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ABSTRACT

We consider the problem of producing compact architectures for text classifica-
tion, such that the full model fits in a limited amount of memory. After consid-
ering different solutions inspired by the hashing literature, we propose a method
built upon product quantization to store word embeddings. While the original
technique leads to a loss in accuracy, we adapt this method to circumvent quan-
tization artefacts. Combined with simple approaches specifically adapted to text
classification, our approach derived from fastText requires, at test time, only
a fraction of the memory compared to the original FastText, without noticeably
sacrificing quality in terms of classification accuracy. Our experiments carried out
on several benchmarks show that our approach typically requires two orders of
magnitude less memory than fastText while being only slightly inferior with
respect to accuracy. As a result, it outperforms the state of the art by a good margin
in terms of the compromise between memory usage and accuracy.

1 INTRODUCTION

Text classification is an important problem in Natural Language Processing (NLP). Real world use-
cases include spam filtering or e-mail categorization. It is a core component in more complex sys-
tems such as search and ranking. Recently, deep learning techniques based on neural networks
have achieved state of the art results in various NLP applications. One of the main successes of deep
learning is due to the effectiveness of recurrent networks for language modeling and their application
to speech recognition and machine translation (Mikolov, 2012). However, in other cases including
several text classification problems, it has been shown that deep networks do not convincingly beat
the prior state of the art techniques (Wang & Manning, 2012; Joulin et al., 2016).

In spite of being (typically) orders of magnitude slower to train than traditional techniques based
on n-grams, neural networks are often regarded as a promising alternative due to compact model
sizes, in particular for character based models. This is important for applications that need to run on
systems with limited memory such as smartphones.

This paper specifically addresses the compromise between classification accuracy and the model
size. We extend our previous work implemented in the fastText library1. It is based on n-gram
features, dimensionality reduction, and a fast approximation of the softmax classifier (Joulin et al.,
2016). We show that a few key ingredients, namely feature pruning, quantization, hashing, and re-
training, allow us to produce text classification models with tiny size, often less than 100kB when
trained on several popular datasets, without noticeably sacrificing accuracy or speed.

We plan to publish the code and scripts required to reproduce our results as an extension of the
fastText library, thereby providing strong reproducible baselines for text classifiers that optimize
the compromise between the model size and accuracy. We hope that this will help the engineering
community to improve existing applications by using more efficient models.

This paper is organized as follows. Section 2 introduces related work, Section 3 describes our text
classification model and explains how we drastically reduce the model size. Section 4 shows the
effectiveness of our approach in experiments on multiple text classification benchmarks.

1https://github.com/facebookresearch/fastText
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2 RELATED WORK

Models for text classification. Text classification is a problem that has its roots in many applica-
tions such as web search, information retrieval and document classification (Deerwester et al., 1990;
Pang & Lee, 2008). Linear classifiers often obtain state-of-the-art performance while being scal-
able (Agarwal et al., 2014; Joachims, 1998; Joulin et al., 2016; McCallum & Nigam, 1998). They
are particularly interesting when associated with the right features (Wang & Manning, 2012). They
usually require storing embeddings for words and n-grams, which makes them memory inefficient.

Compression of language models. Our work is related to compression of statistical language
models. Classical approaches include feature pruning based on entropy (Stolcke, 2000) and quanti-
zation. Pruning aims to keep only the most important n-grams in the model, leaving out those with
probability lower than a specified threshold. Further, the individual n-grams can be compressed by
quantizing the probability value, and by storing the n-gram itself more efficiently than as a sequence
of characters. Various strategies have been developed, for example using tree structures or hash
functions, and are discussed in (Talbot & Brants, 2008).

Compression for similarity estimation and search. There is a large body of literature on how
to compress a set of vectors into compact codes, such that the comparison of two codes approxi-
mates a target similarity in the original space. The typical use-case of these methods considers an
indexed dataset of compressed vectors, and a query for which we want to find the nearest neigh-
bors in the indexed set. One of the most popular is Locality-sensitive hashing (LSH) by Charikar
(2002), which is a binarization technique based on random projections that approximates the cosine
similarity between two vectors through a monotonous function of the Hamming distance between
the two corresponding binary codes. In our paper, LSH refers to this binarization strategy2. Many
subsequent works have improved this initial binarization technique, such as spectal hashing (Weiss
et al., 2009), or Iterative Quantization (ITQ) (Gong & Lazebnik, 2011), which learns a rotation ma-
trix minimizing the quantization loss of the binarization. We refer the reader to two recent surveys
by Wang et al. (2014) and Wang et al. (2015) for an overview of the binary hashing literature.

Beyond these binarization strategies, more general quantization techniques derived from Jegou et al.
(2011) offer better trade-offs between memory and the approximation of a distance estimator. The
Product Quantization (PQ) method approximates the distances by calculating, in the compressed do-
main, the distance between their quantized approximations. This method is statistically guaranteed
to preserve the Euclidean distance between the vectors within an error bound directly related to the
quantization error. The original PQ has been concurrently improved by Ge et al. (2013) and Norouzi
& Fleet (2013), who learn an orthogonal transform minimizing the overall quantization loss. In our
paper, we will consider the Optimized Product Quantization (OPQ) variant (Ge et al., 2013).

Softmax approximation The aforementioned works approximate either the Euclidean distance
or the cosine similarity (both being equivalent in the case of unit-norm vectors). However, in the
context of fastText, we are specifically interested in approximating the maximum inner product
involved in a softmax layer. Several approaches derived from LSH have been recently proposed
to achieve this goal, such as Asymmetric LSH by Shrivastava & Li (2014), subsequently discussed
by Neyshabur & Srebro (2015). In our work, since we are not constrained to purely binary codes,
we resort a more traditional encoding by employing a magnitude/direction parametrization of our
vectors. Therefore we only need to encode/compress an unitary d-dimensional vector, which fits the
aforementioned LSH and PQ methods well.

Neural network compression models. Recently, several research efforts have been conducted
to compress the parameters of architectures involved in computer vision, namely for state-of-the-
art Convolutional Neural Networks (CNNs) (Han et al., 2016; Lin et al., 2015). Some use vector
quantization (Gong et al., 2014) while others binarize the network (Courbariaux et al., 2016). Denil
et al. (2013) show that such classification models are easily compressed because they are over-
parametrized, which concurs with early observations by LeCun et al. (1990).

2In the literature, LSH refers to multiple distinct strategies related to the Johnson-Lindenstrauss lemma.
For instance, LSH sometimes refers to a partitioning technique with random projections allowing for sublinear
search via cell probes, see for instance the E2LSH variant of Datar et al. (2004).
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Some of these works both aim at reducing the model size and the speed. In our case, since the
fastText classifier on which our proposal is built upon is already very efficient, we are primilarly
interested in reducing the size of the model while keeping a comparable classification efficiency.

3 PROPOSED APPROACH

3.1 TEXT CLASSIFICATION

In the context of text classification, linear classifiers (Joulin et al., 2016) remain competitive with
more sophisticated, deeper models, and are much faster to train. On top of standard tricks commonly
used in linear text classification (Agarwal et al., 2014; Wang & Manning, 2012; Weinberger et al.,
2009), Joulin et al. (2016) use a low rank constraint to reduce the computation burden while sharing
information between different classes. This is especially useful in the case of a large output space,
where rare classes may have only a few training examples. In this paper, we focus on a similar
model, that is, which minimizes the softmax loss ` over N documents:

N∑
n=1

`(yn, BAxn), (1)

where xn is a bag of one-hot vectors and yn the label of the n-th document. In the case of a large
vocabulary and a large output space, the matrices A and B are big and can require gigabytes of
memory. Below, we describe how we reduce this memory usage.

3.2 BOTTOM-UP PRODUCT QUANTIZATION

Product quantization is a popular method for compressed-domain approximate nearest neighbor
search (Jegou et al., 2011). As a compression technique, it approximates a real-valued vector by
finding the closest vector in a pre-defined structured set of centroids, referred to as a codebook.
This codebook is not enumerated, since it is extremely large. Instead it is implicitly defined by its
structure: a d-dimensional vector x ∈ Rd is approximated as

x̂ =

k∑
i=1

qi(x), (2)

where the different subquantizers qi : x 7→ qi(x) are complementary in the sense that their respective
centroids lie in distinct orthogonal subspaces, i.e., ∀i 6= j, ∀x, y, 〈qi(x)|qj(y)〉 = 0. In the original
PQ, the subspaces are aligned with the natural axis, while OPQ learns a rotation, which amounts to
alleviating this constraint and to not depend on the original coordinate system. Another way to see
this is to consider that PQ splits a given vector x into k subvectors xi, i = 1 . . . k, each of dimension
d/k: x = [x1 . . . xi . . . xk], and quantizes each sub-vector using a distinct k-means quantizer. Each
subvector xi is thus mapped to the closest centroid amongst 2b centroids, where b is the number of
bits required to store the quantization index of the subquantizer, typically b = 8. The reconstructed
vector can take 2kb distinct reproduction values, and is stored in kb bits.

PQ estimates the inner product in the compressed domain as

x>y ≈ x̂>y =

k∑
i=1

qi(x
i)>yi. (3)

This is a straightforward extension of the square L2 distance estimation of Jegou et al. (2011). In
practice, the vector estimate x̂ is trivially reconstructed from the codes, i.e., from the quantization
indexes, by concatenating these centroids.

The two parameters involved in PQ, namely the number of subquantizers k and the number of bits b
per quantization index, are typically set to k ∈ [2, d/2], and b = 8 to ensure byte-alignment.

Discussion. PQ offers several interesting properties in our context of text classification. Firstly,
the training is very fast because the subquantizers have a small number of centroids, i.e., 256 cen-
troids for b = 8. Secondly, at test time it allows the reconstruction of the vectors with almost no
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computational and memory overhead. Thirdly, it has been successfully applied in computer vision,
offering much better performance than binary codes, which makes it a natural candidate to compress
relatively shallow models. As observed by Sánchez & Perronnin (2011), using PQ just before the
last layer incurs a very limited loss in accuracy when combined with a support vector machine.

In the context of text classification, the norms of the vectors are widely spread, typically with a ratio
of 1000 between the max and the min. Therefore kmeans performs poorly because it optimizes an
absolute error objective, so it maps all low-norm vectors to 0. A simple solution is to separate the
norm and the angle of the vectors and to quantize them separately. This allows a quantization with
no loss of performance, yet requires an extra b bits per vector.

Bottom-up strategy: re-training. The first works aiming at compressing CNN models like the
one proposed by (Gong et al., 2014) used the reconstruction from off-the-shelf PQ, i.e., without any
re-training. However, as observed in Sablayrolles et al. (2016), when using quantization methods
like PQ, it is better to re-train the layers occurring after the quantization, so that the network can
re-adjust itself to the quantization. There is a strong argument arguing for this re-training strategy:
the square magnitude of vectors is reduced, on average, by the average quantization error for any
quantizer satisfying the Lloyd conditions; see Jegou et al. (2011) for details.

This suggests a bottom-up learning strategy where we first quantize the input matrix, then retrain
and quantize the output matrix (the input matrix being frozen). Experiments in section 4 show that
it is worth adopting this strategy.

Memory savings with PQ. In practice, the bottom-up PQ strategy offers a compression factor of
10 without any noticeable loss of performance. Without re-training, we notice a drop in accuracy
between 0.1% and 0.5%, depending on the dataset and setting; see Section 4 and the appendix.

3.3 FURTHER TEXT SPECIFIC TRICKS

The memory usage strongly depends on the size of the vocabulary, which can be large in many
text classification tasks. While it is clear that a large part of the vocabulary is useless or redundant,
directly reducing the vocabulary to the most frequent words is not satisfactory: most of the frequent
words, like “the” or “is” are not discriminative, in contrast to some rare words, e.g., in the context of
tag prediction. In this section, we discuss a few heuristics to reduce the space taken by the dictionary.
They lead to major memory reduction, in extreme cases by a factor 100. We experimentally show
that this drastic reduction is complementary with the PQ compression method, meaning that the
combination of both strategies reduces the model size by a factor up to ×1000 for some datasets.

Pruning the vocabulary. Discovering which word or n-gram must be kept to preserve the overall
performance is a feature selection problem. While many approaches have been proposed to select
groups of variables during training (Bach et al., 2012; Meier et al., 2008), we are interested in
selecting a fixed subset of K words and ngrams from a pre-trained model. This can be achieved by
selecting the K embeddings that preserve as much of the model as possible, which can be reduced
to selecting the K words and ngrams associated with the highest norms.

While this approach offers major memory savings, it has one drawback occurring in some particular
cases: some documents may not contained any of the K best features, leading to a significant drop
in performance. It is thus important to keep the K best features under the condition that they cover
the whole training set. More formally, the problem is to find a subset S in the feature set V that
maximizes the sum of their norms ws under the constraint that all the documents in the training set
D are covered:

max
S⊆V

∑
s∈S

ws s.t. |S| ≤ K, P1S ≥ 1D,

where P is a matrix such that Pds = 1 if the s-th feature is in the d-th document, and 0 otherwise.
This problem is directly related to set covering problems that are NP-hard (Feige, 1998). Standard
greedy approaches require the storing of an inverted index or to do multiple passes over the dataset,
which is prohibitive on very large dataset (Chierichetti et al., 2010). This problem can be cast as
an instance of online submodular maximization with a rank constraint (Badanidiyuru et al., 2014;
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Figure 1: Accuracy as a function of the memory per vector/embedding on 3 datasets from Zhang
et al. (2015). Note, an extra byte is required when we encode the norm explicitly (”norm”).

Bateni et al., 2010). In our case, we use a simple online parallelizable greedy approach: For each
document, we verify if it is already covered by a retained feature and, if not, we add the feature with
the highest norm to our set of retained features. If the number of features is below k, we add the
features with the highest norm that have not yet been picked.

Hashing trick & Bloom filter. On small models, the dictionary can take a significant portion of
the memory. Instead of saving it, we extend the hashing trick used in Joulin et al. (2016) to both
words and n-grams. This strategy is also used in Vowpal Wabbit (Agarwal et al., 2014) in the context
of online training. This allows us to save around 1-2Mb with almost no overhead at test time (just
the cost of computing the hashing function).

Pruning the vocabulary while using the hashing trick requires keeping a list of the indices of the
K remaining buckets. At test time, a binary search over the list of indices is required. It has a
complexity of O(log(K)) and a memory overhead of a few hundreds of kilobytes. Using Bloom
filters instead reduces the complexityO(1) at test time and saves a few hundred kilobytes. However,
in practice, it degrades performance.

4 EXPERIMENTS

This section evaluates the quality of our model compression pipeline and compare it to other com-
pression methods on different text classification problems, and to other compact text classifiers.

Evaluation protocol and datasets. Our experimental pipeline is as follows: we train a model
using fastText with the default setting unless specified otherwise. That is 2M buckets, a learning
rate of 0.1 and 10 training epochs. The dimensionality d of the embeddings is set to powers of 2 to
avoid border effects that could make the interpretation of the results more difficult. As baselines, we
use Locality-Sensitive Hashing (LSH) (Charikar, 2002), PQ (Jegou et al., 2011) and OPQ (Ge et al.,
2013) (the non-parametric variant). Note that we use an improved version of LSH where random
orthogonal matrices are used instead of random matrix projection Jégou et al. (2008). In a first
series of experiments, we use the 8 datasets and evaluation protocol of Zhang et al. (2015). These
datasets contain few million documents and have at most 10 classes. We also explore the limit of
quantization on a dataset with an extremely large output space, that is a tag dataset extracted from
the YFCC100M collection (Thomee et al., 2016)3, referred to as FlickrTag in the rest of this paper.
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Figure 2: Loss of accuracy as a function of the model size. We compare the compressed model with
different level of pruning with NPQ and the full fastText model. We also compare with Zhang
et al. (2015) and Xiao & Cho (2016). Note that the size is in log scale.

4.1 SMALL DATASETS

Compression techniques. We compare three popular methods used for similarity estimation with
compact codes: LSH, PQ and OPQ on the datasets released by Zhang et al. (2015). Figure 1 shows
the accuracy as a function of the number of bytes used per embedding, which corresponds to the
number k of subvectors in the case of PQ and OPQ. See more results in the appendix. As discussed
in Section 2, LSH reproduces the cosine similarity and is therefore not adapted to un-normalized
data. Therefore we only report results with normalization. Once normalized, PQ and OPQ are
almost lossless even when using only k = 4 subquantizers per embedding (equivalently, bytes). We
observe in practice that using k = d/2, i.e., half of the components of the embeddings, works well in
practice. In the rest of the paper and if not stated otherwise, we focus on this setting. The difference
between the normalized versions of PQ and OPQ is limited and depends on the dataset. Therefore
we adopt the normalized PQ (NPQ) for the rest of this study, since it is faster to train.

word Entropy Norm word Entropy Norm

. 1 354 mediocre 1399 1
, 2 176 disappointing 454 2
the 3 179 so-so 2809 3
and 4 1639 lacks 1244 4
i 5 2374 worthless 1757 5
a 6 970 dreadful 4358 6
to 7 1775 drm 6395 7
it 8 1956 poorly 716 8
of 9 2815 uninspired 4245 9
this 10 3275 worst 402 10

Table 1: Best ranked words w.r.t. entropy (left) and norm (right) on the Amazon full review dataset.
We give the rank for both criteria. The norm ranking filters out words carrying little information.

3Data available at https://research.facebook.com/research/fasttext/
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Dataset full 64KiB 32KiB 16 KiB

AG 65M 92.1 91.4 90.6 89.1
Amazon full 108M 60.0 58.8 56.0 52.9
Amazon pol. 113M 94.5 93.3 92.1 89.3
DBPedia 87M 98.4 98.2 98.1 97.4
Sogou 73M 96.4 96.4 96.3 95.5
Yahoo 122M 72.1 70.0 69.0 69.2
Yelp full 78M 63.8 63.2 62.4 58.7
Yelp pol. 77M 95.7 95.3 94.9 93.2

Average diff. [%] 0 -0.8 -1.7 -3.5

Table 2: Performance on very small models. We use a quantization with k = 1, hashing and an
extreme pruning. The last row shows the average drop of performance for different size.

Pruning. Figure 2 shows the performance of our model with different sizes. We fix k = d/2 and
use different pruning thresholds. NPQ offers a compression rate of×10 compared to the full model.
As the pruning becomes more agressive, the overall compression can increase up up to ×1, 000
with little drop of performance and no additional overhead at test time. In fact, using a smaller
dictionary makes the model faster at test time. We also compare with character-level Convolutional
Neural Networks (CNN) (Zhang et al., 2015; Xiao & Cho, 2016). They are attractive models for
text classification because they achieve similar performance with less memory usage than linear
models (Xiao & Cho, 2016). Even though fastText with the default setting uses more memory,
NPQ is already on par with CNNs’ memory usage. Note that CNNs are not quantized, and it would
be worth seeing how much they can be quantized with no drop of performance. Such a study is
beyond the scope of this paper. Our pruning is based on the norm of the embeddings according
to the guidelines of Section 3.3. Table 1 compares the ranking obtained with norms to the ranking
obtained using entropy, which is commonly used in unsupervised settings Stolcke (2000).

Extreme compression. Finally, in Table 2, we explore the limit of quantized model by looking
at the performance obtained for models under 64KiB. Surprisingly, even at 64KiB and 32KiB, the
drop of performance is only around 0.8% and 1.7% despite a compression rate of ×1, 000− 4, 000.

4.2 LARGE DATASET: FLICKRTAG

In this section, we explore the limit of compression algorithms on very large datasets. Similar
to Joulin et al. (2016), we consider a hashtag prediction dataset containing 312, 116 labels. We set
the minimum count for words at 10, leading to a dictionary of 1, 427, 667 words. We take 10M
buckets for n-grams and a hierarchical softmax. We refer to this dataset as FlickrTag.

Output encoding. We are interested in understanding how the performance degrades if the classi-
fier is also quantized (i.e., the matrix B in Eq. 1) and when the pruning is at the limit of the minimum
number of features required to cover the full dataset.

Model k norm retrain Acc. Size

full (uncompressed) 45.4 12 GiB

Input 128 45.0 1.7 GiB
Input 128 x 45.3 1.8 GiB
Input 128 x x 45.5 1.8 GiB
Input+Output 128 x 45.2 1.5 GiB
Input+Output 128 x x 45.4 1.5 GiB

Table 3: FlickrTag: Influence of quantizing the output matrix on performance. We use PQ for
quantization with an optional normalization. We also retrain the output matrix after quantizing the
input one. The ”norm” refers to the separate encoding of the magnitude and angle, while ”retrain”
refers to the re-training bottom-up PQ method described in Section 3.2.
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Table 3 shows that quantizing both the “input” matrix (i.e., A in Eq. 1) and the “output” matrix (i.e.,
B) does not degrade the performance compared to the full model. We use embeddings with d = 256
dimensions and use k = d/2 subquantizers. We do not use any text specific tricks, which leads to
a compression factor of 8. Note that even if the output matrix is not retrained over the embeddings,
the performance is only 0.2% away from the full model. As shown in the Appendix, using less
subquantizers significantly decreases the performance for a small memory gain.

Model full Entropy pruning Norm pruning Max-Cover pruning

#embeddings 11.5M 2M 1M 2M 1M 2M 1M
Memory 12GiB 297MiB 174MiB 305MiB 179MiB 305MiB 179MiB
Coverage [%] 88.4 70.5 70.5 73.2 61.9 88.4 88.4

Accuracy 45.4 32.1 30.5 41.6 35.8 45.5 43.9

Table 4: FlickrTag: Comparison of entropy pruning, norm pruning and max-cover pruning methods.
We show the coverage of the test set for each method.

Pruning. Table 4 shows how the performance evolves with pruning. We measure this effect on top
of a fully quantized model. The full model misses 11.6% of the test set because of missing words
(some documents are either only composed of hashtags or have only rare words). There are 312, 116
labels and thus it seems reasonable to keep embeddings in the order of the million. A naive pruning
with 1M features misses about 30−40% of the test set, leading to a significant drop of performance.
On the other hand, even though the max-coverage pruning approach was set on the train set, it does
not suffer from any coverage loss on the test set. This leads to a smaller drop of performance. If the
pruning is too aggressive, however, the coverage decreases significantly.

5 FUTURE WORK

It may be possible to obtain further reduction of the model size in the future. One idea is to condition
the size of the vectors (both for the input features and the labels) based on their frequency (Chen
et al., 2015; Grave et al., 2016). For example, it is probably not worth representing the rare labels
by full 256-dimensional vectors in the case of the FlickrTag dataset. Thus, conditioning the vector
size on the frequency and norm seems like an interesting direction to explore in the future.

We may also consider combining the entropy and norm pruning criteria: instead of keeping the
features in the model based just on the frequency or the norm, we can use both to keep a good set of
features. This could help to keep features that are both frequent and discriminative, and thereby to
reduce the coverage problem that we have observed.

Additionally, instead of pruning out the less useful features, we can decompose them into smaller
units (Mikolov et al., 2012). For example, this can be achieved by splitting every non-discriminative
word into a sequence of character trigrams. This could help in cases where training and test examples
are very short (for example just a single word).

6 CONCLUSION

In this paper, we have presented several simple techniques to reduce, by several orders of magnitude,
the memory complexity of certain text classifiers without sacrificing accuracy nor speed. This is
achieved by applying discriminative pruning which aims to keep only important features in the
trained model, and by performing quantization of the weight matrices and hashing of the dictionary.

We will publish the code as an extension of the fastText library. We hope that our work will
serve as a baseline to the research community, where there is an increasing interest for comparing
the performance of various deep learning text classifiers for a given number of parameters. Overall,
compared to recent work based on convolutional neural networks, fastText.zip is often more
accurate, while requiring several orders of magnitude less time to train on common CPUs, and
incurring a fraction of the memory complexity.
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Lukas Meier, Sara Van De Geer, and Peter Bühlmann. The group lasso for logistic regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71, 2008.

Tomas Mikolov. Statistical language models based on neural networks. In PhD thesis. VUT Brno,
2012.

Tomas Mikolov, Ilya Sutskever, Anoop Deoras, Hai-Son Le, Stefan Kombrink, and J Cernocky.
Subword language modeling with neural networks. preprint, 2012.

Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs for inner product search.
In ICML, pp. 1926–1934, 2015.

Mohammad Norouzi and David Fleet. Cartesian k-means. In CVPR, June 2013.

Bo Pang and Lillian Lee. Opinion mining and sentiment analysis. Foundations and trends in infor-
mation retrieval, 2008.
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APPENDIX

In the appendix, we show some additional results. The model used in these experiments only had
1M ngram buckets. In Table 5, we show a thorough comparison of LSH, PQ and OPQ on 8 different
datasets. Table 7 summarizes the comparison with CNNs in terms of accuracy and size. Table 8
show a thorough comparison of the hashing trick and the Bloom filters.

Quant. k no
rm

AG Amz. f. Amz. p. DBP Sogou Yah. Yelp f. Yelp p.

full 92.1 36M 59.8 97M 94.5 104M 98.4 67M 96.3 47M 72 120M 63.7 56M 95.7 53M
full,nodict 92.1 34M 59.9 78M 94.5 83M 98.4 56M 96.3 42M 72.2 91M 63.6 48M 95.6 46M

LSH 8 88.7 8.5M 51.3 20M 90.3 21M 92.7 14M 94.2 11M 54.8 23M 56.7 12M 92.2 12M
PQ 8 91.7 8.5M 59.3 20M 94.4 21M 97.4 14M 96.1 11M 71.3 23M 62.8 12M 95.4 12M
OPQ 8 91.9 8.5M 59.3 20M 94.4 21M 96.9 14M 95.8 11M 71.4 23M 62.5 12M 95.4 12M
LSH 8 x 91.9 9.5M 59.4 22M 94.5 24M 97.8 16M 96.2 12M 71.6 26M 63.4 14M 95.6 13M
PQ 8 x 92.0 9.5M 59.8 22M 94.5 24M 98.4 16M 96.3 12M 72.1 26M 63.7 14M 95.6 13M
OPQ 8 x 92.1 9.5M 59.9 22M 94.5 24M 98.4 16M 96.3 12M 72.2 26M 63.6 14M 95.6 13M

LSH 4 88.3 4.3M 50.5 9.7M 88.9 11M 91.6 7.0M 94.3 5.3M 54.6 12M 56.5 6.0M 92.9 5.7M
PQ 4 91.6 4.3M 59.2 9.7M 94.4 11M 96.3 7.0M 96.1 5.3M 71.0 12M 62.2 6.0M 95.4 5.7M
OPQ 4 91.7 4.3M 59.0 9.7M 94.4 11M 96.9 7.0M 95.6 5.3M 71.2 12M 62.6 6.0M 95.4 5.7M
LSH 4 x 92.1 5.3M 59.2 13M 94.4 13M 97.7 8.8M 96.2 6.6M 71.1 15M 63.1 7.4M 95.5 7.2M
PQ 4 x 92.1 5.3M 59.8 13M 94.5 13M 98.4 8.8M 96.3 6.6M 72.0 15M 63.6 7.5M 95.6 7.2M
OPQ 4 x 92.2 5.3M 59.8 13M 94.5 13M 98.3 8.8M 96.3 6.6M 72.1 15M 63.7 7.5M 95.6 7.2M

LSH 2 87.7 2.2M 50.1 4.9M 88.9 5.2M 90.6 3.5M 93.9 2.7M 51.4 5.7M 56.6 3.0M 91.3 2.9M
PQ 2 91.1 2.2M 58.7 4.9M 94.4 5.2M 87.1 3.6M 95.3 2.7M 69.5 5.7M 62.1 3.0M 95.4 2.9M
OPQ 2 91.4 2.2M 58.2 4.9M 94.3 5.2M 91.6 3.6M 94.2 2.7M 69.6 5.7M 62.1 3.0M 95.4 2.9M
LSH 2 x 91.8 3.2M 58.6 7.3M 94.3 7.8M 97.1 5.3M 96.1 4.0M 69.7 8.6M 62.7 4.5M 95.5 4.3M
PQ 2 x 91.9 3.2M 59.6 7.3M 94.5 7.8M 98.1 5.3M 96.3 4.0M 71.3 8.6M 63.4 4.5M 95.6 4.3M
OPQ 2 x 92.1 3.2M 59.5 7.3M 94.5 7.8M 98.1 5.3M 96.2 4.0M 71.5 8.6M 63.4 4.5M 95.6 4.3M

Table 5: Comparison between standard quantization methods. The original model has a dimension-
ality of 8 and 2M buckets. Note that all of the methods are without dictionary.

k co AG Amz. f. Amz. p. DBP Sogou Yah. Yelp f. Yelp p.

full, nodict 92.1 34M 59.8 78M 94.5 83M 98.4 56M 96.3 42M 72.2 91M 63.7 48M 95.6 46M
8 full 92.0 9.5M 59.8 22M 94.5 24M 98.4 16M 96.3 12M 72.1 26M 63.7 14M 95.6 13M
4 full 92.1 5.3M 59.8 13M 94.5 13M 98.4 8.8M 96.3 6.6M 72 15M 63.6 7.5M 95.6 7.2M
2 full 91.9 3.2M 59.6 7.3M 94.5 7.8M 98.1 5.3M 96.3 4.0M 71.3 8.6M 63.4 4.5M 95.6 4.3M

8 200K 92.0 2.5M 59.7 2.5M 94.3 2.5M 98.5 2.5M 96.6 2.5M 71.8 2.5M 63.3 2.5M 95.6 2.5M
8 100K 91.9 1.3M 59.5 1.3M 94.3 1.3M 98.5 1.3M 96.6 1.3M 71.6 1.3M 63.4 1.3M 95.6 1.3M
8 50K 91.7 645K 59.7 645K 94.3 644K 98.5 645K 96.6 645K 71.5 645K 63.2 645K 95.6 644K
8 10K 91.3 137K 58.6 137K 93.2 137K 98.5 137K 96.5 137K 71.3 137K 63.3 137K 95.4 137K

4 200K 92.0 1.8M 59.7 1.8M 94.3 1.8M 98.5 1.8M 96.6 1.8M 71.7 1.8M 63.3 1.8M 95.6 1.8M
4 100K 91.9 889K 59.5 889K 94.4 889K 98.5 889K 96.6 889K 71.7 889K 63.4 889K 95.6 889K
4 50K 91.7 449K 59.6 449K 94.3 449K 98.5 450K 96.6 449K 71.4 450K 63.2 449K 95.5 449K
4 10K 91.5 98K 58.6 98K 93.2 98K 98.5 98K 96.5 98K 71.2 98K 63.3 98K 95.4 98K

2 200K 91.9 1.4M 59.6 1.4M 94.3 1.4M 98.4 1.4M 96.5 1.4M 71.5 1.4M 63.2 1.4M 95.5 1.4M
2 100K 91.6 693K 59.5 693K 94.3 693K 98.4 694K 96.6 693K 71.1 694K 63.2 693K 95.6 693K
2 50K 91.6 352K 59.6 352K 94.3 352K 98.4 352K 96.5 352K 71.1 352K 63.2 352K 95.6 352K
2 10K 91.3 78K 58.5 78K 93.2 78K 98.4 79K 96.5 78K 70.8 78K 63.2 78K 95.3 78K

Table 6: Comparison with different quantization and level of pruning. “co” is the cut-off parameter
of the pruning.
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Dataset Zhang et al. (2015) Xiao & Cho (2016) fastText+PQ, k = d/2

AG 90.2 108M 91.4 80M 91.9 889K
Amz. f. 59.5 10.8M 59.2 1.6M 59.6 449K
Amz. p. 94.5 10.8M 94.1 1.6M 94.3 449K
DBP 98.3 108M 98.6 1.2M 98.5 98K
Sogou 95.1 108M 95.2 1.6M 96.5 98K
Yah. 70.5 108M 71.4 80M 71.7 889K
Yelp f. 61.6 108M 61.8 1.4M 63.3 98K
Yelp p. 94.8 108M 94.5 1.2M 95.5 449K

Table 7: Comparison between CNNs and fastText with and without quantization. The numbers
for Zhang et al. (2015) are reported from Xiao & Cho (2016). Note that for the CNNs, we report
the size of the model under the assumption that they use float32 storage. For fastText(+PQ) we
report the memory used in RAM at test time.

Quant. B
lo

om

co AG Amz. f. Amz. p. DBP Sogou Yah. Yelp f. Yelp p.

full,nodict 92.1 34M 59.8 78M 94.5 83M 98.4 56M 96.3 42M 72.2 91M 63.7 48M 95.6 46M

NPQ 200K 91.9 1.4M 59.6 1.4M 94.3 1.4M 98.4 1.4M 96.5 1.4M 71.5 1.4M 63.2 1.4M 95.5 1.4M
NPQ x 200K 92.2 830K 59.3 830K 94.1 830K 98.4 830K 96.5 830K 70.7 830K 63.0 830K 95.5 830K
NPQ 100K 91.6 693K 59.5 693K 94.3 693K 98.4 694K 96.6 693K 71.1 694K 63.2 693K 95.6 693K
NPQ x 100K 91.8 420K 59.1 420K 93.9 420K 98.4 420K 96.5 420K 70.6 420K 62.8 420K 95.3 420K
NPQ 50K 91.6 352K 59.6 352K 94.3 352K 98.4 352K 96.5 352K 71.1 352K 63.2 352K 95.6 352K
NPQ x 50K 91.5 215K 58.8 215K 93.6 215K 98.3 215K 96.5 215K 70.1 215K 62.7 215K 95.1 215K
NPQ 10K 91.3 78K 58.5 78K 93.2 78K 98.4 79K 96.5 78K 70.8 78K 63.2 78K 95.3 78K
NPQ x 10K 90.8 51K 56.8 51K 91.7 51K 98.1 51K 96.1 51K 68.7 51K 61.7 51K 94.5 51K

Table 8: Comparison with and without Bloom filters. For NPQ, we set d = 8 and k = 2.
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Model k norm retrain Acc. Size

full 45.4 12G

Input 128 45.0 1.7G
Input 128 x 45.3 1.8G
Input 128 x x 45.5 1.8G
Input+Output 128 x 45.2 1.5G
Input+Output 128 x x 45.4 1.5G
Input+Output, co=2M 128 x x 45.5 305M
Input+Output, n co=1M 128 x x 43.9 179M

Input 64 44.0 1.1G
Input 64 x 44.7 1.1G
Input 64 x 44.9 1.1G
Input+Output 64 x 44.6 784M
Input+Output 64 x x 44.8 784M
Input+Output, co=2M 64 x 42.5 183M
Input+Output, co=1M 64 x 39.9 118M
Input+Output, co=2M 64 x x 45.0 183M
Input+Output, co=1M 64 x x 43.4 118M

Input 32 40.5 690M
Input 32 x 42.4 701M
Input 32 x x 42.9 701M
Input+Output 32 x 42.3 435M
Input+Output 32 x x 42.8 435M
Input+Output, co=2M 32 x 35.0 122M
Input+Output, co=1M 32 x 32.6 88M
Input+Output, co=2M 32 x x 43.3 122M
Input+Output, co=1M 32 x x 41.6 88M

Table 9: FlickrTag: Comparison for a large dataset of (i) different quantization methods and param-
eters, (ii) with or without re-training.
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