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ABSTRACT 

FastScat is a state-of-the-art program for computing electromagnetic scattering and 

radiation. Its purpose is to support the study of recent algorithmic advancements, such 

as the fast multipole method, that promise speed-ups of several orders of magnitude 

over conventional algorithms. The complexity of these algorithms and their associated 

data structures led us to adopt an object-oriented methodology for FastScat. We discuss 

the program's design and several lessons learned from its C++ implementation includ

ing the appropriate level for object-orientedness in numeric software, maintainability 

benefits, interfacing to Fortran libraries such as LAPACK, and performance issues. 
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1 INTRODUCTION 

Current problems of interest in computational 

electromagnetics include the prediction of radar 

cross sections and the modeling of antenna radia

tion patterns (see Fig. 1). Methods for computing 

electromagnetic scattering and radiation generally 

involve the solution of a matrix equation derived 

from the discretization of an appropriate integral 

equation [1]. The matrix equation is often written 
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Z · I = V, where the impedance matrix Z depends 

on the geometry and composition of the scattering 

or radiating surface, I is a vector containing the 

expansion coefficients of the current density over 

the surface, and the excitation vector V represents 

a dual expansion of the current. The number of 

unknowns, N, required for accurate modeling of 

such problems is very large, and, in the past, has 

severely limited problem size and solution accu

racy. 

There are two primary areas of difficulty in con

ventional solutions of these problems. The first is 

accurate computation of the Z matrix elements. In 

general, each element of the N X N matrix re

quires numeric integration of a function that is 

often singular on portions of the surface. The sec

ond difficulty is the actual solution of such a large 

matrix equation. This has been done by direct de

composition of the sometimes ill-conditioned Z 

matrix (fJ(l'{1
) time), or alternatively by iterative 

methods requiring repeated matrix-vector multi

plications (fJ(N 2
) time for each step). 

Recently, a technique called the fast multipole 
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FIGURE 1 Model scattering problem. An incident 

plane wave p (excitation) induces a current on S which 

re-radiates as the scattered wave q. 

method (FMM) was discovered, which essentially 

factors the Z matrix into sparse components [2-
5 J. With this representation, the matrix-vector 

multiplications required by iterative solvers can be 

done in{) (N log N) time. Thus, total solution time 

is greatly reduced, allowing the study of much 

larger objects. 

Our ongoing effort is to develop a code capable 

of accurately computing scattering and radiation 

from surfaces of arbitrary shape and size, repre

sented in either two or three dimensions. In this 

program, called FastScat, we are implementing 

conventional solution techniques as well as new 

computational algorithms, such as the FMM. We 

also plan to incorporate the ability to scatter from 

dielectrics and other materials, and to efficiently 

treat periodic bodies. In addition, FastScat is be

ing used as a testbed to determine the effective

ness of various enhancements such as more accu

rate surface models, higher order expansion 

(basis) functions, and more accurate quadrature 

rules. 

To support this work, FastScat must be written 

in such a way as to be highly modifiable and ex

tensible, as well as reasonably efficient. Specifi

cally, we require a design methodology and lan

guage support that can provide a clear 

implementation of the algorithms and a sensible 

structure for the underlying data. Our experience 

in modifying an existing program written in For

tran demonstrated that this, mostly procedural, 

code lacked important elements needed to incor

porate the features described above. Instead, we 

have turned to an object-oriented methodology 

[ 6 J in which features such as inheritance, data 

encapsulation, polymorphism, and dynamic 

binding allow the key elements of the problem to 

be expressed and manipulated in a more natural 

wav. 

2 AN OBJECT-ORIENTED DESIGN 

The design of FastScat is based on the kev ab

stractions of the physics of scattering. In the ob

ject-oriented paradigm, a class is used to define a 

new data type and encapsulates not only the oper

ations that can be performed on that type (meth

ods ), but also the implementation or actual data 

structure of the type. Defining classes to model the 

physics of the problem provides a clear mapping 

of the theory and algorithms onto the resulting 

computer code. For example, the FastScat classes 

Surface, Z_Matrix, Current, and Exci ta

tion come directly from the problem formulation 

given in Section 1. Once defined and imple

mented, the manipulation of these new types is 

straightforward and can closely resemble the orig

inal equations from physics, thus improving code 

readability. Using this approach, we have found 

that when a new class or method seemed awkward 

or difficult to add it often did not adequately 

model the physics. As an added benefit of object

oriented thinking, we have sometimes gained a 

better understanding of physical or theoretical re

lationships in the problem. On occasion, difficul

ties in implementation have directed us to a flaw 

or gap in our physical understanding rather than 

with the design. The remainder of this section de

scribes some of FastScat's design and the result

ing maintainability benefits. 

2.1 Modeling Surfaces 

In FastScat, the scattering surface or antenna 

(scatterer) is described using a collection of ele

mentary surfaces. In the current version of 

F astScat, the elementary surfaces are limited to 

patches. In two dimensions, a patch is simply a 

curve in a plane, and in three dimensions, it is a 

surface. The simplest 3d patch is a flat triangle. 

The Surface class hierarchy (Fig. 2) provides 

support for FastScat's surface description. Class 

Surface is abstract and defines basic operations 

required for all surfaces. These basic operations, 

which include translate, rotate, scale, and read

ing/writing, must then be implemented in de

scendent classes of Surf ace. 

A collection of surfaces is maintained by Com

posi te_Surface, which descends from Sur

face. An element of a Composi te_Surface is 

itself a Surf ace. This organization makes it easy 

to implement many methods, and permits model

ing of hierarchical scatterers. For example, the 
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FIGURE 2 Surface class hierarchy. 

translate method in Composi te_Surface simply 

calls the translate method of each of its elements. 

An ancillary class supports iteration over all of the 

elements in a composite surface. 

Cltimately, the surface is described in terms of 

instances of class Elementary_Surface. This 

class, which is derived from Surface, currently 

has two descendants, Patch2D and Patch3D. In 

the future, the descendants Wire2D and Wire3D 

will be added to support the modeling of wires. 

The patch classes define several methods. For ex

ample, in Patch2D, there is a method called map, 

which takes a single parameter u E [0, 1: and 

returns a Vector to the corresponding point on 

the patch. The endpoints of the patch are at u = 0 

and u = 1. Another method is tangent, which 

returns the tangent to the patch for a given u. A 

parallel set of methods is defined by Patch3D, 

except the parameters are u and u. These methods 

are used by many calculations in FastScat. The 

important point is that most of the FastScat code 

is written in terms of Surface, Composi te_Sur

face, and Elementary_Surface objects. The 

underlying surface model, 2d or 3d, flat, curved, 

etc., is hidden from most of the code. This eases 

maintenance and the addition of new features. 

2.2 Modeling the Physics 

The basic principle behind FastScat's design is to 

model the physics as closely as possible. The com

mon object-oriented approach is to identify the 

entities in the problem and proposed solution and 

to model these using classes. The Surface class 

hierarchy was designed using this approach. :Yiod

eling some of the physical concepts is more ab

stract. Some entities, such as a plane wave. are 

simple. For a plane wave, we defined a class that 

contains the wave vector k and provides a method 

to evaluate the wave at any point in space. 

A key physics abstraction is a Surface_Func

tion. It is defined on the surface of the scatterer 
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and maps a particular location on the scatterer to 

a tensor. The Current and Excitation classes 

are descendants of Surface_Function. Various 

operations are supported on surface functions, in

cluding addition, scalar multiplication, and inner 

product. These operators are used extensively in 

FastScat's calculations. Although the Surface

_Function class is currently implemented using 

class Array described in Section 3.2, this repre

sentation can and will be changed in the future to 

implement a different method (l\ystrom) of dis

cretizing the integral equation. 

Closely related to Surface_Function is Sur

face_Operator, which maps one surface func

tion onto another. The mapping is performed by 

the apply method. An important example of a 

Surface_Operator is Z_Matrix (Z) which 

takes a Current (!)and maps it into an Exci ta

tion (V). Another example is the FYIM, which is 

implemented in the FMM class. 

The system V = Z · I can be solved directly 

using LC decomposition if Z is dense, or by using 

an iterative solver. Iterative solvers can be used for 

both dense (Z_Matrix) and sparse (FMM) sur

face operators. The iterative solvers are written in 

terms of Surface_Operators and Surface

_Functions. When support for the FM:M was 

added to FastScat, we only had to concentrate on 

the details of the FYIYI as encapsulated by class 

FMM. The solvers did not require modification be

cause they are defined at a higher level of abstrac

tion. The maintainability I extensibility benefits of 

FastScat's design are discussed further in the next 

section. 

FastScat also contains a class hierarchv for 

modeling basis functions, which is conceptually 

similar to that of the surface classes. There is a 

top-level abstract class Basis_Function with 

descendants for two and three dimensions (Ba

sis_Function2D and Basis_Function3D). 

Descendants of these two classes describe partic

ular basis functions, such as Legendre polynomi

als. 

2.3 Maintainability/Extensibility Benefits 

One of the major objectives of FastScat was the 

implementation of the FMM. In the previous sec

tion we mentioned how the FYIM fit easilv into the 

program's design. This design is also helping to 

achieve many of FastScat's other objectives. For 

example, to support different surface models, it is 

onlv necessary to add a new descendant to 
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Patch2D or Patch3D. This flexibility has allowed 

us to study the importance of higher order surface 

models for accurate scattering calculations, and 

has also turned out to be verv useful for verifica

tion. For a few special geometries, like circles and 

spheres, the cross section can be computed ana

lytically. In FastScat, a circle can be approxi

mated using flat patches. As the the number of 

patches increases, so does the solution accuracy. 

However, even using as many as 1,000 patches 

only results in a few digits of accuracy in the cross 

section. Our response was to add a descendant of 

Patch2D, called Arc_Patch2D, which represents 

a wedge of a circle. We used the arc patches to 

construct a perfect model of a circle and were able 

to compute answers accurate to 11 significant dig

its. 

The structure of the basis function hierarchy 

allows for similar flexibility. F astScat was origi

nally implemented in terms of pulse (constant) ba

sis functions. Moving up to higher order basis 

functions was trivial; we simply generalized the 

pulse basis functions to Legendre polynomials. 

The rest of the program was unchanged.* 

There have been times when it was difficult to 

use a FastScat component. We have found this 

with the iterative solvers-they depend on Sur

face_Function and Surface_Operator, 

which in turn depend on Surface. Cse of the 

solvers then requires a substantial amount of 

FastScat code, indicating a flaw in the design. The 

solvers should have been defined on classes more 

general than SurfaceJ'unction and Sur

face_Qperator, namely Function and Oper

ator. The surface versions would then just be 

subclasses of the more general versions, and the 

solvers could be used independently of F astScat 

by defining the appropriate functions and opera

tors. 

3 LESSONS FROM A C + + 
IMPLEMENTATION 

The design of a program is independent of its im

plementation. In principle, one can have an ob

ject-based design and implement it in a traditional 

language (as is often done with Ada [7]). However, 

*It is not quite as simple as this. We had to plan ahead and 

put a method in the basis function class that returns the order 

of the quadrature required to exactly integrate the function. If 

we had noL we would have lost accuracy by moving to higher 

order basis functions. 

to get full benefit of the methodology, we chose to 

use an object-oriented language as well. 

Pure object-oriented languages, like Smalltalk 

[8] and CLOS [9], have a high overhead due to 

their generality, and are not commonly available 

on supercomputers. C++ [10] has the basic fea

tures necessary (such as classes, inheritance, and 

dynamic binding) for an object-oriented imple

mentation. Because it has been implemented as a 

translator into C, the language is portable and is 

widely available on supercomputers. This combi

nation of features and availability led us to the 

choice of C++. 

This section presents some of the lessons we 

learned from implementing F astScat in C++. 

Most of what follows is related to performance is

sues: how to arrange C++ programs so that they 

run efficiently. We also discuss some of the limita

tions of C++. 

3.1 Overhead of Obiect-Orientedness 

The object-oriented facilities in C++ require run

time support not needed in languages like For

tran. If not properly addressed, this overhead can 

seriously degrade performance. \Vith our present 

C++ compiler, the dynamic binding associated 

with virtual functions takes twice as much time as 

a regular function call. Consider, for example, the 

descendants of class Patch2D described previ

ously. Each patch must define the method map, 

which takes a parameter u and returns a Vector 

on the surface of the patch. For flat patches, this 

is a very simple computation and executes in less 

time than the virtual method call and return. Us

ing inlined methods (type-checked macros) is no 

help because virtual calls cannot be expanded. 

However, as illustrated below, there is a simple 

solution that has the performance of an inline 

method, the generality of virtual methods, and 

gives the compiler an opportunity to perform ag

gressive optimizations. 

We often use variations of Gaussian quadrature 

to perform our integrations. The basic form of a 

Gaussian quadrature to approximate the integral/ 

of a functionf(x) over some region is 

.\'-1 

I= L wJ(xi), 
i=O 

where the w, are weights and the Xi are sampling 

points (abscissae) for f. Assume we want to inte

grate the magnitude of the map vector over a 



patch. An obvious C++ implementation is 

double Al(Patch2D& p) { 

double sum 0; 

} 

for (int i = 0; i < N; i++) 

sum+= w[i]*mag(p.map(x[i])); 

return sum; 

Although simple, this code runs slowly compared 

with equivalent inlined code due to the overhead 

in the virtual function call p. map. A solution to 

this problem is to add a map_all method that 

takes a list of places at which to evaluate map. The 

actual implementation is as follows: 

Class Flat_patch2D : public Patch2D { 

public: 

Vector2D map(double u) 

{ return vl + u*delta; 

void map_all(int N, double* u, 

Vector2D* results); 

private: 

Vector2D vl, delta; 

}; 

void Flat_Patch2D: :map_all(int N, 

double* u, Vector2D* results) { 

for (int i = 0; i < N; i++) 

results[i] = map(u[i]); 

} 

The equivalent of function Al is then 

double A2(Patch2D& p) { 

double sum = 0; 

} 

p.map_all(N, x, results); 

for (int i = 0; i < N; i++) 

sum+= w[i]*mag(results[i]); 

return sum; 

The loop in map_all can execute quickly because 

map can now be expanded. The overhead of the 

call to map_ all is negligible because the routine is 

doing a relatively large amount of work. Higher 
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level code can still be written in terms of the base 

class Patch2D because map_all is virtual. Fur

thermore, the Vector2D addition and scalar mul

tiplication can also be expanded. This gives an 

optimizer or vectorizer all the information it needs 

(up to aliasing) to generate good code. An addi

tional benefit is that the loop in function A2 is now 

far simplier and can be optimized. The perfor

mance differences between function Al and func

tion A2 can be dramatic, we saw over a factor of 5 

improvement in our quadratures between the two 

codes, keeping all other conditions constant. 

A2 is slightly more complex than Al, primarily 

due to the fact that some piece of code has to take 

responsibility for managing results. In FastScat 

we have encapsulated this additional complexity 

in quadrature classes so that it is completely hid

den from the user. Users of our quadrature classes 

only need to supply "all" versions of methods that 

are performance critical. For the surface classes, 

only 4 out of over 20 methods have "all" versions. 

By adding some additional methods to our 

classes, we have kept the benefits of object-ori

ented programming without sacrificing perfor

mance. The moral is to use object-oriented tech

niques in all but the very small percentage of code 

that is executed often. Such code must be under

standable by the optimizer, meaning that it should 

be short, and written in terms of fundamental 

types like int and double. Fortunately, the use of 

object-oriented techniques allows us to structure 

the code into easily understood and fast computa

tional kernels. The next section discusses this ap

proach further. 

3.2 Computational Kernels 

FastScat does a significant amount of linear alge

bra, which is handled by the Array and Matrix 

classes. These classes call LAPACK [11] and the 

BLAS [12, 13] to perform the actual operations. 

LAPACK, a descendant of LINP ACK and EIS

p ACK, is intended to be highly portable and exe

cute efficiently on a large range of target ma

chines. The BLAS is a set of basic linear algebra 

subprograms, such as matrix-array (vector) multi

plication, that are hand tuned to each machine. 

For example, on a Cray, the BLAS is written to 

take maximum advantage of the machine's vector 

units. A good implementation of the BLAS on a 

scalar machine would ensure that code and data 

are cached most efficiently and that the execution 
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of the floating point and integer units 1s over

lapped as much as possible.t 

The actual implementation of the Array class 

is simple: 

class Array { 

public: 

complex dot(Array& b) { 

ZDOTU(&length, data, &stride, 

b. data, &b. stride); 

} 

private: 

complex* data; 

int length, stride; 

} 

The routine ZDOTU is just a BLAS call that does a 

double precision complex dot product. The 

stride parameters tell how many elements to 

skip between consecutive array indices. Note that 

because dot can be inlined, the users of Array 

are effectively using the BLAS directly. This illus

trates a useful technique: place C++ ''wrappers'' 

around high quality libraries implemented in 

other languages. The libraries then become C++ 

objects that can be used like any other object. 

By carefully isolating the critical code in an ap

plication. the performance of an object-oriented 

program can be made as good as the best pro

grams written in traditional languages. One addi

tional benefit is that the object-oriented code is 

very portable. Only the kernels might need modifi

cation for a particular architecture. 

3.3 C + + Limitations 

Despite its rich set of features, C++ does have 

limitations. One that we found particularly frus

trating is the lack ofmultimethods [14. 15]. a gen

eralization of virtual methods. A virtual method 

dynamically dispatches to code, which is selected 

based on the type of its first argument (this) . A 

multimethod can dispatch on the types of many 

arguments. Consider a Tensor class that has de

scendants for Scalars, Vectors, Second-Rank 

t The array and matrix class were originally implemented 

entirely in C++. The implementation used the standard C 

convention that the rightmost index varies the fastest. When 

we switched over to the BLAS, we converted the internal stor

age format. Although this was a major data representation 

change. not a single line of code outside the matrix class had to 

be changed. 

Tensors, an so on, for which we want to define a 

set of arithmetic operations. The base class Ten

sor has a virtual method mul (Tensor) that 

must be defined by each derived class. The prob

lem is in the implementation of mul in the derived 

classes: 

Rank2: :mul(Tensor& t) 
select (t.is_a()) { 

case scalar II do 

Rank2*Scalar 

case vector II do 
Rank2*Vector 

case rank2 II do Rank2*Rank2 

II make higher rank class do the work 

default : return t.mul(*this); } 

This code is ugly, it cannot be inlined, and using 

i s_a methods to return a type tag is a poor prac

tice. The code is also difficult to maintain, be

cause a class of a given rank must be a friend to all 

classes having a lower rank (scalar is rank 0, vec

tor is rank 1, etc.). With multimethods, the solu

tion is much cleaner and potentially more efficient 

because each method is responsible for only one 

kind of multiplication, for example, Scalar*Vec

tor. Other solutions are possible in C++, but they 

are all similar in nature and suffer from the prob

lems mentioned. This type of construction arises 

often in mathematics and it is unfortunate it does 

not have a clear expression in C++. 

A second limitation of C++ is its lack of auto

matic memory management. Of course, any sort 

of memory management scheme can be imple

mented in C++, but we have found that a signifi

cant amount of effort goes into designing storage 

management solutions for various classes, and 

finding memory leaks. It is common for a C++ 

program to have several different storage manage

ment schemes. For example. in FastScat we use a 

reference counting technique [ 15] for the Array 

class to eliminate unnecessary copying of large 

objects, and an ownership-based scheme in the 

Composi te_Surface class for patches. Several 

of the methods in a class (constructors, the de

structor, and the assignment operator) must be 

concerned with memory management. The prob

lem with multiple schemes and methods is that 

memory management must always be on the mind 

of the programmer and is a distraction from solv

ing the problem of interest. We believe that some 

sort of default memory management, which can 



be overridden when necessarv. would be benefi

cial. 

Finally, C++ tools are still immature. Some 

vendors have been slow to implement language 

features, such as templates. Also, the lack of ex

ception handling in most implementations makes 

error handling clumsy. These problems should 

disappear with time. 

4 CONCLUDING REMARKS 

Object-oriented programming is not without costs. 

We have noticed that it takes more time to design 

an object-oriented program than a procedural 

one, which is consistent with some estimates that 

up to 40% of the effort required to write an object

oriented program goes into the design phase. Also, 

when object-oriented languages are used in an 

overly procedural fashion (which is quite easy to 

do in C++), the benefits of the methodology are 

lost and the resulting code is often worse than a 

traditional program. This is similar to an effect 

noticed when Ada was first introduced. Many pro

grammers were quickly retrained in the Ada syn

tax but not its design philosophy. Of course, the 

payback to putting more effort in the design, is in 

reduced debugging time and easier maintainabil

ity I extensibility. 

The use of object-oriented languages for nu

merical applications is being hampered by the fact 

that object-oriented languages are not Fortran. 

Fortran is still the language of choice for a major

ity of people doing computational science, partic

ularly on supercomputers. There are a number of 

reasons for this: 

1. Supercomputer Fortran compilers typically 

vectorize code better than other compilers. 

2. Fortran is widely understood. 

3. A great deal of Fortran code exists. 

4. There is a built-in resistance to change. 

In order for object-oriented design and program

ming to make serious inroads in computational 

science, scientists and programmers are going to 

have to see some obvious benefits. We think the 

most convincing argument will come from the ex

tensibility of object-oriented programs. If a com

putational scientist sees a group getting good 

results quickly, by virtue of being able to easily 

change their programs, the scientist will naturally 
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become interested in the programming tech

niques. 

In summary, we based the top-level design of 

FastScat on the physics of scattering. This lead to 

a flexible code that is easv to maintain and ex

tend, and yet does not necessarily sacrifice effi

ciency. The fundamental calculations are per

formed by computational kernels such as the 

BLAS and a small set of hand -tuned methods in 

the quadrature classes. The high-level classes 

simply orchestrate the operation of the kernels. In 

the future, we plan to extend FastScat to handle 

more complex scattering problems and to port the 

code to massively parallel machines and to vector 

machines such as the Crav. 
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