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ABSTRACT Tools for estimating population structure from genetic data are now used in a wide variety of applications in population

genetics. However, inferring population structure in large modern data sets imposes severe computational challenges. Here, we

develop efficient algorithms for approximate inference of the model underlying the STRUCTURE program using a variational Bayesian

framework. Variational methods pose the problem of computing relevant posterior distributions as an optimization problem, allowing

us to build on recent advances in optimization theory to develop fast inference tools. In addition, we propose useful heuristic scores to

identify the number of populations represented in a data set and a new hierarchical prior to detect weak population structure in the

data. We test the variational algorithms on simulated data and illustrate using genotype data from the CEPH–Human Genome Diversity

Panel. The variational algorithms are almost two orders of magnitude faster than STRUCTURE and achieve accuracies comparable to

those of ADMIXTURE. Furthermore, our results show that the heuristic scores for choosing model complexity provide a reasonable

range of values for the number of populations represented in the data, with minimal bias toward detecting structure when it is very

weak. Our algorithm, fastSTRUCTURE, is freely available online at http://pritchardlab.stanford.edu/structure.html.

IDENTIFYING the degree of admixture in individuals and

inferring the population of origin of specific loci in these

individuals is relevant for a variety of problems in population

genetics. Examples include correcting for population stratifi-

cation in genetic association studies (Pritchard and Donnelly

2001; Price et al. 2006), conservation genetics (Pearse and

Crandall 2004; Randi 2008), and studying the ancestry and

migration patterns of natural populations (Rosenberg et al.

2002; Reich et al. 2009; Catchen et al. 2013). With decreasing

costs in sequencing and genotyping technologies, there is an

increasing need for fast and accurate tools to infer population

structure from very large genetic data sets.

Principal components analysis (PCA)-based methods for

analyzing population structure, like EIGENSTRAT (Price et al.

2006) and SMARTPCA (Patterson et al. 2006), construct low-

dimensional projections of the data that maximally retain the

variance-covariance structure among the sample genotypes.

The availability of fast and efficient algorithms for singular

value decomposition has enabled PCA-based methods to be-

come a popular choice for analyzing structure in genetic data

sets. However, while these low-dimensional projections allow

for straightforward visualization of the underlying popula-

tion structure, it is not always straightforward to derive and

interpret estimates for global ancestry of sample individuals

from their projection coordinates (Novembre and Stephens

2008). In contrast, model-based approaches like STRUC-

TURE (Pritchard et al. 2000) propose an explicit generative

model for the data based on the assumptions of Hardy-

Weinberg equilibrium between alleles and linkage equilibrium

between genotyped loci. Global ancestry estimates are then

computed directly from posterior distributions of the model

parameters, as done in STRUCTURE, or maximum-likelihood

estimates of model parameters, as done in FRAPPE (Tang

et al. 2005) and ADMIXTURE (Alexander et al. 2009).

STRUCTURE (Pritchard et al. 2000; Falush et al. 2003;

Hubisz et al. 2009) takes a Bayesian approach to estimate

global ancestry by sampling from the posterior distribution

over global ancestry parameters using a Gibbs sampler that

appropriately accounts for the conditional independence

relationships between latent variables and model parameters.
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However, even well-designed sampling schemes need to gener-

ate a large number of posterior samples to resolve convergence

and mixing issues and yield accurate estimates of ancestry

proportions, greatly increasing the time complexity of infer-

ence for large genotype data sets. To provide faster estimation,

FRAPPE and ADMIXTURE both use a maximum-likelihood

approach. FRAPPE computes maximum-likelihood estimates

of the parameters of the same model using an expectation-

maximization algorithm, while ADMIXTURE computes the

same estimates using a sequential quadratic programming

algorithm with a quasi-Newton acceleration scheme. Our

goal in this article is to adapt a popular approximate infer-

ence framework to greatly speed up inference of population

structure while achieving accuracies comparable to STRUC-

TURE and ADMIXTURE.

Variational Bayesian inference aims to repose the prob-

lem of inference as an optimization problem rather than

a sampling problem. Variational methods, originally used

for approximating intractable integrals, have been used

for a wide variety of applications in complex networks

(Hofman and Wiggins 2008), machine learning (Jordan et al.

1998; Blei et al. 2003), and Bayesian variable selection

(Logsdon et al. 2010; Carbonetto and Stephens 2012). Var-

iational Bayesian techniques approximate the log-marginal

likelihood of the data by proposing a family of tractable

parametric posterior distributions (variational distribution)

over hidden variables in the model; the goal is then to find

the optimal member of this family that best approximates

the marginal likelihood of the data (see Models and Methods

for more details). Thus, a single optimization problem gives

us both approximate analytical forms for the posterior dis-

tributions over unknown variables and an approximate esti-

mate of the intractable marginal likelihood; the latter can be

used to measure the support in the data for each model, and

hence to compare models involving different numbers of

populations. Some commonly used optimization algorithms

for variational inference include the variational expectation-

maximization algorithm (Beal 2003), collapsed variational

inference (Teh et al. 2007), and stochastic gradient descent

(Sato 2001).

In Models and Methods, we briefly describe the model

underlying STRUCTURE and detail the framework for vari-

ational Bayesian inference that we use to infer the underly-

ing ancestry proportions. We then propose a more flexible

prior distribution over a subset of hidden parameters in the

model and demonstrate that estimation of these hyperpara-

meters using an empirical Bayesian framework improves the

accuracy of global ancestry estimates when the underlying

population structure is more difficult to resolve. Finally, we

describe a scheme to accelerate computation of the optimal

variational distributions and describe a set of scores to help

evaluate the accuracy of the results and to help compare

models involving different numbers of populations. In Appli-

cations, we compare the accuracy and time complexity of

variational inference with those of STRUCTURE and AD-

MIXTURE on simulated genotype data sets and demonstrate

the results of variational inference on a large data set gen-

otyped in the Human Genome Diversity Panel.

Models and Methods

We now briefly describe our generative model for popula-

tion structure followed by a detailed description of the

variational framework used for model inference.

Variational inference

Suppose we have N diploid individuals genotyped at L bial-

lelic loci. A population is represented by a set of allele fre-

quencies at the L loci, Pk 2 [0, 1]L, k 2 {1, . . ., K}, where K

denotes the number of populations. The allele being repre-

sented at each locus can be chosen arbitrarily. Allowing for

admixed individuals in the sample, we assume each individ-

ual to be represented by a K-vector of admixture proportions,

Qn 2 [0, 1]K,
P

k Qnk ¼ 1; n 2 1; . . . ;Ngf . Conditioned onQn,

the population assignments of the two copies of a locus,

Za
nl; Z

b
nl 2f0; 1gK ,

P

k Z
a
nlk ¼

P

k Z
b
nlk ¼ 1, are assumed to be

drawn from a multinomial distribution parametrized by Qn.

Conditioned on population assignments, the genotype at

each locus Gnl is the sum of two independent Bernoulli-

distributed randomvariables, each representing the allelic state

ofeachcopyofa locusandparameterizedbypopulation-specific

allele frequencies. The generative process for the sampled gen-

otypes can now be formalized as

• p
�

ZinljQn

�

¼ multinomialðQnÞ; i 2 fa; bg;"n; l;

• p
�

Gnl ¼ 0j〚Za
nl〛¼ k;〚Zbnl〛¼ k9; Pl�

�

¼ ð12 PlkÞð12 Plk9Þ;

• p
�

Gnl ¼ 1j〚Za
nl〛¼ k;〚Zb

nl〛¼ k9; Pl�

�

¼ Plkð12 Plk9Þ

þ Plk9ð12 PlkÞ;

• p
�

Gnl ¼ 2j〚Za
nl〛¼ k;〚Zb

nl〛¼ k9; Pl�

�

¼ PlkPlk9;

where〚Z〛denotes the nonzero indices of the vector Z.

Given the set of sampled genotypes, we can either

compute the maximum-likelihood estimates of the parame-

ters P and Q of the model (Tang et al. 2005; Alexander et al.

2009) or sample from the posterior distributions over the

unobserved random variables Za, Zb, P, and Q (Pritchard

et al. 2000) to compute relevant moments of these variables.

Variational Bayesian (VB) inference formulates the prob-

lem of computing posterior distributions (and their relevant

moments) into an optimization problem. The central aim

is to find an element of a tractable family of probability

distributions, called variational distributions, that is closest
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to the true intractable posterior distribution of interest. A

natural choice of distance on probability spaces is the

Kullback–Leibler (KL) divergence, defined for a pair of prob-

ability distributions q(x) and p(x) as

Dkl

�

qðxÞk pðxÞ
�

¼

Z

qðxÞ log
qðxÞ

pðxÞ
dx: (1)

Given the asymmetry of the KL divergence, VB inference

chooses p(x) to be the intractable posterior and q(x) to be

the variational distribution; this choice allows us to compute

expectations with respect to the tractable variational distri-

bution, often exactly.

An approximation to the true intractable posterior distri-

bution can be computed by minimizing the KL divergence

between the true posterior and variational distribution. We

will restrict our optimization over a variational family that

explicitly assumes independence between the latent varia-

bles (Za, Zb) and parameters (P, Q); this restriction to a space

of fully factorizable distributions is commonly called the

mean field approximation in the statistical physics (Kadanoff

2009) and machine-learning literature (Jordan et al. 1998)).

Since this assumption is certainly not true when inferring

population structure, the true posterior will not be a mem-

ber of the variational family and we will be able to find

only the fully factorizable variational distribution that best

approximates the true posterior. Nevertheless, this approx-

imation significantly simplifies the optimization problem.

Furthermore, we observe empirically that this approxima-

tion achieves reasonably accurate estimates of lower-order

moments (e.g., posterior mean and variance) when the

true posterior is replaced by the variational distributions

(e.g., when computing prediction error on held-out entries

of the genotype matrix). The variational family we choose

here is

q
�

Za; Zb;Q; P
�

� q
�

Za; Zb
�

qðQ; PÞ

¼
Y

n;l

q
�

Za
nl

�

q
�

Zb
nl

�

�
Y

n

qðQnÞ�
Y

lk

qðPlkÞ; (2)

where each factor can then be written as

q
�

Za
nl

�

¼ multinomial
�

~Z
a
nl

�

q
�

Zb
nl

�

¼ multinomial
�

~Z
b
nl

�

q
�

Qn

�

¼ Dirichlet
�

~Qn

�

q
�

Plk
�

¼ Beta
�

~P
u
lk;

~P
v
lk

�

: (3)

~Z
a

nl,
~Z
b

nl,
~Qn, ~P

u

lk, and
~P
v

lk are the parameters of the variational

distributions (variational parameters). The choice of the vari-

ational family is restricted only by the tractability of computing

expectations with respect to the variational distributions; here,

we choose parametric distributions that are conjugate to the

distributions in the likelihood function.

In addition, the KL divergence (Equation 1) quantifies the

tightness of a lower bound to the log-marginal likelihood of

the data (Beal 2003). Specifically, for any variational distri-

bution q(Za, Zb, P, Q), we have

log pðGjKÞ ¼ E
�

q
�

Za; Zb;Q; P
��

þ Dkl

�

q
�

Za; Zb;Q; P
�

kp
�

Za; Zb;Q; PjG
��

; (4)

where E is a lower bound to the log-marginal likelihood of

the data, log p(G|K). Thus, minimizing the KL divergence is

equivalent to maximizing the log-marginal likelihood lower

bound (LLBO) of the data:

q* ¼ argmin
q

Dkl

�

q
�

Za; Zb;Q; P
�
�

� p
�

Za; Zb;Q; PjG
��

¼ argmin
q

ðlog pðGjKÞ2 E½q�Þ

¼ argmax
q

E½q�:

(5)

The LLBO of the observed genotypes can be written as

E ¼
X

Za;Zb

Z

q
�

Za; Zb;Q; P
�

log
p
�

G; Za; Zb;Q; P
�

q
�

Za; Zb;Q; P
� dQ  dP

¼
X

Za;Zb

Z

q
�

Za; Zb; P
�

log p
�

GjZa; Zb; P
�

dP

þ
X

Za;Zb

Z

q
�

Za; Zb;Q
�

log p
�

Za; ZbjQ
�

dQ

þDklðqðQÞkpðQÞÞþDklðqðPÞk pðPÞÞ;

(6)

where p(Q) is the prior on the admixture proportions and

p(P) is the prior on the allele frequencies. The LLBO of the

data in terms of the variational parameters is specified in

Appendix A. The LLBO depends on the model, and particu-

larly on the number of populations K. Using simulations, we

assess the utility of the LLBO as a heuristic to help select

appropriate values for K.

Priors

The choice of priors p(Qn) and p(Plk) plays an important role in

inference, particularly when the FST between the underlying

populations is small and population structure is difficult to

resolve. Typical genotype data sets contain hundreds of thou-

sands of genetic variants typed in several hundreds of samples.

Given the small sample sizes in these data relative to underly-

ing population structure, the posterior distribution over pop-

ulation allele frequencies can be difficult to estimate; thus, the

prior over Plk plays amore important role in accurate inference

than the prior over admixture proportions. Throughout this

study, we choose a symmetric Dirichlet prior over admixture

proportions; pðQnÞ ¼ Dirichlet
�

1
K
1K

�

.

Depending on the difficulty in resolving structure in

a given data set, we suggest using one of three priors over
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allele frequencies. A flat beta-prior over population-specific

allele frequencies at each locus, p(Plk) = Beta(1, 1) (referred

to as “simple prior” throughout), has the advantage of com-

putational speed but comes with the cost of potentially not

resolving subtle structure. For genetic data where structure

is difficult to resolve, the F-model for population structure

(Falush et al. 2003) proposes a hierarchical prior, based on

a demographic model that allows the allele frequencies of

the populations to have a shared underlying pattern at all

loci. Assuming a star-shaped genealogy where each of the

populations simultaneously split from an ancestral popula-

tion, the allele frequency at a given locus is generated from

a beta distribution centered at the ancestral allele frequency

at that locus, with variance parametrized by a population-

specific drift from the ancestral population (we refer to this

prior as F-prior”):

pðPlkÞ ¼ Beta

	

Pl
A 12 Fk

Fk
;
�

12 Pl
A
�12 Fk

Fk




: (7)

Alternatively, we propose a hierarchical prior that is more

flexible than theF-prior andallows formore tractable inference,

particularly when additional priors on the hyperparameters

need to be imposed. At a given locus, the population-specific

allele frequency is generated by a logistic normal distribution,

with the normal distribution having a locus-specific mean and

a population-specific variance (we refer to this prior as logistic

prior):

Plk ¼
1

1 þ exp2Rlk

pðRlkÞ ¼ N ðml; lkÞ:
(8)

Having specified the appropriate prior distributions, the optimal

variational parameters can be computed by iteratively min-

imizing the KL divergence (or, equivalently, maximizing the

LLBO) with respect to each variational parameter, keeping

the other variational parameters fixed. The LLBO is concave

in each parameter; thus, convergence properties of this iterative

optimization algorithm, also called the variational Bayesian

expectation-maximization algorithm, are similar to those of the

expectation-maximization algorithm for maximum-likelihood

problems. The update equations for each of the three models

are detailed in Appendix A. Furthermore, when population

structure is difficult to resolve, we propose updating the

hyperparameters ((F, PA) for the F-prior and (m, l) for the

logistic prior) by maximizing the LLBO with respect to these

variables; conditional on these hyperparameter values, im-

proved estimates for the variational parameters are then

computed by minimizing the KL divergence. Although such

a hyperparameter update is based on optimizing a lower

bound on the marginal likelihood, it is likely (although not

guaranteed) to increase the marginal likelihood of the data,

often leading to better inference. A natural extension of this

hierarchical prior would be to allow for a full locus-independent

variance–covariance matrix (Pickrell and Pritchard 2012).

However, we observed in our simulations that estimating the

parameters of the full matrix led to worse prediction accu-

racy on held-out data. Thus, we did not consider this exten-

sion in our analyses.

Accelerated variational inference

Similar to the EM algorithm, the convergence of the iterative

algorithm for variational inference can be quite slow.

Treating the iterative update equations for the set of

variational parameters ~u as a deterministic map Fð~uðtÞÞ,
a globally convergent algorithm with improved conver-

gence rates can be derived by adapting the Cauchy–Barzilai–

Borwein method for accelerating the convergence of linear

fixed-point problems (Raydan and Svaiter 2002) to the

nonlinear fixed-point problem given by our deterministic

map (Varadhan and Roland 2008). Specifically, given a cur-

rent estimate of parameters ~uðtÞ, the new estimate can be

written as

~uðtþ1ÞðntÞ ¼ ~uðtÞ 22nt Dt þ n2t Ht; (9)

where Dt ¼ F
�

~uðtÞ
�

2 ~uðtÞ, Ht ¼ F
�

F
�

~uðtÞ
��

22F
�

~uðtÞ
�

þ ~uðtÞ

and nt ¼ 2jjDtjj=jjHtjj. Note that the new estimate is a con-

tinuous function of nt and the standard variational iterative

scheme can be obtained from Equation 9 by setting nt to 21.

Thus, for values of nt close to 21, the accelerated algorithm

retains the stability and monotonicity of standard EM algo-

rithms while sacrificing a gain in convergence rate. When

nt , 21, we gain significant improvement in convergence

rate, with two potential problems: (a) the LLBO could de-

crease, i.e., E
�

~uðtþ1Þ
�

, E
�

~uðtÞ
�

, and (b) the new estimate

~uðtþ1Þ might not satisfy the constraints of the optimization

problem. In our experiments, we observe the first problem to

occur rarely and we resolve this by simply testing for con-

vergence of the magnitude of difference in LLBO at succes-

sive iterations. We resolve the second problem using

a simple back-tracking strategy of halving the distance be-

tween nt and 21: nt) (nt 2 1)/2, until the new estimate
~uðtþ1Þ satisfies the constraints of the optimization problem.

Validation scores

For each simulated data set, we evaluate the accuracy of

each algorithm using two metrics: accuracy of the estimated

admixture proportions and the prediction error for a subset

of entries in the genotype matrix that are held out before

estimating the parameters. For a given choice of model

complexity K, an estimate of the admixture proportions Q* is

taken to be the maximum-likelihood estimate of Q when

using ADMIXTURE, the maximum a posteriori (MAP) esti-

mate of Q when using STRUCTURE, and the mean of the

variational distribution overQ inferred using fastSTRUCTURE.

We measure the accuracy of Q* by computing the Jensen–

Shannon (JS) divergence between Q* and the true admixture

proportions. The Jensen–Shannon divergence (JSD) between

two probability vectors P and Q is a bounded distance metric

defined as
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JSDðPkQÞ ¼ 1
2DklðPkMÞ þ 1

2DklðQkMÞ; (10)

where M ¼ 1
2ðPþ QÞ, and 0 # JSD(PkQ) # 1. Note that if

the lengths of P and Q are not the same, the smaller vector is

extended by appending zero-valued entries. The mean ad-

mixture divergence is then defined as the minimum over all

permutations of population labels of the mean JS divergence

between the true and estimated admixture proportions over

all samples, with higher divergence values corresponding to

lower accuracy.

We evaluate the prediction accuracy by estimating model

parameters (or posterior distributions over them) after

holding out a subset M of the entries in the genotype

matrix. For each held-out entry, the expected genotype is

estimated by ADMIXTURE from maximum-likelihood pa-

rameter estimates as

Ĝnl ¼ 2
X

k

P*
lk
Q*
nk
; (11)

where P*lk is the maximum-likelihood estimate of Plk. The

expected genotype given the variational distributions requires

integration over the model parameters and is derived in

Appendix B. Given the expected genotypes for the held-out

entries, for a specified model complexity K, the prediction

error is quantified by the deviance residuals under the bino-

mial model averaged over all entries:

dKðĜ;GÞ ¼
X

n;l2M

Gnl log
Gnl

Ĝnl

þ ð22GnlÞ log
22Gnl

22 Ĝnl
: (12)

Model complexity

ADMIXTURE suggests choosing the value of model com-

plexity K that achieves the smallest value of dKðĜ;GÞ, i.e.,
K*
cv ¼ argminKdKðĜ;GÞ. We propose two additional metrics

to select model complexity in the context of variational

Bayesian inference. Assuming a uniform prior on K, the op-

timal model complexity K*
E is chosen to be the one that

maximizes the LLBO, where the LLBO is used as an approx-

imation to the marginal likelihood of the data. However,

since the difference between the log-marginal likelihood of

the data and the LLBO is difficult to quantify, the trend of

LLBO as a function of K cannot be guaranteed to match

that of the log-marginal likelihood. Additionally, we pro-

pose a useful heuristic to choose K based on the tendency

of mean-field variational schemes to populate only those

model components that are essential to explain patterns

underlying the observed data. Specifically, given an esti-

mate of Q* obtained from variational inference executed

for a choice of K, we compute the ancestry contribution of

each model component as the mean admixture proportion

over all samples, i.e., ck ¼
1
N

P

n Q
*
nk. The number of rele-

vant model components K
∅

C is then the minimum number

of populations that have a cumulative ancestry contribu-

tion of at least 99.99%,

K
∅

C ¼ min
n

�

�Sj : S 2 PðKÞand
X

k2S

ck . 0:9999
o

; (13)

where K = {1, . . ., K} and P(K) is the power set of K. As K

increases, K
∅

C tends to approach a limit that can be chosen

as the optimal model complexity K*
∅

C.

Applications

In this section, we compare the accuracy and runtime

performance of the variational inference framework with

the results of STRUCTURE and ADMIXTURE both on data

sets generated from the F-model and on the Human Genome

Diversity Panel (HGDP) (Rosenberg et al. 2002). We expect

the results of ADMIXTURE to match those of FRAPPE (Tang

et al. 2005) since they both compute maximum-likelihood

estimates of the model parameters. However, ADMIXTURE

converges faster than FRAPPE, allowing us to compare it

with fastSTRUCTURE using thousands of simulations. In

general, we observe that fastSTRUCTURE estimates ances-

try proportions with accuracies comparable to, and some-

times better than, those estimated by ADMIXTURE even

when the underlying population structure is rather weak.

Furthermore, fastSTRUCTURE is about 2 orders of magni-

tude faster than STRUCTURE and has comparable runtimes

to that of ADMIXTURE. Finally, fastSTRUCTURE gives us

a reasonable range of values for the model complexity re-

quired to explain structure underlying the data, without the

need for a cross-validation scheme. Below, we highlight the

key advantages and disadvantages of variational inference

in each problem setting.

Simulated data sets

To evaluate the performance of the different learning algo-

rithms, we generated two groups of simulated genotype data

sets, with each genotype matrix consisting of 600 samples and

2500 loci. The first group was used to evaluate the accuracy of

the algorithms as a function of strength of the underlying

population structure while the second group was used to

evaluate accuracy as a function of number of underlying

populations. Although the size of each genotype matrix was

kept fixed in these simulations, the performance character-

istics of the algorithms are expected to be similar if the

strength of population structure is kept fixed and the data set

size is varied (Patterson et al. 2006).

For the first group, the samples were drawn from a three-

population demographic model as shown in Figure 1A. The

edge weights correspond to the parameter F in the model

that quantifies the genetic drift of each of the three current

populations from an ancestral population. We introduced

a scaling factor r 2 [0, 1] that quantifies the resolvability

of population structure underlying the samples. Scaling F by

r reduces the amount of drift of current populations from the

ancestral population; thus, structure is difficult to resolve

when r is close to 0, while structure is easy to resolve when

r is close to 1. For each r 2 {0.05, 0.10, . . ., 0.95, 1}, we
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generated 50 replicate data sets. The ancestral allele fre-

quencies pA for each data set were drawn from the frequency

spectrum computed using the HGDP panel to simulate allele

frequencies in natural populations. For each data set, the allele

frequency at a given locus for each population was drawn from

a beta-distribution with mean pA
l and variance rFkp

A
l ð12pA

l Þ,
andtheadmixtureproportions foreachsampleweredrawnfrom

a symmetric Dirichlet distribution, namely Dirichlet
�

1
1013

�

, to

simulate small amounts of gene flow between the three popu-

lations. Finally, 10% of the samples in each data set, randomly

selected, were assigned to one of the three populations with

zero admixture.

For the second group, the samples were drawn from

a star-shaped demographic model with Kt populations. Each

population was assumed to have equal drift from an ances-

tral population, with the F parameter fixed at either 0.01 to

simulate weak structure or 0.04 to simulate strong structure.

The ancestral allele frequencies were simulated similar to

the first group and 50 replicate data sets were generated

for this group for each value of Kt 2 {1, . . ., 5}. We executed

ADMIXTURE and fastSTRUCTURE for each data set with

various choices of model complexity: for data sets in the first

group, model complexity K 2 {1, . . ., 5}, and for those in the

second group K 2 {1, . . ., 8}. We executed ADMIXTURE with

default parameter settings; with these settings the algorithm

terminates when the increase in log likelihood is ,1024 and

computes prediction error using fivefold cross-validation. fast-

STRUCTURE was executed with a convergence criterion of

change in the per-genotype log-marginal likelihood lower

bound jDEj , 1028. We held out 20 random disjoint geno-

type sets, each containing 1% of entries in the genotype

matrix and used the mean and standard error of the deviance

residuals for these held-out entries as an estimate of the pre-

diction error.

For each group of simulated data sets, we illustrate a

comparison of the performance of ADMIXTURE and fast-

STRUCTURE with the simple and the logistic prior. When

structure was easy to resolve, both the F-prior and the logistic

prior returned similar results; however, the logistic prior

returned more accurate ancestry estimates when structure

was difficult to resolve. Plots including results using the F-prior

are shown in Supporting Information, Figure S1, Figure S2,

and Figure S3. Since ADMIXTURE uses held-out deviance

residuals to choose model complexity, we demonstrate the

results of the two algorithms, each using deviance residuals

to choose K, using solid lines in Figure 1 and Figure 2. Addi-

tionally, in these figures, we also illustrate the performance of

fastSTRUCTURE, when using the two alternative metrics to

choose model complexity, using blue lines.

Choice of K

One question that arises when applying admixture models in

practice is how to select the model complexity, or number of

populations, K. It is important to note that in practice there

will generally be no “true” value of K, because samples from

real populations will never conform exactly to the assump-

tions of the model. Further, inferred values of K could be

influenced by sampling ascertainment schemes (Engelhardt

Figure 1 Accuracy of different

algorithms as a function of resolv-

ability of population structure. (A)

Demographic model underlying

the three populations represented

in the simulated data sets. The edge

weights quantify the amount of

drift from the ancestral popula-

tion. (B and C) Resolvability is

a scalar by which the population-

specific drifts in the demographic

model are multiplied, with higher

values of resolvability correspond-

ing to stronger structure. (B) Com-

pares the optimal model complexity

given the data, averaged over 50

replicates, inferred by ADMIXTURE

ðK*
cvÞ, fastSTRUCTURE with simple

prior ðK*
cv ; K

*
E ; K

*
∅

C Þ, and fast-

STRUCTURE with logistic prior

ðK*
cvÞ. (C) Compares the accuracy

of admixture proportions, aver-

aged over replicates, estimated

by each algorithm at the optimal

value of K in each replicate.

578 A. Raj, M. Stephens, and J. K. Pritchard.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164350/-/DC1/genetics.114.164350-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164350/-/DC1/genetics.114.164350-3.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164350/-/DC1/genetics.114.164350-2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164350/-/DC1/genetics.114.164350-4.pdf


and Stephens 2010) (imagine sampling from g distinct loca-

tions in a continuous habitat exhibiting isolation by distance—

any automated approach to select K will be influenced by g),

and by the number of typed loci (as more loci are typed, more

subtle structure can be picked up, and inferred values of Kmay

increase). Nonetheless, it can be helpful to have automated

heuristic rules to help guide the analyst in making the appro-

priate choice for K, even if the resulting inferences need to be

carefully interpreted within the context of prior knowledge

about the data and sampling scheme. Therefore, we here used

simulation to assess several different heuristics for selecting K.

The manual of the ADMIXTURE code proposes choosing

model complexity that minimizes the prediction error on held-

out data estimated using the mean deviance residuals reported

by the algorithm ðK*
cvÞ. In Figure 1B, using the first group of

simulations, we compare the value of K*
cv, averaged over 50

replicate data sets, between the two algorithms as a function of

the resolvability of population structure in the data. We ob-

serve that while deviance residuals estimated by ADMIXTURE

robustly identify an appropriate model complexity, the value of

K identified using deviance residuals computed using the var-

iational parameters from fastSTRUCTURE appear to overesti-

mate the value of K underlying the data. However, on closer

inspection, we observe that the difference in prediction errors

between large values of K are statistically insignificant (Figure

3, middle). This suggests the following heuristic: select the

lowest model complexity above which prediction errors do

not vary significantly.

Alternatively, for fastSTRUCTURE with the simple prior,

we propose two additional metrics for choosing model

complexity: (1) K*
E , value of K that maximizes the LLBO of

the entire data set, and (2) K*
∅

C , the limiting value, as K

increases, of the smallest number of model components that

accounts for almost all of the ancestry in the sample. In

Figure 1B, we observe that K*
E has the attractive property

of robustly identifying strong structure underlying the data,

while K*
∅

C identifies additional model components needed to

explain weak structure in the data, with a slight upward bias

in complexity when the underlying structure is extremely

difficult to resolve. For the second group of simulations,

similar to results observed for the first group, when popula-

tion structure is easy to resolve, ADMIXTURE robustly iden-

tifies the correct value of K (shown in Figure 2A). However,

for similar reasons as before, the use of prediction error with

fastSTRUCTURE tends to systematically overestimate the

number of populations underlying the data. In contrast, K*
E

and K*
∅

C match exactly to the true K when population struc-

ture is strong. When the underlying population structure is

very weak, K*
E is a severe underestimate of the true K while

K*
∅

C slightly overestimates the value of K. Surprisingly, K*
cv

estimated using ADMIXTURE and K*
∅

C estimated using fast-

STRUCTURE tend to underestimate the number of popula-

tions when the true number of populations Kt is large, as

shown in Figure 2B.

For a new data set, we suggest executing fastSTRUCTURE

for multiple values of K and estimating ðK*
E ;K

*
∅

CÞ to obtain

Figure 2 Accuracy of different

algorithms as a function of the

true number of populations. The

demographic model is a star-

shaped genealogy with populations

having undergone equal amounts

of drift. Subfigures A and C corre-

spond to strong structure (F = 0.04)

and B and D to weak structure (F =

0.01). (A and B) Compare the opti-

mal model complexity estimated

by the different algorithms using

various metrics, averaged over 50

replicates, to the true number of

populations represented in the data.

Notably, when population structure

is weak, both ADMIXTURE and fast-

STRUCTURE fail to detect structure

when the number of populations is

too large. (C and D) Compare the

accuracy of admixture proportions

estimated by each algorithm at the

optimal model complexity for each

replicate.
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a reasonable range of values for the number of populations

that would explain structure in the data, under the given model.

To look for subtle structure in the data, we suggest executing

fastSTRUCTURE with the logistic prior with values for values of

K similar to those identified by using the simple prior.

Accuracy of ancestry proportions

We evaluated the accuracy of the algorithms by comparing

the divergence between the true admixture proportions and

the estimated admixture proportions at the optimal model

complexity computed using the above metrics for each data

set. In Figure 1C, we plot the mean divergence between the

true and estimated admixture proportions, over multiple

replicates, as a function of resolvability. We observe that

the admixture proportions estimated by fastSTRUCTURE

at K*
E have high divergence; however, this is a result of LLBO

being too conservative in identifying K. At K ¼ K*
cv and

K ¼ K*
∅

C , fastSTRUCTURE estimates admixture proportions

with accuracies comparable to, and sometimes better than,

ADMIXTURE even when the underlying population struc-

ture is rather weak. Furthermore, the held-out prediction

deviances computed using posterior estimates from variational

algorithms are consistently smaller than those estimated by

ADMIXTURE (see Figure S3) demonstrating the improved

accuracy of variational Bayesian inference schemes over

maximum-likelihood methods. Similarly, for the second group

of simulated data sets, we observe in Figure 2, C and D, that

the accuracy of variational algorithms tends to be comparable

to or better than that of ADMIXTURE, particularly when

structure is difficult to resolve. When structure is easy to re-

solve, the increased divergence estimates of fastSTRUCTURE

with the logistic prior result from the upward bias in the

estimate of K*
cv; this can be improved by using cross-validation

more carefully in choosing model complexity.

Visualizing ancestry estimates

Having demonstrated the performance of fastSTRUCTURE

on multiple simulated data sets, we now illustrate the

performance characteristics and parameter estimates using

two specific data sets (selected from the first group of

simulated data sets), one with strong population structure

(r = 1) and one with weak structure (r = 0.5). In addition

to these algorithms, we executed STRUCTURE for these two

data sets using the model of independent allele frequencies

to directly compare with the results of fastSTRUCTURE. For

each data set, a was kept fixed to 1
K
for all populations,

Figure 3 Accuracy of different algorithms as a function of model complexity (K) on two simulated data sets, one in which ancestry is easy to resolve

(A; r = 1) and one in which ancestry is difficult to resolve: (B; r = 0.5) Solid lines correspond to parameter estimates computed with a convergence

criterion of jDEj , 1028, while the dashed lines correspond to a weaker criterion of jDEj , 1026. (Left) Mean admixture divergence between the true

and inferred admixture proportions; (middle) mean binomial deviance of held-out genotype entries. Note that for values of K greater than the optimal

value, any change in prediction error lies within the standard error of estimates of prediction error suggesting that we should choose the smallest value

of model complexity above which a decrease in prediction error is statistically insignificant. (Right) Approximations to the marginal likelihood of the data

computed by STRUCTURE and fastSTRUCTURE.
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similar to the prior used for fastSTRUCTURE, and each run

consisted of 50,000 burn-in steps and 50,000 MCMC steps.

In Figure 3, we illustrate the divergence of admixture estimates

and the prediction error on held-out data each as a function of

K. For all choices of K greater than or equal to the true value,

the accuracy of fastSTRUCTURE, measured using both ad-

mixture divergence and prediction error, is generally compa-

rable to or better than that of ADMIXTURE and STRUCTURE,

even when the underlying population structure is rather weak.

In Figure 3, right, we plot the approximate marginal likelihood

of the data, reported by STRUCTURE, and the optimal

LLBO, computed by fastSTRUCTURE, each as a function of

K. We note that the looseness of the bound between STRUC-

TURE and fastSTRUCTURE can make the LLBO a less reliable

measure to choose model complexity than the approximate

marginal likelihood reported by STRUCTURE, particularly

when the size of the data set is not sufficient to resolve the

underlying population structure.

Figure 4 illustrates the admixture proportions estimated

by the different algorithms on both data sets at two values of

K, using Distruct plots (Rosenberg 2004). For the larger

choice of model complexity, we observe that fastSTRUCTURE

with the simple prior uses only those model components that

are necessary to explain the data, allowing for automatic

Figure 4 Visualizing ancestry proportions estimated by different algorithms on two simulated data sets, one with strong structure (top, r = 1) and one

with weak structure (bottom, r = 0.5). (Left and middle) Ancestry estimated at model complexity of K = 3 and K = 5, respectively. Insets illustrate the true

ancestry and the ancestry inferred by each algorithm. Each color represents a population and each individual is represented by a vertical line partitioned

into colored segments whose lengths represent the admixture proportions from K populations. (Right) Mean ancestry contributions of the model

components, when the model complexity K = 5.

Population Structure Inference 581



inference of model complexity (Mackay 2003). To better il-

lustrate this property of unsupervised Bayesian inference

methods, Figure 4, right, shows the mean contribution of

ancestry from each model component to samples in the data

set. While ADMIXTURE uses all components of the model to

fit the data, STRUCTURE and fastSTRUCTURE assign negli-

gible posterior mass to model components that are not re-

quired to capture structure in the data. The number of

nonempty model components ðK
∅

CÞ automatically identifies

the model complexity required to explain the data; the opti-

mal model complexity K*
∅

C is then the mode of all values of

K
∅

C computed for different choices of K. While both STRUC-

TURE and fastSTRUCTURE tend to use only those model

components necessary to explain the data, fastSTRUCTURE

is slightly more aggressive in removing model components

that seem unnecessary, leading to slightly improved results

for fastSTRUCTURE compared to STRUCTURE in Equation 4,

when there is strong structure in the data set. This property of

fastSTRUCTURE seems useful in identifying global patterns

of structure in a data set (e.g., the populations represented in

a set of samples); however, it can be an important drawback if

one is interested in detecting weak signatures of gene flow

from a population to a specific sample in a given data set.

When population structure is difficult to resolve, imposing

a logistic prior and estimating its parameters using the data are

likely to increase the power to detect weak structure. However,

estimation of the hierarchical prior parameters by maximizing

the approximate marginal likelihood also makes the model

susceptible to overfitting by encouraging a small set of samples

to be randomly, and often confidently, assigned to unnecessary

components of the model. To correct for this, when using the

logistic prior, we suggest estimating the variational parameters

with multiple random restarts and using the mean of the

parameters corresponding to the top five values of LLBO. To

ensure consistent population labels when computing the

mean, we permuted the labels for each set of variational

parameter estimates to find the permutation with the lowest

pairwise Jensen–Shannon divergence between admixture pro-

portions among pairs of restarts. Admixture estimates com-

puted using this scheme show improved robustness against

overfitting, as illustrated in Figure 4. Moreover, the pairwise

Jensen–Shannon divergence between admixture proportions

among all restarts of the variational algorithms can also be

used as a measure of the robustness of their results and as

a signature of how strongly they overfit the data.

Runtime performance

A key advantage of variational Bayesian inference algo-

rithms compared to inference algorithms based on sampling

is the dramatic improvement in time complexity of the

algorithm. To evaluate the runtimes of the different learning

algorithms, we generated from the F-model data sets with

sample sizes N 2 {200, 600} and numbers of loci L 2 {500,

2500}, each having three populations with r = 1. The time

complexity of each of the above algorithms is linear in the

number of samples, loci, and populations, i.e., O(NLK); in

comparison, the time complexity of principal components

analysis is quadratic in the number of samples and linear in

the number of loci. In Figure 5, the mean runtime of the

different algorithms is shown as a function of problem size

defined as N 3 L 3 K. The added complexity of the cost

function being optimized in fastSTRUCTURE increases its

runtime when compared to ADMIXTURE. However, fast-

STRUCTURE is about 2 orders of magnitude faster than

STRUCTURE, making it suitable for large data sets with hun-

dreds of thousands of genetic variants. For example, using

a data set with 1000 samples genotyped at 500,000 loci with

K = 10, each iteration of our current Python implementation

of fastSTRUCTURE with the simple prior takes about 11 min,

while each iteration of ADMIXTURE takes �16 min. Since

one would usually like to estimate the variational parameters

for multiple values of K for a new data set, a faster algorithm

that gives an approximate estimate of ancestry proportions in

the sample would be of much utility, particularly to guide an

appropriate choice of K. We observe in our simulations that

a weaker convergence criterion of jDEj , 1026 gives us com-

parably accurate results with much shorter run times, illus-

trated by the dashed lines in Figure 3 and Figure 5. Based on

these observations, we suggest executing multiple random

restarts of the algorithm with a weak convergence criterion

of jDEj , 1025 to rapidly obtain reasonably accurate esti-

mates of the variational parameters, prediction errors, and

ancestry contributions from relevant model components.

HGDP panel

We now compare the results of ADMIXTURE and fast-

STRUCTURE on a large, well-studied data set of genotypes

at single nucleotide polymorphisms (SNP) genotyped in the

HGDP (Li et al. 2008), in which 1048 individuals from

51 different populations were genotyped using Illumina’s

Figure 5 Runtimes of different algorithms on simulated data sets with

different number of loci and samples; the square root of runtime (in minutes)

is plotted as a function of square root of problem size (defined as N3 L3 K).

Similar to Figure 3, dashed lines correspond to a weaker convergence crite-

rion than solid lines.
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HumanHap650Y platform. We used the set of 938 “unre-

lated” individuals for the analysis in this article. For the

selected set of individuals, we removed SNPs that were

monomorphic, had missing genotypes in .5% of the sam-

ples, and failed the Hardy–Weinberg Equilibrium (HWE)

test at P , 0.05 cutoff. To test for violations from HWE,

we selected three population groups that have relatively

little population structure (East Asia, Europe, Bantu Africa),

constructed three large groups of individuals from these

populations, and performed a test for HWE for each SNP

within each large group. The final data set contained 938

samples with genotypes at 657,143 loci, with 0.1% of the

entries in the genotype matrix missing. We executed AD-

MIXTURE and fastSTRUCTURE using this data set with

allowed model complexity K 2 {5, . . ., 15}. In Figure 6,

the ancestry proportions estimated by ADMIXTURE and fast-

STRUCTURE at K = 7 are shown; this value of K was chosen

to compare with results reported using the same data set

with FRAPPE (Li et al. 2008). In contrast to results reported

using FRAPPE, we observe that both ADMIXTURE and fast-

STRUCTURE identify the Mozabite, Bedouin, Palestinian,

and Druze populations as very closely related to European

populations with some gene flow from Central-Asian and

African populations; this result was robust over multiple

random restarts of each algorithm. Since both ADMIXTURE

and FRAPPE maximize the same likelihood function, the

slight difference in results is likely due to differences in

the modes of the likelihood surface to which the two algo-

rithms converge. A notable difference between ADMIXTURE

and fastSTRUCTURE is in their choice of the seventh pop-

ulation—ADMIXTURE splits the Native American popula-

tions along a north–south divide while fastSTRUCTURE

splits the African populations into central African and south

African population groups.

Interestingly, both algorithms strongly suggest the exis-

tence of additional weak population structure underlying

the data, as shown in Figure 7. ADMIXTURE, using cross-

validation, identifies the optimal model complexity to be 11;

however, the deviance residuals appear to change very little

beyond K = 7, suggesting that the model components iden-

tified at K = 7 explain most of the structure underlying the

data. The results of the heuristics implemented in fast-

STRUCTURE are largely concordant, with K*
E ¼ 7, K*

∅
C ¼ 9

and the lowest cross-validation error obtained at K*
cv ¼ 10.

The admixture proportions estimated at the optimal

choices of model complexity using the different metrics

are shown in Figure 8. The admixture proportions estimated

at K = 7 and K = 9 are remarkably similar, with the Kalash

and Karitiana populations being assigned to their own

model components at K = 9. These results demonstrate

the ability of LLBO to identify strong structure underlying

the data and that of K
∅

C to identify additional weak structure

that explain variation in the data. At K = 10 (as identified

using cross-validation), we observe that only nine of the

Figure 6 Ancestry proportions inferred by ADMIXTURE and fastSTRUCTURE (with the simple prior) on the HGDP data at K = 7 (Li et al. 2008). Notably,

ADMIXTURE splits the Central and South American populations into two groups while fastSTRUCTURE assigns higher approximate marginal likelihood

to a split of sub-Saharan African populations into two groups.
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model components are populated. However, the estimated

admixture proportions differ crucially with all African popula-

tions grouped together, the Melanesian and Papuan populations

each assigned to their own groups, and the Middle-Eastern

populations represented as predominantly an admixture of

Europeans and a Bedouin subpopulation with small amounts

of gene flow from Central-Asian populations.

The main contribution of this work is a fast, approximate

inference algorithm for one simple admixture model for

population structure, used in ADMIXTURE and STRUCTURE.

While admixture may not be an exactly correct model for most

population data sets, this model often gives key insights into

the population structure underlying samples in a new data set

and is useful in identifying global patterns of structure in the

samples. Exploring model choice, by comparing the goodness-

of-fit of different models that capture demographies of varying

complexity, is an important future direction.

Discussion

Our analyses on simulated and natural data sets demon-

strate that fastSTRUCTURE estimates approximate posterior

distributions on ancestry proportions 2 orders of magnitude

faster than STRUCTURE, with ancestry estimates and pre-

diction accuracies that are comparable to those of ADMIX-

TURE. Posing the problem of inference in terms of an

optimization problem allows us to draw on powerful tools in

convex optimization and plays an important role in the gain

in speed achieved by variational inference schemes, when

compared to the Gibbs sampling scheme used in STRUC-

TURE. In addition, the flexible logistic prior enables us to

resolve subtle structure underlying a data set. The consider-

able improvement in runtime with comparable accuracies

allows the application of these methods to large genotype

data sets that are steadily becoming the norm in studies of

population history, genetic association with disease, and

conservation biology.

The choice of model complexity, or the number of popula-

tions required to explain structure in a data set, is a difficult

problem associated with the inference of population structure.

Unlike in maximum-likelihood estimation, the model parame-

ters have been integrated out in variational inference schemes

and optimizing the KL divergence in fastSTRUCTURE does not

run the risk of overfitting. The heuristic scores that we have

proposed to identify model complexity provide a robust and

reasonable range for the number of populations underlying the

data set, without the need for a time-consuming cross-validation

scheme.

As in the original version of STRUCTURE, the model

underlying fastSTRUCTURE does not explicitly account for

linkage disequilibrium (LD) between genetic markers. While

LD between genotype markers in the genotype data set will

lead us to underestimate the variance of the approximate

posterior distributions, the improved accuracy in predicting

held-out genotypes for the HGDP data set demonstrates that

the underestimate due to unmodeled LD and the mean field

approximation is not too severe. Furthermore, not account-

ing for LD appropriately can lead to significant biases in

local ancestry estimation, depending on the sample size and

population haplotype frequencies. However, we believe

global ancestry estimates are likely to incur very little bias

due to unmodeled LD. One potential source of bias in global

ancestry estimates is due to LD driven by segregating,

chromosomal inversions. While genetic variants on inver-

sions on the human genome and those of different model

organisms are fairly well characterized and can be easily

masked, it is important to identify and remove genetic

variants that lie in inversions for nonmodel organisms, to

avoid them from biasing global ancestry estimates. One

heuristic approach to searching for such large blocks would

be to compute a measure of differentiation for each locus

between one population and the remaining populations,

using the inferred variational posteriors on allele frequencies.

Long stretches of the genome that have highly differentiated

Figure 7 Model choice of ADMIX-

TURE and fastSTRUCTURE (with

the simple prior) on the HGDP data.

Optimal valueofK, identifiedbyAD-

MIXTURE using deviance residuals,

and by fastSTRUCTURE using devi-

ance, K
∅

C , and LLBO, are shown by

a dashed line.
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genetic variants can then be removed before recomputing

ancestry estimates.

In summary, we have presented a variational framework

for fast, accurate inference of global ancestry of samples

genotyped at a large number of genetic markers. For a new data

set, we recommend executing our program, fastSTRUCTURE,

for multiple values of K to obtain a reasonable range of values

for the appropriate model complexity required to explain

structure in the data, as well as ancestry estimates at those

model complexities. For improved ancestry estimates and to

identify subtle structure, we recommend executing fast-

STRUCTURE with the logistic prior at values of K similar

to those identified when using the simple prior. Our program

is available for download at http://pritchardlab.stanford.edu/

structure.html.
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Appendix A
Given the parametric forms for the variational distributions and a choice of prior for the fastSTRUCTURE model, the per-

genotype LLBO is given as

E ¼
1

G

X
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where E[�] is the expectation taken with respect to the appropriate variational distribution, B(�) is the beta function, G(�) is
the gamma function, {a, b, g} are the hyperparameters in the model, d(�) is an indicator variable that takes the value of zero

if the genotype is missing, G is the number of observed entries in the genotype matrix, ao ¼
P

k ak, and ~Qno ¼
P

k
~Qnk.

Maximizing this lower bound for each variational parameter, keeping the other parameters fixed, gives us the following

update equations:
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In the above update equations, c(�) is the digamma function. When the F-prior is used, the LLBO and the update equations

remain exactly the same, after replacing b with pA
l ð½12 Fk�=FkÞ and g with ð12pA

l Þð½12 Fk�=FkÞ. In this case, the LLBO

is also maximized with respect to the hyperparameter F using the L-BFGS-B algorithm, a quasi-Newton code for bound-

constrained optimization.
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When the logistic prior is used, a straightforward maximization of the LLBO no longer gives us explicit update equations

for ~P
u

lk and ~P
v

lk. One alternative is to use a constrained optimization solver, like L-BFGS-B; however, the large number of

variational parameters to be optimized greatly increases the per-iteration computational cost of the inference algorithm.

Instead, we propose update equations for ~P
u

lk and ~P
v

lk to have a similar form as those obtained with the simple prior,
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where blk and glk implicitly depend on ~P
u

lk and ~P
v

lk as follows:
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The optimal values for ~P
u

lk and
~P
v

lk can be obtained by iterating between the two sets of equations to convergence. Thus, when

the logistic prior is used, the algorithm is implemented as a nested iterative scheme where for each update of all the

variational parameters, an iterative scheme computes the update for ð~Pu; ~PvÞ. Finally, the optimal value of the hyperpara-

meter m is obtained straightforwardly as

ml ¼
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v
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��.

X

k
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while the optimal l is computed using a constrained optimization solver.

Appendix B

Given the observed genotypes G, the probability of the unobserved genotype G
hid
nl for the nth sample at the lth locus is given as

pðGhid
nl jGÞ ¼

Z

pðGhid
nl jP;QÞpðP;QjGÞ dQ dP: (B1)

Replacing the posterior p(P, Q|G) with the optimal variational posterior distribution, we obtain
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Z
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nl ¼ 1jP;QÞqðPÞqðQÞ dQ dP (B6)
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The expected genotype can then be straightforwardly computed from these genotype probabilities.
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Figure S1: Accuracy of different algorithms as a function of resolvability of population structure. This figure
is similar to Figure 1 in the main text, with results using the F-prior included. Subfigure (a) illustrates
the demographic model underlying the three populations represented in the simulated datasets. Subfigure
(b) compares the optimal model complexity inferred by ADMIXTURE (K∗

cv
), fastSTRUCTURE with

simple prior (K∗

cv
, K∗

E
, K∗

∅∁), fastSTRUCTURE with F-prior (K∗
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), and fastSTRUCTURE with logistic

prior (K∗
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). Subfigure (c) compares the accuracy of admixture proportions estimated by each algorithm

at the optimal value of K in each replicate.
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Figure S2: Accuracy of different algorithms as a function of model complexity (K) on two simulated data
sets, one in which ancestry is easy to resolve (top panel; r = 1) and one in which ancestry is difficult to
resolve (bottom panel; r = 0.5). This figure is similar to Figure 3 in the main text, with results using the
F-prior included. Solid lines correspond to parameter estimates computed with a convergence criterion of
|∆E| < 10−8, while the dashed lines correspond to a weaker criterion of |∆E| < 10−6. The left panel of
subfigures shows the mean admixture divergence, the middle panel shows the mean binomial deviance of
held-out genotype entries, and the right panel shows the approximations to the marginal likelihood of the
data computed by STRUCTURE and fastSTRUCTURE.
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Figure S3: Prediction error of different algorithms as a function of resolvability of population structure.
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