in Figure 8(a), the “sliding range” for edge S1-S2 is R12.
Hence, S1-S2 can be shifted at most to the same y grid as Steiner
node S3. But we notice that S1-S2 can be shifted higher than
S3 without changing the Steiner tree length. The only problem
here is that the tree topology needs to be changed. This happens
when two Steiner nodes S2 and S3 overlap with each other (as
illustrated in Figure 8(b)). In this case, we will exchange the two
Steiner nodes S2 and S3 to enable further shifting, which is shown
in Figure 8(c). Notice that by exchanging S2 and S3, we change
the topology1 into topology2. In Figure 8(c), the “sliding range”
for topology2 is R13. The full “safe range” is R123, which is the
sum of R12 and R13. Therefore, now we can explore the full “safe
range” R123 for S1-S2.
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Figure 7: “Sliding range” for edge S1-S2.
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Figure 8: Modification of tree topology during edge shifting.

After we find the “safe range” for an edge S1-S2, we need to
decide the best position for it within the “safe range”. The criterion
for the best position is that the total demand of all the global edges
on the Steiner tree is minimized. We define this total demand as
the cost of the tree. Hence, for every possible position, we can
evaluate this cost for the tree. Note that we only need to evaluate
the demand on the global edges affected by shifting S1-S2, because
other global edges will not be affected. So the edges need to be
considered are all edges E adjacent to S1 and S2. Note that some
edge e ∈ E, could be a diagonal edge (e.g., edge 1-S1 in Figure
7(a)). We do not know which global edges this tree edge will
use. In this case, we consider the two possible L-shape route for it
and pick the one that results in smaller cost. The reason is that
for these diagonal edges, later routing stages will try to minimize
the total demand of global edges on their routing path. Of course,
instead of considering two L-shape routes, we can consider Z-shape
route or even maze route. It is a tradeoff between accuracy and
runtime. Since the Steiner tree structures keep on changing at this
stage, it is not necessary to consider the route too accurately.

The way to shift one tree edge is described above. For each
Steiner tree, the algorithm to perform edge shifting is as follows.
We find all the horizontal and vertical tree edges between two
Steiner nodes in the Steiner tree. Next, we compute the “safe
range” R12 for each tree edge S1-S2 (including the expanded range
by exchanging Steiner nodes). Then the cost of the tree is evalu-
ated for every possible position of S1-S2 within the “safe range”.
Finally, the tree edge S1-S2 and its position with the minimal cost
is chosen and S1-S2 is shifted to that position. We iteratively apply
this process until we cannot find a tree edge for shifting to further
reduce the cost.

After Edge Shifting, the positions of Steiner nodes are fixed and
the only flexibility left is how to route each tree edges.

5.3 Phase 2 Flow
Section 5.1 and 5.2 give the details of the techniques to construct

good Steiner tree structure for a net. In this part, we present the
flow of phase 2 to generate Steiner trees for all the nets.

We go through every net in the order in the netlist file. For each

net N , we first remove its routing demand from the congestion
map. Second, the Steiner tree topoloy for N is constructed as in
Section 5.1. Then, we apply edge shifting technique in Section 5.2
to further reduce the congestion. After Steiner tree structures are
fixed, we route all the tree edges using L-shaped pattern routing.
Finally, we add new routing demand by N to the congestion map.

6. PATTERN ROUTING AND MAZE ROUTING
After the congestion-driven Steiner tree construction phase, we

find good Steiner tree structures for the nets. Then all routing trees
are broken into tree edges (two-pin nets). In the routing phase, we
route all two-pin nets by pattern routing and maze routing.

We first apply pure pattern routing to route all the two-pin nets
once. Pattern routing is to use predefined patterns to route two-pin
nets. The most commonly used are L-shaped (1-bend) or Z-shaped
(2-bends) patterns. Pattern routing has much better runtime com-
plexity over maze routing. The effect of pattern routing is investi-
gated extensively in [1]. Here, we use the Z-shaped pattern. It has
more flexibility than L-shaped pattern and much faster than maze
routing. In fact, in the congestion-driven Steiner tree construction
phase, we already perform L-shaped routing when we update the
congestion map after constructing Steiner tree for a net.

After the pattern routing, we apply rip-up and reroute using
maze routing, which is similar to other works. Many recent global
routers [1] [9] have routing cost which increases abruptly when the
demand on a global edge reaches the edge capacity (Figure 9(a)).
In [2], the routing cost function for maze routing is discussed and
a piece-wise cost function is proposed. A unit cost is assigned to a
global edge until it reaches a certain percentage below capacity, and
cost is increased linearly until it reaches a certain percentage above
capacity (Figure 9(b)). Instead, we employ a logistic function [20]
in equation (1) as our cost function (Figure 9(c)). h and k are
function parameters.

cost = 1 +
h

1 + e−k(demand−capacity)
(1)

The reason for us to use such an function is that we want the
cost to increase dramatically around the capacity but mildly in
the under-capacity and over-capacity part. The idea behind this
is to differentiate the slope of cost function in different parts. If
demand on a global edge is much lower than capacity, we do not
need to differentiate different demand values, e.g., if the capacity
is 10, the difference in cost for demand 2 and 3 should be small.
Similarly, if demand on a global edge is much higher than capacity,
we do not need to charge very different cost for different demand
values, either, e.g., demand 20 or 25 should not make significant
difference when capacity is 10. However, if demand on a global
edge is close to capacity, the change on demand make significant
difference because the edge could become over capacity from within
capacity, or from within capacity to over capacity. In this way, we
focus more on the global edges with demand close to capacity.
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Figure 9: (a) Abrupt cost, (b) Linear cost, (c) Logistic cost.

For FastRoute default mode, we only do one round of maze rout-
ing and on average only 2.15% of nets are really routed by maze
routing (others use pattern routing). This is the major reason that
our algorithm is so fast. Moreover, we can get better total overflow
than other global routers although we do much less maze routing.
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We attribute this to the high-quality Steiner tree structures gen-
erated by the second phase. Maze router has a very good starting
solution to work with.

7. EXPERIMENTAL RESULTS
In this section, we present our experimental results. All experi-

ments were performed on a Linux workstation with Intel Pentium
4 3.0 GHz CPU and 2GB memory.

First, we compare FastRoute with two state-of-the-art academic
global routers: Labyrinth [1] and Chi Dispersion router [2]. We use
the same benchmarks as in [2] provided by the authors of [1]. For
Labyrinth, 70% of the shortest connections are routed by pattern
routing, which is the same as in [2]. We measure wirelength and
total overflow in the manner suggested by the authors of both pa-
pers. The results are summarized in Table 2. The total overflow
and wirelength of FastRoute is less than both Labyrinth and Chi
Dispersion router. At the same time, FastRoute is 132× and 64×
faster than Labyrinth and Chi Dispersion router, respectively. Be-
cause we cannot find a version to duplicate the results in [2], the
runtime of Chi Dispersion router is scaled from the runtime in [2]
based on the information from Standard Performance Evaluation
Corporation (SPEC) [21]. In [2], it was claimed that runtime of
Chi Dispersion router is roughly 2× faster than Labyrinth, which
coincides with the scaled runtime we obtained. We also get a new
version of Chi Dispersion router from the authors of [2], the total
overflow on the same set of benchmark is 804, but the total run-
time is 917 seconds which is close to the runtime of Labyrinth. We
also have a beaver mode for FastRoute. It performs several rounds
of rip-up and reroute to achieve lower overflow. It can cut down
the total overflow by half with 2.2× runtime of the default mode.

Table 3: Effect of Congestion-driven Steiner tree topology

construction, Edge shifting and Logistic cost function.

FastRoute w/o StTree w/o Edgeshift Linear Cost

Overflow Overflow Overflow Overflow

ibm01 250 283 323 297
ibm02 39 114 57 108
ibm03 1 5 1 30
ibm04 567 672 666 606
ibm06 33 71 85 129
ibm07 18 178 54 174
ibm08 58 91 89 126
ibm09 28 74 89 113
ibm10 18 39 38 220

Total 1012 1527 1402 1803

Norm* 1 1.51 1.39 1.78

(*) Normalized to FastRoute total overflow.

Second, we investigate the effect of three main techniques in Fas-
tRoute: congestion-driven Steiner tree construction, edge shifting
and logistic cost function for maze routing. We disable the three
techniques from FastRoute one by one and compare the final total
overflow with FastRoute. For the logistic cost function, we substi-
tute it with a linear cost function proposed in [2] and tried to tune
the parameters in the linear cost function to get results as good as
possible. From Table 3, the total overflow are increased by 51%,
39% and 78% without the three techniques, respectively. It is clear
that all of them contribute to the high quality of FastRoute.

Third, we show the runtime breakdown for FastRoute default
mode. As shown in Table 4, the three phases in FastRoute: con-
gestion map generation, congestion-driven Steiner tree topology
construction, and two-pin nets routing account for 14.4%, 27.5%
and 58.1% of the total runtime, respectively. In addition, maze
routing in two-pin nets routing is still the most time-consuming
part (48% of total runtime) although on average only 2.15% two-
pin nets are routed using maze routing. Consider that Labyrinth

Table 4: Runtime breakdown for FastRoute.

Cong Map Steiner Tree Route two-pin nets

Pattern Route Maze Route

ibm01 14.3% 23.8% 4.8% 57.1%
ibm02 12.5% 25.0% 7.1% 55.4%
ibm03 13.6% 27.3% 11.4% 47.7%
ibm04 14.0% 22.0% 12.0% 52.0%
ibm06 13.2% 30.8% 8.8% 47.3%
ibm07 16.3% 28.8% 12.5% 42.3%
ibm08 17.2% 36.9% 11.5% 34.4%
ibm09 14.1% 24.6% 12.0% 49.3%
ibm10 14.1% 28.1% 11.1% 46.7%

avg 14.4% 27.5% 10.1% 48.0%

apply maze routing on 30% of the nets and do many rounds of rip-
up and reroute. That is why FastRoute can be two orders faster.

Table 5: FastRoute and FaDGloR Runtime Comparison.

FastRoute FaDGloR1 FastRoute(-rsmt) FaDGloR(-rsmt)

ibm01 0.21 0.71 0.20 0.17
ibm02 0.56 2.18 0.52 0.45
ibm03 0.43 1.36 0.41 0.46
ibm04 0.50 1.54 0.47 0.48
ibm06 0.91 2.27 0.86 0.74
ibm07 1.05 3.08 0.99 1.01
ibm08 1.16 4.35 1.07 1.13
ibm09 1.39 4.31 1.32 1.86
ibm10 1.98 5.86 1.88 2.49

Total 8.19 25.66 7.72 8.79
Norm 1 3.132 1 1.143

The unit for all runtime (except Normalized) is second.

1. This runtime include file I/O and result checking time, 2.

normalized to full FastRoute runtime, 3. normalized to

FastRoute(-rmst) runtime.

Fourth, we compare the runtime of FastRoute and an efficient
congestion estimator FaDGloR. In [3], the authors claimed FaD-
GloR is as fast as probabilistic congestion estimators. FaDGloR
reports two runtime, ”total runtime” (the total runtime includ-
ing Steiner tree construction, decomposition, routing, file I/O, and
result checking) and ”route time” (the actual routing time for all
two-pin nets). Hence, we do two type of comparison here. First, we
compare the FastRoute total runtime with the ”total runtime” of
FaDGloR. Table 5 shows that FastRoute is about 3.13× faster than
FaDGloR. Since we should exclude the file I/O and result checking
parts from FaDGloR ”total runtime”, the real speedup should be
around 3×. Considering their Steiner tree construction algorithm
is much slower than FLUTE, we perform a second comparison. We
report the FastRoute runtime excluding the Steiner tree construc-
tion in phase 1 (FastRoute(-rsmt)) and compare it with the ”route
time” of FaDGloR (FaDGloR(-rsmt)). FastRoute is still 14% faster
than FaDGloR for the routing time and has better scalability. But
note that FastRoute generates high-quality global routing solutions
while FaDGloR only gives congestion estimation.

Fifth, we also run state-of-the-art placers Capo9.1 [7] and Dragon
3.01 [8] on the placement benchmarks from which the global rout-
ing benchmarks are generated. Table 6 show that FastRoute run-
time is only about 1/934 and 1/2229 of the runtime of Capo9.1
and Dragon3.01. This means we can run FastRoute hundreds of
times inside placers without much runtime penalty.

8. CONCLUSIONS
In this paper, we develop an extremely fast high-quality global

router - FastRoute. It generates less congested routing solutions
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Table 2: Comparion of FastRoute, Labyrinth and Chi Dispersion router.

FastRoute FastRoute (Beaver mode) Labyrinth Predictable router Chi Dispersion router

Overflow Wirelen Time(s) Overflow Wirelen Time(s) Overflow Wirelen Time(s) Overflow Wirelen Time(s)

ibm01 250 67128 0.21 159 68436 0.72 242 76228 16.99 189 66005 8.63
ibm02 39 179995 0.56 3 180139 1.16 214 202235 26.53 64 178892 26.27
ibm03 1 151023 0.43 1 151023 0.43 117 191500 37.92 10 152392 24.71
ibm04 567 172593 0.50 300 175219 2.30 786 198181 80.95 465 173241 32.94
ibm06 33 285882 0.91 7 287870 1.71 130 339379 72.06 35 289276 53.33
ibm07 18 376835 1.05 2 379989 1.99 407 450855 168.41 309 378994 79.61
ibm08 58 412915 1.16 17 414909 3.17 352 466556 154.82 74 415285 72.94
ibm09 28 426471 1.39 22 428803 2.75 310 481841 229.59 52 427556 86.67
ibm10 18 599433 1.98 1 600321 3.80 288 680113 296.70 73 599937 139.61

Total 1012 2672275 8.19 512 2686709 18.03 2846 3086888 1083.97 1271 2681578 524.71
Norm* 1 1 1 0.506 1.005 2.201 2.812 1.155 132 1.256 1.003 64

(*) Normalized to FastRoute results.

Table 6: Runtime comparison with Placers.

FastRoute Time(s) Capo Time(s) Dragon Time(s)

ibm01 0.21 126 778
ibm02 0.56 280 663
ibm03 0.43 338 633
ibm04 0.50 456 1234
ibm06 0.91 666 1392
ibm07 1.05 1145 1904
ibm08 1.16 1277 4163
ibm09 1.39 1329 3953
ibm10 1.98 2035 3537

Total 8.19 7652 18257
Norm 1 934 2229

and is 132× and 64× faster than Labyrinth and Chi Dispersion
router. This makes it possible to integrate the global router into
placement to get accurate interconnect information to direct the
placement process. Our future work will focus on two aspects.
First, we will further improve the runtime and quality of Fas-
tRoute. Second, we will integrate FastRoute into placement frame-
work to develop placement algorithms that generate better solu-
tions in terms of timing, routability, etc.
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