
Hindawi Publishing Corporation
VLSI Design
Volume 2012, Article ID 608362, 18 pages
doi:10.1155/2012/608362

Research Article

FastRoute: An Efficient and High-Quality Global Router

Min Pan,1 Yue Xu,2 Yanheng Zhang,3 and Chris Chu2

1 Synopsys Inc., Mountain View, CA 94043, USA
2 Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
3 Cadence Design Systems Inc., San Jose, CA 95134, USA

Correspondence should be addressed to Yue Xu, yuexu@iastate.edu

Received 5 February 2012; Revised 10 April 2012; Accepted 10 April 2012

Academic Editor: Rached Tourki

Copyright © 2012 Min Pan et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Modern large-scale circuit designs have created great demand for fast and high-quality global routing algorithms to resolve the
routing congestion at the global level. Rip-up and reroute scheme has been employed by the majority of academic and industrial
global routers today, which iteratively resolve the congestion by recreating the routing path based on current congestion. This
method is proved to be the most practical routing framework. However, the traditional iterative maze routing technique converges
very slowly and easily gets stuck at local optimal solutions. In this work, we propose a very efficient and high-quality global
router—FastRoute. FastRoute integrates several novel techniques: fast congestion-driven via-aware Steiner tree construction, 3-
bend routing, virtual capacity adjustment, multisource multi-sink maze routing, and spiral layer assignment. These techniques
not only address the routing congestion measured at the edges of global routing grids but also minimize the total wirelength
and via usage, which is critical for subsequent detailed routing, yield, and manufacturability. Experimental results show that
FastRoute is highly effective and efficient to solve ISPD07 and ISPD08 global routing benchmark suites. The results outperform
recently published academic global routers in both routability and runtime. In particular, for ISPD07 and ISPD08 global routing
benchmarks, FastRoute generates 12 congestion-free solutions out of 16 benchmarks with a speed significantly faster than other
routers.

1. Introduction

As the feature size of modern VLSI design continues to shrink
and the on-chip communication becomes extremely compli-
cated, the ascending circuit density poses greater challenges
for VLSI routers. Modern designs are liable to congestion
problems due to increasing on-chip communication, con-
centrated routing demands, and limited routing resources.
Designs with IP blocks usually create narrow channels which
further increase the difficulty of routing. Routability has
become a major issue for the large designs. Besides, rapidly
growing problem size sets a stringent requirement on the
speed of routers.

In order to tackle such a complex issue, the routing
problem is usually solved by a two-stage approach: a global
routing stage followed by a detailed routing one. Global rout-
ing works on abstracted tiles. It allocates the routing demand
globally over the circuit area and guides the subsequent

detailed routing to finish the track assignment and via
creation. Although global routing neglects the routing details
such as tracks and design rule check (DRC), it generates
interconnect information very close to the final routing
implementation and can be used for accurate estimation of
interconnect topology, wirelength, congestion, and timing.

In addition to routability issue, the continuous shrinking
feature size poses great difficulty on manufacture pro-
cess. Routing is a key step to consider the design-for-
manufacture/yield (DFM/DFY) during the design process. It
would determine whether a layout would have high yield or
not. Vias, one major source for circuit failure, have larger
process variation that impacts the timing/yield of circuits
in a less predictable way. Thus via minimization is another
important goal for global routing.

Routing is one of the traditional VLSI design automation
area along with placement and synthesis. Hu and Sapatnekar
[1] gave a detailed survey for global routing algorithms.

2 VLSI Design

Recently, the global routing algorithms have been improved
significantly with the ISPD2007, and ISPD2008 global rout-
ing contests held successfully. In the ISPD2008 invited paper
“The Coming of Age of (Academic) Global Routing”, Moffitt
et al. [2] presented the recent progress in the global routing
area.

There are two major categories of global routing ap-
proaches: concurrent and sequential. Concurrent approach
tries to handle multiple nets simultaneously. Albrecht [3]
proposed a multicommodity flow approximation algorithm
to solve the global routing problem. The flow technique
is used to solve a linear programming relaxation of global
routing. BoxRouter [4] employed a hybrid approach with the
application of ILP to simultaneously handle multiple nets
and achieved reasonably good runtime. However, evidence
suggests that the integer linear programming based routers
run much slower than the sequential routers. Sequential
approach generally employs a rip-up and reroute (R&R)
framework. It takes an initial routing solution and iteratively
improves the solution one net at a time. In each iteration, a
net passing through congested area is ripped up and rerouted
to avoid the currently congested regions. The sequential
approach has been proved to be very effective in practice and
considerably faster than concurrent approach.

Most recently developed global routers not only employ
this R&R strategy but also proposed different techniques to
improve solution quality or speed. Kastner et al. [5] proposed
a pattern routing scheme by using L-shaped and Z-shaped
patterns to speed up the routing. Hadsell and Madden [6]
propose to guide the routing by amplifying the congestion
map with a new congestion cost function. In ISPD2007
global routing contest, several routers (BoxRouter 2.0 [7],
Archer [8], NTHU-Route [9, 10], NTUgr [11], and FGR
[12]) employed a negotiation-based R&R approach which
was introduced by PathFinder [13] and successfully applied
to FPGA routing. The negotiation-based cost functions are
used by maze routing to drive the nets away from consistently
congested regions.

In both ISPD2007 and ISPD2008 global routing contests,
3-dimensional benchmarks include the costs on vias for
performance evaluation to encourage the global routers to
consider the via effect. There are two categories of 3D
techniques. The first category tries to solve the 3D problem
directly on the 3D routing grids, FGR [12] belongs to this
category. The second category employs layer projection to
transform the 3D routing problem into a 2D one. After
solving the 2D problem, the 2D solutions are mapped
to 3D ones by layer assignment. Almost all recent global
routers (BoxRouter 2.0 [7], Archer [8], MaizeRouter [14],
NTHU-Route [9, 10], NTUgr [11], and default algorithm
in FGR [12]) belong to this category. Although theoretically
the direct 3D technique should produce better solutions,
in practice it is less successful in both solution qual-
ity and runtime than 2D routing with layer assignment
[15].

In this work, we develop a very efficient and high-quality
global router FastRoute to tackle the 3D global routing
problem. FastRoute integrates novel techniques introduced
in [16–19]. Our key contributions are as follows.

(1) A carefully designed framework to perform 3D global
routing effectively and efficiently.

(2) A congestion-driven, via-aware Steiner tree genera-
tion technique to form good starting topologies for
multipin nets.

(3) A segment shifting technique to direct routing
demand away from congested region by moving some
tree edges without increasing wirelength.

(4) A 3-bend routing technique to quickly explore the
routing paths between a source pin and a sink pin
with a balance between congestion reduction and
control on the number of vias.

(5) A multisource multi-sink maze routing technique to
reconnect two subtrees in a multipin net without
fixing the end points on both subtrees.

(6) A virtual capacity technique which is a systematic way
to guide the maze routing to avoid congested regions.

(7) A new adaptive cost function based on logistic
function to direct 3-bend routing and maze routing
to find less congested paths.

(8) A spiral layer assignment technique to extend a 2D
routing solution into its 3D counterpart.

Our first contribution is the FastRoute framework that
coordinates the proper functioning of quite a few novel
global routing techniques we propose. Although each new
technique targets to improve the global routing quality, their
cumulative effects could be counteractive. We study the inter-
actions between the various global routing techniques and
design the framework to maximize the improvement. The
second and third contributions focus on the optimization of
tree structure before any actual routing. They can improve
the routing quality of nets in congestion free region and
effectively reduce the runtime for the actual routing process.
The fourth and fifth contributions propose two new routing
techniques. While 3-bend routing offers a new degree of
balance among congestion reduction, via generation and
runtime, multisource and multi-sink maze routing relaxes
a major constraint on traditional maze routing and thus
greatly improves the quality of global routing. The sixth
and seventh contributions are enhancement techniques to
further help global router to reduce congestion in a more
efficient manner. The last contribution, the spiral layer
assignment technique, is a representative of various layer
assignment techniques proposed between 2007 and 2010.

This paper is organized as follows. Section 2 introduces
the general model in global routing. Section 3 describes the
framework while the key techniques and algorithms used
in FastRoute are presented in Section 4. The experimental
results are provided in Section 5 and we conclude in
Section 6.

2. Global Routing Grid Model

During global routing, complex design rules are abstracted
away and a design is captured in a grid graph. As illustrated in
Figure 1, each layer of the entire routing region is partitioned

VLSI Design 3

Global cell Global edge

Figure 1: Global cells and corresponding 3D global routing grid graph.

(1) Congestion estimation

(2) Congestion driven, via aware tree

generation and segment shifting

(3) Decomposition of nets into 2-pin nets

(4) L and Z routing

(5) Virtual capacity initialization

(6) Multi-source multi-pin maze routing

and 3-bend routing with adaptive cost function

(7) Virtual capacity adjustment

(8) Spiral layer assignment

Overflow stops
decreasing?

N

Y

Figure 2: FastRoute framework.

into rectangular regions called global cells, each of which is
represented by one node in the grid graph. The boundary on
each metal layer between two global cells is represented by
one 3D grid edge in the grid graph on the specific layer. The
capacity for a grid edge, that is, ce, is defined as the maximum
number of wires that can cross the grid edge. The usage, that
is, ue, is defined as the actual number of wires crossing the
grid edge. The overflow oe is defined as max(ue−ce, 0). In the
3D model, a via is defined as a segment of wire that vertically
connects one metal layer to a neighboring layer.

3. FastRoute Framework

FastRoute uses a sequential rip-up and reroute scheme to first
solve the 2D version routing problem and later map the 2D
solution to 3D by layer assignment. The flow of FastRoute is
illustrated in Figure 2.

First, we construct congestion-driven via-aware Steiner
topologies for each net followed by segment shifting tech-
niques. After the tree structures are decomposed into 2-
pin nets, a pattern routing step using L-shape and Z-shape
will initiate the routing solution. We initialize the virtual

capacity based on current routing status. The virtual capacity
technique is proposed to tackle the congestion problem in a
systematic manner to guide the iterative rip-up and reroute
stage with an adaptive cost function. During rip-up and
reroute, we apply two major techniques: 3-bend routing
and multisource multi-sink maze routing to effectively avoid
routing congestion and minimize via usage. Finally, after we
obtain the 2D solution, we extend it to a full-3D solution by
a spiral layer assignment algorithm.

This framework is the most practical one for global
routing. Although we see solutions with shorter wirelength
generated by full-3D concurrent approach like GRIP [21],
that solution quality is achieved by impractically long
runtime. The other framework like full 3D approach [12] or
concurrent-2D approach [4] do not lead to better solution or
shorter runtime. Breaking down 3D global routing problem
into 2D routing problem plus layer assignment has achieved
the best balance between solution quality and runtime so
far. FastRoute uses this framework. But more importantly
routing techniques developed do not blindly improve one
performance metric at a significant cost of others and they
choose a suitable metric to improve in the right place.

4 VLSI Design

For congestion, before maze routing, FastRoute does not
encourage too much detour because they may create artifical
congestion hot spot. L/Z routing and 3-bend routing helps to
eliminate easy overflow with short runtime and leave difficult
regions for maze routing. On the other hand, via count
is properly controlled throughout the routing flow because
FastRoute only rips up net in congestion region so routing
solution in any stage might be the final solution for one
specific net, there might be no opportunity to optimize its
routing topology again.

In FastRoute 4, we propose the routing algorithms with
one important guideline: for the three performance metrics
of wirelength, via count, and routing speed, any technique
either improves a single metric without degrading the other
two or it improves two metrics with little sacrifice in the
one left. Looking at the techniques used in topology gen-
eration, routing, and convergence enhancement techniques,
everyone of them helps to speed up the routing process and
improves wirelength and via. The major routing techniques,
like congestion-driven via aware RSMT generation, 3-bend
routing, layer assignment techniques, and multisource multi-
sink maze routing, improve all three metrics. Other assisting
techniques, like the initial congestion estimation and virtual
capacity adjustment, use not only little runtime but also
provide much accurate information to guide routing tech-
niques to work more efficiently so their aggregate effect is still
positive.

4. FastRoute Techniques

4.1. Topology Generation. The first part of FastRoute frame-
work is topology generation. Because FastRoute tries to avoid
rip-up and reroute to reduce both wirelength and runtime,
the initial tree topology has significant impacts. We find that
the topology for each net is the determining factor for the
quality of routing solution with regard to routability and the
number of vias. So instead of just using rectilinear minimal
spanning tree (RMST) or rectilinear Steiner minimal tree
(RSMT), FastRoute generates tree topologies that greatly
reduce congestion and vias.

4.1.1. Congestion Estimation. Before we can construct Steiner
tree to help reduce the routing congestion, we need a
congestion map to start with. Since this is the first shot and
we are going to update the congestion map in later stages, we
are aiming at a very fast but fairly good congestion estimation
technique.

First, we generate the Steiner trees for all the nets using
FLUTE [22, 23]. FLUTE is a very fast and accurate rectilinear
Steiner minimal tree algorithm. It generates optimal RSMT
for nets up to degree 9, and is still very accurate for nets
up to degree 100, and is much faster than other RSMT
algorithms. It is very suitable for our application. Second,
after generating the Steiner trees, we break all Steiner trees
into 2 pin nets. For every 2 pin net, we assign the demand to
the grid edges in the 2D grid graph in the following manner.
If the two pins of a net have the same x-coordinates or y-
coordinates, we assign demand 1.0 to each grid edge on

the straight line connecting the two pins. If the two pins of
a net have different x- and y-coordinates, we assume two
possible L-shape (sometimes called 1-bend) routings for it.
For each grid edge on the two L-shape routings, we assign
demand 0.5 to it. This gives us the very first congestion
map. Finally, in order to make the congestion map more
accurate, we perform a fast rip-up and reroute using L-
shaped pattern routing. For each 2 pin net, we first remove its
routing demand from the congestion map. Then we perform
routing based on the current congestion map by taking
the L-shape which accumulates least number of overflow.
After a full round of L-shaped pattern routing for all 2 pin
nets, we obtain a routing solution and its corresponding
congestion information. We use it as the congestion map to
guide the following congestion-driven via-aware Steiner tree
generation.

4.1.2. Congestion-Driven and Via-Aware Steiner Tree Gener-
ation. Traditionally, global routing just uses tree structure
like RMST or RSMT while RSMT is becoming more popular
due to its minimal wirelength to connect a multipin net
together. Because congestion and via minimization are not
taken into account, simply adopting RSMT as the tree
topology becomes insufficient. To address this problem,
FastRoute generates routing topologies with consideration of
reducing routing congestion and vias. The congestion-driven
via-aware Steiner tree topology construction technique has
great impact on the routing solution quality. It explores the
solution space out of the scope of pattern routing and maze
routing.

Routing congestion happens when there is more routing
demand than the capacity of grid edges. We find that the
congestion in horizontal direction and vertical direction can
vary a lot. Due to different routing demand and capacity,
it is very common that one direction is highly congested
but the other direction is abundant of routing resources. If
routing demand can be transferred between two directions,
a lot of congestion problems can be easily resolved. However,
we notice that neither pattern routing or maze routing is able
to shift routing demand in between horizontal and vertical
directions once the tree topology is fixed.

In addition, the local routing demand and resource
always vary so that local congestion differs a lot. Pattern
routing and maze routing have the ability to even out the
routing demand, but their effectiveness is limited because
both techniques are applied only to 2-pin nets obtained after
breaking the routing tree.

One important observation we make is that Steiner tree
topologies can provide more flexibility to avoid routing
congestion. For a multipin net, there are many different
Steiner tree topologies to connect all the pins. Each topology
corresponds to some specific routing demand and affects
congestion differently. For example, in Figure 3, we show 8
different Steiner tree topologies for a 6-pin net. For each
topology, we only show one of the possible embeddings on
the routing grids. The number below each column of grid
edges is the routing demand over all the grid edges in that
column. The number right to each row of grid edges is the

VLSI Design 5

(a) (b) (c)

(d) (e) (f)

(g) (h)

1

1

1 1 1 1 1

1 11

1

1

1

1

11 1 1

1

1

1

1

1

1

1

1

1 1 1 1 1 1 1

1

11

1

1

2 2

2

2 2

2

2

2 2 2 2

2

2

2

2

2

2

2

2

2

2

2

2 2 2

2

2 2

1

1

1

1 1 1

1

1

1

1

11

3

3

Figure 3: Different Steiner trees topologies for a 6-pin net.

routing demand over all the grid edges in that row. Although
all these Steiner trees in Figure 3 have the same wirelength,
they have very different routing demand distribution, hence
result in very different congestion. Therefore, we make use
of this flexibility in topology and try to find good topology
for each net in terms of congestion metric. For example, for
the net shown in Figure 3, if it is congested in horizontal
direction, we want to pick topology (a) which has less
routing demand in horizontal direction. On the contrary,
if it is congested in vertical direction, (h) would be the
best choice. In addition to transferring routing demand
between two directions, shifting local routing demand in
the same direction is also enabled by changing topology.
Comparing topology (b) with (e), instead of having more
routing demand in the 2nd row (from left) and 2nd column
(from top) of grid edges as in (e), topology (b) has more
routing demand in the 4th row and 4th column of grid
edges. So whether using topology (b) or (e) depends on the
congestion of these rows and columns of grid edges.

With this flexibility of topology in mind, our main idea
is to construct good Steiner tree for each net according
to the congestion map. We encourage using the topology
with less routing demand in the congested direction and
congested regions. To achieve this goal, we construct Steiner
tree topologies in the following way. First, we define the
row/column region between two Hanan grid lines for a net

as the rectangular region between the two grid lines and the
bounding rectangle of the net. As illustrated in Figure 4, the
shaded region in (a) is the row region between the Hanan
grid lines GH1 and GH2, and the distance between GH1 and
GH2 is v2. Similarly, the shaded region in (b) is the column
region between the Hanan grid lines GV1 and GV2, and
the distance between GV1 and GV2 is h2. For each column
region x or row region y between two Hanan grid lines of
the original net, we compute their corresponding “average
congestion” ACx or ACy as

ACx =

∑n
i=1

(

usgVi
/capVi

)

n
,

ACy =

∑m
j=1

(

usgH j
/capH j

)

m
,

(1)

where m and n are the numbers of vertical/horizontal
Hanan grid lines within the bounding box, and Vi/H j are
the vertical/horizontal grid edges at (x, i)/(j, y). Then, the
distance between the corresponding two Hanan grid lines is
scaled according to the “average congestion” (the higher the
“average congestion”, the bigger the scaling factor). In other
words, we warp the Hanan grid according to the congestion
map. Finally, we apply FLUTE to find the RSMT for this
warped Hanan grid. In this way, we maintain a balance

6 VLSI Design

GV0 GV1 GV2 GV3

GH0

GH1

GH2

GH3

V1

V2

V3

(a) The row region between GH1 and GH2

GV0 GV1 GV2 GV3

GH0

GH1

GH2

GH3

h1 h2 h3

(b) The column region between GV1 and GV2

Figure 4: Hanan grid region.

between wirelength and congestion when constructing the
Steiner tree other than just minimizing wirelength.

In addition, we also notice that most global routers
merely start to consider via usage only in the R&R stages.
Since the majority of nets are in congestion free regions and
not involved in R&R, their via usage will stay as the solution
before R&R and is not optimized in consideration of via
usage. After analysis of net topologies, we find that different
tree topologies would have significant impact on the number
of vias. As shown in Figure 5, three topologies are generated
for a 5-pin net. Assume that horizontal segments are routed
on metal layer 1 and vertical segments are routed on metal
layer 2, and assume the pins are at metal layer 1. The three
topologies will generate 5, 8, and 7 vias, respectively. Here
we define two special topologies: horizontal Tree (H Tree)
and Vertical Tree (V Tree). H tree is defined as a rectilinear
tree with only one vertical trunk and all the other trunks
connecting pin nodes are horizontal. Similarly, vertical tree
is defined as a tree with only one horizontal trunk and all the
other trunks coming out of pin nodes are vertical. If each net
is assigned onto two adjacent metal layers, which our layer
assignment algorithm tries to achieve by keeping segments
in one net close to each other, H Tree and V Tree are two
extremes with respect to the number of vias. Other trees, like
the RSMT with smaller wirelength shown in Figure 5, have
via counts in between. However, it is not always the case that
H Tree would have less number of vias than V Tree. If the
resources on metal layer 1 is used up and the net has to go
onto layer 2 and 3, it is obvious that V Tree is a better choice.

To include via usage into the picture of Steiner tree
topology generation, we adjust the net topology by the
usage/capacity ratio between horizontal metal layers and
vertical ones, as defined in (2) as follows:

(
∑

cap(h)/
∑

usg(h)
∑

cap(v)/
∑

usg(v)

)

. (2)

In the equation,
∑

cap(h) and
∑

usg(h) is the sum of
horizontal capacity and usage in the bounding box of each
net. Similarly,

∑

cap(v) and
∑

usg(v) is the sum of vertical
capacity and usage in the bounding box of each net. We use
this factor in concatenation to the congestion driven factor
in (1) to extend or shrink the horizontal distances between
the pin nodes and use FLUTE to generate adjusted topology
for each tree. In this way, we can achieve 3% less via count
after pattern routing stage with less than 1% overhead in
wirelength and overflow.

4.1.3. Segment Shifting. The Steiner tree topology only spec-
ifies the connections between the pins and Steiner nodes in
a net. After fixing the topology, there is still flexibility left for
congestion optimization. For instance, we can focus on the
segment location in the Steiner tree shown as the bold line
in Figure 6. We define a segment as a straight concatenation
of routing edges that cannot be further extended. With
different congestion scenarios, the segment should be shifted
to different positions to avoid congested regions.

Our idea is to move some segments out of the congested
regions without increasing the Steiner tree wirelength. We
observe that if the two endpoints of a horizontal or vertical
segment are both Steiner nodes; we can shift this segment
freely within a “safe range” without increasing the Steiner
tree length. For a horizontal/vertical segment between a pair
of Steiner nodes S1 and S2, the “safe range” is defined as the
shifting range of y/x coordinates for S1 and S2 so that the
Steiner tree length will not be increased when shifting the tree
edge S1-S2. As illustrated in Figure 7, the “safe range” of (a)
a horizontal segment or (b) a vertical segment S1-S2 is R12.
We only consider shifting segment S1-S2 when both S1 and
S2 have degree 3. A Steiner node can only have degree 3 or 4,
but degree 4 Steiner node has no flexibility for moving. The
way to get this “safe range” is as follows. We consider the two

VLSI Design 7

RSMT

Pin node

Via

H tree V tree

Figure 5: Via-aware Steiner tree.

Figure 6: Segment shifting for less congestion. (Shaded regions in bottom four cases are congested.)

neighbors for S1/S2 which are not S2/S1. If S1-S2 is horizontal,
the range for safely moving S1 and S2 is between the y-
coordinates of two neighboring nodes in the tree (R1 and
R2 in Figure 7(a)). Otherwise, the range for safely moving is
between the x-coordinates of two neighbor nodes (R1 and
R2 in Figure 7(b)). The “safe range” of S1-S2 is the common
part of R1 and R2, which is R12 in Figure 7. In R12, the
segment S1-S2 can be shifted freely without increasing the
tree wirelength.

If we allow topology change, the “safe range” can be
extended in some cases. For example, in Figure 8(a), the “safe
range” for segment S1-S2 isR12. Hence, S1-S2 can at most shift
to the same y-grid as Steiner node S3. But we notice that S1-
S2 can be shifted higher than S3 without changing the Steiner
tree length. The only problem here is that the topology of
the tree needs to be changed. This happens when two Steiner
nodes S2 and S3 overlap with each other (as illustrated in
Figure 8(b)). In this case, we will exchange the two Steiner
nodes S2 and S3 to enable further shifting, which is shown in
Figure 8(c). Notice that by exchanging S2 and S3, we change
topology1 into topology2. In Figure 8(c), the new “safe range”

is R13. Therefore, now we can explore the full range R123 for
S1-S2.

After we find the “safe range” for a segment S1-S2,
we need to decide the best position to shift it within the
“safe range”. The criterion for the best position is that the
total congestion of all the grid edges on the Steiner tree is
minimized. Hence, for every possible position, we evaluate
the cost for the tree by adding up the cost on all grid edges
used by the tree. Note that we only need to evaluate the
demand on the grid edges affected by shifting S1-S2, which
are all tree edges E adjacent to S1 and S2. Note that some tree
edges e ∈ E could be a diagonal tree edge (e.g., tree edge
1-S1 in Figure 7(a)). We do not know which grid edges this
tree edge will use. In this case, we consider the two possible
L-shape route for it and pick the one resulting in smaller
congestion. For these diagonal tree edges, later stages will try
to minimize the total demand of grid edges on their routing
path.

We apply this segment shifting technique iteratively on
all the horizontal/vertical segments in a Steiner tree until
the total cost of the tree cannot be improved. After segment

8 VLSI Design

S1 S2

1

2

3

4

R1

R12

R2

(a)

S1

S2

1

2

3

4

R1

R2

R12

(b)

Figure 7: “Safe range” to shift a segment.

1 1 1

2 2 2

3 3 3

4

5 5 5

1

2 1

2

3

4 4 4

5
4

3

5

1

2

4

3

5

R12

R13

R123

S1 S2

S1

S2

S3

S1 S2

S3 S1

S2

S3 S1

S2

S3

S1

S2

S3
S3

Topology1
Topology2

(a) (b) (c)

Figure 8: Modification of tree topology during segment shifting.

shifting, the Steiner tree structures for multipin nets are
determined and the nets are broken into a set of 2-pin nets.
Later the 3-bend routing and maze routing will focus on
these 2-pin nets.

4.2. Routing Techniques. With the congestion-driven and
via-aware topology, the next stage of FastRoute is actual
routing. We find that there exists significant potential to
improve traditional routing techniques in terms of via
control and congestion reduction. The most commonly
used routing techniques in global routing include L/Z/U
pattern routing, monotonic routing, and maze routing, as
shown in Figure 9. L/Z/U pattern routing generates limited
number of via and has fast speed but cannot effectively
reduce congestion. Monotonic routing and traditional maze
routing, on the contrary, do better job in solving congestion
problem but cannot control via count effectively. Besides,

maze routing and U routing allow detour to strengthen the
congestion reduction capability. Traditional maze routing
is most powerful but suffers from long runtime. So all
traditional routing techniques sacrifice one or several quality
to improve some others.

To address this problem, we propose 3-bend routing, a
fast routing technique with enhanced congestion reduction
capability than traditional pattern routing and much less via
than maze routing. Even with 3-bend routing, FastRoute has
to use maze routing as the last resort for highly congested
area. In order to enhance the usefulness of maze routing,
we propose a new multisource and multi-sink maze routing
technique which greatly improves the flexibility and perfor-
mance of traditional maze routing.

4.2.1. 3-Bend Routing. A 3-bend route is a 2-pin rectilinear
connection that has at most three bends and possible detour.

VLSI Design 9

Figure 9: L/Z/U, monotonic, and maze routing.

B

Break point

(0,0)

(n− 1, − 1)

(0,m− 1)

(n− 1, 0)

S

T

B

Figure 10: 3-bend routing.

It is much more flexible than L/Z/U route on solving
congestion problem. Comparing to monotonic route [17]
and maze route, 3-bend route has advantage on having less
vias. Figure 10 shows two possible 3-bend routes for a tree
edge, S → B → T and S → B′ → T . No L/Z/U routing can
avoid the congested area marked as shades. However, the 3-
bend route S → B → T can achieve congestion free routing
with least bends possible.

To find the best 3-bend routing path for a 2-pin net, we
assume one pin to be the source (S = (xs, ys)) and the other
one to be the sink (T = (xt, yt)). Without loss of generality,
we assume S is at the lower-left corner and T is at the upper-
right corner. We define the possible detouring region as an
expanding box for each net. It is calculated depending on
the size, location, and congestion of each net. The larger
net with more congestion will have a larger expanding box.
The pseudocode to compute the best 3-bend path for an S-T
bounding box of size p × q and an expanding box of m × n
nodes is given in Algorithm 1.

In the algorithm, dh(x, y) and dv(x, y) denote the costs
for a path going from the point (x, y) horizontally to
the left boundary and vertically to the bottom boundary,
respectively. costh(x−1, y) is the cost for using the horizontal
grid edge between (x−1, y) and (x, y) while costv(x, y−1) is
the cost for using the vertical grid edge between (x, y − 1)
and (x, y). To balance wirelength and congestion, we use
the same cost function as in maze routing, which will be
discussed in Section 4.3.2. Line 2 to Line 9 create two tables
that have the cost for a bend-free edge between any points
in the expanding box and the left or bottom boundary, from
which the cost of a 3-bend path between any two nodes in
the expanding box could be easily calculated. A 3-bend path

could be concatenated from two L-shaped paths, like using
S → B and B → T to form S → B → T . So we add a
break point in the expanding box calculate the cost of the
induced L-shaped paths in Lines 13 to 16, from which we can
compute the cost of all the possible 3-bend paths and find the
best solution. Lines 2 to 9 take O(mn) time. Lines 10 to 19
also take O(mn) time. So the complexity of 3-bend routing
algorithm for a 2-pin net is O(mn), the same as Z routing. It
is worth noticing that the algorithm shown in Algorithm 1
may compute some paths with overlapping segments. But
they will be automatically excluded because of their higher
cost.

The small via count, short runtime, and good congestion
solving capability let 3-bend routing become an alternative
to maze routing. In the past, only a small percentage of nets
would be routed by maze routing but the statement fails to
hold as the benchmarks become more complex. We apply 3-
bend routing for congested nets before maze routing, which
leads to runtime and via count reduction.

4.2.2. Multisource Multi-Sink Maze Routing. Maze routing
is used as the last resort to solve congestion in global
routing. Originally, maze routing algorithm is designed to
find the shortest path connecting two pins in the presence
of routing blockages. Later, it has been extended to find a
path connecting two pins in such a way that it favors a path
that passes through less congested area according to some
cost function. It is a very powerful technique to find paths
avoiding congestion.

However, traditional maze routing only finds the shortest
path between two pins. For multipin nets, a typical way is to
break the routing tree into 2-pin nets and route each 2-pin
nets by maze routing. We find that this kind of independent
edge-by-edge routing scheme for each net fails to generate
good routing solutions for the multipin nets. Figure 11 illus-
trates three different scenarios. The shaded areas denote the
congested regions.

(i) Unnecessary Detour. Consider the scenario in Figure
11(a). The dashed route “Route1” is the maze routing result
for tree edge (A,B). However, if the path does not need to go
from A to B, “Route2” is a better choice in terms of cost.

(ii) Redundant Routing. Consider the scenario in Figure
11(b). The dashed route is the maze routing result for tree
edge (A,B). However, the (e,B) part on the path is already
part of the routing tree, and it is redundant to repeat it.

(iii) Unintentional Loop. Consider the scenario in Figure
11(c). The dashed route is the maze routing result for tree
edge (A,B). A loop is created in the routing tree. It is obvious
that this loop is not needed and only the part from A to e is
necessary on the path.

As we can see in these three scenarios, unnecessary wires
are used to route the multipin nets. This results in using
more routing resources than necessary and causes extra
routing congestion. The major defect of this edge-by-edge
routing scheme for each net is that the topology information

10 VLSI Design

(1) Cbest = +∞
(2) For y = 0 to n− 1
(3) dh(0, y) = 0
(4) for x = 1 to m− 1
(5) dh(x, y) = dh(x − 1, y) + costh(x − 1, y)
(6) for x = 0 to m− 1
(7) dh(x, 0) = 0
(8) for y = 1 to n− 1
(9) dv(x, y) = dv(x, y − 1) + costv(x, y − 1)
(10) for y = 0 to n− 1
(11) for x = 0 to m− 1
(12) B = (x, y)
(13) dL1(B) = |dh(S)− dh(x, ys)| + |dv(x, ys)− dv(B)|
(14) dL2(B) = |dh(S)− dh(xs, y)| + |dv(xs, y)− dv(B)|
(15) dL3(B) = |dh(T)− dh(x, yt)| + |dv(x, yt)− dv(B)|
(16) dL4(B) = |dh(T)− dh(xt , y)| + |dv(xt , y)− dv(B)|
(17) Compute the cost of four possible 3-bend paths

(i.e., L1–L3, L1–L4, L2-L3, L2–L4) from the four
L-paths above plus via cost and compare them to
Cbest. If better, update the best 3-bend path.

Algorithm 1: 3-bend routing algorithm.

B

C

D

A

Route1

Route2

(a)

Redundancy

e
BC D

A

(b)

Loop

e
BC D

A

(c)

Figure 11: Maze routing scenarios.

is neglected. When routing a tree edge for multipin nets,
global router just needs to rejoin the two disconnected
subtree generated by rip-up procedure, no matter where the
rejoining path ends.

Beging aware of the problem, we propose a multisource
multi-sink maze routing algorithm. The main idea is that the
existing routing tree is respected when we route a tree edge
for a multipin net. We do not constrain the two endpoints
of the routing path to be the original endpoints of the tree
edge being routed. As illustrated in Figure 12, suppose we are
routing a tree edge (A,B) in the routing tree T for a multipin
net N . We first remove (A,B) from T and obtain two subtrees
T1 and T2. (Note that T1 and T2 can be just a point.) We treat
all the grid points on T1 as sources and all the grid points on
T2 as sinks. Then, we apply the multisource multi-sink maze
routing to find the best path connecting T1 and T2 to form a
tree. In Figure 12, the dotted line from X to Y is the best path
to connect T1 and T2.

Our multisource multi-sink maze routing algorithm is
shown in Algorithm 2. In the algorithm, d(g) is the distance
from T1 to g, defined as the total cost of all grid edges
passed by the temporary shortest path from T1 to g. The
algorithm follows the framework of Dijkstra’s algorithm
[24]. Lines 1–5 initialize the distance d, priority queue Q,
and destination points. Lines 6–17 are the loop similar to
Dijkstra’s algorithm. Line 18 just traces back to find the
shortest path from T1 to T2.

Our algorithm finds the least cost routing path from T1

to T2. Theorem 1 gives the optimality of the algorithm.

Theorem 1. The path found by multisource multi-sink maze
routing algorithm is the least cost routing path from T1 to T2.

Proof. First of all, note that the cost function cost(u, v) is a
positive function in our problem. In Line 3, d(u) = 0 for all
the grid points on T1. Hence, we can assume a super source

VLSI Design 11

(1) d(g) = inf for all grid points g
(2) Find subtree T1 (contains A) and T2 (contains B) after

removing tree-edge (A,B)
(3) Set d(u) = 0 and π(u) = nil, for all grid points u on

T1

(4) Set up a priority queue Q with all grid points on T1

(5) Mark all grid points on T2 as sink point
(6) u← Extract-Min(Q)
(7) while u is not sink point
(8) for each neighbor grid point v of u
(9) if d(v) > d(u) + cost(u, v)
(10) π(v) = u
(11) if v is in Q
(12) Update Q
(13) else

(14) Insert v into Q
(15) u← Extract-Min(Q)
(16) Trace back from u using π to find the shortest path from

T1 to T2

Algorithm 2: Multisource multi-sink maze routing algorithm.

T1 T2

A
B

X

Y

Figure 12: Multisource multi-sink maze routing.

which replaces all the grid points on T1 and all grid points
adjacent to T1 are its neighbor. Similarly, we can assume a
super sink which replaces all the grid points on T2, and all
adjacent grid points to T2. Then the problem is transformed
to a single-source, single-sink shortest path problem. The
optimality follows the optimality of Dijkstra’s algorithm.

The only thing left is to prove the stopping criterion is
correct. Recall that we stop when a destination point on T2

is extracted from Q. Assume u is the first destination point
extracted from Q. For the purpose of contradiction, let w be
the destination point which is on the shortest path from T1 to
T2. Hence, we have d(w) < d(u). However, when we extract
u from Q, w is still in Q, which means d(w) ≥ d(u). Because
the cost function is positive, d(w) will never decrease in later
updating. Therefore, we obtain a contradiction that d(w) ≥
d(u).

Now we analyze the complexity of the algorithm. Assume
there are V grid points in the search region. Lines 1–5
take time O(V). Each extract-min operation on the priority
queue Q takes time O(lgV). There are at most V iterations
for the while loop. For each u, there are at most 4 neighbors
adjacent to it. The insertion and updating of Q takes time
O(lgV). The total complexity is therefore O(VlgV).

We apply this multisource multi-sink maze routing
algorithm on the tree edges of multipin nets. The runtime
of maze routing algorithm is highly related to the size of
the search region. In order to speed up the algorithm, we
do not search the whole grid graph to find the least cost
path. Instead, we use expanding box in the same way as
3-bend routing to significantly reduce the runtime while
maintaining good solution quality. In our implementation,
the enlarge value is proportional to the size and level of
congestion of the original bounding box.

We want to point out one issue for the multisource multi-
sink maze routing technique. It can totally change the routing
tree structure because the endpoints of new routing path
do not need to be the endpoints of the tree edge being
routed. For example, in Figure 13, the Steiner tree structure
is changed from (a) to (b) because of the new routing
of tree edge (A,B). Hence, we need to update the Steiner
tree structure accordingly after routing each tree edge by
multisource multi-sink maze routing.

4.3. Convergence Enhancement Techniques. In addition to
new topology and routing techniques, FastRoute integrates
several performance enhancement techniques to further
improve routing quality and reduce run time. In the 2007 and
2008 ISPD global routing contests, we find that traditional
global routing framework may easily get trapped in local
minimal of solution space and require significant runtime
and control to jump out. In order to solve such problem,
we propose two new enhancement techniques to improve the
convergence of global routing.

4.3.1. Virtual Capacity Technique. Other recently published
academic global routers, including BoxRouter [7], Archer
[8], NTHU-R [9, 10], NTUgr [11], and FGR [12], employ

12 VLSI Design

T1 T1

T2T2

A A

BB

Figure 13: Steiner tree topology changed by maze routing.

negotiation-based maze routing technique, which incre-
ments the maze routing cost for consistently congested grid
edges. However, such negotiation-based cost adjustment
lacks theoretical basis and requires significant tuning before
it can work properly.

Instead of negotiation based maze routing technique,
we propose virtual capacity, a systematic alternative to
handle congestion problem. Virtual capacity tries to use
adjusted “virtual capacity” instead of original capacity to
guide maze routing. Given a global routing solution, consider
any congested grid edge e. With capacity ue and capacity
ce, overflow would be oe = ue − ce. We denote the virtual
capacity as vce. The basic idea of virtual capacity is to reduce
the capacity of e by oe units (i.e., set the virtual capacity to
ce − oe) for the next round of maze routing. Because of the
reduction in capacity, grid edge e becomes more expensive
to use and hence some of its routing demand will hopefully
be pushed away. In the ideal situation, exactly oe units of
routing demand will be pushed away in order to bring the
congestion back to the level of the previous round, if we
measure the overflow using virtual capacity. Thus, the new
routing demand will be ue − oe = ue − (ue − ce) = ce, that is,
the same as the original capacity. In order words, grid edge e
will not be congested in the second round of global routing.
In reality, more or less than oe units of routing demand might
be pushed away because other grid edges cannot absorb or
will absorb more than the pushed routing demand. So it is
necessary to update the virtual capacities and apply maze
routing again to further reduce the overflow.

In Section 4.3.1(a), we discuss the initialization of virtual
capacities. In Section 4.3.1(b), we describe the updating of
virtual capacities during the routing process.

(a) Virtual Capacity Initialization by Alternative Congestion
Estimation (ACE). Virtual capacity is initialized by subtract-
ing the overflow of last round of routing from the actual grid
edge capacity. But for the first round of routing, we want to
predict the overflow in order to use virtual capacity to speed
up the convergence. We use adaptive congestion estimation
(ACE) technique to predict the overflow. ACE assigns net
usage to proper grid edge in a more realistic manner and
can estimate overflow much more accurately than traditional
probabilistic estimation. We implement the estimation using
the following two assumptions. (1) Routing region of each 2-
pin net is confined within the bounding box. (2) Fractional

Table 1: ACE usage assignment notation.

N Number of 2-pin nets

BBoxk Bounding box of netk

rk Number of rows inside BBoxk

ck Number of columns inside BBoxk

Leftk Left coordinate of BBoxk

Rightk Right coordinate of BBoxk

Topk Top coordinate of BBoxk

Bottomk Bottom coordinate of BBoxk

cV/Hi, j Capacity of the eV/Hi, j

pV/Hi, j Current assigned usage of eV/Hi, j

usage assignment is allowed. The first assumption suggests
that we only consider the grid edges inside the bounding
box. The second assumption allows breaking the integer
usage into fractional values. The fractional value models the
behavior of global router that evenly distributes the routing
usage in congested region.

The notation of problem formulation of ACE is shown
in Table 1. ACE designs a more realistic usage assignment
method to estimate routing demand. In general, it allocates
the new routing demand to regions where routing demands
are previously low.

Consider the usage assignment of one single 2-pin net,
the usage ready to be assigned within the bounding box
is 1. Without loss of generality, here we just discuss the
assignment for vertical grid edges. The usage assignment
algorithm for vertical grid edges is shown in Algorithm 3.
Each row is processed independently. Inside one row, grid
edges are sorted in a decreasing order according to the value
of costVi, j , which is equal to pVi, j + mV

i − cVi, j . m
V
i is the value

of maximum grid edge capacity of row i. The algorithm
compares the average potential assigned usage with largest
current assigned usage. It iteratively excludes the grid edge
with largest current assigned usage until an even assignment
is possible. The time complexity required for processing
single 2-pin net netk is O(rkck · log(ck)). Figure 14 illustrates
the assignment process. Due to the sequential manner of
usage assignment, the net processing order may significantly
affect accuracy. ACE processes smaller span nets with higher
priority. The net span represents width of bounding box in
vertical grid edge assignment or height of bounding box in

VLSI Design 13

(1) for (i = topk · · ·bottomk + 1)
(2) mV

i = max(cVi, j), j ∈ [leftk , rightk]
(3) ∆ = rightk − leftk + 1
(4) for (j = leftk · · · rightk)
(5) costVi, j = pVi, j + mV

i − cVi, j
(6) Csum =

∑

costVi, j (j ∈ [leftk , rightk])
(7) Sort costVi, j(j ∈ [leftk , rightk]) by decreasing order
(8) Copy sorted grid edge index into queue Q
(9) for (t = 1 · · ·∆)
(10) if (1 + Csum)/(∆− t + 1) > costVi,Q(t)

(11) for (n = t · · ·∆)
(12) pVi,Q(n) = (1 + Csum)/(∆− t + 1)−mV

i + cVi,Q(n)

(13) break out of the second for loop
(14) else

(15) Csum = Csum − costVi,Q(t)

Algorithm 3: The ACE 2-pin net assignment algorithm for vertical grid edges.

Assigned usage

Existing cost

Cost

y grid

Figure 14: 2-pin net usage assignment (vertical case).

Line T

Edge

B

C

D

A

B C DA

Figure 15: 2-pin net assignment example for ACE.

horizontal grid edge assignment. Nets with larger spans offer
more choices to distribute the net usage. Therefore, we order
the nets by net span and perform usage assignment for nets
with smaller span first. Algorithm 4 shows the detail of the
whole ACE algorithm.

Now we apply ACE to solve the routing example in
Figure 15. Consider vertical grid edges along the line T . Due
to the permutation, the net processing order becomes A →

B → C → D. After assigning net A, current assigned usage
becomes (1, 0, 0, 0). And we will get (1, 1, 0, 0) after assigning
net B. As it goes on, the final assigned usage will be (1, 1, 1, 1).
So the estimation will not generate any potential congestion,
which matches exactly with the optimal routing solution.

(1) pVi, j = 0 ∀i, j
(2) pHi, j = 0 ∀i, j
(3) Sort 2-pin nets by BBox width with increasing order
(4) Copy sorted nets into queue QV

(5) for (t = 1 · · ·m)
(6) ACE 2-pin net assignment vertical (QV (t))
(7) Sort 2-pin nets by BBox height with increasing order
(8) Copy sorted nets into queue QH

(9) for (t = 1 · · ·m)
(10) ACE 2-pin net assignment horizontal (QH(t))

Algorithm 4: The ACE usage assignment algorithm.

After the estimation, virtual capacity will be initialized by
(3) as follows:

vce = ce −max
(

0, pe − ce
)

∀e. (3)

In (3), ce denotes actual grid edge capacity and pe is
the estimated usage obtained by ACE. The new capacity
after subtraction is named virtual capacity, which is vce in
abbreviation.

The time complexity of ACE technique is O(m · log(m) +
mn2 · log(n)) and following is the detailed analysis. To
sort out the order of m 2-pin nets, it will take O(m ·

log(m)). For each net, the worst case time complexity is
O(n2 log(n)), where n is the maximum number of horizontal
and vertical grids. Hence, in general, the overall worst case
time complexity is O(m · log(m) + mn2 · log(n)). But the
bounding box of a 2-pin net is generally small. Therefore, on
average, ACE accounts for around 2% of total global routing
runtime.

(b) Virtual Capacity Updating. After the virtual capacity
initialization, we use virtual capacity instead of the actual
grid edge capacity to guide 3-bend routing and maze routing.
As the rip-up and reroute proceeds, FastRoute updates
virtual capacity at the end of each routing iteration.

14 VLSI Design

S2

S1

T6

T5

T4

T3

T2

T1

M5

M3

M1

M6

M4

M2

Figure 16: Dynamic programming layer assignment.

The update method is presented in (4) and (5). Existing
overflow oe is calculated as the difference between grid edge
usage ue and actual grid edge capacity ce. Virtual capacity
will be monotonically decreased for the grid edges that are
consistently congested as follows:

oe = ue − ce ∀e, (4)

vce = vce − oe. (5)

It is worth noticing that the overflow calculated in (4) can
be negative. When we use negative overflow to adjust virtual
capacity, it will go up. Thus, virtual capacity adjustment
will automatically reduce the cost for grid edges that were
previously congested but currently not. In this way, virtual
capacity technique can better utilize grid edges and further
enhance the convergence of global router.

4.3.2. Adaptive Maze Cost Function. With virtual capacity, we
have a systematic way to model congestion. But we still need
a cost function to put it into use when maze router evaluates
alternative routes.

We propose a logistic function [25] based adaptive cost
function, as shown in (6). In the function, k is the coefficient
controlling the function curve slope when ue is below ce. k
is adaptively adjusted in different maze routing phases. In
the initial phase, k is set small to preserve good wirelength.
Normally in the first few iterations, many nets need rip-up
and reroute. If a large k coefficient is applied, those nets
would be rerouted with huge detour. While in the final stage
of maze routing, the cost function curve is made steep to
aggressively drive down the residual overflow. There are two
other coefficients in the function. S determines the slope
when ue is over ce. H is the cost height which controls
the trade off between converging speed and wirelength and
would be increased each maze routing iteration as follows:

coste =

⎧

⎪

⎨

⎪

⎩

1 +
H

(

1 + exp(−k(ue − vce))
) if 0 < ue ≤ ce,

1 + H + S× (ue − vce) if ue > ce.
(6)

4.4. Spiral Layer Assignment. There are generally two ways
to generate solutions for 3D global routing benchmarks.
One is, running routing techniques and layer assignment
the concurrently. It overly complicates the problem and is
rarely used. The other more popular way first projects the

3D benchmarks from aerial view, finds a solution for the 2D
problem and expands the solution to multiple layers. This
expansion is called layer assignment, which has significant
impact on the number of vias for the final solution. To keep
FastRoute fast, we propose a sequential layer assignment
algorithm that would assign the 2D solution into routing
layers, from lower layers to higher ones. The layer assignment
algorithm will not change the aerial view of 2D solution and
thus keep the total wirelength. Besides, our algorithm keeps
total number of overflow unchanged. Thus, if we can find a
congestion-free solution for the 2D global routing problem,
we can find a valid solution for the original 3D problem.

In the algorithm, we first sort the nets considering their
total wirelength and number of pin nodes. Then we order
the segments in each net according to their locations in the
net. Finally, we assign layers using dynamic programming,
segment by segment, net by net.

Due to the competition of different nets in the assigning
sequence and greedy nature of layer assignment, careless
early assignment causes later nets switching among the layers
and thus generates a large number of unnecessary vias.
Smaller nets connecting nearby global cells are considered
relatively local and should use lower metal layers. On the
contrary, longer nets assigned to upper layers will encounter
less switching between layers and will use wider tracks on top
layers to achieve better timing. Furthermore, we observe that
nets with higher number of pins tend to cause more vias. So
we order nets by an increasing order of

∑

wl/#Pins, where
∑

wl is the total wirelength for a net. Thus, we keep nets with
smaller total wirelength and higher pin count on the lower
layers.

For each net, we order segments for the following reason.
The only layer information for a net is that the pin nodes
must go up to at least metal layer 1 to have metal connections.
So we order the segments in each net in increasing order of
their distance to the pin nodes. Here, the distance is defined
as the number of segments the two nodes in a segment have
to traverse to reach the nearest pin node. We first assign layers
to the segments with 0 distance, that is, segments that have
at least one pin node and move onto segments with larger
distance. By such an order, we are sure that at least one end
of each segment has the information that which layers the pin
node ranges between. Thus, we start assigning segments on
the periphery of a net and continue inwardly.

As shown in Figure 16, we create a “via grid graph” to
assign each segment to metal layers. We call each node on

VLSI Design 15

Table 2: Experimental benchmarks statistics.

Name Grids
Number

layers
Number

nets
Number

routed nets
Max Deg Avg Deg

adaptec1 324 × 324 6 219 K 177 K 340 4.2

adaptec2 424 × 424 6 260 K 208 K 153 3.9

adaptec3 774 × 779 6 466 K 368 K 82 4.0

adaptec4 774 × 779 6 515 K 401 K 171 3.7

adaptec5 465 × 468 6 867 K 548 K 121 4.1

newblue1 399 × 399 6 332 K 271 K 74 3.5

newblue2 557 × 463 6 463 K 374 K 116 3.6

newblue3 973 × 1256 6 552 K 442 K 141 3.2

newblue4 455 × 458 6 636 K 531 K 152 3.6

newblue5 637 × 640 6 1.26 M 892 K 258 4.1

newblue6 463 × 464 6 1.29 M 835 K 123 3.8

newblue7 488 × 490 8 2.64 M 1.65 M 113 3.6

bigblue1 227 × 227 6 283 K 197 K 74 4.1

bigblue2 468 × 471 6 577 K 429 K 260 3.5

bigblue3 555 × 557 8 1.12 M 666 K 91 3.4

bigblue4 403 × 405 8 2.23 M 1.13 M 129 3.7

the graph a “via node”. Vertical grid edges represent the
possible places to add via while the horizontal grid edges
are constructed from the actual 2D path in the “via grid
graph”. We pull straight the original zigzagged 2-pin net to
form the horizontal grid edges in the via grid graph and
copy the capacity and usage of corresponding grid edge from
the original grid graph. We break the segments in a tree
into the size of grid edges and assign them to layers one by
one. Such breakdown enables us to keep the total number
of wirelength and overflow of the 2D solution unchanged.
Without loss of generality, we assume sources Si on the very
left column and targets T j on the right. If we do not know the
layer information about the ending node, layers 1 to L are
all considered to be targets. Here, L is the number of metal
layers in a benchmark. Otherwise, the target is set to be the
spanning range of the ending node.

We associate every via node with a cost, which represents
the least number of vias on the paths from the node to
any source nodes. Since we do not change the aerial view
of a net, a 3D path must and must only use the horizontal
segments between two adjacent columns once. Thus, the cost
for a node is the same as its left neighbor if there is still
routing resource or one plus the cost associated with the
upper or lower neighbor nodes, whichever is smaller. The
pseudocode to process each segment with wirelength n is
shown in Algorithm 5.

In the algorithm, line 1 uses O(nL) time and line 2
takes O(L) time. The update of costs from vertical neighbors
involves with a series of sorting, comparison, and update,
which takes O(LlgL) time. However, because of the small
number of L (typically less than 10 depending on the
semiconductor process), we use an O(L2) implementation.
Hence, line 4 to line 8 take O(nL2). So the complexity of layer
assignment for each segment is O(nL2).

5. Experimental Results

We implemented FastRoute in C with Steiner tree package
FLUTE and the current version is FastRoute 4.1. All the
experiments are performed on a Linux machine with
2.8 GHz Intel processor and 32 GB RAM. We run experi-
ments on ISPD08 global routing contest benchmarks [20].
The benchmark statistics are shown in Table 2. It is worth
mentioning that FastRoute 4.1 now adopts a single set of
tuning and avoids specific benchmark tuning to demonstrate
the effectiveness of global routing framework and techniques
presented in this work. On the contrary, all the participants
in ISPD08 contest use benchmark specific tuning.

The 2008 set of benchmarks has 8 new benchmarks and
8 benchmarks inherited from 2007. However, when ISPD08
global routing contest considers one unit of via at the same
cost of one unit of wirelength, the one held in 2007 charges
via at a cost three-times the cost for wirelength. In our
experiment, we use the rules set by the 2008 contests which
treat wire segments and vias equally.

In Table 3, we compare the performance of FastRoute 4.1
on the ISPD08 global routing contest benchmarks with the
top 4 routers besides FastRoute 3.0. Again, FastRoute 4.1 is
the fastest router. For the four benchmarks that no one can
successfully finish routing without incurring any overflow,
FastRoute achieves lowest overflow for two benchmarks. Due
to the fact that other groups do not disclose the details
about the metal wirelength part and via part of the total
wirelength, we only compare the total wirelength. Since no
newer data is available for BoxRouter2.0 after the ISPD08
contest, we quote the results for BoxRouter2.0 from ISPD08
global routing contest results. All runtime are scaled to
2.8 GHz.

Comparing to NTHU-R2.0, the 2008 ISPD global rout-
ing contest winner, FastRoute achieves 0.01% and 74%

16 VLSI Design

Table 3: FastRoute 4.1 results on 3D version of ISPD08 global routing contest benchmarks.

Name
FastRoute 4.1 NTHU-R2.0 [10] NTUgr [11] BoxRouter2.0 [20]

ovfl swl1 via1 twl1 cpu(s) ovfl twl1 cpu(s) ovfl twl1 cpu(s) ovfl twl1 cpu(s)

adaptec1 0 36.4 17.4 53.8 193 0 53.4 568 0 57.4 270 0 52.9 1227

adaptec2 0 33.3 18.9 52.2 51 0 52.3 98 0 53.7 66 0 52.7 162

adaptec3 0 96.7 34.5 131.2 183 0 131.0 510 0 135.0 264 0 131.8 1635

adaptec4 0 89.9 31.4 121.3 61 0 121.7 121 0 123.7 72 0 122.1 403

adaptec5 0 104.1 51.7 155.8 407 0 155.4 1077 0 159.9 918 0 156.9 1889

newblue1 0 24.5 21.8 46.3 361 0 46.5 290 6 49.3 58650 44 47.5 74488

newblue2 0 46.7 28.5 75.2 40 0 75.7 57 0 76.9 36 0 75.9 109

newblue3 31532 76.5 31.3 107.8 1353 31454 106.5 5728 31024 188.3 53040 38958 109.1 82615

newblue4 142 82.9 47.6 130.5 2140 138 130.5 4525 142 143.8 67086 200 129.5 78225

newblue5 0 148.8 82.1 230.9 565 0 231.6 908 0 244.9 1230 0 232.9 1700

newblue6 0 103.7 73.8 177.5 598 0 176.9 847 0 186.6 1278 0 179.8 1785

newblue7 54 186.1 166.8 352.9 16888 62 353.5 6734 310 372.2 86730 208 358.6 84743

bigblue1 0 37.9 18.7 56.6 257 0 56.0 641 0 60.0 918 0 56.9 1147

bigblue2 0 49.3 41.6 90.9 457 0 90.6 397 0 91.2 14898 0 90.4 2346

bigblue3 0 78.9 51.1 130.0 114 0 130.7 235 0 133.5 240 0 131.3 380

bigblue4 138 121.3 108.9 230.2 2144 162 231.0 6159 188 242.8 24786 472 231.6 52644

Comparison2 1 \ \ 1 1 0.998 1.001 1.75 0.994 1.038 23.99 1.25 1.0007 26.55
1
Segment wirelength, via, and total wirelength are in unit of 10 K.

2Wirelength and runtime comparisons are based on overflow-free benchmarks.

(1) Initialize the cost for all the via nodes to +∞
(2) For every source s j , C(j, 0) = 0
(3) Update the cost for other via nodes on the first column
(4) for x = 1 to n− 1
(5) for j = 1 to L
(6) if cap(j, x − 1) > usg(j, x − 1)
(7) C(j, x) = C(j, x − 1)
(8) Update the cost from vertical neighbors.
(9) Find the least cost for any sink node and trace back

using C(j, x)

Algorithm 5: Layer assignment algorithm for segment.

improvement for total wirelength and runtime, respectively,
on the 12 routable benchmarks. Comparing to the 2nd
place winner, NTUgr, FastRoute 4.1 can finish routing one
more benchmark without overflow and can achieve 3.8% less
wirelength in 15x faster speed for 11 benchmarks that the two
routers both successfully finished.

Via accounts for 26% to 47% of the total wirelength of
FastRoute solutions to the contest benchmarks. Although
via has higher resistivity and larger process variation which
makes it much more important than before, we still believe
that congestion reduction is the most important function
for global router. Both of the two recent global routing
contests held by ISPD gave highest priority to the overflow
of solutions for evaluating the performance of global routers.

Even though most global router that participated in the
2008 ISPD global routing contests have greatly improved

over their earlier version in the 2007 contest, we observe
that some routers still face two challenges. One is how to
handle the congestion left in the final stages. Even though
FastRoute 4.1 and NTHU-R2.0 successfully finished routing
for newblue1, they both failed newblue4, newblue 7 and
bigblue4, with a residue overflow of just less than 150.
The huge runtime spent by NTUgr and BoxRouter2.0 on
newblue1 showed the inability to solve the few final overflow.
Another challenge is the effectiveness for the global routers
to balance between reducing the number of overflow and
extending wirelength. The conflict incurs due to the fact that
one of the most efficient method to reduce congestion is
detour, that is, extending wirelength, which could, however,
induce congestion in other areas. One important way to
effectively control the trade off is through cost function
used in maze routing. Although cost functions evolve from

VLSI Design 17

Table 4: Contributions from techniques in FastRoute.

Name
FastRoute 4.1 No tree adj No 3-bend No VCA Input order LA

ovfl twl cpu(s) ovfl twl cpu(s) ovfl twl cpu(s) ovfl twl cpu(s) ovfl twl cpu(s)

adaptec1 0 53.8 193 0 54.1 211 0 54.2 192 0 54.4 941 0 58.6 176

adaptec2 0 52.2 51 0 52.4 56 0 52.4 58 126 52.8 343 0 56.7 37

adaptec3 0 131.2 183 0 131.8 195 0 132.2 189 0 130.5 384 0 140.5 155

adaptec4 0 121.3 61 0 121.5 60 0 121.3 62 0 121.3 70 0 129.4 30

adaptec5 0 155.8 407 0 156.5 448 0 157.1 457 0 171.6 315 0 171.6 315

newblue1 0 46.3 361 0 46.4 335 0 46.4 313 1362 46.6 2431 0 52.2 299

newblue2 0 75.2 40 0 75.4 46 0 75.1 40 0 75.2 41 0 83.0 15

newblue3 31532 107.8 1353 33628 107.8 3895 38563 107.5 4345 34528 108.5 4679 31532 114.3 3737

newblue4 142 130.5 2140 146 130.9 2211 144 130.9 2644 1352 130.5 12940 142 139.9 2189

newblue5 0 230.9 565 0 231.9 646 0 232.2 670 166 235.6 20244 0 254.8 446

newblue6 0 177.5 598 0 179.0 703 0 179.2 668 42 180.2 4755 0 202.1 514

newblue7 54 352.9 16888 80 354.8 17376 86 353.3 22284 1124 357.1 42598 54 403.3 12633

bigblue1 0 56.6 257 0 57.2 300 0 57.0 383 84 57.2 2179 0 63.6 231

bigblue2 0 90.8 457 0 91.1 516 0 91.1 762 48 91.6 2355 0 99.1 434

bigblue3 0 130.1 114 0 130.2 115 0 130.4 242 268 131.3 3195 0 150.0 73

bigblue4 138 230.2 2144 144 232.1 4059 142 231.5 5529 648 228.9 7177 138 265.5 2807

Comparison3 1 1 1 1.38 1.005 1.23 1.07 1.004 1.10 1.25 1.02 11.33 1 1.11 0.83
3
Wirelength and runtime comparisons are based on overflow-free benchmarks.

step function to logistic function and the variants of logistic
functions, the fact that global routers that generates shorter
wirelength or longer wirelength can only reduce congestion
to a similar level demonstrates that there is considerable
potential for the academic global routers to improve in this
area.

To demonstrate the effectiveness of the global routing
techniques proposed in this paper, we turn off certain
techniques to see the performance degradation as shown
in Table 4. In the column “No tree adj”, we turn off the
congestion-driven via-aware Steiner tree generation and use
unadjusted tree topology directly generated from FLUTE.
This configuration of FastRoute leads to 38% more con-
gestion and 23% run time overhead. The “No 3-bend”
column shows the performance of FastRoute without 3-
Bend routing. We observe degradation for all three qualities
we focus on, though the degradation is not very signifi-
cant. However, FastRoute spends 55% more runtime for
the four unroutable benchmarks without 3-bend routing,
which has explanation in the fact that 3-bend routing is
much more efficient than maze routing. The “No VCA”
column shows results generated by FastRoute without vir-
tual capacity Adjustment. Without convergence assisting
techniques, FastRoute only finishes 5 benchmarks without
overflow. This configuration also dramatically increase total
wirelength and runtime because FastRoute spends much
more time running maze routing to try to eliminate overflow.
For the last configuration, we turn off net ordering and
segment ordering used in the spiral layer assignment and
it shows that the two ordering saves 11% of wirelength,
which would translate into significantly more percentages of
via.

The source code of latest FastRoute 4.1 could be
requested for download at http://home.eng.iastate.edu/∼
cnchu/FastRoute.html. If the reader is interested, one can
find all the algorithm and tuning factors inside. The latest
FastRoute 4.1 uses a single set of tuning factors. The major
factors are bounding box sizes, maze routing iterations, and
the factor used in (6) in the cost function. Due to space
limit, we only present the philosophy in how to set them, and
user can refer to the source code to find the exact value. For
bounding box sizes, FastRoute starts at a small value to limit
detour at the beginning of routing process. It increases as
maze routing iterations proceed but is capped at 20% of the
entire grid graph size because a larger bounding box would
not help to further eliminate congestion and would increase
runtime in vain. FastRoute runs maze routing for at most
100 iterations or as soon as it eliminates all violation. For the
coefficient in formula (6), H keeps growing to increase the
strength to push away nets from congested edges. S is set to
10.

6. Conclusion

In this paper, we develop a new global routing tool that
focuses on reducing routing congestion and the number of
vias. If the runtime bonus used in ISPD08 is considered,
FastRoute 4.1 outperforms every single academic global
router. In addition, it reduces the via count significantly
during global routing.

Our future work will focus on how to control maze
routing so that it can make more effective balance between
reducing congestion and keeping wirelength small.

18 VLSI Design

References

[1] J. Hu and S. S. Sapatnekar, “A survey on multi-net global
routing for integrated circuits,” Integration, The VLSI Journal,
vol. 31, no. 1, pp. 1–49, 2001.

[2] M. D. Moffitt, J. A. Roy, and I. L. Markov, “The coming of
age of (academic) global routing,” in Proceedings of the ACM
International Symposium on Physical Design (ISPD ’08), pp.
148–155, April 2008.

[3] C. Albrecht, “Global routing by new approximation algo-
rithms for multicommodity flow,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
20, no. 5, pp. 622–632, 2001.

[4] M. Cho and D. Z. Pan, “BoxRouter: a new global router based
on box expansion and progressive ILP,” in Proceedings of the
Design Automation Conference, pp. 373–378, 2006.

[5] R. Kastner, E. Bozorgzadeh, and M. Sarrafzadeh, “Pattern
routing: use and theory for increasing predictability and
avoiding coupling,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 21, no. 7, pp.
777–790, 2002.

[6] R. T. Hadsell and P. H. Madden, “Improved global routing
through congestion estimation,” in Proceedings of the 40th
Design Automation Conference, pp. 28–31, June 2003.

[7] M. Cho, K. Lu, K. Yuan, and D. Z. Pan, “BoxRouter 2.0:
architecture and implementation of a hybrid and robust
global router,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design (ICCAD ’07), pp. 503–
508, November 2007.

[8] M. M. Ozdal and M. D. F. Wong, “Archer: a history-driven
global routing algorithm,” in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD
’07), pp. 488–495, November 2007.

[9] J.-R. Gao, P.-C. Wu, and T.-C. Wang, “A new global router for
modern designs,” in Proceedings of the Asia and South Pacific
Design Automation Conference (ASP-DAC ’08), pp. 232–237,
March 2008.

[10] Y.-J. Chang, Y.-T. Lee, and T.-C. Wang, “NTHU-route 2.0: a
fast and stable global router,” in Proceedings of the International
Conference on Computer-Aided Design (ICCAD ’08), pp. 338–
343, November 2008.

[11] H. Y. Qien, C. H. Hsu, and Y. W. Chang, “High-performance
global routing with fast overflow reduction,” in Proceedings of
the Asia and South Pacific Design Automation Conference (ASP-
DAC ’09), pp. 582–587, January 2009.

[12] J. A. Roy and I. L. Markov, “High-performance routing
at the nanometer scale,” in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD
’07), pp. 496–502, November 2007.

[13] L. McMurchie and C. Ebeling, “PathFinder: a negotiation-
based performance-driven router for FPGAs,” in Proceedings of
the ACM 3rd International Symposium on Field-Programmable
Gate Arrays, pp. 111–117, February 1995.

[14] M. D. Moffitt, “MaizeRouter: engineering an effective Global
Router,” in Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC ’08), pp. 226–231, March
2008.

[15] J. A. Roy and I. L. Markov, “High-performance routing at
the nanometer scale,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 27, no. 6, pp.
1066–1077, 2008.

[16] M. Pan and C. Chu, “FastRoute: a step to integrate global
routing into placement,” in Proceedings of the International

Conference on Computer-Aided Design (ICCAD ’06), pp. 464–
471, November 2006.

[17] M. Pan and C. Chu, “FastRoute 2.0: a High-quality and
efficient global router,” in Proceedings of the Asia and South
Pacific Design Automation Conference (ASP-DAC ’07), pp. 250–
255, January 2007.

[18] Z. Yanheng, X. Yue, and C. Chu, “FastRoute3.0: a fast and high
quality global router based on virtual capacity,” in ASP-DAC
International Conference on Computer-Aided Design (ICCAD
’08), pp. 344–349, November 2008.

[19] Y. Xu, Y. Zhang, and C. Chu, “FastRoute 4.0: global router with
efficient via minimization,” in ASP-DAC Asia and South Pacific
Design Automation Conference (ASP-DAC ’09), pp. 576–581,
January 2009.

[20] http://www.ispd.cc/contests/ispd08rc.html.
[21] T. H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: scalable 3D

global routing using integer programming,” in Proceedings of
the 46th ACM/IEEE Design Automation Conference (DAC ’09),
pp. 320–325, July 2009.

[22] C. Chu, “FLUTE: fast lookup table based wirelength estima-
tion technique,” in Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, Digest of Technical
Papers (ICCAD ’04), pp. 696–701, November 2004.

[23] C. Chu and Y.-C. Wong, “FLUTE: fast lookup table based
rectilinear steiner minimal tree algorithm for VLSI design,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 1, pp. 70–83, 2008.

[24] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271,
1959.

[25] D. von Seggern, CRC Standard Curves and Surfaces, CRC Press,
Boca Raton, Fla, USA, 1993.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

