
FastScat ™: An Object-Oriented Program for

Fast Scattering Computation

LISA HAMILTON, MARK STALZER, R. STEVEN TURLEY, JOHN VISHER,

AND STEPHEN WANDZURA

Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265

ABSTRACT

FastScat is a state-of-the-art program for computing electromagnetic scattering and

radiation. Its purpose is to support the study of recent algorithmic advancements, such

as the fast multipole method, that promise speed-ups of several orders of magnitude

over conventional algorithms. The complexity of these algorithms and their associated

data structures led us to adopt an object-oriented methodology for FastScat. We discuss

the program's design and several lessons learned from its C++ implementation includ

ing the appropriate level for object-orientedness in numeric software, maintainability

benefits, interfacing to Fortran libraries such as LAPACK, and performance issues.

© 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

Current problems of interest in computational

electromagnetics include the prediction of radar

cross sections and the modeling of antenna radia

tion patterns (see Fig. 1). Methods for computing

electromagnetic scattering and radiation generally

involve the solution of a matrix equation derived

from the discretization of an appropriate integral

equation [1]. The matrix equation is often written

Received April 1993

Revised June 1993

FastScat 'M is a trademark of Hughes Aircraft Company.

This research was partially supported by the Advaneed Re

search Projects Ageney of the Department of Defense and was

monitored bv the Air Force Office of Scientific Research under

Contract No: F49620-91-C-0064. The United States Govern

ment is authorized to reproduce and distribute reprints for

governmental purposes notwithstanding any copyright nota

tion hereron.

© 1994 by John Wiley & Sons, Inc.

Scientifie Programming. Vol. 2, pp. 171-178 (1993)

CCC 1058-9244/94/040171-08

Z · I = V, where the impedance matrix Z depends

on the geometry and composition of the scattering

or radiating surface, I is a vector containing the

expansion coefficients of the current density over

the surface, and the excitation vector V represents

a dual expansion of the current. The number of

unknowns, N, required for accurate modeling of

such problems is very large, and, in the past, has

severely limited problem size and solution accu

racy.

There are two primary areas of difficulty in con

ventional solutions of these problems. The first is

accurate computation of the Z matrix elements. In

general, each element of the N X N matrix re

quires numeric integration of a function that is

often singular on portions of the surface. The sec

ond difficulty is the actual solution of such a large

matrix equation. This has been done by direct de

composition of the sometimes ill-conditioned Z

matrix (fJ(l'{1
) time), or alternatively by iterative

methods requiring repeated matrix-vector multi

plications (fJ(N 2
) time for each step).

Recently, a technique called the fast multipole

171

172 HAMIL TO!'\ ET AL.

FIGURE 1 Model scattering problem. An incident

plane wave p (excitation) induces a current on S which

re-radiates as the scattered wave q.

method (FMM) was discovered, which essentially

factors the Z matrix into sparse components [2-
5 J. With this representation, the matrix-vector

multiplications required by iterative solvers can be

done in{) (N log N) time. Thus, total solution time

is greatly reduced, allowing the study of much

larger objects.

Our ongoing effort is to develop a code capable

of accurately computing scattering and radiation

from surfaces of arbitrary shape and size, repre

sented in either two or three dimensions. In this

program, called FastScat, we are implementing

conventional solution techniques as well as new

computational algorithms, such as the FMM. We

also plan to incorporate the ability to scatter from

dielectrics and other materials, and to efficiently

treat periodic bodies. In addition, FastScat is be

ing used as a testbed to determine the effective

ness of various enhancements such as more accu

rate surface models, higher order expansion

(basis) functions, and more accurate quadrature

rules.

To support this work, FastScat must be written

in such a way as to be highly modifiable and ex

tensible, as well as reasonably efficient. Specifi

cally, we require a design methodology and lan

guage support that can provide a clear

implementation of the algorithms and a sensible

structure for the underlying data. Our experience

in modifying an existing program written in For

tran demonstrated that this, mostly procedural,

code lacked important elements needed to incor

porate the features described above. Instead, we

have turned to an object-oriented methodology

[6 J in which features such as inheritance, data

encapsulation, polymorphism, and dynamic

binding allow the key elements of the problem to

be expressed and manipulated in a more natural

wav.

2 AN OBJECT-ORIENTED DESIGN

The design of FastScat is based on the kev ab

stractions of the physics of scattering. In the ob

ject-oriented paradigm, a class is used to define a

new data type and encapsulates not only the oper

ations that can be performed on that type (meth

ods), but also the implementation or actual data

structure of the type. Defining classes to model the

physics of the problem provides a clear mapping

of the theory and algorithms onto the resulting

computer code. For example, the FastScat classes

Surface, Z_Matrix, Current, and Exci ta

tion come directly from the problem formulation

given in Section 1. Once defined and imple

mented, the manipulation of these new types is

straightforward and can closely resemble the orig

inal equations from physics, thus improving code

readability. Using this approach, we have found

that when a new class or method seemed awkward

or difficult to add it often did not adequately

model the physics. As an added benefit of object

oriented thinking, we have sometimes gained a

better understanding of physical or theoretical re

lationships in the problem. On occasion, difficul

ties in implementation have directed us to a flaw

or gap in our physical understanding rather than

with the design. The remainder of this section de

scribes some of FastScat's design and the result

ing maintainability benefits.

2.1 Modeling Surfaces

In FastScat, the scattering surface or antenna

(scatterer) is described using a collection of ele

mentary surfaces. In the current version of

F astScat, the elementary surfaces are limited to

patches. In two dimensions, a patch is simply a

curve in a plane, and in three dimensions, it is a

surface. The simplest 3d patch is a flat triangle.

The Surface class hierarchy (Fig. 2) provides

support for FastScat's surface description. Class

Surface is abstract and defines basic operations

required for all surfaces. These basic operations,

which include translate, rotate, scale, and read

ing/writing, must then be implemented in de

scendent classes of Surf ace.

A collection of surfaces is maintained by Com

posi te_Surface, which descends from Sur

face. An element of a Composi te_Surface is

itself a Surf ace. This organization makes it easy

to implement many methods, and permits model

ing of hierarchical scatterers. For example, the

Surface

Elementary....SUrface Composite__Surface

r-----_
Patch2D Patch3D

Flat..J'atch~2D Fl~l)'atdl3D
0Uadratic;._Patm3D BiCublc:._Patm3D

FIGURE 2 Surface class hierarchy.

translate method in Composi te_Surface simply

calls the translate method of each of its elements.

An ancillary class supports iteration over all of the

elements in a composite surface.

Cltimately, the surface is described in terms of

instances of class Elementary_Surface. This

class, which is derived from Surface, currently

has two descendants, Patch2D and Patch3D. In

the future, the descendants Wire2D and Wire3D

will be added to support the modeling of wires.

The patch classes define several methods. For ex

ample, in Patch2D, there is a method called map,

which takes a single parameter u E [0, 1: and

returns a Vector to the corresponding point on

the patch. The endpoints of the patch are at u = 0

and u = 1. Another method is tangent, which

returns the tangent to the patch for a given u. A

parallel set of methods is defined by Patch3D,

except the parameters are u and u. These methods

are used by many calculations in FastScat. The

important point is that most of the FastScat code

is written in terms of Surface, Composi te_Sur

face, and Elementary_Surface objects. The

underlying surface model, 2d or 3d, flat, curved,

etc., is hidden from most of the code. This eases

maintenance and the addition of new features.

2.2 Modeling the Physics

The basic principle behind FastScat's design is to

model the physics as closely as possible. The com

mon object-oriented approach is to identify the

entities in the problem and proposed solution and

to model these using classes. The Surface class

hierarchy was designed using this approach. :Yiod

eling some of the physical concepts is more ab

stract. Some entities, such as a plane wave. are

simple. For a plane wave, we defined a class that

contains the wave vector k and provides a method

to evaluate the wave at any point in space.

A key physics abstraction is a Surface_Func

tion. It is defined on the surface of the scatterer

FAST SCATTERI:\IG COMPCTATIO;\' 173

and maps a particular location on the scatterer to

a tensor. The Current and Excitation classes

are descendants of Surface_Function. Various

operations are supported on surface functions, in

cluding addition, scalar multiplication, and inner

product. These operators are used extensively in

FastScat's calculations. Although the Surface

_Function class is currently implemented using

class Array described in Section 3.2, this repre

sentation can and will be changed in the future to

implement a different method (l\ystrom) of dis

cretizing the integral equation.

Closely related to Surface_Function is Sur

face_Operator, which maps one surface func

tion onto another. The mapping is performed by

the apply method. An important example of a

Surface_Operator is Z_Matrix (Z) which

takes a Current (!)and maps it into an Exci ta

tion (V). Another example is the FYIM, which is

implemented in the FMM class.

The system V = Z · I can be solved directly

using LC decomposition if Z is dense, or by using

an iterative solver. Iterative solvers can be used for

both dense (Z_Matrix) and sparse (FMM) sur

face operators. The iterative solvers are written in

terms of Surface_Operators and Surface

_Functions. When support for the FM:M was

added to FastScat, we only had to concentrate on

the details of the FYIYI as encapsulated by class

FMM. The solvers did not require modification be

cause they are defined at a higher level of abstrac

tion. The maintainability I extensibility benefits of

FastScat's design are discussed further in the next

section.

FastScat also contains a class hierarchv for

modeling basis functions, which is conceptually

similar to that of the surface classes. There is a

top-level abstract class Basis_Function with

descendants for two and three dimensions (Ba

sis_Function2D and Basis_Function3D).

Descendants of these two classes describe partic

ular basis functions, such as Legendre polynomi

als.

2.3 Maintainability/Extensibility Benefits

One of the major objectives of FastScat was the

implementation of the FMM. In the previous sec

tion we mentioned how the FYIM fit easilv into the

program's design. This design is also helping to

achieve many of FastScat's other objectives. For

example, to support different surface models, it is

onlv necessary to add a new descendant to

174 HAMIL TON ET AL.

Patch2D or Patch3D. This flexibility has allowed

us to study the importance of higher order surface

models for accurate scattering calculations, and

has also turned out to be verv useful for verifica

tion. For a few special geometries, like circles and

spheres, the cross section can be computed ana

lytically. In FastScat, a circle can be approxi

mated using flat patches. As the the number of

patches increases, so does the solution accuracy.

However, even using as many as 1,000 patches

only results in a few digits of accuracy in the cross

section. Our response was to add a descendant of

Patch2D, called Arc_Patch2D, which represents

a wedge of a circle. We used the arc patches to

construct a perfect model of a circle and were able

to compute answers accurate to 11 significant dig

its.

The structure of the basis function hierarchy

allows for similar flexibility. F astScat was origi

nally implemented in terms of pulse (constant) ba

sis functions. Moving up to higher order basis

functions was trivial; we simply generalized the

pulse basis functions to Legendre polynomials.

The rest of the program was unchanged.*

There have been times when it was difficult to

use a FastScat component. We have found this

with the iterative solvers-they depend on Sur

face_Function and Surface_Operator,

which in turn depend on Surface. Cse of the

solvers then requires a substantial amount of

FastScat code, indicating a flaw in the design. The

solvers should have been defined on classes more

general than SurfaceJ'unction and Sur

face_Qperator, namely Function and Oper

ator. The surface versions would then just be

subclasses of the more general versions, and the

solvers could be used independently of F astScat

by defining the appropriate functions and opera

tors.

3 LESSONS FROM A C + +
IMPLEMENTATION

The design of a program is independent of its im

plementation. In principle, one can have an ob

ject-based design and implement it in a traditional

language (as is often done with Ada [7]). However,

*It is not quite as simple as this. We had to plan ahead and

put a method in the basis function class that returns the order

of the quadrature required to exactly integrate the function. If

we had noL we would have lost accuracy by moving to higher

order basis functions.

to get full benefit of the methodology, we chose to

use an object-oriented language as well.

Pure object-oriented languages, like Smalltalk

[8] and CLOS [9], have a high overhead due to

their generality, and are not commonly available

on supercomputers. C++ [10] has the basic fea

tures necessary (such as classes, inheritance, and

dynamic binding) for an object-oriented imple

mentation. Because it has been implemented as a

translator into C, the language is portable and is

widely available on supercomputers. This combi

nation of features and availability led us to the

choice of C++.

This section presents some of the lessons we

learned from implementing F astScat in C++.

Most of what follows is related to performance is

sues: how to arrange C++ programs so that they

run efficiently. We also discuss some of the limita

tions of C++.

3.1 Overhead of Obiect-Orientedness

The object-oriented facilities in C++ require run

time support not needed in languages like For

tran. If not properly addressed, this overhead can

seriously degrade performance. \Vith our present

C++ compiler, the dynamic binding associated

with virtual functions takes twice as much time as

a regular function call. Consider, for example, the

descendants of class Patch2D described previ

ously. Each patch must define the method map,

which takes a parameter u and returns a Vector

on the surface of the patch. For flat patches, this

is a very simple computation and executes in less

time than the virtual method call and return. Us

ing inlined methods (type-checked macros) is no

help because virtual calls cannot be expanded.

However, as illustrated below, there is a simple

solution that has the performance of an inline

method, the generality of virtual methods, and

gives the compiler an opportunity to perform ag

gressive optimizations.

We often use variations of Gaussian quadrature

to perform our integrations. The basic form of a

Gaussian quadrature to approximate the integral/

of a functionf(x) over some region is

.\'-1

I= L wJ(xi),
i=O

where the w, are weights and the Xi are sampling

points (abscissae) for f. Assume we want to inte

grate the magnitude of the map vector over a

patch. An obvious C++ implementation is

double Al(Patch2D& p) {

double sum 0;

}

for (int i = 0; i < N; i++)

sum+= w[i]*mag(p.map(x[i]));

return sum;

Although simple, this code runs slowly compared

with equivalent inlined code due to the overhead

in the virtual function call p. map. A solution to

this problem is to add a map_all method that

takes a list of places at which to evaluate map. The

actual implementation is as follows:

Class Flat_patch2D : public Patch2D {

public:

Vector2D map(double u)

{ return vl + u*delta;

void map_all(int N, double* u,

Vector2D* results);

private:

Vector2D vl, delta;

};

void Flat_Patch2D: :map_all(int N,

double* u, Vector2D* results) {

for (int i = 0; i < N; i++)

results[i] = map(u[i]);

}

The equivalent of function Al is then

double A2(Patch2D& p) {

double sum = 0;

}

p.map_all(N, x, results);

for (int i = 0; i < N; i++)

sum+= w[i]*mag(results[i]);

return sum;

The loop in map_all can execute quickly because

map can now be expanded. The overhead of the

call to map_ all is negligible because the routine is

doing a relatively large amount of work. Higher

FAST SCATTERI!'\G COMPCTATION 175

level code can still be written in terms of the base

class Patch2D because map_all is virtual. Fur

thermore, the Vector2D addition and scalar mul

tiplication can also be expanded. This gives an

optimizer or vectorizer all the information it needs

(up to aliasing) to generate good code. An addi

tional benefit is that the loop in function A2 is now

far simplier and can be optimized. The perfor

mance differences between function Al and func

tion A2 can be dramatic, we saw over a factor of 5

improvement in our quadratures between the two

codes, keeping all other conditions constant.

A2 is slightly more complex than Al, primarily

due to the fact that some piece of code has to take

responsibility for managing results. In FastScat

we have encapsulated this additional complexity

in quadrature classes so that it is completely hid

den from the user. Users of our quadrature classes

only need to supply "all" versions of methods that

are performance critical. For the surface classes,

only 4 out of over 20 methods have "all" versions.

By adding some additional methods to our

classes, we have kept the benefits of object-ori

ented programming without sacrificing perfor

mance. The moral is to use object-oriented tech

niques in all but the very small percentage of code

that is executed often. Such code must be under

standable by the optimizer, meaning that it should

be short, and written in terms of fundamental

types like int and double. Fortunately, the use of

object-oriented techniques allows us to structure

the code into easily understood and fast computa

tional kernels. The next section discusses this ap

proach further.

3.2 Computational Kernels

FastScat does a significant amount of linear alge

bra, which is handled by the Array and Matrix

classes. These classes call LAPACK [11] and the

BLAS [12, 13] to perform the actual operations.

LAPACK, a descendant of LINP ACK and EIS

p ACK, is intended to be highly portable and exe

cute efficiently on a large range of target ma

chines. The BLAS is a set of basic linear algebra

subprograms, such as matrix-array (vector) multi

plication, that are hand tuned to each machine.

For example, on a Cray, the BLAS is written to

take maximum advantage of the machine's vector

units. A good implementation of the BLAS on a

scalar machine would ensure that code and data

are cached most efficiently and that the execution

176 HAMIL TO!\" ET AL.

of the floating point and integer units 1s over

lapped as much as possible.t

The actual implementation of the Array class

is simple:

class Array {

public:

complex dot(Array& b) {

ZDOTU(&length, data, &stride,

b. data, &b. stride);

}

private:

complex* data;

int length, stride;

}

The routine ZDOTU is just a BLAS call that does a

double precision complex dot product. The

stride parameters tell how many elements to

skip between consecutive array indices. Note that

because dot can be inlined, the users of Array

are effectively using the BLAS directly. This illus

trates a useful technique: place C++ ''wrappers''

around high quality libraries implemented in

other languages. The libraries then become C++

objects that can be used like any other object.

By carefully isolating the critical code in an ap

plication. the performance of an object-oriented

program can be made as good as the best pro

grams written in traditional languages. One addi

tional benefit is that the object-oriented code is

very portable. Only the kernels might need modifi

cation for a particular architecture.

3.3 C + + Limitations

Despite its rich set of features, C++ does have

limitations. One that we found particularly frus

trating is the lack ofmultimethods [14. 15]. a gen

eralization of virtual methods. A virtual method

dynamically dispatches to code, which is selected

based on the type of its first argument (this) . A

multimethod can dispatch on the types of many

arguments. Consider a Tensor class that has de

scendants for Scalars, Vectors, Second-Rank

t The array and matrix class were originally implemented

entirely in C++. The implementation used the standard C

convention that the rightmost index varies the fastest. When

we switched over to the BLAS, we converted the internal stor

age format. Although this was a major data representation

change. not a single line of code outside the matrix class had to

be changed.

Tensors, an so on, for which we want to define a

set of arithmetic operations. The base class Ten

sor has a virtual method mul (Tensor) that

must be defined by each derived class. The prob

lem is in the implementation of mul in the derived

classes:

Rank2: :mul(Tensor& t)
select (t.is_a()) {

case scalar II do

Rank2*Scalar

case vector II do
Rank2*Vector

case rank2 II do Rank2*Rank2

II make higher rank class do the work

default : return t.mul(*this); }

This code is ugly, it cannot be inlined, and using

i s_a methods to return a type tag is a poor prac

tice. The code is also difficult to maintain, be

cause a class of a given rank must be a friend to all

classes having a lower rank (scalar is rank 0, vec

tor is rank 1, etc.). With multimethods, the solu

tion is much cleaner and potentially more efficient

because each method is responsible for only one

kind of multiplication, for example, Scalar*Vec

tor. Other solutions are possible in C++, but they

are all similar in nature and suffer from the prob

lems mentioned. This type of construction arises

often in mathematics and it is unfortunate it does

not have a clear expression in C++.

A second limitation of C++ is its lack of auto

matic memory management. Of course, any sort

of memory management scheme can be imple

mented in C++, but we have found that a signifi

cant amount of effort goes into designing storage

management solutions for various classes, and

finding memory leaks. It is common for a C++

program to have several different storage manage

ment schemes. For example. in FastScat we use a

reference counting technique [15] for the Array

class to eliminate unnecessary copying of large

objects, and an ownership-based scheme in the

Composi te_Surface class for patches. Several

of the methods in a class (constructors, the de

structor, and the assignment operator) must be

concerned with memory management. The prob

lem with multiple schemes and methods is that

memory management must always be on the mind

of the programmer and is a distraction from solv

ing the problem of interest. We believe that some

sort of default memory management, which can

be overridden when necessarv. would be benefi

cial.

Finally, C++ tools are still immature. Some

vendors have been slow to implement language

features, such as templates. Also, the lack of ex

ception handling in most implementations makes

error handling clumsy. These problems should

disappear with time.

4 CONCLUDING REMARKS

Object-oriented programming is not without costs.

We have noticed that it takes more time to design

an object-oriented program than a procedural

one, which is consistent with some estimates that

up to 40% of the effort required to write an object

oriented program goes into the design phase. Also,

when object-oriented languages are used in an

overly procedural fashion (which is quite easy to

do in C++), the benefits of the methodology are

lost and the resulting code is often worse than a

traditional program. This is similar to an effect

noticed when Ada was first introduced. Many pro

grammers were quickly retrained in the Ada syn

tax but not its design philosophy. Of course, the

payback to putting more effort in the design, is in

reduced debugging time and easier maintainabil

ity I extensibility.

The use of object-oriented languages for nu

merical applications is being hampered by the fact

that object-oriented languages are not Fortran.

Fortran is still the language of choice for a major

ity of people doing computational science, partic

ularly on supercomputers. There are a number of

reasons for this:

1. Supercomputer Fortran compilers typically

vectorize code better than other compilers.

2. Fortran is widely understood.

3. A great deal of Fortran code exists.

4. There is a built-in resistance to change.

In order for object-oriented design and program

ming to make serious inroads in computational

science, scientists and programmers are going to

have to see some obvious benefits. We think the

most convincing argument will come from the ex

tensibility of object-oriented programs. If a com

putational scientist sees a group getting good

results quickly, by virtue of being able to easily

change their programs, the scientist will naturally

FAST SCATTERI:\IG COMPCTATION 177

become interested in the programming tech

niques.

In summary, we based the top-level design of

FastScat on the physics of scattering. This lead to

a flexible code that is easv to maintain and ex

tend, and yet does not necessarily sacrifice effi

ciency. The fundamental calculations are per

formed by computational kernels such as the

BLAS and a small set of hand -tuned methods in

the quadrature classes. The high-level classes

simply orchestrate the operation of the kernels. In

the future, we plan to extend FastScat to handle

more complex scattering problems and to port the

code to massively parallel machines and to vector

machines such as the Crav.

REFERENCES

[1] R. F. Harrington, Field Computation by Moment

Methods. Kew York; Macmillan, 1968.

[2] R. Coifman, V. Rokhlin, and S. Wandzura, "The

fast multipole method: A pedestrian prescrip

tion," IEEE Antennas Propagation Soc Maga

zine, vol. 35, pp. 7-12, 1993.

[3] V. Rokhlin, "Solution of acoustic scattering prob

lems by means of second kind integral equa

tions." Wave Motion, vol. 5, pp. 257-272, 1983.

[4] V. Rokhlin, "Rapid solution of integral equations

of scattering theory in two dimensions."]. Com

put. Phys. vol. 86, pp. 414-439, 1990.

[5] V. Rokhlin, Diagonal Form of Translation Oper

ators for the Helmholtz Equation in Three Di

mensions. Technical Report YALEC/DCS/RR-

894, Yale Cniversity, Department of Computer

Science, Ylarch 1992.

[6] B. Yleyer, Object-Oriented Software Construc

tion. :'-lew York: Prentice Hall, 1988.

[7] G. Booch, Software Engineering with Ada. Ylenlo

Park, CA: Benjamin/Cummings, 1983.

[8] A. Goldberg and D. Robson, Smalltalk-80: The

Language and Its Implementation. Reading, MA:

Addison-Wesley. 1983.

[9] S. Keene, Object-Oriented Programming in Com

mon Lisp. Reading, YlA: Addison-Wesley, 1988.

[10] Yl. A. Ellis and B. Stroustrup, The Annotated

C++ Reference Manual. Reading, MA: Addison

Wesley, 1990.

[11] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J.
Dongarra, J. Du Croz, A. Greenbaum. S. Ham

marling, A. McKenney, S. Ostouchov, and D.

Sorensen, LAPACK User's Guide. Philadelphia:

Society for Industrial and Applied Ylathematics,

1992.

[12] J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Ham

marling, "Algorithm 679: A Set of Level 3 Basic

178 HAMIL TON ET AL.

Linear Algebra Subprograms," ACM Transact.

Math. Software, vol. 16, pp. 18-28, 1990.

[13] J. J. Dongarra, J. Du Croz, S. Hammarling, and

R. J. Hanson, "Algorithm 656: An extended set of

Fortran basic linear algebra subprograms," A Ci\1

Transact. Math. Software, vol. 14, pp. 18-32,

1988.

[14] R. Agrawal, L. G. DeMichiel, and B. G. Lindsay,

OOPSLA Conference Proceedings. Reading, MA:

Addison- Wesley, 1991.

[15] J. 0. Coplien, Advanced C++: Programming

Systems and Idioms. Reading, MA: Addison

Wesley, 1992.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

