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Abstract

Transformer-based models have made tremen-

dous impacts in natural language generation.

However the inference speed is a bottleneck

due to large model size and intensive comput-

ing involved in auto-regressive decoding pro-

cess. We develop FastSeq framework to ac-

celerate sequence generation without accuracy

loss. The proposed optimization techniques in-

clude an attention cache optimization, an effi-

cient algorithm for detecting repeated n-grams,

and an asynchronous generation pipeline with

parallel I/O. These optimizations are general

enough to be applicable to Transformer-based

models (e.g., T5, GPT2, and UniLM). Our

benchmark results on a set of widely used

and diverse models demonstrate 4-9x infer-

ence speed gain. Additionally, FastSeq is easy

to use with a simple one-line code change. The

source code is available at https://github.

com/microsoft/fastseq.

1 Introduction

Transformer-based model architectures have made

tremendous impact in multiple domains. However,

due to large model size and intensive computing

involved in the decoding process, the inference

speed is still a bottleneck for long sequences appli-

cations (Wu et al., 2016; Tay et al., 2020). A variety

of model architectural innovations have been pro-

posed to increase the generation speed from differ-

ent perspectives. One trend is to change the model

architectures, like model distillation (Shleifer and

Rush, 2020) and sparse attention (Beltagy et al.,

2020). Although these techniques can alleviate the

performance issue, there may be still some trade-

off between model accuracy and speed. On the

other hand, efficient infrastructures have been de-
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veloped to accelerate the inference speed, e.g., Ten-

sorRT (Vanholder, 2016) and FasterTransformers1.

In this paper, we present FastSeq framework

to make sequence generation faster. FastSeq can

accelerate the sequence generation by 4x to 9x

with a simple one-line code change for models

in FairSeq (Ott et al., 2019) and Huggingface-

Transformers (Wolf et al., 2020). The design prin-

ciple of FastSeq is to improve the inference speed

without losing model accuracy and usability.

Our optimization approaches include an atten-

tion cache optimization, an efficient algorithm for

detecting repeated n-grams, and an asynchronous

generation pipeline with parallel I/O. These opti-

mizations are general enough for a wide range of

Transformer-based model (Vaswani et al., 2017) ar-

chitectures, including the encoder-decoder architec-

ture (e.g., T5 Raffel et al. 2020, BART Lewis et al.

2020, ProphetNet Qi et al. 2020), the decoder-only

architecture (e.g., GPT2 Radford et al. 2019), and

the encoder-only architecture (e.g., UniLM Dong

et al. 2019). FastSeq is also designed to be flexi-

ble for extension on supporting other models and

frameworks. Our technologies are partially adopted

by FairSeq2. A demo video can be found at https:

//www.youtube.com/watch?v=jrdsEUxhSEE.

2 Preliminary Analysis

For models with similar size, the sequence genera-

tion is much slower than classification, regression

or language score computation. Why is the gen-

eration so time-consuming? Before analyzing the

reasons, let’s recap the generation algorithms first.

2.1 Generation Algorithms

Encoder-decoder structure is used in the most com-

petitive models for sequence-to-sequence genera-

1FasterTransformer Github
2See pull requests FastSeq n-gram Blocking and Beam

Search Perf Improvement

https://github.com/microsoft/fastseq
https://github.com/microsoft/fastseq
https://www.youtube.com/watch?v=jrdsEUxhSEE
https://www.youtube.com/watch?v=jrdsEUxhSEE
https://github.com/NVIDIA/DeepLearningExamples/tree/master/FasterTransformer
https://github.com/pytorch/fairseq/commit/bff7f85206f6f64b9455035893d44d66b98e33b0
https://github.com/pytorch/fairseq/pull/1852
https://github.com/pytorch/fairseq/pull/1852
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tion. The encoder side takes an input sequence

of symbol representations (x1, ..., xn) and outputs

a sequence of continuous representations z =
(z1, ..., zn). Then the decoder side generates an

output sequence (y1, ..., yt) with one element at a

time. At each step, the model is auto-regressive by

consuming the previously generated symbols and

then computing the probability scores to select the

next element. Greedy search and beam search are

two popular algorithms used for the selection of

next element. The difference between them is that

at each step, greedy search only selects one candi-

date with maximum score, but beam search selects

the top k candidates as beams. As beam search

maintains multiple beams during the generation, it

usually outputs a better result than greedy search.

To avoid repeated computation in the attention

layer, the key (K) and value (V ) from previous

and current steps are usually cached to compute

the next token. Equation (1) describes how the self-

attention with the cache mechanism is implemented

at step t.

Qt
[B×M,1,D]

= yt−1
[B×M,1,D]

· Wq
[D×D]

Kt
[B×M,t,D]

= concat(Cache Kt−1
[B×M,t−1,D]

, yt−1 · Wk
[D×D]

)

Vt
[B×M,t,D]

= concat(Cache Vt−1
[B×M,t−1,D]

, yt−1 · Wv
[D×D]

)

attnt
[B×M,1,D]

= softmax(
QtK

T
t

√

dkt
)Vt

(1)

where B is the batch size; M is the beam size; D

is the embedding dimension; Qt, Kt, Vt represent

query, key, value respectively, and are in the shape

of RB×M×R
T×R

D; Wq, Wk, Wv are the weights

for the query, key, and value in the shape of RD×D;

attnt is in the shape of RB×M × R
1 × R

D.

To simplify the equations, we do not consider

multi-heads here, but these equations can be ad-

justed to be of multi-head style.

2.2 Bottlenecks in Generation

Figure 1a shows the profiling results of running the

official BART model implemented by FairSeq. It

indicates that maintaining cache, blocking n-gram

repeats, and post-process individually take longer

time than decoding itself. Profiling is done by run-

ning the official BART implemented by FairSeq

v0.0.9 on CNN DM dataset with default param-

eters (batch size 32, beam size 4, and no-repeat

n-gram 3). Non-computation parts, like maintain

cache, blocking n-gram repeats and post-process,

cost more than 80% of the generation time. We

analyze these time-consuming components below.

(a) Before optimizations (b) After optimizations

Figure 1: (a) Before optimizations: non-computation

operations, e.g, maintain cache, n-gram blocking and

post-process cost most of the time. (b) After optimiza-

tions: majority of time is spent on encode and decode.

Cache Maintenance Along with better genera-

tion results, beam search introduces significant ad-

ditional computational and memory cost. As Equa-

tion (1) indicates, the size of Xt, Qt, Kt, Vt, and

attnt in beam search is M times larger than those

in greedy search. It results in more memory con-

sumption, larger matrix operations (e.g., concat),

and more expensive cache maintenance (e.g., re-

ordering the top-k beams and the cached key and

value at each step). Moreover, the batch size is con-

strained by large occupied memory, which results

in a low GPU utilization.

Block N-Gram Repeats Blocking N-Gram Re-

peats is a widely used operation to avoid an n-gram

appears more than once in natural language model

(Paulus et al., 2018; Klein et al., 2017). It prohibits

the repetitive generation of n-grams by setting their

probability scores to zero. However, conventional

implementation often needs to scan text sequen-

tially and move data between GPU and CPU fre-

quently. Its time complexity is quadratic in terms of

sequence length. When processing long sequences,

this operation becomes another bottleneck.

Post-process It deals with detokenization and

final result output. Post-process performance is

largely restricted by two parts: frequent exchange

of small data between GPU and CPU and the detok-

enization efficiency. In addition, for a synchronized

pipeline, post-process will block the generation for

the next batch of samples, while there is no required

dependency between these two components.
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3 Design

In order to address above bottlenecks, optimiza-

tions need to be done at multiple levels, including

operations, models, and pipelines, which basically

touch every component of a sequence generation

framework. It is a non-trivial burden for researchers

and practitioners. As a result, we develop this Fast-

Seq library to address these barriers and speed

up end-to-end inference in sequence generation.

FastSeq is designed with following features: (i)

speed up the inference of sequence models without

any accuracy loss; (ii) easy to use and compati-

ble Python APIs with FairSeq and HuggingFace-

Transformers; (iii) flexible to be extended to sup-

port new models and frameworks.

FastSeq is written in PyTorch (Paszke et al.,

2019) and composed of (1) ops module: provide

efficient implementations of kernels (e.g., block

n-gram repeats); (2) optimizer module: optimize

model implementations in run-time, where more

efficient implementations will be automatically

patched to replace the ones in existing NLP toolk-

its (e.g., FairSeq and HuggingFace-Transformers)

or the deep learning libraries (e.g., PyTorch); (3)

models module: define the model architectures

(e.g., ProphetNet, UniLM). It is noteworthy that the

models in FairSeq and HuggingFace-Transformers

are natively supported as well. Only one-line code

change is needed to make them work with Fast-

Seq; (4) command line interfaces (CLIs) mod-

ule: run the inference via commands with an asyn-

chronous pipeline, including preprocess (e.g., to-

kenization), generation process, and post-process

(e.g., detokenization). These CLIs are compatible

with FairSeq and HuggingFace-Transformers as

well. Users can use the same parameters to run

their end-to-end inferences.

FastSeq is designed to be easy to use. Existing

model usages (e.g., model content and parameter

settings) in FairSeq and Huggingface-Transformers

do not need to be changed. The example code can

be found in below:

• Python API

# simply add the import of FastSeq

import fastseq

import torch

bart = torch.hub.load(

’pytorch/fairseq’,

’bart.large.cnn’)

bart.cuda().eval().half()

slines = [

"Welcome to FastSeq. "

"Hope you enjoy it."]

hypotheses = bart.sample(

slines,

beam=4,

lenpen=2.0,

max_len_b=140,

min_len=55,

no_repeat_ngram_size=3)

print(hypotheses)

• Command Line Interface

fastseq-generate-for-fairseq \

DATA \

--path MODEL \

--fp16 \

--task translation \

--batch-size BATCH_SIZE \

--gen-subset valid \

--bpe gpt2 \

--beam 4 \

...

4 Optimizations

To address the bottlenecks discovered in Sec-

tion 2.2, we develop following optimizations.

4.1 Attention Cache Optimization

This section introduces how the cache for the key

and value in self-attention and encoder-decoder

attention can be optimized to further speed up the

inference. We describe the cache deduplication

below, see more comprehensive analysis and a new

attention method with faster speed in our work EL-

Attention (Yan et al., 2021)

4.1.1 Cache Optimization in Self-Attention

For the decoder-only or encoder-only Transformer

models (e.g., GPT2, UniLM), X is the prefix of

the generated hypothesis. In conventional imple-

mentations, X is replicated along beam dimension,

and the corresponding partial in the key (K) and

value (V ) is same for each beam. This means, as-

suming Kt and Vt to be of dimension [B,M,N +
T,D], K0(b, i, n, d) = · · · = Kt(b, j, n, d) and

V0(b, i, n, d) = · · · = Vt(b, j, n, d), for ∀b ∈

[0, B), ∀i, j ∈ [0,M), ∀n ∈ [0, N), ∀d ∈ [0, D),
where N is the length of X , B is the batch size, M

is the beam size, D is the embedding dimension.

To optimize the cache in self-attention, we can

split the cached key and value in Equation (1) in

two parts: Cache K ′ and Cache V ′ for the pre-

fix; Cache Kt and Cache Vt for the generated

sequence up till the time step t. With this split, the

size of Cache K ′ and Cache V ′ can be reduced
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from B ×M ×N ×D to B × 1×N ×D. This

also helps decrease cache reorder complexity by a

factor of M .

However, the above split operation results

in incompatible shapes between Cache K ′ and

Cache Kt, and between Cache V ′ and Cache Vt.

Instead of reshaping these cached keys and values,

einsum is utilized to compute attnt. This way,

the expensive concat operations on large tensors

can be avoided.

With the above changes, the matrix operations

will be conducted on the tensors with much smaller

size, so the peak memory can be smaller, the opera-

tions can run faster, and then a larger batch size can

be leveraged. For example, at the step t, the sizes

of Cache Kt−1 and Cache Vt−1 decrease from

B×M×(N+t−1)×D to B×M×(t−1)×D by
N+t−1

t−1
times. Then concat(Cache Kt−1, xt ·Wk)

and concat(Cache Vt−1, xt · WV ) can be much

quicker than before due to less GPU memory allo-

cation, copy, and deallocation. The peak memory

during concat is largely reduced as well. Mean-

while, this implementation will save the same

amount of data movement when reordering the

beams in Cache Kt−1 and Cache Vt−1 because

Cache K ′ and Cache V ′ do not need to be fre-

quently reordered since they are de-duplicated

along beam dimension.

4.1.2 Cache Optimization in

Encoder-Decoder Attention

The cached key and value in the encoder-decoder

attention also have duplication. The reason is that

the key and value in the encoder-decoder attention

are calculated based on the final output hidden state

(S) from the encoder side. Accordingly, the ele-

ments of cached key and value at the beam dimen-

sion are the same. Therefore, the size of Cache K

and Cache V can be reduced by M times, from

B ×M × N ×D to B × 1 × N ×D. Then the

optimization benefits mentioned in Section 4.1.1

can be achieved here as well, including peak mem-

ory reduction and larger batch size. Additionally,

the cached key and value are not needed to be fre-

quently reordered since the elements at the beam

dimension are exactly the same.

Notably, the above proposed optimizations are

general and can be applied to a variety of mod-

els with different architectures if they share fol-

lowing features: 1) attention-based architectures,

including self-attention or encoder-decoder atten-

tion; 2) auto-regressive decoding based on beam

Algorithm 1 GPU version no-repeat-ngram algo-

rithm with arguments - ngram length n, previously

generated tokens tokens, current step token proba-

bility distribution probs.

function BLOCK(tokens, probs, n)

nBlk = tokens.rows

nThr = tokens.columns+ 1− n

shMem = sizeof(tokens.row(0))
BAN <<< nBlk, nThr, shMem >>>

(tokens, probs, n)

function BAN(tokens, probs, n)

row = blockIdx.x

copy row-th row of tokens from global

mem to shared mem shm

col = threadIdx.x

start = tokens.columns+ 1− n

for i = 0 to n− 1 do

if shm[col + i] 6= shm[start+ i] then

return

tokenToBan = shm[col + n− 1]
probs[row, tokenToBan] = 0

search. These models could be classic Transformer-

based encoder-decoder architectures (e.g., BART,

ProphetNet, T5), Transformer-based decoder-only

architectures (e.g, GPT2), or Transformer-based

encoder-only architectures (e.g., UniLM).

The detailed implementations of the optimized

self-attention and encoder-decoder attention is pro-

vided in the Appendix.

4.2 GPU-based Block N-Gram Repeats

Algorithm

As observed in Figure 1a, the cost of block n-gram

repeats algorithm is as high as 25% of generation

time. To reduce the cost, a new GPU-based ker-

nel (see Algorithm 1) is developed to leverage the

power of parallel compute and achieves the follow-

ing benefits: 1) avoiding data movement between

GPU and CPU to alleviate the throughput bottle-

neck of PCIe bus interface. 2) scanning n-grams in

parallel. Instead of sequentially scanning tokens for

detecting repeated n-grams, they can be scanned

in parallel using threads equal to the number of

n-grams generated till the time step t. Furthermore,

each sample in a batch can be processed in parallel

using multiple thread-blocks. 3) using GPU shared

memory for faster memory access.

Since each token needs to be read multiple times
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Model Architecture Task Baseline FastSeq Speedup

encoder-decoder architecture

BART (Lewis et al., 2020) 12L-12L-1024 CNN/DailyMail 2.4 18.4 7.7x

DistilBART (Wolf et al.) 12L-6L-1024 CNN/DailyMail 3.4 18.5 5.4x

ProphetNet (Qi et al., 2020) 12L-12L-1024 CNN/DailyMail 2.8 10.7 3.8x

T5 (Raffel et al., 2020) 12L-12L-768 WMT16 EN-RO 8.7 31.3 4.3x

Transformer (Ott et al., 2018) 6L-6L-1024 WMT16 EN-DE 96.0 417.0 4.3x

decoder-only architecture

GPT2 (Radford et al., 2019) 0L-12L-768 CNN/DailyMail 3.0 16.7 5.5x

encoder-only architecture

UniLM (Dong et al., 2019) 12L-0L-768 CNN/DailyMail 1.7 16.4 9.6x

Table 1: Benchmark results on models of different architectures. Speed is measured by samples/s.

(equal to token length of n-gram), they are stored in

shared memory instead of global memory for faster

access. Jia et al. (2018) reports shared memory

bandwidth for Volta V100 is 16x of global memory

bandwidth. Although there are multiple ways to

organize CUDA thread blocks, our approach is to

assign each n-gram to a thread and each thread-

block to handle a sequence stream. In this way,

Block N-gram repeats is parallelized along hori-

zontal and vertical dimensions of a batch.

4.3 Asynchronous Pipeline with Parallel I/O

As shown in Figure 1a, post-process takes signif-

icant time (6.8s) in the generation process. It is

under-optimized in many existing seq2seq frame-

works. One reason is that post-process is not a

part of the training process, many efforts are spent

on optimizing the training pipeline and the model

structure rather than the generation speed. Another

reason is, despite of works focusing on genera-

tion speed, like distilling model, the speed metric

only covers the computation time but does not in-

clude the post-process part. For example, FairSeq

does not consider the post-process time when it

measures the speed. These biases result in a big

overlooked speed-up opportunity.

To improve the efficiency of the pipeline, we

develop an asynchronous pipeline with parallel I/O.

Similar to pre-fetch technology which loads next

batch of data to GPU while running inference on

the current batch, we post-process the current batch

in a background thread while running generation

on the next batch.

5 Evaluation

In the benchmarks, FairSeq and HuggingFace-

Transformers are used as the baseline to evaluate

the performance. The selected models cover differ-

ent kinds of architectures, including the encoder-

decoder models (e.g., BART, DistilBART, T5,

ProphetNet), the decoder-only models (e.g., GPT2),

and the encoder-only models (e.g., UniLM). CNN

/ Daily Mail dataset (Hermann et al., 2015) and

WMT’16 (Bojar et al., 2016) are used as the bench-

mark datasets. The benchmark experiments are

split into two groups 1) HuggingFace-Transformers

with/without FastSeq; 2) FairSeq with/without

FastSeq. If both FairSeq and HuggingFace-

Transformers have implemented the model, we

choose the faster result as the baseline.

Hardware The experiments are conducted on a

node with 1 GPU (NVIDIA Tesla V100 PCIe 16GB

) and 24 cores CPU (Intel(R) Xeon(R) CPU E5-

2690 v4 @ 2.60GHz).

5.1 End-to-end Performance

The end-to-end benchmarks (including model load-

ing, preprocess, model inference, and post-process)

have been conducted to evaluate the performance.

For each model, we use the same configuration ex-

cept batch size. We search the largest batch size for

each framework by doubling it per search run. Each

experiment is executed 10 times and the average

running time is computed as the final result. The

speed number is measured in samples per second.

With the optimizations of FastSeq, the end-to-

end performance yields a roughly 4x to 9x speedup,

see Table 1 for more details3. In the baseline, for

summarization dataset CNN/DailyMail, the speed

of all models (e.g., BART, DistilBART, ProphetNet,

GPT2, UniLM) is between 1.7 and 3.4 samples

per second. Enabling FastSeq boosts the speed to

3The baseline for BART is FairSeq and the baseline for
DistilBART is Huggingface Transformers.
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Model Batch Cache Throughput
size GB samples/s

BARTlarge no cache 32 0.0 1.8 (0.7x)
BARTlarge 32 6.3 2.4 (1.0x)

+Asynchronous pipeline 32 6.3 3.6 (1.5x)
+GPU n-gram block 32 6.3 5.6 (2.3x)
+Attention cache optimize 32 1.8 8.1 (3.3x)
+Larger batch 128 7.2 18.4 (7.7x)

Table 2: BARTlarge is the official version from FairSeq.

No cache: disable cache on FairSeq. Generation pa-

rameters: beam size = 4, no-repeat n-gram = 3. Data:

CNN DM validation dataset. Cache size is estimated

according to max input length 1024, output length 50.

more than 10 samples per second for all models

studied here, and the BART model achieves 18.4

samples per second, which is 7.7 times speedup.

On the two WMT16 translation datasets, FastSeq

improves throughput by 4.3 times.

In following sections, we will present analyses

on the three optimizations used in FastSeq.

5.2 Analysis of the Cache Optimization

To evaluate effect of the cache optimizations intro-

duced in Section 4.1, Table 2 compares the results

of not using cache, using conventional cache, and

using the proposed optimized cache. Although the

computing complexity is the same for both cache-

based approaches, the proposed cache optimization

approach reduces the usage of GPU memory by 3.5

times. Such smaller cache memory can speed up

concat operations and reduce the data movement

during the beam reordering, and also allow a larger

batch size. These advantages together increase gen-

eration throughput from 5.6 to 18.4 samples/s.

5.3 Analysis of Block N-Gram Repeats

To demonstrate the effectiveness of GPU kernel

described in Section 4.2, the new method is com-

pared with two other methods in Table 3: 1) the one

implemented by FairSeq (called baseline). 2) a re-

vised CPU-based kernel, which improves baseline

by moving data from GPU to CPU before comput-

ing to avoid multiple data transfers (called CPU

kernel). The time difference (4477.1 ms vs 584.9

ms) between baseline and CPU kernel indicates

that data transfer optimization alone can speedup

about 8x. Furthermore, the proposed GPU kernel,

which avoids data transfer and uses parallel compu-

tation has about 75x speed gain compared to CPU

kernel. As shown in Figure 1b, the computing time

after optimization becomes quite small, from about

25% to 1% of the overall time.

Method Time (ms)

baseline 4477.1

CPU kernel 584.9

GPU kernel 7.8

Table 3: Compare three implementations of no-repeat

n-gram.

Model With Baseline FastSeq
fp16 R-1/R-2/R-L R-1/R-2/R-L

UniLMlarge
4

✗ 43.08/20.43/40.34 43.09/20.29/40.32
UniLMlarge ✓ 43.06/20.42/40.32 43.08/20.29/40.32
BARTlarge ✗ 44.21/21.20/41.03 44.21/21.20/41.03
BARTlarge ✓ 44.22/21.20/41.04 44.22/21.21/41.03
ProphetNetlarge ✗ 44.20/21.17/41.30 44.20/21.17/41.30
ProphetNetlarge ✓ 44.17/21.17/41.28 44.17/21.17/41.28

Table 4: Metrics (ROUGE-1, ROUGE-2, and ROUGE-

L) on CNN/DailyMail test set.

5.4 Analysis of Asynchronous Pipeline with

Parallel I/O

Table 2 measures the performances of the synchro-

nized pipeline with single process implemented by

FairSeq and the proposed asynchronous pipeline

with parallel I/O in FastSeq. The throughput is

increased from 2.4 samples/s to 3.6 samples/s

(around 1.5x). The speedup comes from the bet-

ter resource scheduling, where the asynchronous

pipeline allows post-process to run in the back-

ground when running the model inference, and the

support of multi-thread detokenization. As shown

in Figure 1b, the post-process unique time is re-

duced from about 38% to 1% of the overall time.

5.5 Analysis of Generation Quality

All optimizations in FastSeq do not affect the

model generation quality. As discussed in Sec-

tion 4, the logic for detecting the repeated n-gram

blocks is the same for the CPU-based and GPU-

based kernels, and the asynchronous pipeline with

Parallel I/O only optimizes the I/O efficiency, so

these two optimizations do not change the model

outputs in any fashion. For the attention cache

optimization, it does not affect model outputs in

theory. However, in practice, if using mix preci-

sion (e.g., floating point 16) for inference, there

may be a few trivial differences in the outputs due

to the numerical stability issue in GPU. Similar

differences can be observed when changing batch

size during floating point 16 inference. But if using

floating point 32, the generated results are exactly

4The differences between the ROUGE scores for UniLM
are due to the differences in the data preprocess and the imple-
mentations of length-penalty.
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the same. That means the minor differences are not

caused by the proposed cache optimization itself.

In FastSeq, the unit tests have been developed to

make sure the inference outputs are the same with

and without FastSeq when using floating point 32.

We also compare the output quality based on the

CNN/DailyMail dataset (Table 4). The quite simi-

lar ROUGE scores demonstrate that FastSeq does

not impact the model quality.

6 Related Work

A variety of efforts have been developed to improve

the efficiency of Transformer models. From the per-

spective of model architectures, there are efforts on

reducing attention matrix size by chunking input

sequences into blocks (Beltagy et al., 2020), or us-

ing strided convolution over the keys and queries

to compress memory (Liu* et al., 2018). Another

kind of approaches focus on reducing model size

and memory consumption by weight quantization

(Zafrir et al., 2019), weight sharing (Dehghani

et al., 2019), and weight pruning (Michel et al.,

2019). Knowledge distillation is another popular

approach (Hinton et al., 2015).

On the other hand, a dozen of innovations on

infrastructure side have been conducted to speed

up serving of Transformer models. The fused

chains of basic operators in the attention layers

have been widely adopted in many frameworks

(e.g., Onnx Runtime 5, Deep Speed6). It is also

performance critical to optimize data layout and

movement among the connected operations (Ivanov

et al., 2020). In situation of varied input lengths,

TurboTransformers (Fang et al., 2021) is developed

to better serve online models by using dynamic

batch scheduler, more efficient memory allocation

and deallocation algorithms. FasterTransformers7

deeply optimizes kernels of encoder, decoder and

beam search to better utilize computer power of

Tensor Core.

7 Conclusion

In this work, we present FastSeq, which provides

general solutions for speeding up the sequence gen-

eration without accuracy loss. The proposed opti-

mizations include an attention cache optimization,

an GPU-based n-grams blocking algorithm, and an

5https://github.com/microsoft/

onnxruntime
6https://www.deepspeed.ai
7FasterTransformer Github

asynchronous generation pipeline. In the future,

we will support more models and explore more

techniques to accelerate the generation speed.
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A Cache Optimization in Self-Attention

First, we can split the cached key and value to two

parts: Cache K ′ and Cache V ′ are for the pre-

fix; Cache Kt and Cache Vt are for the generated

sequence at the t step as below:

Cache K ′

[B,1,N,D]
= X

[B×1,N,D]
Wk

Cache V ′

[B,1,N,D]
= XWv

Kt
[B×M,t,D]

= concat(Cache Kt−1
[B×M,t−1,D]

, yt−1 · Wk
[D,D]

)

Vt
[B×M,t,D]

= concat(Cache Vt−1
[B×M,t−1,D]

, yt−1 · Wv
[D,D]

)

(2)

The above split operation results in incompatible

shapes between Cache K ′ and Cache Kt, and be-

tween Cache V ′ and Cache Vt. Instead of reorga-

nizing these cached keys and values, Equation (3)

is leveraged to compute attnt. By this way, the

expensive concat operations on large tensors can

be avoided.

attn w0
[B×M,1,N ]

= einsum(Qt, Cache K ′)

attn w1
[B×M,1,t]

= Qt ·K
T
t

attn w
[B×M,1,N+t]

= concat(attn w0, attn w1)

attn prob
[B×M,1,N+t]

= softmax(
attn w
√

dkt
)

attn prob0
[B×M,1,N ]

, attn prob1
[B,M,1,t]

= split(attn prob)

attnt0
[B×M,1,D]

= einsum(attn prob0, Cache V ′)

attnt1
[B×M,1,D]

= attn prob1 · Vt

attnt
[B×M,1,D]

= attnt0 + attnt1

(3)

B Cache Optimization in

Encoder-Decoder Attention

The first step is to remove the duplication in

Cache K and Cache V. For the incompatible shape

between Q and Cache K, einsum is leveraged to

avoid the reshape.

Cache K
[B,1,N,D]

= S
[B,1,N,D]

·Wk

Cache V
[B,1,N,D]

= S ·Wv

attn w
[B×M,1,N ]

= einsum(Qt, Cache K)

attn probt
[B×M,1,N ]

= softmax(
attn w
√

dkt
)

attnt
[B×M,1,D]

= einsum(attn probt, Cache V )

(4)

As such, the size of Cache K and Cache V can

be reduced by M times from B ×M ×N ×D to

B × 1 × N ×D. Then the optimization benefits

in self-attention can be achieved here as well, in-

cluding peak memory reduction and larger batch

size. Additionally, the cached key and value are

not needed to be reordered since the elements at

the beam dimension are exactly the same.


