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Abstract

Simultaneous Localization and Mapping (SLAM) is an essential capability

for mobile robots exploring unknown environments. The Extended Kalman

Filter (EKF) has served as the de-facto approach to SLAM for the last fifteen

years. However, EKF-based SLAM algorithms suffer from two well-known

shortcomings that complicate their application to large, real-world environ-

ments: quadratic complexity and sensitivity to failures in data association. I

will present an alternative approach to SLAM that specifically addresses these

two areas. This approach, called FastSLAM, factors the full SLAM posterior

exactly into a product of a robot path posterior, and N landmark posteriors

conditioned on the robot path estimate. This factored posterior can be approx-

imated efficiently using a particle filter. The time required to incorporate an

observation into FastSLAM scales logarithmically with the number of land-

marks in the map.

In addition to sampling over robot paths, FastSLAM can sample over po-

tential data associations. Sampling over data associations enables FastSLAM

to be used in environments with highly ambiguous landmark identities. This

dissertation will describe the FastSLAM algorithm given both known and un-

known data association. The performance of FastSLAM will be compared

against the EKF on simulated and real-world data sets. Results will show that

FastSLAM can produce accurate maps in extremely large environments, and

in environments with substantial data association ambiguity. Finally, a con-

vergence proof for FastSLAM in the linear-Gaussian case and an extension of

FastSLAM to dynamic worlds will be presented.
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Table of Notation

st pose of the robot at time t

θn position of the n-th landmark

Θ set of all n landmark positions

zt sensor observation at time t

zt set of all observations {z1, . . . ,zt}
ut robot control at time t

ut set of all controls {u1, . . . ,ut}
nt data association of observation at time t

nt set of all data associations {n1, . . . ,nt}
h(st−1,ut) vehicle motion model

Pt linearized vehicle motion noise

g(st ,Θ,nt) vehicle measurement model

Rt linearized vehicle measurement noise

ẑnt
expected measurement of nt-th landmark

zt − ẑnt
measurement innovation

Zt innovation covariance matrix

St FastSLAM particle set at time t

S
[m]
t m-th FastSLAM particle at time t

µ
[m]
n,t ,Σ

[m]
n,t n-th landmark EKF (mean, covariance) in the m-th particle

N (x;µ,Σ) Normal distribution over x with mean µ and covariance Σ
w

[m]
t Importance weight of the m-th particle
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Chapter 1

Introduction

The problem of Simultaneous Localization and Mapping, also known as SLAM, has at-

tracted immense attention in the robotics literature. SLAM addresses the problem of a mo-

bile robot moving through an environment of which no map is available a priori. The robot

makes relative observations of its ego-motion and of objects in its environment, both cor-

rupted by noise. The goal of SLAM is to reconstruct a map of the world and the path taken

by the robot. SLAM is considered by many to be a key prerequisite to truly autonomous

robots [57].

If the true map of the environment were available, estimating the path of the robot would

be a straightforward localization problem [11]. Similarly, if the true path of the robot were

known, building a map would be a relatively simple task [37, 58]. However, when both the

path of the robot and the map are unknown, localization and mapping must be considered

concurrently—hence the name Simultaneous Localization and Mapping.

1.1 Applications of SLAM

SLAM is an essential capability for mobile robots traveling in unknown environments

where globally accurate position data (e.g. GPS) is not available. In particular, mobile

robots have shown significant promise for remote exploration, going places that are too

distant [21], too dangerous [59], or simply too costly to allow human access. (See Fig-

ure 1.1.) If robots are to operate autonomously in extreme environments undersea, under-

ground, and on the surfaces of other planets, they must be capable of building maps and

8



CHAPTER 1. INTRODUCTION 9

(a) Undersea (b) Underground (c) Other planets

Figure 1.1: Target environments for SLAM

navigating reliably according to these maps. Even in benign environments such as the inte-

riors of buildings, accurate, prior maps are often difficult to acquire. The capability to map

an unknown environment allows a robot to be deployed with minimal infrastructure. This

is especially important if the environment changes over time.

The maps produced by SLAM algorithms typically serve as the basis for motion planning

and exploration. However, the maps often have value in their own right. In July of 2002,

nine miners in the Quecreek Mine in Sommerset, Pennsylvania were trapped underground

for three and a half days after accidentally drilling into a nearby abandoned mine. A sub-

sequent investigation attributed the cause of the accident to inaccurate maps [20]. Since

the accident, mobile robots and SLAM have been investigated as a possible technology for

acquiring accurate maps of abandoned mines. One such robot, shown in Figure 1.1(b), is

capable of building 3D reconstructions of the interior of abandoned mines using SLAM

technology [59].

1.2 Joint Estimation

The chicken-or-egg relationship between localization and mapping is a consequence of how

errors in the robot’s sensor readings are corrupted by error in the robot’s motion. As the

robot moves, its pose estimate is corrupted by motion noise. The perceived locations of

objects in the world are, in turn, corrupted by both measurement noise and the error in the

estimated pose of the robot. Unlike measurement noise, however, error in the robot’s pose

will have a systematic effect on the error in the map. In general, this effect can be stated

more plainly; error in the robot’s path correlates errors in the map. As a result, the true

map cannot be estimated without also estimating the true path of the robot.
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(a) Map built without correcting robot path (b) Map built using SLAM

Figure 1.2: Correlation between robot path error and map error

Figure 1.2 shows a set of laser range scans collected by a mobile robot moving through

a typical office environment. The robot generates estimates of its motion using wheel

encoders. In Figure 1.2(a), the laser scans are plotted with respect to the path of the robot

as measured by the encoders. Clearly, as error accumulates in the estimated pose of the

robot, the overall map becomes increasingly inaccurate. Figure 1.2(b) shows the laser

readings plotted according to the path of the robot as reconstructed by a SLAM algorithm.

Although the relationship between robot path error and map error does make the SLAM

problem harder to solve in principle, I will show how this relationship can be exploited

to factor the SLAM problem into a product of much smaller problems. These smaller

problems can then be solved in a more efficient manner.

1.3 Posterior Estimation

According to the standard formulation of the SLAM problem, a robot executes controls

and accumulates observations of its environment, both corrupted by noise. Each control or

observation, coupled with an appropriate noise model, can be thought of as a probabilistic

constraint. For example, each control probabilistically constrains two successive poses of

the robot. Observations, on the other hand, constrain the relative positions of the robot and

objects in its environment. As the network of constraints expands, new observations can

be used to update not only the current map feature and robot pose, but also map features

that were observed in the past. An example of the constraints imposed by observations and

controls is shown in Figure 1.3.

Initially, these constraints may be very uncertain. However, as objects in the map are
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Figure 1.3: Observations and controls form a network of probabilistic constraints on the
pose of the robot and the relative positions of features in the robot’s environment. These
constraints are shown in the figure as dark lines.

observed repeatedly, the constraints become increasingly rigid. In the limit of infinite ob-

servations and controls, the positions of all map features will become fully correlated. The

primary goal of SLAM is to estimate this true map and and the true pose of the robot, given

the set of observations and controls currently available.

One approach to the SLAM problem would be to estimate the most likely robot pose and

map using a batch estimation algorithm similar to those used in the Structure From Mo-

tion literature [27, 62]. While powerful, these techniques operate on a set of observations

and controls that grow without bound, and thus are not appropriate for online operation.

Furthermore, these algorithms generally do not estimate the certainty with which differ-

ent sections of the map are known, an important consideration for a robot exploring an

unknown environment.

The most popular online solutions to the SLAM problem attempt to estimate a posterior

probability distribution over all possible maps and all possible robot poses, given the sensor

readings accumulated by the robot. This distribution, called the SLAM posterior, can be

written as:

p(st ,Θ|zt
,ut

,nt) (1.1)

where st is the current pose the robot and Θ is the map. The posterior is conditioned on

the set of all sensor readings zt , controls ut , and data associations nt . The data associations

nt describe the mapping of observations zt to features in Θ. At first glace, the posterior
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estimation approach may seem even less feasible than the maximum likelihood approach.

However, by making judicious assumptions about how the state of the world evolves, this

posterior can be computed efficiently.

Any parameterized model can be chosen to represent the map Θ, however it is commonly

assumed to be a collection of point features. This model assumes that the robot’s envi-

ronment can be represented as a collection of points, also known as “landmarks,” relative

to some external coordinate system. In a real implementation, these point landmarks may

correspond to the locations of features extracted from sensors, such as cameras, sonars, and

laser range-finders. Throughout this document I will assume the point landmark represen-

tation, though other representations can be used. Higher order geometric features, such as

line segments, have also been used to represent maps in SLAM [44].

Posterior estimation is desirable because, in addition to returning the most probable map

and robot path, it also estimates the uncertainty with which each quantity is known. Pos-

terior estimation has several advantages over solutions that consider only the most likely

state of the world. First, considering a distribution of possible solutions leads to more ro-

bust algorithms in noisy environments. Second, uncertainty can be used to evaluate the

relative information conveyed by different components of the solution. One section of the

map may be very uncertain, while other parts of the map are well known.

The following recursive formula, known as the Bayes Filter, can be used to compute the

SLAM posterior at time t, given the posterior at time t − 1. A complete derivation of the

Bayes Filter will be given in Chapter 2.

p(st ,Θ|zt
,ut

,nt) =

η p(zt |st ,Θ,nt)
∫

p(st |st−1,ut) p(st−1,Θ|zt−1
,ut−1

,nt−1)dst−1 (1.2)

In general, the integral in (1.2) cannot be evaluated in closed form. However, this function

can be computed by assuming a particular form for the posterior distribution. Many sta-

tistical estimation techniques, including the Kalman filter and the particle filter, are simply

approximations of the general Bayes Filter.

1.4 The Extended Kalman Filter

The dominant approach to the SLAM problem was introduced in a seminal paper by Smith

and Cheeseman [53] in 1986, and first developed into an implemented system by Moutarlier
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(a) SLAM in simulation. Ellipses
represent the uncertainty in the po-
sitions of the landmarks.

(b) Corresponding covariance ma-
trix. The darker the matrix element,
the higher the correlation.

Figure 1.4: EKF applied to a simulated data set

and Chatila [38, 39]. This approach uses the Extended Kalman Filter (EKF) to estimate the

posterior over robot pose and maps. The EKF approximates the SLAM posterior as a high-

dimensional Gaussian over all features in the map and the robot pose. The off-diagonal

elements of the covariance matrix of this multivariate Gaussian represent the correlation

between all pairs of state variables. As a result, the EKF is expressive enough to represent

the correlated errors that characterize the SLAM problem. An example of the EKF run

on simulated data is shown in Figure 1.4(a). The corresponding covariance matrix (drawn

as a correlation matrix) is shown in Figure 1.4(b). The darker the matrix element, the

higher the correlation between the state variables corresponding to the element’s row and

column. While the EKF has become the dominant approach to SLAM, it suffers from two

well-known problems that complicate its application in large, real-world environments:

quadratic complexity and sensitivity to failures in data association.

1.4.1 Quadratic Complexity

The first drawback of the EKF as a solution to the SLAM problem is computational com-

plexity. Both the computation time and memory required by the EKF scale quadratically

with the number of landmarks in the map. SLAM algorithms based on the full EKF gener-

ally do not scale beyond a few hundred landmarks. In contrast, reasonably large environ-
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ment models might contain millions of features.

Quadratic complexity is a consequence of the Gaussian representation employed by the

EKF. The uncertainty of the SLAM posterior is represented as a covariance matrix con-

taining the correlations between all possible pairs of state variables. In a two-dimensional

world, the covariance matrix contains 2N +3 by 2N +3 entries, where N is the total number

of landmarks in the map. Thus, it is easy to see how the memory required to store this co-

variance matrix grows with N2. Moreover, since the correlations between all pairs of state

variables are maintained, any sensor observation incorporated into the EKF will necessarily

affect all of the other state variables. To incorporate a sensor observation, the EKF algo-

rithm must perform an operation on every element in the covariance matrix, which requires

quadratic time. In practice, the full EKF is rarely applied to the SLAM problem. Instead,

a variety of approximations can be made in order to make computation of the EKF updates

computationally feasible. These approximations will be discussed further in Section 1.5.

1.4.2 Single-Hypothesis Data Association

The second problem with EKF-based SLAM approaches is related to data association, the

mapping between observations and landmarks. The SLAM problem is most commonly

formulated given known data association. This assumes that every observation made by the

robot comes with a label nt stating which landmark generated the reading. The SLAM pos-

terior in (1.1), for example, is conditioned on the associations nt of all of the observations.

In the real world, the associations between observations and landmarks are hidden variables

that must be determined in order to estimate the robot pose and the landmark positions.

The standard approach to data association in EKFs is to assign every observation to a land-

mark using a maximum likelihood rule; i.e. every observation is assigned to the landmark

most likely to have generated it. If the probability of the observation is too low, a new land-

mark is added to the filter. Since the EKF has no mechanism for representing uncertainty

over data associations, the effect of incorporating an observation given the wrong data as-

sociation can never be undone. If a large number of readings are incorporated incorrectly

into the EKF, the filter will diverge. Sensitivity to incorrect data association is a well known

failure mode of the EKF [13].

The accuracy of data association in the EKF can be improved substantially by considering

the associations of multiple observations simultaneously [1, 42], at some computational

cost. However, this does not address the underlying data association problem with the
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EKF, namely that it chooses a single data association hypothesis at every time step. The

correct association for a given observation is not always the most probable choice when it

is first considered. In fact, the true association for an observation may initially appear to be

quite improbable. Future observations may be required to provide enough information to

clearly identify the association as correct. Any EKF algorithm that maintains a single data

association per time step, will inevitably pick wrong associations. If these associations can

never be revised, repeated mistakes will eventually cause the filter to diverge.

1.5 Structure and Sparsity in SLAM

At any given time, the observations and controls accumulated by the robot constrain only

a small subset of the state variables. This sparsity in the dependencies between the data

and the state variables can be exploited to compute the SLAM posterior in a more effi-

cient manner. For example, two landmarks separated by a large distance are often weakly

correlated. Moreover, nearby pairs of distantly separated landmarks will have very similar

correlations. A number of approximate EKF SLAM algorithms exploit these properties

by breaking the complete map into a set of smaller submaps. Thus, the large EKF can be

decomposed into a number of loosely coupled, smaller EKFs. This approach has resulted

in a number of efficient, approximate EKF algorithms that require linear time [23], or even

constant time [32, 1, 3, 5] to incorporate sensor observations.

While spatially factoring the SLAM problem does lead to efficient EKF-based algorithms,

the new algorithms face the same difficulties with data association as the original EKF

algorithm. This thesis presents an alternative solution to the SLAM problem which exploits

sparsity in the dependencies between state variables over time. In addition to enabling

efficient computation of the SLAM posterior, this approach can maintain multiple data

association hypotheses. The result is a SLAM algorithm that can be employed in large

environments with significant ambiguity over the data association.

1.6 FastSLAM

As shown in Section 1.2, correlations between elements of the map only arise through robot

pose uncertainty. Thus, if the robot’s true path were known, the landmark positions could

be estimated independently. Stated probabilistically, knowledge of the robot’s true path

renders estimates of landmark positions to be conditionally independent.
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Figure 1.5: SLAM as a Dynamic Bayes Network

Proof of this statement can be seen by drawing the SLAM problem as a Dynamic Bayes

Network, as shown in Figure 2.2. The robot’s pose at time t is denoted st . This pose is

a probabilistic function of the previous pose of the robot st−1 and the control ut executed

by the robot. The observation at time t, written zt , is likewise determined by the pose st

and the landmark being observed Θnt
. In the scenario depicted in Figure 2.2, the robot

observes landmark 1 at t = 1 and t = 3, and observes landmark 2 at t = 2. The gray region

highlights the complete path of the robot s1 . . .st . It is apparent from this network, that this

path “d-separates” [51] the nodes representing the two landmarks. In other words, if the

true path of the robot is known, no information about the location of landmark 1 can tell us

anything about the location of landmark 2.

As a result of this relationship, the SLAM posterior (1.1) can be rewritten as the following

product:

p(st
,Θ | zt

,ut
,nt) = p(st | zt

,ut
,nt)

︸ ︷︷ ︸

path posterior

N

∏
n=1

p(θn | st
,zt

,ut
,nt)

︸ ︷︷ ︸

landmark estimators

(1.3)

This factorization states that the full SLAM posterior can be decomposed into a product of

N + 1 recursive estimators: one estimator over robot paths, and N independent estimators

over landmark positions, each conditioned on the path estimate. This factorization was first

presented by Murphy and Russel in 1999 [40]. It is important to note that this factorization

is exact, not approximate. It is a result of fundamental structure in the SLAM problem. An

complete proof of this factorization will be given in Chapter 3.

This factored posterior can be approximately efficiently using a particle filter, with each
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particle representing a sample path of the robot. Attached to each particle are N indepen-

dent landmark estimators (implemented as EKFs), one for each landmark in the map. Since

the landmark filters estimate the positions of individual landmarks, each filter is low dimen-

sional. In total there are N ·M Kalman filters, one for each feature in the map, for all M

particles in the particle filter. The resulting algorithm for updating this particle filter will

be called FastSLAM. Readers familiar with the statistical literature should note that Fast-

SLAM is an instance of the Rao-Blackwellized Particle Filter [17], by virtue of the fact that

it combines a sampled representation with closed form calculations of certain marginals.

There are four steps to recursively updating the particle filter given a new control and ob-

servation, as shown in Figure 1.6. The first step is to propose a new robot pose for each

particle that is consistent with the previous pose and the new control. Next, the landmark

filter in each particle corresponding to the latest observation is updated using to the stan-

dard EKF update equations. Each particle is given an importance weight, and a new set

of samples is drawn according to these weights. The importance resampling step corrects

for the fact that the proposal distribution and the posterior distribution are not the same.

This procedure converges asymptotically to the true posterior distribution as the number

of samples goes to infinity. In practice, FastSLAM generates a good reconstruction of the

posterior with a relatively small number of particles (i.e. 100).

Initially, factoring the SLAM posterior using the robot’s path may seem like a poor choice

because the length of the path grows over time. Thus, one might expect the dimensionality

of a filter estimating the posterior over robot path to also grow over time. However, this is

not the case for FastSLAM. As will be shown in Chapter 3, the landmark update equations

and the importance weights only depend on the latest pose of the robot st , allowing us to

silently forget the rest of the robot’s path. As a result, each FastSLAM particle only needs

to maintain an estimate of the current pose of the robot. Thus the dimensionality of the

particle filter stays fixed over time.

1. Sample a new robot path given the new control

2. Update landmark filters corresponding to the new observation

3. Assign a weight to each of the particles

4. Resample the particles according to their weights

Figure 1.6: Basic FastSLAM Algorithm
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1.6.1 Logarithmic Complexity

FastSLAM has two significant advantages over the EKF. First, by factoring the estimation

of the map into in separate landmark estimators conditioned on the robot path posterior,

FastSLAM is able to compute the full SLAM posterior in an extremely efficiently manner.

The motion update, the landmark updates, and the computation of the importance weights

can all be accomplished in constant time per particle. The resampling step, if implemented

naively, can be implemented in linear time. However, this step can be implemented in loga-

rithmic time by organizing each particle as a binary trees of landmark estimators, instead of

an array. The log(N) FastSLAM algorithm can be used to build a map with over a million

landmarks using a standard desktop computer.

1.6.2 Multi-Hypothesis Data Association

Sampling over robot paths also has an important repercussion for determining data asso-

ciations. Since each FastSLAM particle represents a specific robot path, the same data

association need not be applied to every particle. Data association decisions in FastSLAM

can be made on a per-particle basis. Particles that predict the correct data association will

tend to receive higher weights and be more likely to be resampled in the future. Particles

that pick incorrect data associations will receive low weights and be removed. Sampling

over data associations enables FastSLAM to revise past data associations implicitly as new

evidence becomes available.

This same process also applies to the addition and removal of landmarks. Often, per-

particle data association will lead to situations in which the particles build maps with dif-

fering numbers of landmarks. While this complicates the issue of computing the most

probable map, it allows FastSLAM to remove spurious landmarks when more evidence is

accumulated. If an observation leads to the creation a new landmark in a particular particle

but further observations suggest that the observation belonged to an existing landmark, the

particle will receive a low weight. The particle with the extra landmark will then be less

likely to be drawn in the resampling phase, and will probably be removed from the filter.

This process is similar in spirit to the “candidate lists” employed by EKFs to test new land-

marks. Unlike candidate lists, however, landmark testing in FastSLAM happens at no extra

cost as a result of sampling over data associations.
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1.7 Thesis Statement

In this dissertation I will advance the following thesis:

Sampling over robot paths and data associations results in a SLAM algorithm

that is efficient enough to handle very large maps, and robust to substantial

ambiguity in data association.

1.8 Thesis Outline

This thesis will present an overview of the FastSLAM algorithm. Quantitative experiments

will compare the performance of FastSLAM and the EKF on a variety of simulated and

real world data sets.

In Chapter 2, I will formulate the SLAM problem and describe prior work in the field,

concentrating primarily on EKF-based approaches.

In Chapter 3, I will describe the simplest version of the FastSLAM algorithm given both

known and unknown data association. This version, which I will call FastSLAM 1.0, is

the simplest FastSLAM algorithm to implement and works well in typical SLAM environ-

ments.

In Chapter 4, I will present an improved version of the FastSLAM algorithm, called Fast-

SLAM 2.0, that produces better results than the original algorithm. FastSLAM 2.0 incor-

porates the current observation into the proposal distribution of the particle filter and con-

sequently produces more accurate results when motion noise is high relative to the sensor

noise. Chapter 4 also contains a proof of convergence for FastSLAM 2. in linear-Gaussian

worlds.

In Chapter 5, I will describe an extension of the FastSLAM algorithm to dynamic worlds.



Chapter 2

Problem Description

In this chapter I will present an overview of the Simultaneous Localization and Mapping

problem, along with the most common SLAM approaches from the literature. Of primary

interest will be the algorithms based on the Extended Kalman Filter.

2.1 Problem Definition

Consider a mobile robot moving through an unknown, static environment. The robot exe-

cutes controls and collects observations of features in the world. Both the controls and the

observations are corrupted by noise. Simultaneous Localization and Mapping (SLAM) is

the process of recovering a map of the environment and the path of the robot from a set of

noisy controls and observations.

If the path of the robot were known with certainty (using GPS for example), then mapping

would be a straightforward problem. The positions of objects in the robot’s environment

could all be estimated using independent filters. However, when the path of the robot is

unknown, error in the robot’s path correlates errors in the map. As a result, the state of the

robot and the map must be estimated simultaneously.

The correlation between robot pose error and map error can be seen graphically in Fig-

ure 2.1(a). A robot is moving along the path specified by the dashed line, observing nearby

landmarks, drawn as circles. The shaded ellipses represent the uncertainty in the pose of

the robot, drawn over time. As a result of control error, the robot’s pose becomes more

uncertain as the robot moves. The estimates of the landmark positions are shown as un-

20
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(a) Before closing the loop: landmark uncertainty increases as robot pose uncertainty increases.
Robot pose estimates over time are shown as shaded ellipses. Landmark estimates are shown
as unshaded ellipses.

(b) After closing the loop: Revisiting a known landmark decreases not only the robot pose
uncertainty, but also the uncertainty of landmarks previously observed.

Figure 2.1: Robot motion error correlates errors in the maps
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shaded ellipses. Clearly, as the robot’s pose becomes more uncertain, the uncertainty in the

estimated positions of newly observed landmarks also increases.

In Figure 2.1(b), the robot completes the loop and revisits a previously observed landmark.

Since the position of this first landmark is known with high accuracy, the uncertainty in

the robot’s pose estimate will decrease significantly. This newly discovered information

about the robot’s pose increases the certainty with which past poses of the robot are known

as well. This, in turn, reduces the uncertainty of landmarks previously observed by the

robot. Again, this is because of the correlated nature of the SLAM problem. Errors in

the map are correlated through errors in the robot’s path. Any observation that provides

information about the pose of the robot, will necessarily provide information about all

previously observed landmarks.

2.2 SLAM Posterior

The pose of the robot at time t will be denoted st . For robots operating in a planar environ-

ment, this pose consists of the robot’s x-y position in the plane and its heading direction.

All experimental results presented in this thesis were generated in planar environments,

however the algorithms apply equally well to 3D worlds. The complete trajectory of the

robot, consisting of the robot’s pose at every time step, will be written as st .

st = {s1,s2, . . . ,st} (2.1)

I shall further assume that the robot’s environment can be modeled as a set of N immobile,

point landmarks. Point landmarks are commonly used to represent the locations of features

extracted from sensor data, such as geometric features in a laser scan or distinctive visual

features in a camera image. The set of N landmark locations will be written {θ1, . . . ,θN}.

For notational simplicity, the entire map will be written as Θ.

As the robot moves through the environment, it collects relative information about its own

motion. This information can be generated using odometers attached to the wheels of the

robot, inertial navigation units, or simply by observing the control commands executed by

the robot. Regardless of origin, any measurement of the robot’s motion will be referred to

generically as a control. The control at time t will be written ut . The set of all controls
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executed by the robot will be written ut .

ut = {u1,u2, . . . ,ut} (2.2)

As the robot moves through its environment, it observes nearby landmarks. In the most

common formulation of the planar SLAM problem, the robot observes both the range and

bearing to nearby obstacles. The observation at time t will be written zt . The set of all

observations collected by the robot will be written zt .

zt = {z1,z2, . . . ,zt} (2.3)

It is commonly assumed in the SLAM literature that sensor measurements can be decom-

posed into information about individual landmarks, such that each landmark observation

can be incorporated independently from the other measurements. This is a realistic as-

sumption in virtually all successful SLAM implementations, where landmark features are

extracted one-by-one from raw sensor data. Thus, we will assume that each observation

provides information about the location of exactly one landmark θn relative to the robot’s

current pose st . The variable n represents the identity of the landmark being observed. In

practice, the identities of landmarks usually can not be observed, as many landmarks may

look alike. The identity of the landmark corresponding to the observation zt will be writ-

ten as nt , where nt ∈ {1, . . . ,N}. For example, n8 = 3 means that at time t = 8 the robot

observed landmark number 3. Landmark identities are commonly referred to as “data as-

sociations” or “correspondences.” The set of all data associations will be written nt .

nt = {n1,n2, . . . ,nt} (2.4)

Again for simplicity, I will assume that the robot receives exactly one measurement zt and

executes exactly one control ut per time step. Multiple observations per time step can be

processed sequentially, but this leads to a more cumbersome notation.

Using the notation defined above, the primary goal of SLAM is to recover the best estimate

of the robot pose st and the map Θ, given the set of noisy observations zt and controls ut .

In probabilistic terms, this is expressed by the following posterior, referred to in the future

as the SLAM posterior:

p(st ,Θ | zt
,ut) (2.5)
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Figure 2.2: SLAM as a Dynamic Bayes Network

If the set of data associations nt is also given, then the SLAM posterior is simpler:

p(st ,Θ | zt
,ut

,nt) (2.6)

2.3 SLAM as a Markov Chain

The SLAM problem can be described best as a probabilistic Markov chain. A graphical

depiction of this Markov chain is shown in Figure 2.2. The current pose of the robot st

can be written as a probabilistic function of the pose at the previous time step st−1 and the

control ut executed by the robot. This function is referred to as the motion model because

it describes how controls drive the motion of the robot. Additionally, the motion model

describes how noise in the controls injects uncertainty into the robot’s pose estimate. The

motion model is written as:

p(st | st−1,ut) (2.7)

Sensor observations gathered by the robot are also governed by a probabilistic function,

commonly referred to as the measurement model. The observation zt is a function of the

landmark being observed θnt
and the pose of the robot st . The measurement model de-

scribes the physics and the error model of the robot’s sensor. The measurement model is

written as:

p(zt | st ,Θ,nt) (2.8)
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Using the motion model and the measurement model, the SLAM posterior at time t can

be computed recursively as function of the posterior at time t − 1. This recursive update

rule, known as the Bayes filter for SLAM, is the basis for the majority of online SLAM

algorithms.

Bayes Filter Derivation

The Bayes Filter can be derived from the SLAM posterior as follows. First, the posterior

(2.6) is rewritten using Bayes Rule.

p(st ,Θ | zt
,ut

,nt) = η p(zt | st ,Θ,zt−1
,ut

,nt) p(st ,Θ | zt−1
,ut

,nt) (2.9)

The denominator from Bayes rule is a normalizing constant and is written as η. Next,

we exploit the fact that zt is solely a function of the pose of the robot st , the map Θ, and

the latest data association nt , previously described as the measurement model. Hence the

posterior becomes:

= η p(zt | st ,Θ,nt) p(st ,Θ | zt−1
,ut

,nt) (2.10)

Now we use the Theorem of Total Probability to condition the rightmost term of (2.10) on

the pose of the robot at time t −1.

= η p(zt | st ,Θ,nt)
∫

p(st ,Θ | st−1,z
t−1

,ut
,nt) p(st−1 | zt−1

,ut
,nt)dst−1 (2.11)

The leftmost term inside the integral can be expanded using the definition of conditional

probability.

= η p(zt | st ,Θ,nt) (2.12)
∫

p(st | Θ,st−1,z
t−1

,ut
,nt) p(Θ | st−1,z

t−1
,ut

,nt) p(st−1 | zt−1
,ut

,nt)dst−1

The first term inside the integral can now be simplified by noting that st is only a function

of st−1 and ut , previously described as the motion model.

= η p(zt | st ,Θ,nt)
∫

p(st | st−1,ut) p(Θ | st−1,z
t−1

,ut
,nt) p(st−1 | zt−1

,ut
,nt)dst−1 (2.13)
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At this point, the two rightmost terms in the integral can be combined.

= η p(zt | st ,Θ,nt)
∫

p(st | st−1,ut)p(st−1,Θ | zt−1
,ut

,nt)dst−1 (2.14)

Since the current pose ut and data association nt provide no new information about st−1

or Θ without the latest observation zt , they can be dropped from the rightmost term of the

integral. The result is a recursive formula for computing the SLAM posterior at time t given

the SLAM posterior at time t − 1, the motion model p(st | st−1,ut), and the measurement

model p(zt | st ,Θ,nt).

p(st ,Θ | zt
,ut

,nt) =

η p(zt | st ,Θ,nt)
∫

p(st | st−1,ut) p(st−1,Θ | zt−1
,ut−1

,nt−1)dst−1 (2.15)

2.4 Extended Kalman Filtering

In general, the integral in the recursive update equation (2.15) cannot be computed in closed

form. However, approximate SLAM algorithms have been developed by restricting the

form of the SLAM posterior, the motion model, and the measurement model. Most present

day SLAM algorithms originate from a seminal paper by Smith and Cheesman [53], which

proposed the use of the Extended Kalman Filter (EKF) to estimate the SLAM posterior.

The EKF represents the SLAM posterior as a high-dimensional, multivariate Gaussian pa-

rameterized by a mean µt and a covariance matrix Σt . The mean describes the most likely

state of the robot and landmarks, and the covariance matrix encodes the pairwise correla-

tions between all pairs of state variables.

p(st ,Θ | ut
,zt

,nt) = N(xt ;µt ,Σt)

xt = {st ,θ1t , . . . ,θNt}
µt = {µst

,µθ1t
, . . . ,µθNt

}

Σt =









Σst
Σstθ1

. . . ΣstθN

Σθ1st
Σθ1

Σθ1θ2

... Σθ2θ1

. . .

ΣθNst
ΣθN









For robots that move in a plane, the mean vector µt is of dimension 2N +3, where N is the
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(a) Prior belief (solid line) and a new ob-
servation (dashed line)

(b) Belief after incorporating the new
observation (thick line)

Figure 2.3: One-Dimensional Kalman Filter

number of landmarks. Three dimensions are required to represent the pose of the robot,

and two dimensions are required to specify the position of each landmark. Likewise, the

covariance matrix is of size 2N + 3 by 2N + 3. Thus, the number of parameters needed to

describe the EKF posterior is quadratic in the number of landmarks in the map.

Figure 2.3 shows a simple example of a Kalman Filter estimating the position of a single

landmark in one dimension. Figure 2.3(a) shows the current belief in the landmark position

(the solid distribution) and a new, noisy observation of the landmark (the dashed distribu-

tion). The Kalman Filter describes the optimal procedure for combining Gaussian beliefs

in linear systems. In this case, the new posterior after incorporating the dashed observation

is shown as a thick line in Figure 2.3(b).

The basic Kalman Filter algorithm is the optimal estimator for a linear system with Gaus-

sian noise [2]. As its name suggests, the EKF is simply an extension of the basic Kalman

Filter algorithm to non-linear systems. The EKF does this by replacing the motion and mea-

surement models with non-linear models that are “linearized” around the most-likely state

of the system. In general, this approximation is good if the true models are approximately

linear and if the discrete time step of the filter is small.

The motion model will be written as the non-linear function h(xt−1,ut) with linearized

noise covariance Pt . Similarly, the measurement model will be written as the non-linear

function g(xt ,nt) with linearized noise covariance Rt . The EKF update equations can be
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written as follows:

µ−t = h(µt−1,ut) (2.16)

Σ−
t = Σt−1 +Pt (2.17)

Gx = ∇ xt
g(xt ,nt)|xt=µ−t ;nt=nt

(2.18)

Zt = GxΣ−
t GT

x +Rt ẑnt
= g(µ−t ,nt) (2.19)

Kt = Σ−
t GT

x Z−1
t (2.20)

µt = µ−t +Kt(zt − ẑnt
) (2.21)

Σt = (I −KtGt)Σ−
t (2.22)

For a complete derivation of the Kalman Filter, see [30, 56]. For a gentle introduction to

the use of the Kalman Filter and the EKF, see [65]. It is important to note that if the SLAM

problem is linear and Gaussian, then the Kalman Filter is both guaranteed to converge [43]

and provably optimal [2]. Real-world SLAM problems rarely are linear, yet the EKF still

tends to produce very good results in general. For this reason, the EKF is often held up as

the “gold standard” of comparison for online SLAM algorithms.

The EKF has two substantial disadvantages when applied to the SLAM problem: quadratic

complexity and single-hypothesis data association. The number of mathematical operations

required to incorporate a control and an observation into the filter is dominated by the final

equation of (2.19). In the planar case, both Kt and GT
t are of dimension 2N + 3 by the

dimensionality of the observation (typically two). Thus, the inner product in the calculation

of Σt requires a number of calculations quadratic with the number of landmarks N. This

limits the number of landmarks that can be handled by the EKF to only a few hundred.

The second problem with the EKF applies in situations in which the data associations nt

are unknown. The EKF maintains a single data association hypothesis per observation,

typically chosen using a maximum likelihood heuristic. If the probability of an observation

coming from any of the current landmarks is too low, the possibility of a new landmark

is considered. If the data association chosen by this heuristic is incorrect, the effect of

incorporating this observation into the EKF can never be removed. If many observations

are incorporated into the EKF with wrong data associations, the EKF will diverge. This is a

well known failure mode of the EKF [13]. The following sections will describe alternative

approaches to SLAM that address the issues of efficient scaling and robust data association.
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2.5 Scaling SLAM Algorithms

2.5.1 Submap Methods

While the Kalman Filter is the optimal solution to the linear-Gaussian SLAM problem, it

is computationally infeasible for large maps. As a result, a great deal of SLAM research

has concentrated on developing SLAM algorithms that approximate the performance of the

EKF, but scale to much larger environments. The computational complexity of the EKF

stems from the fact that covariance matrix Σt represents every pairwise correlation between

the state variables. Incorporating an observation of a single landmark will necessarily have

an affect on every other state variable.

Typically, the observation of a single landmark will have a very weak effect on the posi-

tions of distant landmarks. For this reason, many researchers have developed EKF-based

SLAM algorithms that decompose the global map into smaller submaps. One set of ap-

proaches exploits the fact that the robot may linger for some period of time in a small

section of the global map. Postponement [8, 31] and the Compressed Extended Kalman

Filter (CEKF) [23] are both techniques that delay the incorporation of local information

into the global map while the robot stays inside a single submap. These techniques are still

optimal, in that they generate the same results as the full EKF. However, the computation

required by the two algorithms is reduced by a constant factor, because the full map updates

are performed less frequently.

Breaking the global map into submaps can also lead to a more sparse description of the

correlations between map elements. Increased sparsity can be exploited to compute more

efficient sensor updates. Network Coupled Feature Maps [1], ATLAS [3], the Local Map-

ping Algorithm [5], and the Decoupled Stochastic Mapping [32] frameworks all consider

relationships between a sparse network of submaps. When the robot moves out of one

submap, it either creates a new submap or relocates itself in a previously defined submap.

Each approach reduces the computational requirement of incorporating an observation to

constant time. However, these computational gains come at the cost of slowing down the

overall rate of convergence. Each map has far fewer features than the overall map would

have, and the effects of observations on distant landmarks may have to percolate through

multiple correlation links.

Guivant and Nebot presented a similar method called Suboptimal SLAM [23], in which

the local maps are all computed with respect to a small number of base landmarks. Since

the different constellations of landmarks are kept in different coordinate frames, they can
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be decorrelated more easily than if every landmark were in a single coordinate frame. The

resulting algorithm produces an estimate that is an approximation to the true EKF estimate,

however it requires linear time and memory.

2.5.2 Sparse Extended Information Filters

Another popular approach to decomposing the SLAM problem is to represent maps us-

ing potential functions between nearby landmarks, similar to Markov Random Fields [4].

One such approach is the Sparse Extended Information Filter (SEIF) proposed by Thrun

et al. [61]. SEIFs implement an alternate parameterization of the Kalman Filter, called

the Information Filter. Instead of updating a covariance matrix Σ, SEIFs update Σ−1, the

precision matrix. This parameterization is useful because the precision matrix is sparse if

correlations are maintained only between nearby landmarks. Under appropriate approxi-

mations, this technique has been shown to provide constant time updating (given known

data association) with a linear memory requirement. In order to extract global maps from a

SEIF, a matrix inversion is required. The authors have presented a method for amortizing

the cost of the inversion over many time steps.

2.5.3 Thin Junction Trees

The Thin Junction Tree Filter (TJTF) of Paskin [47] is a SLAM algorithm based on the

same principle as the SEIF. Namely, maintaining a sparse network of probabilistic con-

straints between state variables enables efficient inference. The TJTF represents the SLAM

posterior using a graphical model called a junction tree. The size of the junction tree grows

as new landmarks are added to the map, however it can be “thinned” using an operation

called variable contraction. The thinning operation can be viewed as a way of making

the precision matrix of a SEIF sparse, however global maps can be extracted from TJTFs

without any matrix inversion. TJTFs require linear computation in general, which can be

reduced to constant time with further approximation.

2.5.4 Covariance Intersection

SLAM algorithms that treat correlated variables as if they were independent will neces-

sarily underestimate their covariance. Underestimated covariance can lead to divergence
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and make data association extremely difficult. Ulmann and Juiler present an alternative to

maintaining the complete joint covariance matrix called Covariance Intersection [29]. Co-

variance Intersection updates the landmark position variances conservatively, in such a way

that allows for all possible correlations between the observation and the landmark. Since

the correlations between landmarks no longer need to be maintained, the resulting SLAM

algorithm requires linear time and memory. Unfortunately, the landmark estimates tend to

be extremely conservative, leading to extremely slow convergence and highly ambiguous

data association.

2.6 Robust Data Association

In real SLAM applications, the data associations nt are rarely observable. However, if

the uncertainty in landmark positions is low relative to the average distance between land-

marks, simple heuristics for determining the correct data association can be quite effective.

In particular, the most common approach to data association in SLAM is to assign each

observation using a maximum likelihood rule. In other words, each observation is assigned

to the landmark most likely to have generated it. If the maximum probability is below some

fixed threshold, the observation is considered for addition as a new landmark.

In the case of the EKF, the probability of the observation can be written as a function of the

difference between the observation zt and the expected observation ẑnt
. This difference is

known as the “innovation.”

n̂t = argmax
nt

p(zt | nt ,s
t
,zt−1

,ut
, n̂t−1) (2.23)

= argmax
nt

1
√

|2πZt |
exp

{

−1

2
(zt − ẑnt

)T Z−1
t (zt − ẑnt

)

}

(2.24)

This data association heuristic is often reformulated in terms of negative log likelihood, as

follows:

n̂t = argmin
nt

ln |Z|+(z− ẑ)T Z−1(z− ẑ) (2.25)

The second term of this equation is known as Mahalanobis distance, a distance metric nor-

malized by the covariances of the observation and the landmark estimate. For this reason,

data association using this metric is often referred to as “nearest neighbor” data association,

or nearest neighbor gating.
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Maximum likelihood data association generally works well when the correct data associa-

tion is significantly more probable than the incorrect associations. However, if the uncer-

tainty in the landmark positions is high, more than one data association will receive high

probability. If a wrong data association is picked, this decision can have a catastrophic

result on the accuracy of the resulting map. This kind of data association ambiguity can be

induced easily if the robot’s sensors are very noisy.

One approach to this problem is to only incorporate observations that lead to unambiguous

data associations (i.e. only one data association falls within the nearest neighbor threshold).

However, if the SLAM environment is noisy, a large percentage of the observations will

go unprocessed. Moreover, failing to incorporate observations will lead to overestimated

landmark covariances, which makes future data associations even more ambiguous.

A number of more sophisticated approaches to data association have been developed in

order to deal with ambiguity in noisy environments.

2.6.1 Local Map Sequencing

Tardos et al. [55] developed a technique called Local Map Sequencing for building maps

of indoor environments using sonar data. Sonar sensors tend to be extremely noisy and

viewpoint dependent. The Local Map Sequencing algorithm collects a large number of

sonar readings as the robot moves over a short distance. These readings are processed by

two Hough transforms that detect corners and line segments in the robot’s vicinity given

the entire set of observations. Features from the Hough transform are used to build a map

of the robot’s local environment. Multiple local maps are then pieced together to build a

global map of the world.

The Hough transforms make the data association robust because multiple sensor readings

taken from different robot poses vote to determine the correct interpretation of the data.

Using this approach, reasonably accurate maps can be built with inexpensive, noisy sensors.

The authors also suggest RANSAC [18] as another voting algorithm to determine data

association with noisy sensors.

2.6.2 Joint Compatibility Branch and Bound

If multiple observations are gathered per control, the maximum likelihood approach (3.38)

will treat each data association decision as a independent problem. However, because data
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association ambiguity is caused in part by robot pose uncertainty, the data associations of

simultaneous observations are correlated. Considering the data association of each of the

observations separately also ignores the issue of mutual exclusion. Multiple observations

cannot be associated with the same landmark during a single time step.

Neira and Tardos [42] showed that both of these problems can be remedied by consider-

ing the data associations of all of the observations simultaneously, much like the Local

Map Sequencing algorithm does. Their algorithm, called Joint Compatibility Branch and

Bound (JCBB), traverses the tree of possible joint correspondences, called an Interpretation

Tree [22]. Different joint data association hypotheses are compared using joint compati-

bility, a measure of the probability of the set of observations occurring together. In the

EKF framework, this can be computed by finding the probability of the joint innovations of

the observations. Clearly, considering joint correspondences comes at some computational

cost, because an exponential number of different hypotheses must be considered. However,

Niera and Tardos showed that many of these hypotheses can be excluded without traversing

the entire tree.

2.6.3 Combined Constraint Data Association

Bailey [1] presented a data association algorithm similar to JCBB called Combined Con-

straint Data Association (CCDA). Instead of building a tree of joint correspondences, CCDA

constructs a undirected graph of data association constraints, called a “Correspondence

Graph”. Each node in the graph, represents a candidate pairing of observed features and

landmarks, possibly determined using a nearest neighbor test. Edges between the nodes

represent joint compatibility between pairs of data associations. The algorithm picks the

set of joint data associations that correspond to the largest clique in the correspondence

graph. The results of JCBB and CCDA should be similar, however the CCDA algorithm is

able to determine viable data associations when the pose of the robot relative to the map is

completely unknown.

2.6.4 Iterative Closest Point

Thrun et al. [59] proposed a different approach to data association based on a modified

version of the Iterative Closest Point (ICP) algorithm. This algorithm alternates a step in

which correspondences between data are identified, and a step in which a new robot path is

recovered from the current correspondences. This iterative optimization is similar in spirit
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to Expectation Maximization (EM) [12] and RANSAC [18]. First, a locally consistent

map is built using scan-matching [24], a maximum likelihood mapping approach. Next,

observations are matched between different sensor scans using a distance metric. Based on

the putative correspondences, a new set of robot poses is derived. This alternating process is

iterated several times until some convergence criterion is reached. This process has shown

significant promise for the data association problems encountered in environments with

very large loops.

2.6.5 Multiple Hypothesis Tracking

Thus far, all of the data association algorithms presented all choose a single data associ-

ation hypothesis to be fed into an EKF, or approximate EKF algorithm. There are a few

algorithms that maintain multiple data association hypotheses over time. This is especially

useful if the correct data association of an observation cannot be inferred from a single mea-

surement. One such approach in the target tracking literature is the Multiple Hypothesis

Tracking or MHT algorithm [49]. MHT maintains a set of hypothesized tracks of multi-

ple targets. If a particular observation has multiple, valid data association interpretations,

new hypotheses are created according to each hypothesis. In order to keep the number of

hypotheses from expanding without bound, heuristics are used to prune improbable hy-

potheses from the set over time.

Maintaining multiple EKF hypotheses for SLAM is unwieldy, because each EKF maintains

a belief over robot pose and the entire map. Nebot et al. [41] have developed a similar tech-

nique that “pauses” map-building when data association becomes ambiguous and performs

multi-hypothesis localization using a particle filter until the ambiguity is resolved. Since

map building is not performed when there is data association ambiguity, the multiple hy-

potheses are over robot pose, which is a low-dimensional quantity. However, this approach

only works if data association ambiguity occurs sporadically. This can be useful for resolv-

ing data association when closing a large loop, for example. If ambiguity is present at all

times, this hybrid filter approach will never be able to build a map.

2.7 Comparison of FastSLAM to Existing Techniques

The remainder of this thesis will describe FastSLAM, an alternative approach to estimating

the SLAM posterior. Unlike submap EKF approaches, which factor the SLAM problem
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spatially, FastSLAM factors the SLAM posterior over time using the path of the robot. The

resulting algorithm scales logarithmically with the number of landmarks in the map, which

is sufficient to process maps with millions of features.

FastSLAM samples over potential robot paths, instead of maintaining a parameterized dis-

tribution of solutions like the EKF. This enables FastSLAM to apply different data associ-

ation hypotheses to different solutions represented under the SLAM posterior. FastSLAM

maintains the multiple-hypothesis tracking abilities of MHT and the hybrid filter approach,

yet it can perform localization and mapping simultaneously, even with consistently high

measurement ambiguity.



Chapter 3

FastSLAM 1.01

Each control or observation collected by the robot only constrains a small number of state

variables. Controls probabilistically constrain the pose of the robot relative to its previ-

ous pose, while observations constrain the positions of landmarks relative to the robot. It is

only after a large number of these probabilistic constraints are incorporated that the map be-

comes fully correlated. The EKF, which makes no assumptions about structure in the state

variables, fails to take advantage of this sparsity over time. In this chapter I will describe

FastSLAM, an alternative approach to SLAM that is based on particle filtering. FastSLAM

exploits conditional independences that are a consequence of the sparse structure of the

SLAM problem to factor the posterior into a product of low dimensional estimation prob-

lems. The resulting algorithm scales efficiently to large maps and is robust to significant

ambiguity in data association.

3.1 Particle Filtering

The Kalman Filter and the EKF represent probability distributions using a parameterized

model (a multivariate Gaussian). Particle filters, on the other hand, represent distributions

using a finite set of sample states, or “particles.” Regions of high probability contain a high

density of particles, whereas regions of low probability contain few or no particles. Given

enough samples, this non-parametric representation can approximate arbitrarily complex,

multi-modal distributions. In the limit of an infinite number of samples, the true distribu-

1This chapter is called FastSLAM 1.0 to differentiate this basic algorithm from a variation to be presented
in Chapter 4. The advanced FastSLAM algorithm will be referred to as FastSLAM 2.0

36
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(a) Global localization - After incorporat-
ing only a few observations, the pose of
the robot is very uncertain.

(b) After incorporating many observa-
tions, the particle filter has converged to
a unimodal posterior.

Figure 3.1: Particle filtering for robot localization

tion can be reconstructed exactly [15]. Given this representation, the Bayes Filter update

equation can be implemented using a simple sampling procedure.

Particle filters have been applied successfully to a variety of real world estimation prob-

lems [15, 28, 52]. One of the most common examples of particle filtering in robotics is

Monte Carlo Localization, or MCL [60]. In MCL, a set of particles is used to represent

the distribution of possible poses of a robot relative to a fixed map. An example is shown

in Figure 3.1. In this example, the robot is given no prior information about its pose.

This complete uncertainty is represented by scattering particles with uniform probability

throughout the map, as shown in Figure 3.1(a). Figure 3.1(b) shows the particle filter af-

ter incorporating a number of controls and observations. At this point, the posterior has

converged to an approximately unimodal distribution.

The capability to track multi-modal beliefs and include non-linear motion and measurement

models makes the performance of particle filters particularly robust. However, the number

of particles needed to track a given belief scales exponentially with the dimensionality of

the state space. As such, standard particle filtering algorithms are restricted to problems of

relatively low dimensionality. Particle filters are especially ill-suited to the SLAM problem,

which may have millions of dimensions. However, the following sections will show how

the SLAM problem can be factored into a set of independent landmark estimation problems
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Figure 3.2: Factoring the SLAM Problem - If the true path of the robot is known (the shaded
region), then the positions of the landmarks θ1 and θ2 are conditionally independent.

conditioned on an estimate of the robot’s path. The robot path posterior is of low dimen-

sionality and can be estimated efficiently using a particle filter. The resulting algorithm,

called FastSLAM, is an example of a Rao-Blackwellized Particle Filter [16, 17, 15].

3.2 Factored Posterior Representation

The majority of SLAM approaches are based on estimating the posterior over maps and

robot pose.

p(st ,Θ | zt
,ut

,nt) (3.1)

FastSLAM computes a slightly different quantity, the posterior over maps and robot path.

p(st
,Θ | zt

,ut
,nt) (3.2)

This subtle difference will allow us to factor the SLAM posterior into a product of simpler

terms. Figure 3.2 revisits the interpretation of the SLAM problem as a Dynamic Bayes

Network (DBN). In the scenario depicted by the DBN, the robot observes landmark θ1 at

time t = 1, θ2 at time t = 2, and then re-observes landmark θ1 at time t = 3. The gray

shaded area represents the path of the robot from time t = 1 to the present time. From

this diagram, it is evident that there are important conditional independences in the SLAM

problem. In particular, if the true path of the robot is known, the position of landmark θ1

is conditionally independent of landmark θ2. Using the terminology of DBNs, the robot’s
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path “d-separates” the two landmark nodes θ1 and θ2. For a complete description of d-

separation see [51].

This conditional independence has an important consequence. Given knowledge of the

robot’s path, an observation of one landmark will not provide any information about the

position of any other landmark. In other words, if an oracle told us the true path of the

robot, we could estimate the position of every landmark as an independent quantity. This

means that the SLAM posterior (3.2) can be factored into a product of simpler terms.

p(st
,Θ | zt

,ut
,nt) = p(st | zt

,ut
,nt)

︸ ︷︷ ︸

path posterior

N

∏
n=1

p(θn | st
,zt

,ut
,nt)

︸ ︷︷ ︸

landmark estimators

(3.3)

This factorization, first developed by Murphy and Russell [40], states that the SLAM poste-

rior can be separated into a product of a robot path posterior p(st | zt ,ut ,nt), and N landmark

posteriors conditioned on the robot’s path. It is important to note that this factorization is

exact; it follows directly from the structure of the SLAM problem.

3.2.1 Proof of the FastSLAM Factorization

The FastSLAM factorization can be derived directly from the SLAM path posterior (3.2).

Using the definition of conditional probability, the SLAM posterior can be rewritten as:

p(st
,Θ | zt

,ut
,nt) = p(st | zt

,ut
,nt) p(Θ | st

,zt
,ut

,nt) (3.4)

Thus, to derive the factored posterior (3.3), it suffices to show the following for all non-

negative values of t:

p(Θ | st
,zt

,ut
,nt) =

N

∏
n=1

p(θn | st
,zt

,ut
,nt) (3.5)

Proof of this statement can be demonstrated through induction. Two intermediate results

must be derived in order to achieve this result. The first quantity to be derived is the

probability of the observed landmark θnt
conditioned on the data. This quantity can be

rewritten using Bayes Rule.

p(θnt
| st

,zt
,ut

,nt)
Bayes
=

p(zt | θnt
,st ,zt−1,ut ,nt)

p(zt | st ,zt−1,ut ,nt)
p(θnt

| st
,zt−1

,ut
,nt) (3.6)



CHAPTER 3. FASTSLAM 1.0 40

We note that the current observation zt depends solely on the current state of the robot and

the landmark being observed. In the rightmost term of (3.6), we similarly notice that the

current pose st , the current action ut , and the current data association nt have no effect on

θnt
without the current observation zt . Thus, all of these variables can be dropped.

p(θnt
| st

,zt
,ut

,nt)
Markov

=
p(zt | θnt

,st ,nt)

p(zt | st ,zt−1,ut ,nt)
p(θnt

| st−1
,zt−1

,ut−1
,nt−1) (3.7)

Next, we solve for the rightmost term of (3.7) to get:

p(θnt
| st−1

,zt−1
,ut−1

,nt−1) =
p(zt | st ,zt−1,ut ,nt)

p(zt | θnt
,st ,nt)

p(θnt
| st

,zt
,ut

,nt) (3.8)

The second intermediate result we need is p(θn 6=nt
| st ,zt ,ut ,nt), the probability of any

landmark that is not observed conditioned on the data. This is simple, because the landmark

posterior will not change if the landmark is not observed. Thus, the landmark posterior at

time t is equal to the posterior at time t −1.

p(θn6=nt
| st

,zt
,ut

,nt)
Markov

= p(θn 6=nt
| st−1

,zt−1
,ut−1

,nt−1) (3.9)

With these two intermediate results, we can now perform the proof by induction. First, we

assume the following induction hypothesis at time t −1.

p(θ | st−1
,zt−1

,ut−1
,nt−1) =

N

∏
n=1

p(θn | st−1
,zt−1

,ut−1
,nt−1) (3.10)

For the induction base case of t = 0, no observations have been incorporated into the SLAM

posterior. Therefore, for t = 0 the factorization (3.5) is trivially true.

In general when t > 0, we once again use Bayes rule to expand the left side of (3.5).

p(θ | st
,zt

,ut
,nt)

Bayes
=

p(zt | θ,st ,zt−1,ut ,nt)

p(zt | st ,zt−1,ut ,nt)
p(θ | st

,zt−1
,ut

,nt) (3.11)

Again, zt only depends on θ, st , and nt , so the numerator of the first term in (3.11) can be

simplified. The landmark position θ does not depend on st , ut , or nt , without the current
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observation zt , so the second term can also be simplified.

Markov
=

p(zt | θnt
,st ,nt)

p(zt | st ,zt−1,ut ,nt)
p(θ | st−1

,zt−1
,ut−1

,nt−1) (3.12)

Now the rightmost term in (3.12) can be replaced with the induction hypothesis (3.10).

Induction
=

p(zt | θnt
,st ,nt)

p(zt | st ,zt−1,ut ,nt)

N

∏
n=1

p(θn | st−1
,zt−1

,ut−1
,nt−1)

Replacing the terms of the product with the two intermediate results (3.8) and (3.9), we get:

p(θ | st
,zt

,ut
,nt) = p(θnt

| st
,zt

,ut
,nt)

N

∏
n6=nt

p(θi | st
,zt

,ut
,nt)

which is equal to the product of the individual landmark posteriors (3.5):

p(θ | st
,zt

,ut
,nt) =

N

∏
n=1

p(θn | st
,zt

,ut
,nt) qed

3.3 The FastSLAM Algorithm

The factorization of the posterior (3.3) highlights important structure in the SLAM prob-

lem that is ignored by SLAM algorithms that estimate an unstructured posterior. This

structure suggests that under the appropriate conditioning, no cross-correlations between

landmarks have to be maintained explicitly. FastSLAM exploits the factored representation

by maintaining N + 1 filters, one for each term in (3.3). By doing so, all N + 1 filters are

low-dimensional.

FastSLAM estimates the first term in (3.3), the robot path posterior, using a particle filter.

The remaining N conditional landmark posteriors p(θn | st ,zt ,ut ,nt) are estimated using

EKFs. Each EKF tracks a single landmark position, and therefore is low-dimensional and

fixed in size. The landmark EKFs are all conditioned on robot paths, with each particle in

the particle filter possessing its own set of EKFs. In total, there are N ·M EKFs, where M is

the total number of particles in the particle filter. The particle filter is depicted graphically

in Figure 3.3. Readers familiar with the statistical literature may note that this structure
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Figure 3.3: There are M particles in the particle filter. Each particle contains N independent
EKFs. No explicit cross-correlations are maintained between the landmark estimates.

is an example of a Rao-Blackwellized Particle Filter, because it combines sampling over a

small set of variables with closed-form calculation of certain marginals.

Each FastSLAM particle is of the form:

S
[m]
t = 〈st,[m]

,µ
[m]
1,t ,Σ

[m]
1,t , . . . ,µ

[m]
N,t ,Σ

[m]
N,t〉 (3.13)

The bracketed notation [m] indicates the index of the particle; st,[m] is the m-th particle’s

path estimate, and µ
[m]
n,t and Σ[m]

n,t are the mean and covariance of the Gaussian representing

the n-th feature location conditioned on the path st,[m]. Together all of these quantities form

the m-th particle S
[m]
t , of which there are a total of M in the FastSLAM posterior. Filtering,

that is, calculating the posterior at time t from the one at time t − 1 involves generating a

new particle set St from St−1, the particle set one time step earlier. The new particle set

incorporates the latest control ut and measurement zt (with corresponding data association

nt). This update is performed in four steps.

First, a new robot pose is drawn for each particle that incorporates the latest control. Each

pose is added to the appropriate robot path estimate st−1,[m]. Next, the landmark EKFs

1. Sample a new robot pose for each particle given the new control

2. Update the landmark EKFs of the observed feature in each particle

3. Calculate an importance weight for each particle

4. Draw an new, unweighted particle set using importance resampling

Figure 3.4: Outline of the basic FastSLAM algorithm
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Figure 3.5: Samples drawn from the probabilistic motion model.

corresponding to the observed landmark are updated with the new observation. Since the

robot path particles are not drawn from the true path posterior, each particle is given an

importance weight to reflect this difference. A new set of particles St is drawn from the

weighted particle set using importance resampling. This importance resampling step is

necessary to insure that the particles are distributed according to the true posterior (in the

limit of infinite particles). The four basic steps of the FastSLAM algorithm, shown in

Figure 3.4, will be explained in detail in the following four sections.

3.3.1 Sampling A New Pose

The particle set St is calculated incrementally, from the set St−1 at time t−1, an observation

zt , and a control ut . The first step of the FastSLAM algorithm is to probabilistically generate

guesses of the robot’s pose at time t given each particle S
[m]
t−1. This guess is obtained by

sampling from the probabilistic motion model.

s
[m]
t ∼ p(st | ut ,s

[m]
t−1) (3.14)

This estimate is added to a temporary set of particles, along with the path st−1,[m]. Under the

assumption that the set of particles St−1 is distributed according to p(st−1 | zt−1,ut−1,nt−1),

which is asymptotically correct, the new particles are distributed according to:

p(st | zt−1
,ut

,nt−1) (3.15)

This distribution is commonly referred to as the proposal distribution of particle filtering.
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It is important to note that the motion model can be any non-linear function. This is in

contrast to the EKF, which requires the motion model to be linearized. The only practical

limitation on the measurement model is that samples can be drawn from it conveniently.

Regardless of the proposal distribution, drawing a new pose is a constant-time operation

for every particle. It does not depend on the size of the map.

A simple four parameter motion model was used for all of the planar robot experiments

in this thesis. This model assumes that the velocity of the robot is constant over the time

interval covered by each control. Each control ut is two-dimensional and can be written

as a translational velocity vt and a rotational velocity ωt . The model further assumes that

the error in the controls is Gaussianly distributed. The errors in translational and rotational

velocity have an additive and a multiplicative component. Throughout this thesis, the nota-

tion N (x;µ,Σ) will be used to denote a normal distribution over the variable x with mean µ

and covariance Σ.

v
′
t ∼ N (v;vt ,α1vt +α2) (3.16)

ω′
t ∼ N (ω;ωt ,α3ωt +α4) (3.17)

This motion model is able to represent the slip and skid errors errors that occur in typical

ground vehicles [6]. The first step to drawing a new robot pose from this model is to draw

a new translational and rotational velocity according to the observed control. The new pose

st can be calculated by simulating the new control forward from the previous pose s
[m]
t−1.

Figure 3.5 shows 250 samples drawn from this motion model given a curved trajectory. In

this simulated example, the translational error of the robot is low, while the rotational error

is high.

3.3.2 Updating the Landmark Estimates

FastSLAM represents the conditional landmark estimates p(θn | st ,zt ,ut ,nt) in (3.3) using

low-dimensional EKFs. For now, I will assume that the data associations nt are known.

Later in section 3.4, this restriction will be removed.

Since the landmark estimates are conditioned on the robot’s path, N EKFs are attached to

each particle in St . The posterior over the n-th landmark position θn is easily obtained. Its

computation depends on whether n = nt , that is, whether or not landmark θn was observed

at time t. For the observed landmark θnt
, we follow the usual procedure of expanding the
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posterior using Bayes Rule.

p(θnt
| st

,zt
,ut

,nt)
Bayes
= η p(zt | θnt

,st
,zt−1

,ut
,nt) p(θnt

| st
,zt−1

,ut
,nt) (3.18)

Next, the Markov property is used to simplify both terms of the equation. The observation

zt only depends on θnt
, st , and nt . Similarly, θnt

is not affected by st , ut , or nt without the

observation zt .

p(θnt
| st

,zt
,ut

,nt)
Markov

= η p(zt | θnt
,st ,nt) p(θnt

| st−1
,zt−1

,ut−1
,nt−1) (3.19)

For n 6= nt , we leave the landmark posterior unchanged.

p(θn 6=nt
| st

,zt
,ut

,nt) = p(θn6=nt
| st−1

,zt−1
,ut−1

,nt−1) (3.20)

FastSLAM implements the update equation (3.19) using an EKF. As in EKF solutions to

SLAM, this filter uses a linear Gaussian approximation for the perceptual model. We note

that, with an actual linear Gaussian observation model, the resulting distribution p(θn |
st ,zt ,ut ,nt) is exactly Gaussian, even if the motion model is non-linear. This is a conse-

quence of sampling over the robot’s pose.

The non-linear measurement model g(st ,θnt
) will be approximated using a first-order Tay-

lor expansion. The landmark estimator is conditioned on a fixed robot path, so this expan-

sion is only over θnt
. I will assume that measurement noise is Gaussian with covariance

Rt .

ẑt = g(s
[m]
t ,µnt ,t−1) (3.21)

Gθnt
= ∇ θnt

g(st ,θnt
)|

st=s
[m]
t ;θnt =µ

[m]
nt ,t−1

(3.22)

g(st ,θnt
) ≈ ẑt +Gθ(θnt

−µ
[m]
nt ,t−1) (3.23)

Under this approximation, the first term of the product (3.19) is distributed as follows:

p(zt | θi,st ,nt) ∼ N (zt ; ẑt +Gθ(θnt
−µ

[m]
nt ,t−1),Rt) (3.24)

The second term of the product in (3.19) is also a Gaussian, equal to the state of the EKF

at time t −1.

p(θi | st−1
,zt−1

,ut−1
,nt−1) ∼ N (θnt

;µ
[m]
nt ,t−1,Σ

[m]
nt ,t−1) (3.25)



CHAPTER 3. FASTSLAM 1.0 46

φ

r

Figure 3.6: Robot observing the range r and bearing φ to a landmark.

The mean and covariance of the product can be obtained using the standard EKF update

equations [2].

ẑt = g(s
[m]
t ,µnt ,t−1) (3.26)

Gθnt
= ∇ θnt

g(st ,θnt
)|

st=s
[m]
t ;θnt =µ

[m]
nt ,t−1

(3.27)

Zn,t = Gθnt
Σ[m]

nt ,t−1GT
θnt

+Rt (3.28)

Kt = Σ[m]
nt,t−1GT

θnt
Z−1

n,t (3.29)

µ
[m]
nt ,t = µ

[m]
nt ,t−1 +Kt(zt − ẑt) (3.30)

Σ[m]
nt ,t = (I −KtGθnt

)Σ[m]
nt ,t−1 (3.31)

Updating the landmark filters is a constant-time operation per particle because each land-

mark filter is of constant size. The amount of time necessary to incorporate an observation

does not depend on the total number of landmarks.

In the planar SLAM case with fully observable landmarks, the robot commonly observes

the range and bearing to nearby landmarks as shown in Figure 3.6. Assuming that the

robot pose st is described as 〈st,x,st,y,st,θ〉 and the current landmark position is written

as 〈θnt ,x,θnt,y〉, the measurement function g(st ,θnt
) can be written as the following matrix

function:

g(st ,θnt
) =

[

r(st ,θnt
)

φ(st ,θnt
)

]

=

[ √

(θnt ,x − st,x)2 +(θnt ,y − st,y)2

tan−1(
θnt ,y−st,y

θnt ,x−st,x
)− st,θ

]

(3.32)
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The Jacobian Gθnt
is then equal to:

Gθnt
=

[ θnt ,x−st,x√
q

θnt ,y−st,y√
q

−θnt ,y−st,y

q

θnt ,x−st,x

q

]

(3.33)

q = (θnt ,x − st,x)
2 +(θnt ,y − st,y)

2

3.3.3 Calculating Importance Weights

Particles drawn from the motion model are distributed according to p(st | zt−1,ut ,nt−1),

and therefore do not match the desired posterior p(st | zt ,ut ,nt). This difference is cor-

rected through a process called importance sampling. In general, importance sampling is

a technique for drawing samples from functions for which no direct sampling procedure

exists [34]. Instead of sampling directly from the target function, samples are drawn from

a simpler function (the proposal). Each sample is given a weight, equal to the ratio of

the target function to the proposal proposal at that point in the sample space. A new set

of unweighted samples is drawn from the weighted set with probabilities in proportion to

the weights. This process is an instance of Rubin’s sampling importance resampling (SIR)

algorithm [50].

An example of importance sampling is shown in Figure 3.7. Instead of sampling directly

from the target distribution (shown as a solid line), samples are drawn from a simpler

proposal distribution, a Gaussian (shown as a dashed line). In regions where the target

distribution is larger than the proposal distribution, the samples receive higher weights. As

a result, samples in this region will be picked more often. In regions where the target dis-

tribution is smaller than the proposal distribution, the samples will be given lower weights.

In the limit of infinite samples, this procedure will produce samples distributed according

to the target distribution.

For FastSLAM, the importance weight of each particle w
[i]
t is equal to the ratio of the SLAM

posterior and the proposal distribution described previously.

w
[m]
t =

target distribution

proposal distribution
=

p(st,[m] | zt ,ut ,nt)

p(st,[m] | zt−1,ut ,nt−1)
(3.34)

The numerator of (3.34) can be expanded using Bayes Rule. The normalizing constant in

Bayes Rule can be safely ignored because the particle weights will be normalized before
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Samples from

proposal distribution

Weighted samples

Figure 3.7: Samples cannot be drawn conveniently from the target target distribution
(shown as a solid line). Instead, the importance sampler draws samples from the pro-
posal distribution (dashed line), which has a simpler form. Below, samples drawn from the
proposal distribution are drawn with lengths proportional to their importance weights.

resampling.

w
[m]
t

Bayes
∝

p(zt | st,[m],zt−1,ut ,nt)p(st,[m] | zt−1,ut ,nt)

p(st,[m] | zt−1,ut ,nt−1)
(3.35)

The second term of the numerator is not conditioned on the latest observation zt , so the data

association nt cannot provide any information about the robot’s path. Therefore it can be

dropped.

w
[m]
t

Markov
=

p(zt | st,[m],zt−1,ut ,nt)p(st,[m] | zt−1,ut ,nt−1)

p(st,[m] | zt−1,ut ,nt−1)

= p(zt | st,[m]
,zt−1

,ut
,nt) (3.36)

The landmark estimator is an EKF, so this observation likelihood can be computed in closed

form. This probability is commonly computed in terms of “innovation,” or the difference

between the actual observation zt and the predicted observation ẑt . The sequence of innova-

tions in the EKF is Gaussianly distributed with zero mean and covariance Znt ,t , where Znt ,t

is the innovation covariance matrix defined in (3.28) [2]. The probability of the observation

zt is equal to the probability of the innovation zt − ẑt being generated by this Gaussian,
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which can be written as:

w
[m]
t =

1
√

|2πZnt ,t |
exp{−1

2
(zt − ẑnt ,t)

T [Znt ,t ]
−1(zt − ẑnt ,t)} (3.37)

Calculating the importance weight is a constant-time operation per particle. This calcula-

tion depends only on the dimensionality of the observation, which is constant for a given

application. It is important to

3.3.4 Importance Resampling

Once the temporary particles have been assigned weights, a new set of samples St is drawn

(with replacement) from this set with probabilities in proportion to the weights. A variety of

sampling techniques for drawing St can be found in [7]. In particular, Madow’s systematic

sampling algorithm [35] is simple to implement and produces accurate results.

Implemented naively, resampling requires time linear in the number of landmarks N. This

is due to the fact that each particle must be copied to the new particle set, and the length of

each particle is proportional to N. In general, only a small fraction of the total landmarks

will be observed during at any one time, so copying the entire particle can be quite inef-

ficient. In Section 3.7, I will show how a more sophisticated particle representation can

eliminate unnecessary copying and reduce the computational requirement of FastSLAM to

O(logN).

3.3.5 Robot Path Posterior Revisited

At first glace, factoring the SLAM problem using the path of the robot may seem like a bad

idea, because the length of the FastSLAM particles will grow over time. However, none of

the the FastSLAM update equations depend on the total path length t. In fact, only the most

recent pose s
[m]
t−1 is ever used update the particle set. Consequently, we can silently “forget”

all but the most recent robot pose in the parameterization of each particle. This avoids the

obvious computational problem that would result if the dimensionality of the particle filter

grows over time.
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3.4 FastSLAM with Unknown Data Association

The biggest limitation of the FastSLAM algorithm described thus far is the assumption

that the data associations nt are known. In practice, this is rarely the case. This section

extends the FastSLAM algorithm to domains in which the mapping between observations

and landmarks is not known. The classical solution to the data association problem in

SLAM is to chose nt such that it maximizes the likelihood of the sensor measurement zt

given all available data [13].

n̂t = argmax
nt

p(zt | nt , n̂
t−1

,st
,zt−1

,ut) (3.38)

The term p(zt | nt , n̂
t−1,st ,zt−1,ut) is referred to as a likelihood, and this approach is an ex-

ample of a maximum likelihood (ML) estimator. ML data association is also called “nearest

neighbor” data association, interpreting the negative log likelihood as a distance function.

For Gaussians, the negative log likelihood is Mahalanobis distance, and the estimator se-

lects data associations by minimizing this Mahalanobis distance.

In the EKF-based SLAM approaches described in Chapter 2, a single data association is

chosen for the entire filter. As a result, these algorithms tend to be brittle to failures in data

association. A single data association error can induce significant errors in the map, which

in turn cause new data association errors, often with fatal consequences. A better under-

standing of how uncertainty in the SLAM posterior generates data association ambiguity

will demonstrate how simple data association heuristics often fail.

3.4.1 Data Association Uncertainty

Two factors contribute to uncertainty in the SLAM posterior: measurement noise and mo-

tion noise. As measurement noise increases, the distributions of possible observations of

every landmark become more uncertain. If measurement noise is sufficiently high, the dis-

tributions of observations from nearby landmarks will begin to overlap substantially. This

overlap leads to ambiguity in the identity of the landmarks. I will refer to data associa-

tion ambiguity caused by measurement noise as measurement ambiguity. An example of

measurement ambiguity is shown in Figure 3.8. The two ellipses depict the range of proba-

ble observations from two different landmarks. The observation, shown as an black circle,

plausibly could have come from either landmark.
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Measurement uncertainty

Figure 3.8: Measurement ambiguity - High measurement error leads to ambiguity between
nearby landmarks.

Attributing an observation to the wrong landmark due to measurement ambiguity will in-

crease the error of the map and robot pose, but its impact will be relatively minor. Since

the observation could have been generated by either landmark with high probability, the

effect of the observation on the landmark positions and the robot pose will be small. The

covariance of one landmark will be slightly overestimated, while the covariance of the sec-

ond will be slightly underestimated. If multiple observations are incorporated per control,

a data association mistake due to measurement ambiguity of one observation will have

relatively little impact on the data association decisions for the other observations.

Ambiguity in data association caused by motion noise can have much more severe conse-

quences on estimation accuracy. Higher motion noise will lead to higher pose uncertainty

after incorporating a control. If this pose uncertainty is high enough, assuming different

robot poses in this distribution will imply drastically different ML data association hy-

potheses for the subsequent observations. This motion ambiguity is easily induced if there

is significant rotational error in the robot’s motion. (See Figure 3.9.) Moreover, if multiple

observations are incorporated per control, the pose of the robot will correlate the data asso-

ciation decisions of all of the observations. If the SLAM algorithm chooses the wrong data

association for a single observation due to motion ambiguity, the rest of the data associa-

tions also will be wrong with high probability. Choosing a large number of incorrect data

associations will typically lead to divergence in an EKF.
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Pose uncertainty

Figure 3.9: Motion ambiguity-Uncertainty due to the motion of the robot may result in
significantly different data association hypotheses for different robot poses. Also, motion
error correlates the data associations of simultaneous observations.

3.4.2 Per-Particle Data Association

Unlike most EKF-based approaches, FastSLAM takes a multi-hypothesis approach to the

data association problem. Each particle represents a different hypothesized path of the

robot, so data association decisions can be made on a per-particle basis. Particles that pick

the correct data association will receive high weights because they explain the observations

well. Particles that pick wrong associations will receive low weights and be removed in a

future resampling step.

Per-particle data association has several important advantages over standard ML data asso-

ciation. First, it factors robot pose uncertainty out of the data association problem. Since

motion ambiguity is the more severe form of data association ambiguity, conditioning the

data association decisions on hypothesized robot paths seems like a logical choice. Given

the scenario in Figure 3.9, some of the particles would draw new robot poses consistent

with data association hypothesis on the left, while others would draw poses consistent with

the data association hypothesis on the right.

Doing data association on a per-particle basis also makes the data association problem

easier. In the EKF, the uncertainty of a landmark position is due to both uncertainty in

the pose of the robot as well as uncertainty due to measurement error. In FastSLAM,

uncertainty of the robot pose is represented by the entire particle set. The landmark filters

in a single particle are not affected by motion noise because they are conditioned on a

specific robot path. This is especially useful if the robot has noisy motion and an accurate
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sensor.

Another consequence of per-particle data association is implicit, delayed-decision making.

At any given time, some fraction of the particles will receive plausible, yet wrong, data

associations. In the future, the robot may receive a new observation that clearly refutes

these previous assignments. At this point, the particles with wrong data associations will

receive low weight and likely be removed from the filter. As a result of this process, the

effect of a wrong data association decision made in the past can be removed from the filter.

Moreover, no heuristics are needed in order to remove incorrect old associations from the

filter. This is done in a statistically valid manner, simply as a consequence of the resampling

step.

3.4.2.1 Per-Particle ML Data Association

The simplest approach to per-particle data association is to apply the ML data association

heuristic, only on a per-particle basis. Again , because the landmark estimators are EKFs,

the likelihood in (3.38) can be calculated using innovations. This likelihood is exactly the

same as the importance weight calculated in (3.37) for the original FastSLAM algorithm. If

the value of this likelihood falls below some threshold p0, a new landmark is added added

to the particle.

p(zt | st,[m]
,zt−1

,ut
,nt−1) =

1
√

|2πZn,t |
exp{−1

2
(zt − ẑn,t)

T [Zn,t ]
−1(zt − ẑn,t)} (3.39)

ML data association tends to work much better in FastSLAM than it does in EKF-based

approaches. The main reason for this success is that the most severe component of data

association ambiguity comes from uncertainty in the robot’s pose. Some fraction of the

particles will draw new poses that are consistent with the true pose of the robot. These

poses will receive correct data associations and explain the observations well. Particles that

draw poses far from the true pose will receive wrong data associations that explain the data

poorly.

3.4.2.2 Monte Carlo Data Association

While per-particle ML data association addresses motion ambiguity, it does not address

measurement ambiguity. Each observation is paired with the landmark most likely to have

generated it, however if measurement error is high there might be several plausible data
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Landmark A Landmark B

p(z | Landmark B) = 0.6

p(z | Landmark A) = 0.2

Figure 3.10: Ambiguous Data Association

associations per observation. Another approach to data association is to assign the cor-

respondences probabilistically in accordance to their likelihoods. This approach can be

described as Monte Carlo Data Association.

Figure 3.10 shows a robot making an observation that could have been generated by either

one of two landmarks. The probability of the observation being generated by landmark 1

is 0.2, and 0.6 for landmark 2. The Monte Carlo Data Association procedure would assign

the data association nt = 1 25% of the time (0.5(0.2 + 0.6) = 0.25), and nt = 2 75% of

the time. In general, the ML data association scheme will pick the correct data association

more often than the Monte Carlo scheme. However, ML will never consider the possibility

that nearby data associations may have been exchanged due to measurement ambiguity. As

Monte Carlo will generate exponentially more possible data associations as measurement

error increases, this scheme will require a larger number of particles, in general, to maintain

the same accuracy.

A third possible data association scheme for FastSLAM was proposed by Niento et al.

in [45]. Their procedure enumerates all K plausible data associations for a given observa-

tion and particle. Plausible data associations are defined as correspondences with a like-

lihood above some minimum threshold. Each particle is then duplicated K times, and

the observation is incorporated into each particle with the corresponding data association.

Later, the particle set is reduced back to M particles by the resampling process. Since each

particle will survive with probability proportional to the likelihood of the observation, this

scheme is equivalent to the Monte Carlo data association procedure.
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3.4.3 Adding New Landmarks

Adding a new landmark to FastSLAM can be difficult decision to make, just as with EKF-

based algorithms. This is especially true when an individual measurement is insufficient to

constrain the new landmark in all dimensions [10]. If the measurement function g(θnt
,st)

is invertible, however, a single measurement is sufficient to initialize a new landmark. Each

observation defines a Gaussian:

N(zt ; ẑt +Gθnt
(θnt

−µ
[m]
nt ,t),Rt) (3.40)

This Gaussian can be written explicitly as:

1
√

|2πRt |
exp

{

−1

2
(zt − ẑt −Gθnt

(θnt
−µ

[m]
nt ,t−1))

T R−1
t (zt − ẑt −Gθnt

(θnt
−µ

[m]
nt ,t−1))

}

(3.41)

We define a function J to be equal to the negative of the exponent of this Gaussian:

J =
1

2
(zt − ẑt −Gθnt

(θnt
−µ

[m]
nt ,t−1))

T R−1
t (zt − ẑt −Gθnt

(θnt
−µ

[m]
nt ,t−1)) (3.42)

The second derivative of J with respect to θnt
will be the inverse of the covariance matrix

of the Gaussian in landmark coordinates.

∂J

∂θnt

= −(zt − ẑt −Gθnt
(θnt

−µ
[m]
nt ,t−1))

T R−1
t Gθnt

(3.43)

∂2J

∂θ2
nt

= GT
θnt

R−1
t Gθnt

(3.44)

Consequently, an invertible observation can be used to create a new landmark as follows.

µ
[m]
nt ,t = g−1(s

[m]
t ,zt) (3.45)

Σ[m]
nt ,t =

(

GT
θnt ,t

R−1Gθnt ,t

)−1
(3.46)

w
[m]
t = p0 (3.47)

In practice, a simpler initialization procedure also works well. Instead of computing the

correct initial covariance, the covariance can be computed by setting the variance of each

landmark parameter to a high value and incorporating the first observation. Higher values
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of K lead to closer approximations of the true covariance, but can also lead to numerical

instability.

µ
[m]
nt ,t = g−1(s

[m]
t ,zt) (3.48)

Σ[m]
nt ,t = K · I (3.49)

Initialization techniques for situations in which g is not invertible (e.g. bearings-only

SLAM) are discussed in [10]. These situations require the accumulation of multiple ob-

servations in order to estimate the location of a landmark. FastSLAM is currently being

applied to the problem of bearings-only SLAM [54].

3.5 Summary of the FastSLAM Algorithm

Figure 3.11 summarizes the FastSLAM algorithm with unknown data association. Particles

in the complete FastSLAM algorithm have the form:

S
[m]
t = 〈s[m]

t | N
[m]
t ,µ

[m]
1,t ,Σ

[m]
1,t , . . . ,µ

[m]

N
[m]
t ,t

,Σ[m]

N
[m]
t ,t

〉 (3.50)

In addition to the latest robot pose s
[m]
t and the feature estimates µ

[m]
n,t and Σ[m]

n,t , each particle

maintains the number of features N
[m]
t in its local map. It is interesting to note that each

particle may have a different number of landmarks. This is an expressive representation,

but it can lead to difficulties determining the most probable map.

The algorithm shown in Figure 3.11 incorporates a single observation for every control.

This choice is for notational simplicity only. Multiple readings can be incorporated per

time step by processing each observation sequentially. The weight for each particle is

equal to the product of the weights due to each observation considered alone. Incorporating

multiple observations per time step will increase both the accuracy of data association and

the accuracy of the resulting map.

3.6 FastSLAM Extensions

This section describes two extensions to the FastSLAM algorithm. The first, greedy mu-

tual exclusion, improves the accuracy of data association. The second, negative evidence,
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Algorithm FastSLAM 1.0(St−1,zt ,Rt ,ut)

St = Saux = /0
for m = 1 to M // loop over all particles

retrieve m-th particle

〈

s
[m]
t−1,N

[m]
t−1,µ

[m]
1,t−1,Σ

[m]
1,t−1, . . . ,µ

[m]

N
[m]
t−1,t−1

,Σ[m]

N
[m]
t−1,t−1

〉

from St−1

draw s
[m]
t ∼ p(st | s

[m]
t−1,ut) // sample new pose

for n = 1 to N
[m]
t−1 // loop over potential

Gθ,n = ∇ θn
g(θn,st)|θn=µ

[i]
n,t−1;st=s

[i]
t

data associations

ẑn,t = g(s
[m]
t ,µ

[m]
n,t−1)

Zn,t = Gθ,nΣ[m]
n,t−1GT

θ,n +Rt

p
[m]
n,t = |2πZn,t |−

1
2 exp{− 1

2 (zt − ẑn,t)
T Z−1

n,t (zt − ẑn,t)}
end for

p
[m]

N
[m]
t−1+1,t

= p0

n̂t = argmax
n

p
[m]
n,t or draw random n̂t with probability ∝ p

[m]
n,t // pick a data association

if n̂t = N
[m]
t−1 +1 // is it a new feature?

N
[m]
t = N

[m]
t−1 +1

µ
[m]
n̂t ,t

= g−1(s
[m]
t , ẑn̂t ,t)

Σ[m]
n̂t ,t

=
(

GT
θ,n̂t

R−1Gθ,n̂t

)−1

else // or is a known feature?

N
[m]
t = N

[m]
t−1

Kn̂t ,t = Σn̂t ,t−1GT
θ,n̂t

Z−1
n̂t ,t

µ
[m]
n̂t ,t

= µ
[m]
n̂t ,t−1 +Kn̂t ,t(zt − ẑn̂t ,t)

Σn̂t ,t = (I −Kn̂t ,tGθ,n̂t
)Σ[m]

n̂t ,t−1

end if

for n = 1 to N
[m]
t do // handle unobserved features

if n 6= n̂t

µ
[m]
θn,t = µ

[m]
θn,t−1

Σθn,t = Σθn,t−1

end if

end for

w
[m]
t = p

[m]
n̂t ,t

add

〈

s
[m]
t ,N

[m]
t ,µ

[m]
1,t ,Σ

[m]
1,t , . . . ,µ

[m]

N
[m]
t ,t

,Σ[m]

N
[m]
t ,t

,w
[m]
t

〉

to Saux // save weighted particle

end for

for m = 1 to M // resample M new particles

draw random particle from Saux with probability ∝ w
[m]
t

add new particle to St

end for

return St

Figure 3.11: FastSLAM 1.0 Algorithm
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New landmarks

Figure 3.12: Mutual exclusion helps differentiate between previously observed and new
landmarks.

increases the accuracy of the maps generated by FastSLAM.

3.6.1 Greedy Mutual Exclusion

If multiple observations are incorporated simultaneously, the simplest approach to data

association is to consider the identity of each observation independently. However, the

data associations of each observation are clearly correlated, as was shown in Section 3.4.

The data associations are correlated through error in the robot pose, and they also must

all obey a mutual exclusion constraint; More than one observation cannot be associated

with the same landmark at the same time. Considering the data associations jointly does

address these problems [1, 42], but these techniques are computationally expensive for

large numbers of simultaneous observations.

FastSLAM addresses the first problem, motion ambiguity, by sampling over robot poses

and data associations. Each set of data association decisions is conditioned on a particular

robot path. Thus, the data associations can be chosen independently without fear that pose
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error will corrupt all of the decisions. Some of the particles will chose the correct data

associations. Others will draw inconsistent robot poses, pick incorrect data associations

and receive low weights. Picking associations independently per particle still ignores the

issue of mutual exclusion, however. Mutual exclusion is particularly useful for deciding

when to add new landmarks in noisy environments. Instead of assigning an observation of

an unseen landmark to an existing landmark, mutual exclusion will force the creation of a

new landmark if both features are observed.

Handling mutual exclusion properly requires that all data associations be considered si-

multaneously. However, mutual exclusion can also be enforced in a greedy fashion. Each

observation is processed sequentially and ignores the landmarks associated with previously

assigned observations. With just a single data association hypothesis, greedy mutual ex-

clusion is doomed to failure. It does work well in FastSLAM, though, because the motion

ambiguity that will cause greedy mutual exclusion failures is largely factored out by sam-

pling over the the robot’s path. Errors due to the greedy nature of the algorithm can also be

minimized by processing the observations in different orders for each particle.

3.6.2 Feature Elimination Using Negative Evidence

The point landmark representation of maps is an affirmative representation; in other words,

the map describes where landmarks are in the world but says nothing about where land-

marks are not. As such, observations are typically used only as positive evidence of the

existence of landmarks in this framework. Observations also can be used, however, to de-

termine whether a landmark in the map actually exists in the world. If the robot predicts that

it should see a landmark and then does not, this lack of observation provides evidence that

the landmark does not actually exist. Phantom landmarks may occur if the robot’s sensors

generate spurious measurements. The absence of observations of a landmark, sometimes

referred to as negative evidence, can be used to remove false landmarks caused by outlier

observations.

Negative evidence can be incorporated into FastSLAM in a simple manner. Let i
[m]
n be

a binary variable that indicates the existence of feature θ[m]
n . Observing the landmark θn

provides positive evidence for its existence, whereas not observing the landmark when

the landmark falls within the robot’s perceptual range provides negative evidence. The

resulting posterior probability distribution

p(i
[m]
n | n̂t,[m]

,st,[m]
,zt) (3.51)
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is estimated using a binary Bayes filter, an algorithm familiar in the literature of occupancy

grid maps [37]. FastSLAM represents the posterior over landmark existence in log-odds

form:

τ[m]
n = ln

p(i
[m]
n | n̂t,[m],st,[m],zt)

1− p(i
[m]
n | n̂t,[m],st,[m],zt)

= ∑
t

ln
p(i

[m]
n | n̂

[m]
t ,s

[m]
t ,zt)

1− p(i
[m]
n | n̂

[m]
t ,s

[m]
t ,zt)

(3.52)

The advantage of the log-odds form is that the updates are additive. See [58] for a deriva-

tion. Observation of a landmark leads to the addition of a positive value ρ+ to τ[m]
n , and not

observing a landmark that should have been seen results in the addition of a negative value

ρ−. The ρ values are defined as:

ρ+ = ln
p(i

[m]
n̂t

| n̂
[m]
t ,s

[m]
t ,zt)

1− p(i
[m]
n̂t

| n̂
[m]
t ,s

[m]
t ,zt)

(3.53)

ρ− = ln
p(i

[m]
n 6=n̂t

| n̂
[m]
t ,s

[m]
t ,zt)

1− p(i
[m]

ˆn6=nt

| n̂
[m]
t ,s

[m]
t ,zt)

(3.54)

The log odds ratio can be implemented easily in real-time. Each landmark filter maintains

an estimate of τ[m]
n as shown above. Fixed values are added or subtracted from τ depending

on whether the landmark is observed or missed. If τ falls below a minimum value that

corresponds to a minimum probability of existence, then the landmark filter is removed.

This mechanism enables FastSLAM particles to free themselves of landmarks caused by

spurious measurements.

3.7 Log(N) FastSLAM

The computational complexity of the FastSLAM algorithm presented up to this point re-

quires time O(M ·N) where M is the number of particles, and N is the number of landmarks

in the map. The linear complexity in M is unavoidable, given that we have to process M

particles for every update. This linear complexity in N is due to the importance resampling

step in Section 3.3.4. Since the sampling is done with replacement, a single particle in the

weighted particle set may be duplicated several times in St . The simplest way to implement

this is to repeatedly copy the entire particle into the new particle set. Since the length of the

particles depends linearly on N, this copying operation is also linear in the size of the map.
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Figure 3.13: Binary tree of landmark filters

The wholesale copying of particles from the old set into the new set is an overly conserva-

tive approach. The majority of the landmark filters remain unchanged at every time step.

Indeed, since the sampling is done with replacement, many of the landmark filters will be

completely identical!

These observations suggest that with proper bookkeeping, a more efficient particle repre-

sentation might allow duplicate landmark filters to be shared between particles, resulting in

a more efficient implementation of FastSLAM. This can be done by changing the particle

representation from an array of landmark filters to a binary tree. An example landmark tree

is shown in Figure 3.13 for a map with eight landmarks. In the figure, the landmarks are

organized by an arbitrary landmark number K. In situations in which data association is

unknown, the tree could be organized spatially as in a k-d tree.

Note that the landmark parameters µn,Σn are located at the leaves of the tree. Each non-

leaf node in the tree contains pointers to up to two subtrees. Any subtree can be shared

between multiple particles’ landmark trees. Sharing subtrees makes the update procedure

more complicated to implement, but results in a tremendous savings in both memory and

computation. Assuming that the tree is balanced, accessing a leaf requires a binary search

which requires log(N) time, on average.

The log(N) FastSLAM algorithm can be illustrated by tracing the effect of control and a

observation on the landmark trees. Each new particle in St will differ from its generating

particle in St−1 in two ways. First, each will posses a different pose estimate from (3.14),

and second, the observed feature’s Gaussian will be updated as specified in (3.27)-(3.31).

All other Gaussians will be equivalent to the generating particle. Thus, when copying the
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Figure 3.14: Updating the Landmark Tree

particle to St , only a single path from the root of the tree to the updated Gaussian needs to

be duplicated. The length of this path is logarithmic in N, on average.

An example is shown in Figure 3.14. Here we assume that nt = 3, that is, only the landmark

Gaussian parameters µ
[m]
3 ,Σ[m]

3 are updated. Instead of duplicating the entire tree, a single

path is duplicated, from the root to the third Gaussian. This path is an incomplete tree.

The tree is completed by copying the missing pointers from the tree of the generating

particle. Thus, branches that leave the modified path will point to the unmodified subtrees

of the generating particle. Clearly, generating this modified tree takes time logarithmic in

N. Moreover, accessing a Gaussian also takes time logarithmic in N, since the number

of steps required to navigate to a leaf of the tree is equivalent to the length of the path.

Thus, both generating and accessing a partial tree can be done in time O(logN). M new

particles are generated at every update step, so the resulting FastSLAM algorithm requires

time O(M logN).
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3.7.1 Garbage Collection

Organizing particles as binary trees naturally raises the question of garbage collection. Sub-

trees are constantly being shared and split between particles. However, when a subtree is no

longer referenced as a part of any particle description, the memory of this subtree must be

freed. A property of the landmark trees makes garbage collection simple in FastSLAM; If

a landmark subtree is not referenced by any particle, none of its subtrees will be referenced

either. As a consequence, landmark subtrees in FastSLAM can be freed recursively.

Each node in the landmark tree, internal or leaf, maintains a variable that counts the number

of times it is pointed to by other nodes. A newly created node receives a reference count of

1. When a new reference is made to a node, the reference count is incremented. Conversely,

when a link is removed, the reference count is decremented. When the reference count

reaches zero, the reference counts of the node’s children are decreased, and the node’s

memory is freed. This process is then applied recursively to all children of the node with a

zero reference count. This process will require O(M logN) time on average. Furthermore,

it is an optimal deallocation algorithm, in that all unneeded memory is freed immediately

when it is no longer referenced.

3.7.2 Unknown Data Association

If the mapping between landmarks and observations is not known, then the landmark trees

associated with each particle must be organized spatially, instead of by landmark identity.

Kd-trees [36] can guarantee logarithmic time search for high likelihood features, and fea-

tures in the robot’s sensor range. Incremental techniques for constructing balanced kd-trees

are described in [33, 48]. The bkd-tree proposed in [48] maintains a sequence of trees of

growing complexity. By carefully shifting items across those trees, logarithmic time recall

and amortized logarithmic time for landmark insertion should be possible in FastSLAM.

Using such a data structure, all necessary operations for FastSLAM with unknown data

association could be carried out in logarithmic time, on average. log(N) FastSLAM with

unknown data association has not been implemented, so the practical performance of this

algorithm is unknown.
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Figure 3.15: University of Sydney High Speed Vehicle (HSV) in Victoria Park

3.8 Experimental Results

In the following sections, I present experimental results to validate the performance of the

FastSLAM algorithm. I will start by demonstrating the performance of FastSLAM on data

collected by a real robot, and then go on to evaluate specific aspects of the algorithm on

simulated data. The performance of FastSLAM will be compared against that of the EKF.

3.8.1 Victoria Park

The FastSLAM algorithm was tested on a benchmark SLAM data set from the University of

Sydney. An instrumented vehicle, shown in Figure 3.15, equipped with a laser rangefinder

was repeatedly driven through Victoria Park, in Sydney, Australia. Victoria Park is an ideal

setting for testing SLAM algorithms because the park’s trees are distinctive features in the

robot’s laser scans. Encoders measured the vehicle’s velocity and steering angle. Range

and bearing measurements to nearby trees were extracted from the laser data using a local

minima detector. The vehicle was driven around for approximately 30 minutes, covering a

distance of over 4 km. The vehicle is also equipped with GPS in order to capture ground

truth data. Due to occlusion by foliage and buildings, ground truth data is only available for

part of the overall traverse. While ground truth is available for the robot’s path, no ground

truth data is available for the locations of the landmarks.

Since the robot is driving over uneven terrain, the measured controls are fairly noisy. Fig-

ure 3.16(a) shows the path of the robot obtained by integrating the estimated controls.
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After 30 minutes of driving, the estimated position of the robot is well over 100 meters

away from its true position measured by GPS. The laser data, on the other hand, is a very

accurate measure of range and bearing. However, not all objects in the robot’s field of

view are trees, or even static objects. As a result, the feature detector produced relatively

accurate observations of trees, but also generated frequent outliers.

Data association for this experiment was done using per-particle ML data association. Since

the accuracy of the observations is high relative to the average density of landmarks, data

association in the Victoria Park data set is a relatively straightforward problem. In a later

experiment, more difficult data association problems will be simulated by adding extra

control noise.

The output of FastSLAM is shown in Figure 3.16(b) and (c). The GPS path is shown as a

dashed line, and the output of FastSLAM is shown as a solid line. The RMS error of the

resulting path is just over 4 meters over the 4 km traverse. This experiment was run with

100 particles.

3.8.1.1 Performance Without Odometry

FastSLAM was also run on the Victoria Park data set without using the odometry data.

The pose of the robot in each particle was supplemented with translational velocity vt and

rotational velocity wt .

S
[m]
t =

〈
sx,t ,sy,t ,sθ,t ,sv,t ,sw,t ,Nt ,µ1,t ,Σ1,t , . . . .,µNt ,t ,ΣNt ,t

〉
(3.55)

A brownian motion model was used to predict the pose of the robot at time t +1 given the

pose at time t. This model assumes that the velocity at time t +1 is equal to the velocity at

time t plus some random perturbation.

vt = vt−1 +N (v;0,α2
1) (3.56)

wt = wt−1 +N (w;0,α2
2) (3.57)

After drawing a perturbed velocity, the robot’s position is updated accordingly.

xt = xt−1 + vt cos(θt−1)∆t (3.58)

yt = yt−1 + vt sin(θt−1)∆t (3.59)

θt = θt−1 +wt ∆t (3.60)
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(a) Vehicle path predicted by the odometry (b) True path (dashed line) and FastSLAM path
(solid line)

(c) Victoria Park results overlayed on aerial imagery GPS path in
blue (dashed), FastSLAM path in yellow (solid), estimated land-
marks are yellow circles

Figure 3.16: Results of FastSLAM on Victoria Park data set
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Figure 3.17: Victoria Park Map created without odometry information

The map created without using the odometry is shown in Figure 3.17. The average error of

the map is equivalent to the results obtained with odometry.

3.8.1.2 Negative Information

In the Victoria Park data set, observations corresponding to non-point objects or non-static

objects result in a large number of spurious landmarks being added to every FastSLAM

particle. When negative information is used to estimate the existence of each landmark, as

described in Section 3.6.2, many of these spurious landmarks can be removed. In the case

of Victoria Park, use of negative information results in 44% percent fewer landmarks in the

resulting map. While the “correct” number of landmarks is not available, visual inspection

of the maps suggests that many of the spurious features have been eliminated. Figure 3.18

shows the Victoria Park map built with and without considering negative evidence. The

number of landmarks in areas that should be free of landmarks (the roadway, highlighted

with a box in the figure) has been significantly reduced.

3.8.2 Comparison of FastSLAM and the EKF

3.8.2.1 Accuracy

The accuracy of FastSLAM was compared with that of the EKF on a simulated data set

with 100 landmarks. The RMS robot pose error was computed for FastSLAM for various
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(a) Standard FastSLAM (b) Using negative information

Figure 3.18: Maps created with and without negative information

numbers of particles from 1 to 5000. Each experiment was run 10 times. The results are

shown in Figure 3.19. The error of the EKF is shown as a dashed horizontal line.

In this experiment, the accuracy of FastSLAM approaches the accuracy of the EKF as the

number of particles is increased. Most notably, the error of FastSLAM becomes statistically

indistinguishable from that of the EKF past approximately 10 particles. This is interesting

because FastSLAM with 10 particles and 100 landmarks requires an order of magnitude

fewer parameters than the EKF in order to achieve this level of accuracy. Clearly, the

specific value of this threshold of performance will depend on both the parameters of the

motion and measurement model and the robot’s control policy. However, this experiment

suggests that in normal circumstances, a relatively small number of particles is required in

order to achieve high estimation accuracy.

3.8.2.2 Scaling Performance

The scaling performance of FastSLAM was also evaluated on simulated data. Simulated

maps of constant landmark density were created with varying numbers of landmarks. Con-

stant landmark density ensures that the simulated robot observed a constant number of

landmarks on average across all trials. The performance of the linear time and logarith-

mic time versions of the FastSLAM algorithm were compared. The linear time algorithm
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Figure 3.19: A comparison of the accuracy of FastSLAM and the EKF on simulated data
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Figure 3.21: Memory requirements for linear and log(N) version of FastSLAM

was tested up to 10,000 landmarks, and the logarithmic time algorithm was tested up to

1,000,000 landmarks. The time required to compute 500 sensor updates with all landmarks

incorporated into the map was evaluated over 10 different runs. All experiments were done

with 100 particles.

The results of the experiment are shown in Figures 3.20. The performance of the log(N)

algorithm is plotted on a logarithmic scale. The results validate the scaling performance of

the tree-based algorithm, and demonstrate the substantial performance increase enabled by

sharing landmark trees across particles.

Sharing subtrees is not only computationally efficient, but it decreases the overall memory

required by the algorithm. The memory required by both versions of the FastSLAM al-

gorithm scales linearly with the number of landmarks. Overall, the FastSLAM algorithm

must maintain M ·N landmark filters. With 100 particles and 1,000,000 landmarks, this can

add up to a substantial amount of memory (hundreds of megabytes) just to represent the

map. In very large maps, landmarks that have not been visited for a long period of time

will be shared in subtrees between all of the particles of the log(N) algorithm. If only a
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fraction of the total landmarks are observed at every time step, this memory sharing may

result in a significant savings in memory consumption. A plot of the memory consumed

by the linear and logarithmic FastSLAM algorithms for varying numbers of landmarks is

shown in Figure 3.21. In this experiment, the tree-based representation resulted in over an

order-of-magnitude decrease in memory consumption over the basic FastSLAM algorithm.

3.8.3 Ambiguous Data Association

The performance of FastSLAM given unknown data association was evaluated against that

of the Extended Kalman Filter again using the Victoria Park data set. Under normal condi-

tions, the levels of odometric and measurement noise present in the Victoria Park data set

do not cause a significant data association problem. The error of the vehicle’s laser is quite

low compared to the average distance between trees in the park. In order to test perfor-

mance given data association ambiguity, additional odometric noise was added to the robot

controls. Additional control noise results in high motion ambiguity in the data associations

of new observations.

Prototypical outputs of the EKF and FastSLAM given low and high levels of odometric

noise are shown in Figure 3.22. While both algorithms generate accurate maps when con-

trol noise is low, the EKF fails catastrophically with high error. The map generated by

FastSLAM under high odometric error is not degraded in quality. The RMS error of the

robot position was computed for FastSLAM and the EKF over 20 different runs with four

different levels of odometric noise. The results are shown in Figure 3.23. As control noise

increases, there is no measurable increase in the RMS error of FastSLAM, while the error

of the robot path emitted by the EKF goes up substantially. More telling is the variance

in the error of the EKF maps across multiple runs, indicated by the confidence bars. This

suggests that for high levels of control noise, the EKF is diverging.

3.8.4 Sample Impovrishment

FastSLAM, like all particle filters, works best if the proposal distribution and the posterior

distribution are well matched. If the robot’s motion is very noisy and the robot’s sensor

is very accurate, many particles will be thrown away in the resampling process. In these

situations, the performance of FastSLAM 1.0 will degrade. This effect can be demonstrated

by running FastSLAM on simulated data with varying levels of sensor noise. The results



CHAPTER 3. FASTSLAM 1.0 73

Extended Kalman Filter

(a) Low odometric error (b) High odometric error

FastSLAM

(c) Low odometric error (d) High odometric error

Figure 3.22: Performance of EKF and FastSLAM with varying levels of odometric noise
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Figure 3.23: Position error of vehicle under various levels of odometric noise

of this experiment are shown in Figure 3.24. FastSLAM was run with 100 particles for

various levels of sensor noise. Each experiment was run 10 times.

Clearly, as the measurement error becomes very low, FastSLAM begins to diverge. It is

important to note that these values of measurement error are very small (less than 1% of

the average range value). However, the following chapter will describe a modified version

of the FastSLAM algorithm that addresses this problem.
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Chapter 4

FastSLAM 2.0

The previous chapter described the basic FastSLAM algorithm. Sampling over robot paths

leads to efficient scaling and robust data association, however it also has its drawbacks.

FastSLAM, and particle filters in general, have some unusual properties. For example, the

performance of the algorithm will eventually degrade if the robot’s sensor is too accurate.

This problem occurs when the proposal distribution is poorly matched with the posterior. In

FastSLAM, this happens when the motion of the robot is noisy relative to the observations.

This chapter will describe a modified version of FastSLAM, called FastSLAM 2.0 which

attempts to solve this problem. FastSLAM 2.0 incorporates the current observation into

the proposal distribution, not just the importance weights, in order to better match the

posterior. The resulting algorithm is superior to the original FastSLAM algorithm in nearly

all respects.

4.1 Sample Impoverishment

The two key steps of particle filtering, sampling from the proposal distribution and impor-

tance resampling, can be thought of as a process of incrementally building and pruning a

tree of representative trajectories of the system being filtered. Drawing from the proposal

distribution generates new trajectories, and resampling throws away very improbable tra-

jectories in order to maintain a constant number of particles. Clearly, a particle filter with

many distinct trajectories is a more diverse sampling of the posterior than a particle fil-

ter with many duplicate trajectories. More diversity in the sample set will lead to better

estimation accuracy, in general.

76
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Figure 4.1: Particle history in FastSLAM

The resampling process, while an essential part of the particle filter, decreases diversity by

throwing away some particles and duplicating others multiple times. As many controls and

observations are incorporated into the filter, all of the particles will inevitably share some

common history. In other words, if the trajectory of every particle is traced back in time, at

some point all of the particles will share a single common ancestor. The number of updates

the particles can be traced back through time to their common estimator is an important

indicator of the performance of the filter.

In the case of FastSLAM, the histories of the particles have a particularly intuitive form;

each is a hypothesized path of the robot. Conditioned on each robot path, the landmark

positions are independent. The correlations between the landmarks are represented in the

collection of robot particles. The more diverse the particle set, the more accurately Fast-

SLAM can revise the path of the robot (and thus the landmark positions) given a new

observation. The path distance back to the point of the common trajectory can be thought

of as the distance beyond which the filter cannot go back and re-weight past hypotheses.

This distance is crucial to the performance of FastSLAM, as it defines how large a loop can

effectively be closed. The histories of particles is shown for a simulated FastSLAM run in

Figure 4.1.

The amount of diversity in the FastSLAM sample set is governed by the balance between

the proposal and pruning processes. The more hypotheses that are pruned during every

update, the lower the diversity will be. The diversity would be maximized if the proposal



CHAPTER 4. FASTSLAM 2.0 78

(a) (b)

Figure 4.2: Mismatch between proposal and posterior distributions

distribution and the posterior distribution were identical. However, if samples could be

drawn directly from the SLAM posterior, there would be no need for a particle filter in the

first place.

The mismatch between the proposal and posterior distribution in FastSLAM is most pro-

nounced when the noise of robot motion is much higher than the noise of the robot’s sen-

sors. The motion model spreads the particles out over a large space, and only a small

fraction of the particles receive non-negligible weights. Thus, only a small fraction of the

samples survive into the next generation. This problem is compounded further if the robot

incorporates a large number of observations per control.

Figure 4.2 shows an example of a mismatched proposal and posterior distribution. The

particles in Figure 4.2(a) are drawn from the motion model, which is substantially noisy.

A subsequent observation constrains the robot’s true position to lie within the overlayed

ellipse. All of the samples outside of the ellipse, grayed out in Figure 4.2(a), will receive

negligible probability, while the samples inside the ellipse will be duplicated multiple times

by the resampling process. As the observations become more accurate, fewer unique sam-

ples will survive each update. At some point, sufficiently accurate observations will cause

the particle filter to diverge. This non-intuitive result is a well known failure mode of stan-

dard particle filtering [15].
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4.2 FastSLAM 2.0

This chapter describes a modified version of the basic FastSLAM algorithm designed to be

less wasteful with its samples. Conceptually this modification is simple: when sampling a

new robot pose, the new proposal distribution will rely not only on the current control (as

is the case in FastSLAM 1.0), but also on the most recent sensor measurement. To obtain

a suitable proposal distribution, the FastSLAM 2.0 algorithm linearizes the motion model,

in the same manner as EKF-based SLAM solutions. As a result, the modified proposal

distribution can be computed in closed form.

This extension parallels prior work by Doucet et al., who proposed a similar modifica-

tion for general particle filters [15], and Markov Chain Monte Carlo techniques for neural

networks [9]. It is also similar to the arc reversal technique proposed for particle filters ap-

plied to Bayes Networks [46], and work by Van de Merwe, who uses a unscented filtering

step [63] for generating proposal distributions that incorporate the most recent measure-

ment.

While this modification is conceptually simple, it has important ramifications. First, it

leads to a proof of convergence for the FastSLAM 2.0 algorithm with a single particle. The

resulting one-particle algorithm requires constant time to incorporate observations. The

best previous SLAM algorithm for which convergence was shown requires quadratic update

time. Furthermore, the new algorithm, even with a single particle, yields significantly

more accurate results than FastSLAM 1.0 on the Victoria Park dataset. These findings

are significant, as many mobile robot systems are plagued by control noise, but possess

relatively accurate sensors. Moreover, this contradicts a widely held belief that maintaining

the entire covariance matrix is required for convergence [14].

Incorporating the modified proposal distribution requires two primary changes to the Fast-

SLAM algorithm. First, a procedure for drawing samples from the new proposal must be

developed. Second, the formula for the weights of the particles must be updated to reflect

the change in proposal distribution.

4.2.1 The New Proposal Distribution

Much like the derivation of the derivation of the original FastSLAM algorithm, I will repre-

sent the standard motion and measurement models as nonlinear functions with independent
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Gaussian noise:

p(zt | st ,Θ,nt) = g(st ,θnt
)+ εt (4.1)

p(st | ut ,st−1) = h(st−1,ut)+δt (4.2)

Here g and h are nonlinear functions, and εt and δt are Gaussian noise variables with co-

variance Rt and Pt , respectively.

Instead of drawing a new pose st from the standard motion model p(st | ut ,st−1), FastSLAM

2.0 will draw a new pose from a motion model that includes the most recent observation zt .

s
[m]
t ∼ p(st | st−1,[m]

,ut
,zt

,nt) (4.3)

Here st−1,[m] is the path up to time t−1 attached to the m-th particle. The sampling distribu-

tion (4.3) explicitly incorporates the most recent sensor measurement zt , its data association

nt , and the most recent control ut , which together represent the new information available

at time t.

The mechanism for sampling from (4.3) requires further analysis. First, the new motion

model can be rewritten in terms of known distributions, including the standard motion and

measurement models, and the Gaussian feature estimates. This derivation is analogous to

the derivation of the basic filter equation. First, the proposal distribution is expanded using

Bayes Rule.

p(st | st−1,[m]
,ut

,zt
,nt)

Bayes
∝ η p(zt | st ,s

t−1,[m],ut ,zt−1,nt) p(st | st−1,[m],ut ,zt−1,nt) (4.4)

The robot pose st in the second term depends only on the previous pose st−1 and the current

control ut . The rest of the conditioning variables can be dropped, leaving the standard

motion model.
Markov
= η p(zt | st ,s

t−1,[m]
,ut

,zt−1
,nt) p(st | s

[m]
t−1,ut) (4.5)

The Theorem of Total Probability is used to condition the first term of the product on the

currently observed landmark θnt
, as follows:

= η
∫

p(zt | θnt
,st ,s

t−1,[m]
,ut

,zt−1
,nt) p(θnt

| st ,s
t−1,[m]

,ut
,zt−1

,nt)dθnt
p(st | s

[m]
t−1,ut)

(4.6)
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The first term of the integrand is simply the measurement model p(zt | st ,θnt
,nt). The

second term can also be simplified because st ,nt and ut do not provide any information

about the θnt
without zt .

Markov
= η

∫

p(zt | θnt
,st ,nt)

︸ ︷︷ ︸

∼N (zt ;g(st ,θnt ),Rt)

p(θnt
| st−1,[m]

,zt−1
,ut−1

,nt−1)
︸ ︷︷ ︸

∼N (θnt ;µ
[m]
nt ,t−1,Σ

[m]
nt ,t−1)

dθnt
p(st | s

[m]
t−1,ut)

︸ ︷︷ ︸

∼N (st ;h(s
[m]
t−1,ut),Pt)

(4.7)

The expression (4.7) shows that the sampling distribution is the convolution of two Gaus-

sians, multiplied by a third. Unfortunately, in the general case this distribution possesses

no closed form from which we can easily draw samples. The culprit is the function g: If it

were linear, this probability would be Gaussian, a fact that shall become obvious below.

As a result of this observation, the function g will be replaced by a linear approximation.

This approximation is obtained through a first order Taylor expansion. The Taylor expan-

sion of g is the following linear function:

ŝt = h(s
[m]
t−1,ut) (4.8)

ẑt = g(ŝt ,µ
[m]
nt ,t−1) (4.9)

Gθ = ∇ θnt
g(st ,θnt

)|
st=ŝt ,θnt =µ

[m]
nt ,t−1

(4.10)

Gs = ∇ st
g(st ,θnt

)|
st=ŝt ,θnt =µ

[m]
nt ,t−1

(4.11)

g(st ,θnt
) ≈ ẑt +Gθ(θnt

−µ
[m]
nt ,t−1)+Gs(st − ŝt) (4.12)

ŝt can be thought of as the predicted pose of the robot at time t, and ẑt as the predicted

observation, for the given particle. The matrices Gθ and Gs are the Jacobians of g; that

is, they are the derivatives of g with respect to θnt
and st , respectively, evaluated at the

expected values of their arguments. Given this linear approximation, we can now determine

an approximate form for the proposal distribution. The convolution theorem provides us

with a closed form for the integral term in (4.7):

N (zt ; ẑt +Gsst −Gsŝt ,Rt +GθΣ[m]
nt ,t−1GT

θ
︸ ︷︷ ︸

Zt

) (4.13)

For brevity, we will write the covariance of this Gaussian as Zt . Note that this is the same

Zt from the original FastSLAM algorithm, the innovation covariance matrix. The proposal

distribution is given by the product of this new Gaussian with the rightmost term in (4.7),
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the Gaussian N (st ; ŝ
[m]
t ,Pt). Expanding the form of the Gaussian explicitly, the product can

be written as:

p(st | st−1,[m]
,zt

,ut
,nt) = ξ exp{−yt} (4.14)

where the exponent is:

yt =
1

2
[(z− ẑt −Gsst +Gsŝt)

T Z−1
t (z− ẑt −Gsst +Gsŝt)+

(st − ŝt)
T P−1

t (st − ŝt)] (4.15)

The expression for the exponent is clearly quadratic in the target variable st , therefore the

distribution (4.14) is also Gaussian. The mean and covariance of (4.14) are given by the

minimum of (4.15) and its curvature. These are identified by calculating the first and second

derivatives of yt with respect to st :

∂yt

∂st

= −GT Z−1
t (zt − ẑt −Gsst +Gsŝt)+P−1

t (st − ŝt) (4.16)

= (GT
s Z−1

t Gs +P−1
t )st −GT

s Z−1
t (zt − ẑt +Gsŝt)−P−1

t ŝt (4.17)

∂2yt

∂s2
t

= GT
s Z−1

t Gs +P−1
t (4.18)

The covariance Σ[m]
st of the sampling distribution is now obtained by taking the inverse of

the second derivative (4.18).

Σ[m]
st =

[
GT

s Z−1
t Gs +P−1

t

]−1
(4.19)

The mean µ
[m]
st of the sample distribution is obtained by setting the first derivative (4.17) to

zero, which gives:

µ
[m]
st = Σ[m]

st

[

GT
s Z−1

t (zt − ẑt +Gsŝ
[m]
t )+P−1

t ŝt

]

= Σ[m]
st GT

s Z−1
t (zt − ẑt)+Σ[m]

st

[
GT

s Z−1
t Gs +P−1

t

]
ŝ
[m]
t

= Σ[m]
st GT

s Z−1
t (zt − ẑt)+ ŝ

[m]
t (4.20)

(4.19) and (4.20) parameterize FastSLAM 2.0’s Gaussian approximation to the new sam-

pling distribution p(st | st−1,[m],zt ,ut ,nt). This Gaussian is constructed for each particle in

St−1, and a new sample is drawn and placed in the temporary particle set.



CHAPTER 4. FASTSLAM 2.0 83

4.2.2 Calculating the Importance Weights

Since we are using a different proposal distribution than the original FastSLAM algorithm,

the importance weights must also be updated to reflect this change. The importance weights

are defined as the ratio of the target distribution over the proposal distribution. Under the

asymptotically correction assumption that the paths in st−1,[m] were generated according

to the target distribution one time step earlier, p(st−1,[m] | zt−1,ut−1,nt−1),we note that the

proposal distribution is given by the product:

p(st−1,[m] | zt−1
,ut−1

,nt−1) p(s
[m]
t | st−1,[m]

,zt
,ut

,nt) (4.21)

So the importance weight w
[m]
t is equal to:

w
[m]
t =

target distribution

proposal distribution
(4.22)

=
p(st,[m] | zt ,ut ,nt)

p(st−1,[m] | zt−1,ut−1,nt−1) p(s
[m]
t | st−1,[m],zt ,ut ,nt)

(4.23)

The numerator can be expanded using the definition of conditional probability:

=
p(s

[m]
t | st−1,[m],zt ,ut ,nt) p(st−1,[m] | zt ,ut ,nt)

p(st−1,[m] | zt−1,ut−1,nt−1) p(s
[m]
t | st−1,[m],zt ,ut ,nt)

(4.24)

=
p(st−1,[m] | zt ,ut ,nt)

p(st−1,[m] | zt−1,ut−1,nt−1)
(4.25)

Next, the numerator can be expanded using Bayes Rule.

Bayes
= η

p(zt | st−1,[m],zt−1,ut ,nt) p(st−1,[m] | zt−1,ut ,nt)

p(st−1,[m] | zt−1,ut−1,nt−1)
(4.26)

ut and nt can be dropped from the second term in the numerator by the Markov property.

Markov
= η

p(zt | st−1,[m],zt−1,ut ,nt) p(st−1,[m] | zt−1,ut−1,nt−1)

p(st−1,[m] | zt−1,ut−1,nt−1)
(4.27)

= η p(zt | st−1,[m]
,zt−1

,ut
,nt) (4.28)

This equation is similar, but not identical, to the formula for the importance weights in
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FastSLAM 1.0 (3.36). Next, we apply the Theorem of Total Probability twice in order to

condition this expression on st and θnt
.

w
[m]
t = η

∫

p(zt | st ,s
t−1,[m]

,zt−1
,ut

,nt) p(st | st−1,[m]
,zt−1

,ut
,nt)dst (4.29)

Markov
= η

∫

p(zt | st ,s
t−1,[m]

,zt−1
,ut

,nt) p(st | st−1,[m]
,ut)dst (4.30)

= η
∫ ∫

p(zt | θnt
,st ,s

t−1,[m]
,zt−1

,ut
,nt) p(θnt

| st ,s
t−1,[m]

,zt−1
,ut

,nt)dθnt

p(st | st−1,[m]
,ut)dst (4.31)

Markov
= η

∫ ∫

p(zt | θnt
,st ,nt)

︸ ︷︷ ︸

∼N (zt ;g(θnt ,st),Rt)

p(θnt
| st−1,[m]

,zt−1
,ut−1

,nt−1)
︸ ︷︷ ︸

∼N (θnt ;µ
[m]
nt ,t−1,Σ

[m]
nt ,t−1)

dθnt
p(st | st−1,[m]

,ut)
︸ ︷︷ ︸

∼N (st ;ŝt ,Pt)

dst (4.32)

The three terms in this expression are all Gaussians, corresponding to the measurement

model, the landmark estimate at t − 1, and the motion model. Using the linearization of

g, this expression can be calculated in closed form. Two applications of the convolution

theorem yields:

w
[m]
t ∼ N(zt ; ẑt ,GsPtG

T
s +GθΣ[m]

nt ,t−1GT
θ +Rt

︸ ︷︷ ︸

Lt

) (4.33)

Put differently, the (non-normalized) importance weight for the m-th particle is given my

the following expression:

Lt = GsPtG
T
s +GθΣ[m]

nt ,t−1GT
θ +Rt (4.34)

w
[m]
t = |2πL

[m]
t | 1

2 exp

{
1

2
(z− ẑ

[m]
t )T L

[m],−1
t (z− ẑ

[m]
t )

}

(4.35)

4.2.3 FastSLAM 2.0 Overview

The FastSLAM 2.0 algorithm differs from the original algorithm only in the choice of

proposal distributions and the calculation of the importance weights. The rest of the algo-

rithm, including the landmark updates, data association, and resampling procedures remain

unchanged. The complete FastSLAM 2.0 algorithm is shown in Figure 4.3.
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Algorithm FastSLAM 2.0(St−1,zt ,Rt ,ut ,Pt )

St = Saux = /0
for m = 1 to M // loop over all particles

retrieve m-th particle

〈

s
[m]
t−1,N

[m]
t−1,µ

[m]
1,t−1,Σ

[m]
1,t−1, . . . ,µ

[m]

N
[m]
t−1,t−1

,Σ[m]

N
[m]
t−1,t−1

〉

from St−1

for n = 1 to N
[m]
t−1 // loop over potential

ŝt = h(s
[m]
t−1,ut) ẑt,n = g(ŝt ,µ

[m]
n,t−1) data associations

Gθ,n = ∇ θn
g(st ,θn)|

st=ŝt ;θn=µ
[m]
n,t−1

Gs,n = ∇ st g(st ,θn)|
st=ŝt ;θn=µ

[m]
n,t−1

Zt,n = Rt +Gθ,nΣ[m]
n,t−1GT

θ,n

Σst ,n =
[
GT

s,nZ−1
t,n Gs,n +P−1

t

]−1
µst ,n = ŝt +Σ[m]

st ,nGT
s,nZ

[m]−1
t,n (zt − ẑt,n) // calculate proposal

s
[m]
t,n ∼ N (st ;µst ,n,Σst ,n) // draw new pose

pn = |2πZt,n|−
1
2 exp

{

− 1
2 (zt −g(s

[m]
t,n ,µ

[m]
n,t−1))

T Z−1
t,n (zt −g(s

[m]
t,n ,µ

[m]
n,t−1))

}

end for

p
[m]

N
[m]
t−1+1

= p0 // likelihood of new feature

n̂t = argmax
n

pn or draw random n̂t with probability ∝ pn // pick a data association

if n̂t = N
[m]
t−1 +1 // new feature?

s
[m]
t ∼ N (st | s

[m]
t−1,ut) N

[m]
t = N

[m]
t−1 +1

Gθ,n̂t
= ∇ θn

g(st ,θn)|
st=s

[m]
t ;θn=µ

[m]
n,t−1

µ
[m]
n̂t ,t

= g−1(s
[m]
t , ẑn̂t ,t) Σ[m]

n̂t ,t
=

(

GT
θ,n̂t

R−1Gθ,n̂t

)−1

w
[m]
t = p0

else // known feature?

s
[m]
t = s

[m]
t,n̂t

N
[m]
t = N

[m]
t−1

Kn̂t ,t = Σn̂t ,t−1GT
θ,n̂t

Z−1
n̂t ,t

µ
[m]
n̂t ,t

= µ
[m]
n̂t ,t−1 +Kn̂t ,t(zt − ẑn̂t ,t) Σn̂t ,t = (I −Kn̂t ,tGθ,n̂t

)Σ[m]
n̂t ,t−1

Lt = Gs,n̂t PtG
T
s,n̂t

+Gθ,n̂t
Σ[m]

n̂t ,t−1GT
θ,n̂t

+Rt

w
[m]
t = |2πLt |−

1
2 exp

{
− 1

2 (zt − ẑt,n̂t )
T L−1

t (zt − ẑt,n̂t )
}

end if

for n = 1 to N
[m]
t // handle unobserved feature

if n 6= n̂t

µ
[m]
θn,t = µ

[m]
θn,t−1 Σ[m]

θn,t = Σ[m]
θn,t−1

end if

end for

add

〈

s
[m]
t ,N

[m]
t ,µ

[m]
1,t ,Σ

[m]
1,t , . . . ,µ

[m]

N
[m]
t ,t

,Σ[m]

N
[m]
t ,t

,w
[m]
t

〉

to Saux // save weighted particle

end for

for m = 1 to M // resample M new particles

Draw random particle from Saux with probability ∝ w
[m]
t

Add new particle to St

end for

return St

Figure 4.3: FastSLAM 2.0 Algorithm
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4.3 Handling Multiple Observations

Incorporating multiple observations per control is more difficult in FastSLAM 2.0 than it

is in the original FastSLAM algorithm. In FastSLAM 1.0, multiple observations can be

handled sequentially, updating the appropriate landmark filters individually and multiply-

ing their importance weights together. In FastSLAM 2.0, the proposal distribution also

incorporates the observations before the individual landmark filters are updated.

The incorporation of an observation into the proposal distribution is equivalent to one it-

eration of an EKF measurement update. Multiple observations can be incorporated into

FastSLAM 2.0 by applying this EKF update multiple times, once for each observation.

As each observation is incorporated, the proposal distribution will continue to shrink. A

sample is drawn from the incremental proposal distribution after incorporating each obser-

vation, in order to update the landmark filters and compute the importance weights.

The initial proposal distribution is set to a Gaussian with mean ŝ and covariance Pt . Then

the proposal distribution is updated as follows:

Σst ,0 = Pt (4.36)

µst ,0 = ŝt (4.37)

Σst ,n =
[

GT
s,nZ−1

t,n Gs,n +Σ−1
st ,n−1

]−1
(4.38)

µst ,n = µst ,n−1 +Σst ,nGT
st ,n

Z−1
t,n (zt − ẑt,n) (4.39)

The creation of new landmarks in FastSLAM 2.0 deserves further consideration when mul-

tiple observations are incorporated per time step. If the first of K simultaneous observations

predicts the addition of a new landmark, the new robot pose s
[m]
t will be drawn from the

standard motion model p(st | st−1,ut). If this motion model is noisy, then the initial posi-

tion of the new landmark may be quite inaccurate. If the observation that generates a new

landmark is processed last out of the K observations however, then the new robot pose s
[m]
t

will be drawn from the modified proposal distribution N (θn,µst ,n,Σst ,n), which has been

refined by the previous K −1 observations. As a result, the initial position of the landmark

will be much more accurate.

As a general rule, if multiple observations are incorporated per time step, observations that

lead to new landmarks should always be processed last. One approach to this problem is to

process the observations in two passes. Knowledge about the robot’s configuration can also

be used to order the observations in such a way that new landmarks are processed last. For
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New landmarks

Figure 4.4: New landmarks appear at the leading edge of the robot’s field of view

example, observations that generate new landmarks typically occur at the leading edge of a

robot’s field-of-view. (See Figure 4.4.) Incorporating observations into FastSLAM in order

of ascending range typically incorporates observations of new landmarks last in forward

looking sensors. A reasonable ordering of the observations will ensure the best possible

accuracy in the location of new landmarks. This will result in better accuracy of the overall

maps generated by FastSLAM 2.0

4.4 FastSLAM 2.0 Convergence

As experimental results will demonstrate, the more advanced proposal distribution of Fast-

SLAM 2.0 decreases the number of particles necessary to achieve a given level of accuracy.

This is especially true if the the robot has relatively accurate sensors and inaccurate motion,

a situation common in the real world. FastSLAM 2.0 also has the unusual property that it

can converge with a single particle. Since resampling is not needed, FastSLAM 2.0 with

a single particle is a constant time SLAM algorithm. The time required to incorporate an
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observation is unaffected by the size of the map.

In standard particle filtering, resampling is the only phase of the algorithm that draws the

sample set into agreement with the observations. If there is only one particle, resampling

cannot change its trajectory, and the filter will diverge. In FastSLAM 2.0, the proposal

distribution incorporates the observations as well. With a single particle, the motion model

of FastSLAM 2.0 can minimize the error of the map by proposing a new robot pose that

agrees with the latest observations.

In this section, we will demonstrate the convergence of FastSLAM 2.0 with a single particle

for a special case of the SLAM problem - Linear Gaussian SLAM (LG-SLAM). Conver-

gence with a single particle trivially implies convergence with M particles. This proof has

two important consequences. To our knowledge, the best previous SLAM algorithm for

which convergence was shown requires quadratic update time. This proof demonstrates

convergence for a constant time algorithm. Second, this proof refutes the commonly held

belief that maintaining the entire covariance matrix is necessary for convergence. Fast-

SLAM 2.0 with a single particle maintains no correlation information between landmarks.

The convergence result presented here applies to linear SLAM problems with Gaussian

noise. LG-SLAM problems are defined as possessing motion and measurement models of

the following form:

g(st ,θnt
) = θnt

− st (4.40)

h(ut ,st−1) = ut + st−1 (4.41)

The LG-SLAM framework can be thought of as a robot operating in a Cartesian space

equipped with a noise free compass, and sensors that measure distances to features along

the coordinate axes. In this scenario, the mapping between observations and landmarks is

assumed to be known.

While LG-SLAM is too restrictive to be of practical significance, it plays an important role

in the SLAM literature. In particular, the Kalman filter has been shown to converge to the

true map in the linear-Gaussian case [13, 43]. The Kalman filter converges to a state in

which all map features are fully correlated. If the location of one feature is known, the rest

of the features locations are recovered asymptotically by the filter.

The main convergence property for FastSLAM is the following:

Theorem: Linear-Gaussian FastSLAM converges in expectation to the correct
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map with M = 1 particle if all features are observed infinitely often, and the

location of one feature is known in advance.

If no features are known in advance, the map will be correct in relative terms, up to a fixed

offset that is applied uniformly to all features.

4.4.1 Convergence Proof

Before the proof is given, we must reformulate the FastSLAM update equations for the LG-

SLAM problem using the definitions of g and h given in (4.40) and (4.41). In particular,

the equations for the computation of the proposal distribution can be rewritten as follows:

ŝt = h(s
[m]
t−1,ut) = s

[m]
t−1 +ut (4.42)

ẑt = g(ŝt ,µ
[m]
nt ,t−1) = µ

[m]
nt ,t−1 − s

[m]
t−1 −ut (4.43)

Gθ = ∇ θn
g(st ,θn)|

st=ŝt ;θn=µ
[m]
nt ,t−1

= I (4.44)

Gs = ∇ st
g(st ,θn)|

st=ŝt ;θn=µ
[m]
nt ,t−1

= −I (4.45)

Zt = Rt +GθΣ[m]
nt ,t−1GT

θ = Rt +Σ[m]
nt ,t−1 (4.46)

Σst
=

[
GT

s ZtG+P−1
t

]−1
=

[

(Rt +Σ[m]
nt ,t−1)

−1 +P−1
t

]−1
(4.47)

µst
= Σst

GT
s Z−1

t (zt − ẑt)+ ŝt (4.48)

= −Σst
(Rt +Σ[m]

nt ,t−1)
−1(zt −µ

[m]
nt ,t−1 + s

[m]
t−1 +ut)+ s

[m]
t−1 +ut (4.49)

s
[m]
t ∼ N (st ;µst

,Σst
) (4.50)

Similarly, the equations for updating the landmark position estimates (3.26) though (3.31)

can be rewritten and consolidated:

µnt ,t = µnt ,t−1 +Σnt ,t−1(Rt +Σ[m]
nt ,t−1)

−1(zt −µ
[m]
nt ,t−1 + s

[m]
t−1 +ut) (4.51)

Σnt ,t = (I −Σ[m]
nt ,t−1(Rt +Σ[m]

nt ,t−1)
−1)Σ[m]

nt ,t−1 (4.52)

The equation for the computation of the importance weights can be ignored because this

proof is for M = 1 particle. The resampling step of the particle filter is no longer applicable.

For the proof, it will be convenient to introduce error variables α[m]
t and β[m]

n,t , for the robot
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pose and the feature locations, respectively.

α[m]
t = s

[m]
t − st (4.53)

β[m]
n,t = µ

[m]
n,t −θn (4.54)

These variables measure the absolute error of the robot and the landmarks at time t. We

will refer to the landmark with the known position as the anchoring feature. Without loss

of generality, we will assume that the anchoring feature is θ1.

The FastSLAM convergence proof is carried out through a series of lemmas. The first such

lemma characterizes the effect of map errors β on the pose error α.

Lemma 1: If the error β[m]
nt ,t of the observed feature zt is smaller in magnitude

than the robot pose error α[m]
t , α[m]

t shrinks in expectation as a result of the

measurement. Conversely, if β[m]
nt ,t is larger than α[m]

t , the latter may increase,

but in expectation will not exceed β[m]
nt ,t .

Proof of Lemma 1: The expected error of the robot pose sample at time t is given by

E[α[m]
t ] = E[s

[m]
t − st ] = E[s

[m]
t ]−E[st ] (4.55)

The first term can be calculated via the sampling distribution (4.50), and the second term is

obtained from the linear motion model (4.41):

E[α[m]
t ] = E[−Σst

(Rt +Σ[m]
nt ,t−1)

−1(zt −µ
[m]
nt ,t−1 + s

[m]
t−1 +ut)+ s

[m]
t−1 +ut ]

−E[ut + st−1] (4.56)

= −Σst
(Rt +Σ[m]

nt ,t−1)
−1(E[zt ]−µ

[m]
nt ,t−1 + s

[m]
t−1 +ut)+ s

[m]
t−1 − st−1

︸ ︷︷ ︸

α[m]
t−1

(4.57)

The last transformation exploits the linearity of the expectation. We note that in LG-SLAM

the expectation E[zt ] = θnt
−E[st ] = θnt

−ut −st−1. With that, the expression in parentheses

becomes:

E[zt ]−µ
[m]
nt ,t−1 + s

[m]
t−1 +ut = θnt

−ut − st−1 −µ
[m]
nt ,t−1 + s

[m]
t−1 +ut (4.58)

= s
[m]
t−1 − st−1 +θnt

−µ
[m]
nt ,t−1 (4.59)

= α[m]
t−1 −β[m]

nt ,t−1 (4.60)
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Plugging this back into (4.57) and substituting Σ[m]
st from (4.47) gives us:

E[α[m]
t ] = α[m]

t−1 +Σst
(Rt +Σ[m]

nt ,t−1)
−1(β[m]

nt ,t−1 −α[m]
t−1) (4.61)

= α[m]
t−1 +

[

(Rt +Σ[m]
nt ,t−1)

−1 +P−1
t

]−1
(Rt +Σ[m]

nt ,t−1)
−1(β[m]

nt ,t−1 −α[m]
t−1) (4.62)

= α[m]
t−1 +

[

I +(Rt +Σ[m]
nt ,t−1)P

−1
t

]−1
(β[m]

nt ,t−1 −α[m]
t−1) (4.63)

Rt , Σ[m]
nt ,t−1, and P−1

t are all positive semidefinite, so the inverse of I +(Rt +Σ[m]
nt ,t−1)P

−1
t will

also be positive semidefinite, with all eigenvalues being less than one. This observation

effectively proves lemma 1. In particular, the expected pose error α[m]
t shrinks if βnt ,t−1 is

smaller in magnitude than α[m]
t−1. Conversely, if α[m]

t−1 is smaller in magnitude than β[m]
nt ,t−1,

Equation (4.63) suggests that α[m]
t will increase in expectation, but only by a value that is

proportional to the difference. This ensures that α[m]
t will not exceed β[m]

nt ,t in expectation.

qed.

Lemma 2: If the robot observes the anchoring feature, the pose error of the

robot will shrink in expectation.

Proof of Lemma 2: For the anchoring feature θ1, we can exploit the fact that Σ[m]
1,t = β[m]

1,t =

0. The lemma now follows directly from equation (4.63),

E[α[m]
t ] = α[m]

t−1 +
[
I +(Rt +0)P−1

t

]−1
(0−α[m]

t−1) (4.64)

= α[m]
t−1 −

[
I +RtP

−1
t

]−1 α[m]
t−1 (4.65)

Thus, whenever the robot sees its anchoring feature, its pose error α[m]
t is guaranteed to

shrink. The only exception arises when the error is already zero, in which case it remains

zero in expectation. qed.

Finally, a lemma similar to Lemma 1 states the effect of pose errors α on map errors β.

Lemma 3: If the pose error α[m]
t−1 is smaller in magnitude than the error

β[m]
nt ,t−1of the observed feature, observing zt shrinks β[m]

nt ,t in expectation. Con-

versely, if α[m]
t−1 is larger than feature error β[m]

nt,t−1 , the latter may increase, but

will never exceed α[m]
t−1 in expectation.
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Proof of Lemma 3: This proof is analogous to that of Lemma 1. From (4.51) it follows

that the expected feature error after the landmark update is:

E[β[m]
nt ,t ] = E[µ

[m]
nt ,t −θnt

] = E[µ
[m]
nt ,t ]−θnt

(4.66)

= E[µ
[m]
nt ,t−1 +Σ[m]

nt ,t−1(Rt +Σ[m]
nt ,t−1)

−1(zt −µ
[m]
nt ,t−1 + s

[m]
t−1 +ut)]−θnt

(4.67)

= µ
[m]
nt ,t−1 +Σ[m]

nt ,t−1(Rt +Σ[m]
nt ,t−1)

−1(E[zt ]−µ
[m]
nt ,t−1 + s

[m]
t−1 +ut)−θnt

(4.68)

Equation (4.60) enables us to rewrite this equation as follows:

E[β[m]
nt ,t ] = µ

[m]
nt ,t−1 +Σ[m]

nt ,t−1(Rt +Σ[m]
nt ,t−1)

−1(α[m]
t−1 −β[m]

nt ,t−1)−θnt
(4.69)

= β[m]
nt ,t−1 +Σ[m]

nt ,t−1(Rt +Σ[m]
nt ,t−1)

−1(α[m]
t−1 −β[m]

nt ,t−1) (4.70)

= β[m]
nt ,t−1 +(I +RtΣ

[m]−1
nt ,t−1)

−1(α[m]
t−1 −β[m]

nt ,t−1) (4.71)

Again, since Σ[m]
nt ,t−1 and Rt are both positive semidefinite, the eigenvalues of (I+RtΣ

[m]−1
nt ,t−1)

−1

are all positive and less than one, which proves the lemma. qed.

Proof of the Convergence Theorem: Let β̂[m]
t denote the largest feature error at time t.

β̂[m]
t = argmax

β[m]
n,t

|β[m]
n,t |

Lemma 3 says that this error may increase in expectation, but only if the absolute robot

pose error α[i]
t−1 exceeds this error in magnitude. However, in expectation this will only be

the case for a limited number of iterations. In particular, Lemma 1 guarantees that α[m]
t−1

may only shrink in expectation if this is the case. Furthermore, Lemma 2 states that every

time the anchoring feature is observed, this error will shrink by a finite amount, regardless

of the magnitude of β̂[m]
t . Hence, α[m]

t−1 will ultimately become smaller in magnitude (again

in expectation) than the largest feature error. Once this has happened, Lemma 3 states

that the latter will shrink in expectation every time the feature is observed whose error

is largest. It is now easy to see that both β̂[m]
t and α[m]

t converge to zero; Observing the

anchoring feature induces a finite reduction as stated in (4.65). To increase α[m]
t−1 to its old

value in expectation, the total feature error must shrink in expectation according to (4.71).

This leads to an eternal shrinkage of the total feature error down to zero. Since this error

is an upper bound for the expected pose error (see Lemma 1), we also have convergence in

expectation for the robot pose error. qed.
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Figure 4.5: FastSLAM 1.0 and 2.0 with varying levels of measurement noise

Theorem 1 trivially implies the following corollary, which characterizes the convergence

of FastSLAM in the linear Gaussian setting with more than one particle.

Corollary 1: FastSLAM converges in expectation for LG-SLAM if all features

are observed infinitely often and the location of one feature is known in ad-

vance.

4.5 Experimental Results

4.5.1 FastSLAM 1.0 versus FastSLAM 2.0

In general, the performance of FastSLAM 2.0 will be similar to the performance of Fast-

SLAM 1.0. However, in situations where the measurement error is significantly small

compared to the motion error, FastSLAM 2.0 will outperform the original algorithm. In

the following experiment, the performance of the two algorithms is compared on simulated

data while varying the level of measurement noise. All experiments were run with 100



CHAPTER 4. FASTSLAM 2.0 94

particles and known data association. The range and bearing error parameters were scaled

equally.

The results of this experiment are shown in Figure 4.5. As the measurement error gets very

large, the errors of both FastSLAM 1.0 and 2.0 begin to increase slowly, as expected. In

this range, the performance of the two algorithms is roughly equal. For very low values of

measurement error, FastSLAM 1.0 clearly begins to diverge, while the error of FastSLAM

2.0 continues to shrink. By adding more particles, the threshold below which FastSLAM

1.0 diverges can be decreased. However, FastSLAM 2.0 can produce accurate maps in

these situations without increasing the number of particles.

The performance of the two algorithms can also be compared by keeping the measurement

model constant and varying the number of particles. FastSLAM 2.0 will require fewer par-

ticles than FastSLAM 1.0 in order to achieve a given level of accuracy, especially when

measurement error is low. In the limit, FastSLAM 2.0 can produce reasonable maps with

just a single particle, while FastSLAM 1.0 will obviously diverge. Figure 4.6 shows the

results of an experiment comparing the performance of FastSLAM 1.0 and 2.0 given dif-

ferent numbers of particles. The two algorithms were run repeatedly on simulated data and

the Victoria Park data set. On the simulated data, the accuracy of the two algorithms is

similar with more than five particles. Below five particles, FastSLAM 1.0 begins to diverge

and the performance of FastSLAM 1.0 stays approximately constant.

On the Victoria Park dataset the difference between the two algorithms is even more pro-

nounced. Below 50 particles, FastSLAM 1.0 starts to diverge. Again, this is because the

vehicle’s controls are noisy relative to the sensor observations.

4.5.2 Constant-Time FastSLAM 2.0

The data associations in the Victoria Park data set are relatively unambiguous, so the con-

stant time version of FastSLAM 2.0 can be used. With only a single particle, data associa-

tion in FastSLAM 2 is equivalent to the maximum likelihood data association algorithm of

the EKF. Figure 4.7 shows the output of FastSLAM with only a single particle. The algo-

rithm is able to produce results on par with those of the EKF and FastSLAM 1.0 without

storing any correlations between landmarks.
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Figure 4.7: Map of Victoria Park make with FastSLAM 2.0 with M = 1 particle

4.5.3 Scaling Performance

The experiment in Section 4.5.1 demonstrates that FastSLAM 2.0 requires fewer particles

than FastSLAM 1.0 in order to achieve a given level of estimation accuracy. Fewer parti-

cles, in turn, results in faster sensor updates. However, the construction of the improved

proposal distribution requires extra time over the FastSLAM 1.0 proposal. As the number

of landmarks in the map increases, the sensor updates take a smaller fraction of the overall

run time relative to the importance resampling. In larger maps, the large savings as a re-

sult of needing fewer particles overwhelms the additional complexity of drawing from the

proposal distribution. The actual savings will depend on the parameters of the motion and

measurement models.

Figure 4.8 shows the run time for the linear and log(N) versions of FastSLAM 1.0 and 2.0

all with 100 particles. In very small maps (i.e. 100 landmarks), FastSLAM 2.0 requires

approximately 3 times longer to perform a sensor update. However, in larger maps the sen-

sor updates only require 10-20% more time. The constant difference between FastSLAM

1.0 and 2.0 with an equal number of particles depends primarily on the average number of

observations incorporated per time step.
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Particles share common history here

(a) FastSLAM 1.0 - Samples share a common path inside
the loop. This often leads to divergence.

(b) FastSLAM 2.0 - The algorithm maintains path diver-
sity all the way around the loop.

Figure 4.9: FastSLAM 2.0 can close larger loops that FastSLAM 1.0 given a constant
number of particles
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4.5.4 Loop Closing

In FastSLAM, the ability to close loops effectively depends on the number of particles M.

The minimum number of particles is difficult to quantify, because it depends on a number of

factors, including the parameters of the motion and measurement models and the density of

landmarks in the environment. FastSLAM 2.0’s improved proposal distribution insure that

fewer particles are eliminated in resampling compared to FastSLAM 1.0. Better diversity

in the sample set results in better loop closing performance, because new observations can

affect the pose of the robot further back in the past.

Examples of loop closing with FastSLAM 1.0 and FastSLAM 2.0 are shown in Figure 4.9(a)

and (b), respectively. The histories of all M particles are drawn for both algorithms. In Fig-

ure 4.9(a), the FastSLAM 1.0 particles share a common history part of the way around

the loop. New observations can not affect the positions of landmarks observed before this

threshold. In this case of FastSLAM 2.0, the algorithm is able to maintain diversity that

extends back to the beginning of the loop. This is crucial for reliable loop closing and fast

convergence.

Figure 4.10 shows the result of an experiment comparing the loop closing performance

of FastSLAM 1.0 and 2.0. As the size of the loop increases, the error of both algorithms

increases. However, FastSLAM 2.0 consistently outperforms FastSLAM 1.0. Alternately,

this result can rephrased in terms of particles. FastSLAM 2.0 requires fewer particles to

close a given loop than FastSLAM 1.0.
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Chapter 5

FastSLAM in Dynamic Environments

Thus far, this thesis has only addressed the problem of a robot navigating within a static

map. As a result, the uncertainty of the landmark locations only decrease, eventually be-

coming a fully correlated map. The static world assumption is reasonable in environments

like planetary and underground exploration, but it is unreasonable in typical human envi-

ronments such as office buildings and city streets.

The obvious solution of adding a motion model for the landmarks leads to an ill-posed

problem. The pose of the robot in SLAM only can be determined with respect to the map.

If elements of the map move over time, then very little can be inferred about the pose of

the robot. In this situation, neither the error of the map nor the robot pose can be bounded

over time.

The most common solution to this problem is to classify objects in the world into two types:

static and dynamic. These classes can then be treated differently during the estimation

process. Static objects can be used to bound map error and robot pose error, while dynamic

objects are tracked separately. This approach has been applied by several authors in the

scan-matching community [24, 64]. In this chapter I will take a slightly different approach

to the problem and assume that a map of the static objects in the world is known. The goal

is then to determine the pose of the robot and the positions of the dynamic objects relative

to the map. Uncertainty in the pose of the robot correlates the positions of dynamic objects

observed by the robot, which leads to the same kind of chicken-or-egg problem that occurs

in SLAM.

101
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Figure 5.1: Pearl, a Nursebot, interacting with residents of a nursing home.

5.1 People Tracking

As robots are deployed in everyday human environments, they will be called upon to per-

form increasingly interactive tasks. Interaction between humans and robots may occur

across a variety of channels, including spoken dialog, physical interaction, and the col-

laborative execution of a task. If robots in social environments are to be successful, they

must be able to both observe and model the behavior of the humans with which they are

interacting.

Interactive navigation is one example of a class of behaviors that requires the estimation

of the state of at least one person in the robot’s environment. Examples of interactive nav-

igation include leading, following, intercepting and avoiding people. For these behaviors

to be performed robustly, the robot also should have some understanding of the certainty

with which the state estimates are known. If the robot is following a person, for example,

the certainty of the estimate of the person’s position can be used to adjust the following

distance of the robot. Pearl, a nursing robot shown in Figure 5.1, is designed to perform

many interactive navigation tasks, including leading elderly nursing home residents to their

physiotherapy appointments.
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Door #1 Door #2
Person

(a) Where is the robot? Is
it...

(b) in door #1 looking at a per-
son?

(c) or in Door #2 looking a
mapped trashbin?

Figure 5.2: Simultaneous Localization and People-Tracking

5.2 Simultaneous Localization and People Tracking

Mobile robots performing persistent tasks are often equipped with maps of their environ-

ments, either generated by SLAM algorithms or a priori sources such as blueprints. By

describing the vast majority of objects in the world that are not dynamic, maps provide

considerable information that can be exploited to explain sensor readings taken from a

mobile robot. In particular, by comparing the movement of sensor readings that do not cor-

respond with objects in the map with models of human motion, unexpected readings can

be used to identify and track people.

Localization and map-based people-tracking form a chicken-or-egg problem very similar

to SLAM. If the robot’s true position in the map were known, determining which sensor

readings correspond to dynamic objects could be done simply by map subtraction. Con-

versely, if the sensor readings of dynamic objects could be filtered out, then the position

of the robot could be determined with maximum accuracy. When the pose of the robot

and the positions of nearby people are all unknown, localization and people tracking be-

come a joint estimation problem. Henceforth, I will refer to this estimation problem as

Simultaneous Localization and People Tracking, or SLAP.

To illustrate the simultaneous nature of the SLAP problem, consider a robot operating in

the map section shown in Figure 5.2(a). A person is in the hallway, standing in front of

door #1, and the robot is in one of two locations specified in the map. If the robot is also

in doorway #1 facing into the hallway, it sees the person and acquires the laser scan shown

in Figure 5.2(b). If the robot is instead in door #2, the robot sees a trashcan in the hallway

and acquires the laser scan shown in Figure 5.2(c). While the two scans look remarkably
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Figure 5.3: Map of robot’s environment

similar, they represent significantly different hypotheses. A localization algorithm that

does not consider the first hypothesis will assume the person is the trashcan, and choose

the wrong position for the robot. A people-tracking algorithm that does not consider the

second hypothesis will track the trashcan as if it were a person.

The majority of prior work in people tracking has been appearance-based methods. These

algorithms attempt to detect the appearance of people in sensors, and track these features

over time. Many examples of people tracking have used cameras as their primary sen-

sor [19, 26], however laser rangefinders have also been used [52]. The accuracy of these

approaches is limited primarily by the accuracy of the feature detection algorithm. In par-

ticular, dramatic variations in the appearance of a person due to illumination, viewing an-

gle, and individual appearance, can make robust detection using vision an extraordinarily

difficult problem.

5.3 Problem Description

I will assume that a reasonably accurate map of the static world is available to the robot.

The map Θ classifies every point (x,y) as either free or occupied space. This type of map

is commonly implemented as an evidence grid [37]. An example of an evidence grid map

is shown in Figure 5.3. The robot’s pose in the map will be written as st , and the robot’s

path over time as st .

st = {s1,s2, . . . ,st} (5.1)
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At any given time, an unknown number of people are within range of the robot. The

location of the n-th person at time t will be written φn,t . The total number of people within

range of the robot at time t will be written as Nt .

The goal of SLAP is to recover the posterior over robot pose and people positions, given

the controls and observations of the robot.

p(st
,φ1,t ,φ2,t , . . . ,φN,t | zt

,ut
,nt) (5.2)

This posterior is defined over the robot’s path, not the robot’s pose. This is because we

will factor the SLAP posterior just like we factored the SLAM posterior in Chapter 3. In

addition to estimating the positions of all of the people, another objective of SLAP is to

estimate the true number of people in the world Nt .

Unlike landmarks in SLAM, people move over time. While we might have a motion model

that describes how people move, we have no explicit measurement of their motion analo-

gous to the robot controls ut . As such, the motion of people must be treated conservatively;

we must always consider the hypothesis that the people are moving. If a person is not

observed, their position will grow less certain over time.

5.4 Factored Representations

People tracking approaches that do not consider the pose of the robot commonly make the

assumption that the posterior over people positions can be factored as follows:

p(φ1, . . . ,φN | zt
,ut

,nt) =
N

∏
n=1

p(φi,t | zt
,ut

,nt) (5.3)

Based on this assumption, the positions of the individual people are tracked using separate

filters. Such a decomposition is legitimate under two conditions: people move indepen-

dently, and the robot can reliably identify individual people (i.e. there is no data association

problem). The first assumption is usually a good approximation. The second is overcome

by using a maximum likelihood approach to data association. Each observation is assigned

to the nearest person track. In this way, conventional feature-based people trackers can

reliably track people in a way that scales linearly with Nt .

The factorization (5.3) works well for feature-based people tracking approaches, but it does

not apply when the pose of the robot is uncertain. Different poses of the robot relative to
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the map can lead to very different interpretations of the sensor readings, as was illustrated

in Figure 5.2.

However, the SLAP problem has the exact same structure as the SLAM problem, only with

moving landmarks. As a result, the SLAP posterior can be factored as follows:

p(st
,φ1,t , . . . ,φN,t | zt

,ut
,nt

,Θ) = p(st | zt
,ut

,nt
,Θ)

N

∏
n=1

p(φn,t | st
,zt

,ut
,nt

,Θ) (5.4)

The SLAP posterior can be factored into a product of a robot path posterior, and N inde-

pendent people position estimates conditioned on the robot path estimate.

5.5 FastSLAM with Moving Landmarks

The factored posterior (5.4) can be implemented using a Rao-Blackwellized Particle Fil-

ter, in the same fashion as the SLAM posterior. The set of Mr particles at time t will be

written St . Each particle consists of a robot pose s
[m]
t , a number of people N

[m]
t , and N

[m]
t

independent people filters. The n-th person filter in the m-th particle will be written Φ[m]
n,t .

S
[m]
t =

〈

s
[m]
t ,N

[m]
t ,Φ[m]

1,t , . . . ,Φ
[m]

N
[m]
t ,t

〉

(5.5)

Rao-Blackwellization does not require that the conditional filters be implemented as Kalman

Filters. For the experiments shown in this chapter, I have chosen to implement the people

trackers as particle filters as well. This may seem strange from a Rao-Blackwellization

perspective, however a particle filter of particle filters has the same scaling properties as

the original FastSLAM algorithm and it can represent arbitrary posteriors (given enough

particles). I will refer to the particle filter of particle filters as a conditional particle filter.

The person filter Φ[m]
n,t consists of Mp particles describing the position of the n-th person

relative to the robot pose s
[m]
t .

Φ[m]
n,t = {φ[m][i]

n,t }i=1...Mp
(5.6)

The conditional particle filter algorithm parallels the basic FastSLAM algorithm. A new

robot pose is drawn for each particle r
[m]
t given the control ut . Then an uninformative

action u∗ is incorporated into all of the person filters. The true action of the person cannot
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be observed, so the action u∗ is merely a function of the time between updates. Then, the

observation zt is assigned to one of N
[m]
t +2 different classes in each particle. It is assigned

either coming from the map or one of the N
[m]
t existing person tracks, or used to create a

new person track. If the observation is assigned to a person, the appropriate person filter is

updated. Finally, the new robot particles are assigned weights, and a new set of particles

Rt+1 is drawn. The complete algorithm is described in Figure 5.4.

Since the details of the conditional particle filter algorithm are largely similar to the stan-

dard FastSLAM algorithm, the remainder of this chapter will concentrate on original as-

pects of the people tracking algorithm.

In particular, four issues related to the algorithm deserve further explanation. First, the

form of the motion and measurement functions must be addressed. A procedure for data

association must be established, so that sensor readings can be assigned to the appropriate

people filters. Finally, the question of how to determine the correct number of people for

each particle must be answered.

5.5.1 Measurement Model

Clearly, the form of the measurement model depends on the sensor being used by the robot.

However, the exact form of the measurement model can have important consequences for

the performance of the filter. In the experiments described in this chapter, a mobile robot

was equipped with a 2D laser rangefinder. This rangefinder is able to determine the distance

to objects in the vicinity of the robot over a 180 degree field-of-view.

The measurement model p(zt | st ,φnt ,t ,nt) characterizes the probability of receiving a sensor

reading given a particular joint state of the robot and a person. In other words, the model

compares what the robot actually senses with what it should “expect” to sense given the

hypothesized state. Typically this model is based upon the physics of the real-world sensor

being used and its interaction with its environment. A person appearing in a laser rangefin-

ger might be modeled crudely as a cylinder. The measurement model can be computed by

comparing the actual laser scan with a laser scan simulated according to the hypothesized

states of the robot and person in the map.

Unfortunately, small differences between the true and hypothesized states of the world can

result in large differences in the probabilities of the resulting scans. Consider the situation

depicted in Figure 5.5. A laser measurement, expected to pass by the person, actually hits

the person. This disparity in range causes the individual reading and thus the entire scan to
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Algorithm ConditionalParticleFilter(St−1,zt ,ut)

St = Saux = /0
for m = 1 to Mr // loop over all robot particles

retrieve m-th particle

〈

s
[m]
t−1,N

[m]
t−1,Φ

[m]
1,t−1, . . . ,Φ

[m]

N
[m]
t−1,t−1

〉

from St−1

draw s
[m]
t ∼ p(st | s

[m]
t−1,ut)

for n = 1 to N
[m]
t−1 // loop over person filters

for i = 1 to Mp

draw φ[m][i]
n,t ∼ p(φt | φ[m][i]

n,t−1,u∗) // draw new people particles
end for from person motion model

end for

Determine data association nt for zt

if nt = N
[m]
t−1 +1 // New person?

N
[m]
t = N

[m]
t−1 +1

for i = 1 to Mp

φ[m][i]
nt ,t ∼ N (φt ;g−1(s

[m]
t ,zt),ΣΦ,0) // initialize person particles

end for

Φ[m]
nt ,t =

{

φ[m][i]
nt ,t

}

|i=1...Mp

end if

if nt = nΘ // observation of the map?

w
[m]
t = p(zt | s

[m]
t ,Θ,nΘ)

else // observation of a person?

Φ[m]
nt ,aux = /0

for i = 1 to Mp

w
[m][i]
t = p(zt | s

[m]
t ,φ[m][i]

nt ,t ,nt)

Add
〈

φ[m][i]
nt ,t ,w

[m][i]
t

〉

to Φ[m]
nt ,aux

end for

w
[m]
t = ΣMp

i=1w
[m][i]
t

Draw Mp particles from Φ[m]
nt ,aux with probability ∝ w

[m][i]
t , add to Φ[m]

nt ,t // Resample person filter
end if

for i = 1 to N
[m]
t

if i 6= nt // Do not resample

Φ[m]
n,t =

{

φ[m][i]
n,t

}

|i=1...Mp unobserved people filters

Delete Φ[m]
n,t if it hasn’t been observed for many iterations // Delete unused person filters

end if

end for

Add

〈

s
[m]
t ,N

[m]
t ,Φ[m]

1,t , . . . ,Φ
[m]

N
[m]
t

,w
[m]
t

〉

to Saux

end for

Draw Mr particles from Saux with probability ∝ w
[m]
t , add to St // Resample robot filter

return St

Figure 5.4: Conditional Particle Filter Algorithm
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Range Disparity

Laser Readings
(black dots)

Hypothesized Person

Hypothesized Wall

Robot

Figure 5.5: Effect of a non-smooth measurement model

receive a very low probability. A larger number of particles will be necessary to estimate

the state of the person using this motion model. In general, lack of smoothness in the

measurement model will require a higher number of to be used [34].

The sensor model can be made much smoother by calculating disparities in x,y space, rather

than disparities in range. To calculate the probability of a given state, the laser readings

are first projected into the world according to the hypothesized pose of the robot. The

probability of each laser point is then computed based on the Euclidean distance between

that point and the closest object in the world, be it a hypothesized person or an occupied

map cell. Using this sensor model, the mismatched point in Figure 5.5 would receive a

high probability because it is close to a hypothesized person. The construction of a smooth

measurement model significantly reduces the number of samples necessary to a achieve a

particular tracking accuracy.

5.5.2 Motion Model

The motion models p(st | st−1,ut) and p(Φt | Φt−1,u∗) predict the movement over time of

the robot and of people, respectively. The robot’s motion model is well understood and was

taken directly from [60]. However, no information analogous to odometry is available to

describe the motion of the people. I have assumed a Brownian motion model for the human

motion. This model assumes that people move according to a velocity that is constantly

being perturbed randomly. The variance of the perturbation acts like momentum. The

lower the variation, the more likely the person is to move in the direction of past motion.

vt+1 = N(vt ,σ2
v)

st = st + vt+1∆t
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Figure 5.6: Data Association in SLAP

5.5.3 Data Association

As a consequence of breaking the estimation of the people locations into separate filters,

every sensor reading must be associated with a particular filter or filters before the weight

of each particle in Rt can be evaluated. If every sensor reading contributed evidence into

every person filter, all N filters would track the one most probable person. The associations

between observations and filters can be a hard assignment, in which each observation is

attributed to only one filter, or a soft assignment in which each observation can be assigned

in part to multiple filters.

When two different filters are far apart, the difference between the hard and soft assignment

strategy is minimal. However, when filters are close soft assignment tends to lump the two

filters together. Both filters accept approximately fifty percent assignment of all of the

sensor readings originally associated with the two filters. Hard assignment, on the other

hand, continues to provide good discrimination between the two filters even as the filters

become very close.

The actual assignment of each laser point is determined using a nearest neighbor rule.

Each laser point is assigned to the nearest person filter (using Mahalanobis distance) if it is

within a certain maximum distance. If an observation is beyond the maximum distance, it

is considered an outlier and ignored, or it is used to create a new person filter.
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5.5.4 Model Selection

The person filters operate on the assumption that the true number of people Nt is known.

In practice, determining Nt can be a difficult proposition. People are constantly occluding

each other in the robot’s field-of-view, especially as they walk very close to the robot. If a

person is temporarily occluded, Nt should not change. However, people also move in and

out of the robot’s field-of-view in a permanent way, going around corners and walking into

offices. If a person disappears for an extended period of time, the SLAP algorithm should

respond by changing the value of Nt .

One approach to determining Nt is to create a prior distribution over “typical” values of N,

and choose the value of Nt at every time step that corresponds with the Minimum Descrip-

tion Length (MDL) hypothesis [25]. This approach will add a new person filter only if it

results in a significant gain in the overall probability of the model. However, this approach

requires that multiple instances of every robot particle be run with different values of Nt .

As a result, a great deal of computation is spent on filters that do not represent the true state

of the world.

The MDL approach can be approximated in a practical manner by examining the data

associations of the observations. A cluster of sensor readings that are not associated with

any person filter probably indicates that Nt is too small. A filter that has no observations

assigned to it for an extended period of time indicates that Nt is too large. Experimental

results in this chapter illustrate that heuristics based on the associations of the laser readings

can be used to determine Nt with high accuracy at low computational cost.

5.6 Experimental Results

5.6.1 Tracking and Model Selection Accuracy

The conditional particle filter was tested on a robot with a laser rangefinder operating in

a typical office environment. Figure 5.7(a) shows a typical laser scan given to the algo-

rithm. The scanner is approximately 12 inches off the ground, so it sees the individual legs

of people walking near the robot. Figure 5.7(b) shows the state of the SLAP filter after

incorporating the laser scan. The people filters drawn correspond to the most likely robot

particle. Both people within range of the robot are being tracked successfully.
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(a) Laser scan showing two people near the robot

Robot Particles

Person #1 Particles

Person #2 Particles

(b) Output of the SLAP filter showing
the estimated position of the robot and
the people in the map

Figure 5.7: Typical input and output of the Conditional Particle Filter.

The accuracy of localization and people-tracking were evaluated based on hand-labeled

ground truth data captured from a second, fixed laser rangefinder. The standard deviation

of the position error of the robot was approximately 6 cm, and less than 5 cm for the

positions of the people. The mean errors of the robot and the people positions were both

less than 3 cm.

The accuracy of model selection was tested on a data set approximately six minutes long.

Over the course of the run, 31 people passed within the sensor range of the moving robot.

At any given time, up to four people were simultaneously visible to the robot. Of those 31

people, only 3 were not tracked correctly. In one instance, two people entered the robot’s

view in close proximity, and walked very closely to each other. In that situation, the two

people were tracked as a single entity.

Model selection was also tested in a more difficult environment, in which the map was not

up-to-date. In this run, the robot encountered 11 different people, up to 5 at a time. All 11

people in this environment were tracked correctly. However, the algorithm also tracked an

additional 4 objects. These tracks corresponded with inanimate objects that were not in the

map, including a recycling bin, a chair, and a closed door which was open when the map

was made.



CHAPTER 5. FASTSLAM IN DYNAMIC ENVIRONMENTS 113

Tracking Accuracy

Robot position - mean error 2.5 cm
Robot position - standard deviation of error 5.7 cm
People positions - mean error 1.5 cm
People positions - standard deviation of error 4.2 cm

Model Selection

True number of people (cumulative) 31
Model selection errors 3
Model selection accuracy 90%

Figure 5.8: Performance of the SLAP Filter

5.6.2 Global Uncertainty

Figures 5.7 and 5.8 illustrate the performance of the SLAP filter in situations in which the

pose of the robot is relatively well known. In these situations, people trackers that ignore

the pose uncertainty of the robot would also work well. The real power of this approach

is demonstrated in situations in which there is significant uncertainty in the robot pose

estimate. This commonly occurs during global localization, when a robot is initialized with

no prior information about its position or orientation relative to the map.

Figure 5.9 shows the output of the SLAP filter during global localization with a single

person in the robot’s field of view. Figure 5.9(a) shows the filter just after initialization,

with robot and person particles scattered all over the map. After the robot moves a few

meters (shown in Figure 5.9(b)), two modes develop in the robot and people distributions.

The two modes correspond with the robot having started from either one of two different

doorways in a relatively uniform hallway. Even though there is significant uncertainty

in the position of the robot, the person is still being tracked correctly relative to the two

modes. This is evidenced by the two clusters of people particles moving ahead of the two

robot modes. At the robot moves further down the hallway, sensor evidence eventually

disambiguates between the two primary hypotheses and the filter converges on the true

state of the world, shown in Figure 5.9(c).

5.6.3 Intelligent Following Behavior

A simple following behavior was implemented using the output of the SLAP filter. Inde-

pendent control loops governing the rotational and translational velocity of the robot were
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(a)

Robot particles Person particles

(b)

Robot particles Person particles

(c)

Figure 5.9: Evolution of the SLAP filter from global uncertainty to successful localization
and tracking
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Figure 5.10: Intelligent following behavior based on the output of the SLAP filter

based on the relative range and bearing to the subject being followed. A snapshot of the be-

havior in operation is shown in Figure 5.10. The robot was instructed to follow one of two

people within range of the robot. A thick line is drawn between the mean robot position and

position of the person being followed. The robot successfully followed the person down

the hallway, as the second person repeatedly walked between the subject and the robot. The

robustness of the people-tracker to occlusion allows a very simple control loop to follow a

person reliably, even in crowded environments.



Chapter 6

Discussion

6.1 Summary

In this dissertation, I have presented a new approach to the Simultaneous Localization and

Mapping Problem called FastSLAM. FastSLAM differs from existing approaches in that

it exploits sparsity in the dependencies between data and the state variables over time to

factor the SLAM problem into a set of low-dimensional problems. FastSLAM samples

over the robot’s path and data associations, and computes independent landmark estimates

conditioned on each particle.

The resulting algorithm scales logarithmically with the number of landmarks in the map,

which is sufficient to handle maps with over 1,000,000 landmarks. Sampling over data as-

sociations makes the algorithm robust to significant ambiguity in the landmark identities,

and enables data associations to be revised over time. Experimental results demonstrate

that FastSLAM produces maps that approach the accuracy of the EKF when the data asso-

ciations are known, and that FastSLAM significantly outperforms the EKF on real-world

data when the data associations are ambiguous.

This thesis presented two approaches to choosing data associations in FastSLAM: per-

particle Maximum Likelihood data association, and Monte Carlo data association. Choos-

ing data associations on a per particle basis makes the data association problem easier, by

factoring robot pose uncertainty out of the data association problem. Per-particle data as-

sociation also allows the number of landmarks to vary for each particle. This results in

an implicit procedure for landmark testing where potential new landmarks can be thrown

if future evidence does not support their existence. Algorithms for incorporating mutual

116
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exclusion and negative evidence were also presented.

This thesis also described an extension of the FastSLAM algorithm called FastSLAM 2.0.

FastSLAM 2.0 incorporates observations into the proposal distribution as well as the im-

portance weights. As a result, FastSLAM 2.0 maintains a more diverse set of robot path

samples and requires fewer samples than FastSLAM 1.0 to achieve a given level of accu-

racy. Better sample diversity is especially important in SLAM for closing loops. Incorpo-

rating observations in the proposal distribution enables FastSLAM 2.0 to converge when

the measurement noise is very small compared to the motion noise of the robot.

As a result of the improved proposal distribution, FastSLAM 2.0 also can be run with just

a single particle. With one particle, FastSLAM 2.0 is a constant time SLAM algorithm

that maintains no cross-correlations between landmarks. This thesis presented a proof that

shows that FastSLAM 2.0 with a single particle converges in Linear-Gaussian environ-

ments. This proof demonstrates that maintaining the full covariance matrix of the Kalman

Filter is not a necessary condition for convergence in SLAM.

Finally, this thesis presented an extension of the FastSLAM algorithm to dynamic environ-

ments. The simultaneous Localization and People Tracking problem was shown to have the

exact same structure as the SLAM problem. Experimental results showed that FastSLAM

applied to this problem was able to track people in the vicinity of a mobile robot even with

global uncertainty over the robot’s pose.
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