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Abstract—This article considers the massive MIMO unsourced
random access problem on a quasi-static Rayleigh fading channel.
Given a fixed message length and a prescribed number of channel
uses, the objective is to construct a coding scheme that minimizes
the energy-per-bit subject to a fixed probability of error. The
proposed scheme differs from other state-of-the-art schemes in
that it blends activity detection, single-user coding, pilot-aided
and temporary decisions-aided iterative channel estimation and
decoding, minimum-mean squared error (MMSE) estimation,
and successive interference cancellation (SIC). We show that
an appropriate combination of these ideas can substantially
outperform state-of-the-art coding schemes when the number of
active users is more than 100, making this the best performing
scheme known for this regime.

Index Terms—Unsourced Random Access, Massive Multi-User
MIMO, random pilots and spreading, polar code.

I. INTRODUCTION

A new perspective on random access was proposed in [1]

to accommodate the type of traffic generated by unattended

devices. Also, an extension of [1], when the number of

users is unknown at the access point, is studied in [2]. The

ensuing model, coined unsourced random access (URA) in

[3], has been widely adopted as a common task framework

for emerging IoT wireless networks. A motivation behind this

model is that, as the prospective user population grows, the

assignment of spectral resources based on queue lengths and

channel conditions becomes impractical. This is especially true

when devices sporadically transmit short packets. A pragmatic

alternative is to have all active devices share a same codebook.

This way, the system can operate irrespective of the total user

population, and target the number of active devices instead. In

such situations, the decoder aims to recover the set of messages

regardless of user identities. If a device wishes to reveal its

identity, it can embed it in the payload of its own message.

Many conceptual approaches and candidate solutions tai-

lored to URA have appeared in recent years, with a ma-

jority of them confined to receivers equipped with a single

antenna. These schemes are informed by the natural con-

nection between URA and sparse support recovery in large

dimensions. Two noteworthy lines of work have emerged. A

first group of publications are inspired by compressed sensing

(CS) solvers [4]–[6]. These schemes also leverage notions

from forward error correction to enable the application of

CS solvers to very large spaces. A second set of results has
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been inspired by more traditional multiple access techniques,

including notions from multi-user detection [7] and random

access. Some of these scheme are currently the state-of-the-

art for URA, depending on the parameters of operation [3],

[8]–[10].

A. Related Work

Many recent developments by the URA research community

center on practical aspects of wireless communications, such

as fading and MIMO models. For instance, Andreev et al.

in [11] examine a quasi-static fading URA channel, and they

propose a scheme that blends polar codes and expectation-

maximization (EM) clustering. An early contribution to MIMO

URA can be found in [12], where signals from different de-

vices across slots are stiched together using channel properties

rather than an outer code. Fengler et al. in [13] combine a

non-Bayesian sparse recovery algorithm with an outer code

aimed at message disambiguation to facilitate MIMO URA;

the performance of this algorithm can be improved using

successive cancellation list decoding, as shown in [14]. Liu

and Wang borrow ideas from slot-based transmissions, and

they propose a receiver that merges simultaneous orthogonal

matching pursuit (S-OMP) and bilnd channel estimation [15].

The same authors also propose an iterative receiver based on

sparse Tanner graph; therein, each iteration can recover at

most three codewords [16]. Sabulal and Bhashyam consider

a special case of the MIMO URA problem, namely that of

user activity detection, and propose a deep unfolding based

algorithm in [17]. Cheng et al. solve the same problem

using model-based algorithms in [18]. In [19], Srivatsa and

Murthy analyze the throughput of irregular repetition slotted

aloha (IRSA), and derive channel estimates for three schemes.

Decurninge et al. offer an efficient solution based on a tensor

construction, with good performance in some regimes [20].

Among published work, the scheme put forth by Fengler et

al. offers the best performance [21]. This construction relies

on preamble-selected pilot sequences to estimate channels,

and message payloads are encoder using a polar code. At the

receiver, the algorithm exploit the fact that the recovery of

pilot sequences can be modeled as a multiple measurement

vector (MMV) problem, and they use approximate message

passing (MMV-AMP) to recover the active set. Then, channel

coefficients are evaluated based on MMSE estimation and

maximum ratio combining (MRC) is used to combine the

signals from different antennas. The outputs of the MRC

serves as symbol estimates, and a polar decoder attempts
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to recover the most likely message. Finally, a successive

interference canceller subtracts the contribution of the decoded

users, and the process starts anew with pilot recovery applied

to the residual signal.

B. Main Contributions

Our proposed approach embraces lessons learned from

previous schemes [3], [8], and extend them to the MIMO

URA setting. Since our communication scheme incorporates

random spreading, and it is designed for fading URA, we

call it FASURA (fading spread unsourced random access).

Like many previous contributions, it divides messages into two

parts. The preamble is dedicated to the selection of operational

parameters, whereas the payload is encoded using a single-

user code. This mimics the architectures of [8], [10] for

SISO systems, and [21] in the MIMO case. Departures from

[21] include the use of spreading sequences, the detection

of active sequences, and distinct channel/symbol estimation

techniques. Specifically, instead of having devices send mod-

ulated polar codewords directly, FASURA spreads every coded

symbol before transmission. The idea is that forming a linear

minimum-mean squared error (LMMSE) estimate of the coded

symbols based on the active spreading sequences can mitigate

interference during the decoding process, especially when the

number of active devices is large. In addition, we propose a

new channel estimation step, which we call noisy pilot channel

estimation (NOPICE). Therein, the channel is estimated using

both pilots and preliminary decisions about coded symbols.

Although, some preliminary symbol decisions are erroneous,

the overall impact of this approach is better performance. This

estimation technique is embedded in an iterative loop and,

when parameters are picked judiciously, progressively leads

to better channel estimates. With these two innovations, the

proposed architecture outperforms the scheme put forth by

Fengler et al. [21] over a range of parameters. For example,

for 500 active devices, the difference in Eb/N0 is more than

2.6 dB. This makes FASURA the state-of-the-art for MIMO

URA in certain practical regimes.

C. Notation

Throughout, Z+ and C refer to the non-negative integers

and complex numbers, respectively. We use [n] to denote

{1, 2, . . . , n}. We employ boldface lowercase a and boldface

uppercase letters A to indicate vectors and matrices. Sets are

labeled with calligraphic letters, e.g., A. We also adopt pro-

gramming style notation with A[:, t] and A[k, :] representing

the tth column and kth row of A.

II. SYSTEM MODEL

Consider the uplink of a wireless network with a total of

Ktot devices out of which K devices are active (K ≪ Ktot).
For convenience, we label active users using integers from the

set K = [K]. All the active users share the same n complex

channel uses, and each of them wishes to transmit a B-bit mes-

sage to a common destination. Every user is equipped with a

single antenna, whereas the access point features M antennas.

We consider a quasi-static Rayleigh fading model whereby

channel coefficients remain fixed during the transmission of

an entire codeword. Furthermore, the antennas at the access

point are located far enough from one another as to create

independent channel realizations.

Let mk be B-bit message of user k, and xk = E(mk) ∈ Cn

be the encoded and modulated signal (input to the channel)

corresponds to the message mk. Then, the received signal

takes the form

Y =

Ktot∑

k=1

δkx(mk)h
T

k + Z =
∑

k∈K
x(mk)h

T

k + Z, (1)

where δk is an indicator function that takes value one when

user k is active, and zero otherwise. Vector hk ∈ CM

captures the channel coefficients between user k and the M
receive antennas. The elements of hk are independent complex

Gaussian random variables with mean zero and unit variance,

as prescribed by Rayleigh fading. Additive noise component

Z ∈ Cn×M is a vector with i.i.d. entries, each drawn

from a circularly symmetric complex Gaussian distribution

CN (0, σ2
z). Furthermore, every transmit signal must satisfy

power constraint ‖x(mk)‖2 ≤ P ; for simplicity, we assume

that P = 1. As a result, we can define the energy per bit to

noise power spectral density ratio of the system by

Eb

N0
=

‖x(mk)‖2

Bσ2
z

.

At the access point, the decoder aims to produce a set K̂ of

candidate messages with cardinality at most K . The system

performance is evaluated in terms of the probability of missed

detection Pmd and probability of false alarm Pfa,

Pmd =
E[nms]

K
Pfa = E

[
nfa

K̂

]

where nms and nfa denote the number of misses and false

alarms, respectively. Variable K̂ represents the number of

messages declared by the decoder. We note that the expectation

is taken over the randomness of the fading process, the

noise process, and the relevant algorithmic components. We

define the probability of error Pe to be the sum of the two

types of probability introduced above, Pe = Pmd + Pfa. For

fixed parameters B, n, K , M , and target error probability

ε, our objective is to construct a communication scheme that

minimizes Eb/N0 while also satisfying the constraint Pe ≤ ε.

III. FASURA

We proceed with the description of our proposed scheme,

FASURA. We begin with an overview of the encoding process,

and then we discuss our decoding strategy.

A. Encoder

Active user k aims to transmit message mk to the destina-

tion. Following the URA philosophy, encoding is dissociated

from the identity of the user, and the sent signal only depends

on the content of mk. As such, we describe the encoding

process for a generic message m, with the understanding that



the steps are repeated by all the active devices. The encoder

first splits the message into two parts mf and ms of lengths

Bf bits and Bs bits, respectively. The two parts mf and ms

are encoded as follows.

1) Encoding mf : Let A = {At}Tt=1 denote a collection

of T = nc/2 spreading matrices indexed by time t. The

coefficients of matrix At, are distributed as complex Gaussian

random variables, i.e. at,j ∼ CN (0, 1). The columns of matrix

At can be viewed as spreading sequences of length L, which

can be utilized at time t. The entries of At are normalized to

have energy of 1/2n since they will be used in conjunction

with Quadrature Phase Shift Keying (QPSK) symbols chosen

from {±1 ± j}, which are normalized to have an energy

of 2. The product is then normalized to have unit energy.

There are J = 2Bf possible spreading sequences attached to

every time instant. Likewise, let P ∈ {± 1√
2n

± j√
2n

}np×J

be a matrix whose columns are possible pilot sequences.

The selection of spreading sequences and pilots is performed

using φ : {0, 1}Bf → [J ], a bijection that maps mf to an

index in [J ]. Thus, when the first part of the message to be

sent is mf , then the corresponding user employs the series

of spreading sequences {At[:, φ(mf )]}
T
t=1, along with pilot

sequence P[:, φ(mf )]. Thus, the overall encoding function for

mf can be summarized as follows,

g(mf ) → {At[:, φ(mf )]}
T
t=1 ∪ {P[:, φ(mf )]}.

An important aspect of the proposed scheme is that J ≪
Ktot, which is critical in limiting the complexity at the

decoder. We emphasize that there are no guarantees that every

active user will select a distinct sequence from an orthogonal

set. Rather, active users pick sequences at random from a

non-orthogonal set. In fact, the URA framework makes it

impossible to hand pick sequence since two devices with a

common message will ultimately transmit the same signal.

2) Encoding ms: The second part of the message, namely

ms, is first encoded using a cyclic redundancy check (CRC)

code. The resulting codeword of length Bc = Bs + Bcrc

then acts as input to an encoder for a (nc, Bc) polar code

with nc − Bc frozen bit positions. We construct at random

a matrix F ∈ {0, 1}nc−Bc×J , and the frozen bits for an

active user are chosen to be the φ(mf )th column of F. In

effect, this corresponds to each user choosing a coset of

a polar code depending on φ(mf ). This step provides an

additional level of error detection to identify false alarms

when estimating the active spreading sequences at the receiver.

Suppose c ∈ {0, 1}nc is the output of the polar encoder, and let

I = {π1(·), . . . , πJ (·)} be a set of J interleavers. The polar

codeoword c is permuted using πφ(mf )(·), and the ensuing

vector c̃ = πφ(mf )(c) is modulated using QPSK to obtain

vector s of length nc/2. Finally, the tth symbol of s is spread

using the φ(mf )th column of At. The resulting signal q can

be expressed as

q(mf ,mc) =
[
s1a

T

1 s2a
T

2 · · · sTa
T

T

]T

(2)

where st is a QPSK symbol and at = At[:, φ(mf )] is the

φ(mf )th column of At. The input signal to the channel is

the concatenation of the pilot sequence p(mk,f ) and spread

codeword q(mf ,mc). Altogether, when the message of user k
is mk = (mk,f ,mk,c), the signal sent by this user is equal to

xk =
[
pT(mk,f ) qT(mk,f ,mk,c)

]T

where p(mk,f ) = P[:, φ(mk,f )] and note that ‖x‖2 = 1. With

this procedure, the system model of (1) can be written as the

concatenation of

Yp = PaHa + Zp and Yq = QaHa + Zq (3)

or, in vector form,
[
Yp

Yq

]

=

[
Pa

Qa

]

Ha +

[
Zp

Zq

]

where subscript a indicates sub-matrices with active columns

only. That is, the kth column of Pa is P[:, φ(mk,f )] and the

kth column of Qa is qk.

m φ(·)
mf

At[:, φ(mf )]’s , P[: φ(mf )]
φ(mf )

Channel Encoder

ms

QPSK
[
s1a1, s2a2, . . . , sTaT

]{s1, s2, . . . , sT }

p

q

Fig. 1: This block diagram offers a synopsis of the encoding

process.

B. Decoder

We construct an iterative receiver that aims to recover the

messages transmitted by the active users. Its main components

are an energy detector, a series of MMSE estimators, and a

list-polar decoder. Because of the nature of the URA, the pilot

sequences cannot be assigned to the users beforehand. As a

result, the first step in message recovery is to identify the

active columns of P using an energy detector. Then MMSE

estimators are utilized to estimate the channel coefficients and

the QPSK symbols transmitted by the active users. Afterward,

a polar list-decoder outputs the most likely messages. Finally,

a successive interference canceller subtracts the estimated

contribution of the decoded messages, and the procedure starts

anew on the residual signal, iterating until the decoder cannot

output a new message. The main building blocks of the

algorithm are highlighted in Fig. 3. We elaborate on individual

components below.

1) Energy Detector: An energy detector is used to de-

termine active spreading sequences. Mathematically, this is

accomplished by correlating the received signal Y with the

corresponding columns in P and {At}Tt=1 and computing the

statistic λj given by

λj = ‖P∗[:, j]Yp‖
2 +

T∑

t=1

‖A∗
t [:, j]Yq[nt, :]‖

2, ∀j ∈ [J ] (4)

where nt = [(t− 1)L+ 1: tL]. The energy detector computes

λj for all j ∈ [J ] and outputs the indices corresponding to



the largest K values. Let M̂f denote the set of mf ’s that

correspond to the K largest values of λj’s.

After this step, the active columns of P and {At}Tt=1, the

values of the frozen positions, and the interleavers are con-

sidered known for the purpose of the algorithmic progression.

Thus, the decoder can move on to the recovery of the second

part of every message.

2) Channel Estimation: Channel coefficients have to be

estimated before proceeding with the symbol estimation step.

An MMSE filter can be derived to estimate the SIMO channels

of the candidate users included in K̂. Using active pilots from

the first part of the received signal Yp, as in (3), we obtain

W1 =

(

I
K̂
+

P̂∗P̂

σ2
z

)−1
P̂∗

σ2
z

where P̂ = P[:, φ(M̂f )]. Since the filter is independent of the

antenna index, the estimated channel coefficients between the

K̂ = |K̂| users and the M antennas are taken to be

Ĥ = W1Yp (5)

where Ĥ is a K̂ × M matrix containing all the estimated

coefficients.

3) Symbol Estimation: Since the active columns of At’s

and the channel coefficients have been estimated, the next step

is to recover the QPSK symbols. We can write the received

signal (of length L) for each symbol t as follows

Yq[nt,m] = At diag(rt)H[:,m] + Z[nt,m]

= At diag (H[:,m]) rt + Z[nt,m]

where rt = (st,1, st,2, . . . , st,K) are the symbols of the users

at time t. By stacking the columns of Yq , we can obtain the

expression below





Yq[nt, 1]
...

Yq[nt,M ]






︸ ︷︷ ︸

yt∈CLM×1

=






At diag (H[:, 1])
...

At diag (H[:,M ])






︸ ︷︷ ︸

Bt∈CLM×K

rt
︸︷︷︸

K×1

+






Z[nt, 1]
...

Z[nt,M ]






︸ ︷︷ ︸

zt∈CLM×1

.

As a consequence, we can apply an MMSE-like estimator to

the vectorized received signal

yt = Btrt + zt. (6)

Since active spreading sequences and channel coefficients are

not known a priori, we modify (6) to account for the estimation

inaccuracies,

yt = B̂trt +
(
Bt − B̂t

)
rt + zt. (7)

In view of the last equation, one could take into consideration

the interference term and increase the effective noise variance.

However, based on our simulations, the performance of our

scheme essentially remains unaffected when the second term

is neglected and, as such, we retain the simpler form. Disre-

garding the interference term, the MMSE filter for (7) takes

the form

Wt =

(

2I
K̂
+

B̂∗t B̂t
σ2
z

)−1
B̂∗t
σ2
z

.

We stress that the set of the spreading sequence changes over

time, therefore an MMSE filter has to be computed for every

t ∈ [T ]. The estimated symbols of the active users at time t
are given by

r̂t = Wtyt, ∀ t ∈ [T ].

4) NOPICE: One of the salient features of this scheme is

the estimation of the channel using, not only the original pilots,

but also the temporary coded decisions.

Definition 1. (Temporary Coded Decisions) Once step 3 above

is complete, the symbols across time corresponding to the same

user are aggregated in the form of noisy codewords. These

signals are then passed to a polar list-decoder. (The channel

decoder block is explained in the next section.) The output

of this decoder block is a set of most likely messages. These

messages are subsequently re-encoded and modulated. We call

the outcome of this process temporary coded decisions.

To produce such temporary coded decisions for all users,

the first three blocks in NOPICE have to be a polar decoder,

an encoder, and a modulator. Let ŝk = [ŝ1,k ŝ2,k . . . ŝT,k] be

the temporary coded decisions of user k, where ŝt,k is the tth
symbol of the user k. Since we know the pilots, the spreading

sequences, and the symbols candidates for this user, we can

construct its channel input,

x̂k =
[
pT(m̂k,f ) qT(m̂k,f , m̂k,s)

]T

where q̂k can be constructed as (2), by replacing the true

values with the candidate symbols. Our strategy is to have

x̂k’s act as a known signal while re-estimate the channel

coefficients. We stress that some of the symbols in ŝk may

be erroneous. Nevertheless, they are used to re-estimate the

channel in our algorithm, with the hope that most candidate

symbols are correct. Consider the received signal at antenna m.

Y[:,m] = X̂H[:,m] +
(

X− X̂
)

H[:,m] + Z[:,m]

By ignoring the interference term, we can apply the following

MMSE-like filter to estimate the channel coefficients,

W2 = X̂∗
(

X̂∗X̂+ I
K̂

)−1

(8)

Once more, the MMSE filter is independent of the antenna

index and, hence, W2 can be applied directly to observation

Y. At this stage, the updated channel estimates are used to re-

estimate the QPSK symbols by the procedure described before.

Figure 2 shows a block diagram of this process.

List Polar Decoder
Symbols

CRC Encode m̂s

PChannel Est.
P̂

Q̂

Symbols Est.
ĤSymbols

Fig. 2: This block diagram highlights the main functionali-

ties of NOPICE. The channel is estimated using pilots and

estimated symbols, although the latter may include errors.



5) Channel Decoder: This block consists of a single-user

list polar decoder, and a CRC validation step. We describe the

process for user k, with the understanding that these step are

reproduced for all the candidate users in K̂. We note that, as

a consequence, part of this procedure can be parallelized in

a straightforward manner. As mentioned before, the symbol

estimates and the frozen values F[:, φ(m̂f )] are passed to the

decoder. After completion, the polar decoder provides a list of

nL likely messages. CRC validation is applied to elements of

this list, and consistent messages that meet the CRC structure

are retained. The most likely message within the pruned list

is returned by this block.

Remark 2. (List-Decoder and NOPICE) Under normal oper-

ation, the polar/CRC decoder returns the most likely consistent

message. Yet, it is possible that the list contains no codewords

that fulfill their CRC constraints. In this case, the most likely

and, necessarily, inconsistent message is returned. The hope

is that, although the message is guaranteed to be wrong, a

portion of the encoded symbols can still be correct.

6) SIC: The final step in this composite iterative algorithm

seeks to mitigate interference through successive interference

cancellation (SIC). This is accomplished by calculating the

estimated channel input x̂ for all the users whose most likely

messages met the CRC validation process. Then a channel

estimation similarly to (8) is done. Finally, we subtract their

contribution from the received signal and pass the residual to

the energy detector.

Remark 3. (Residual) When the first iteration has passed, all

the building blocks of the receiver use the residual. Neverthe-

less, SIC uses the received signal and produces a new residual

for the next iteration.

SIC Energy Detector Channel Est. Symbols Est.

NOPICEList Polar Decoder + CRCEncodingChannel Est.

Y

Fig. 3: This notional diagram outlines the message recovery

process at the receiver. This iterative scheme includes the

identification of selected spreading sequence, channel/symbol

estimation, and polar decoding.

IV. SIMULATION RESULTS

We compare FASURA1 with the state-of-the-art scheme

proposed by Fengler et al. [21] to assess its performance.

To ensure a fair comparison between the two URA com-

munication schemes, we pick parameters for our system that

match their reported implementation. Specifically, we choose

B = 100 message bits, n = 3200 complex channel uses,

and a target probability of error Pe ≤ 0.05. Beyond these

constraints, the other parameters for FASURA are np = 896,

1The source code for the FASURA communication scheme is available at
https://github.com/EngProjects/mMTC.
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Fig. 4: This plot compares the performance of the proposed

scheme to the performance of previously published schemes.

The number of antennas at the base station is M = 50,

users each wish to transmit B = 100 bits of information,

and the total number of channel uses is n = 3200. The target

probability of error is set to Pe ≤ 0.05. The proposed scheme

outperforms the state-of-the-art.

L = 9, nc = 512, nL = 64 and J = 216. We randomly

generate T = nc

2 = 256 spreading sequence matrices and one

pilot matrix. Elements of the spreading sequence matrices

are drawn independently from a complex Gaussian distribution

with zero mean and variance 1. Then the entries are normalized

to have energy 1/2n. Similarly, elements of the pilot matrix

are generated independently and with equal probability from{

± 1√
2n

± j√
2n

}

. For K = 100, we use 12 CRC bits; whereas

when K > 100, we employ 16 CRC bits. The number of

antennas at the base station is set to M = 50.

Figure 4 plots the performance of FASURA, along with

that of the communication scheme by Fengler et al. found

in [21]. Also, to motivate the use of the NOPICE block, we

report the performance of FASURA with and without the

NOPICE channel estimation technique. For the operational

parameters studied and a user population exceeding 100 active

devices, FASURA outperforms the scheme proposed in [21].

Interestingly, as the number of active users grows, the gap

between the two schemes widens. For example, when the

number of users goes from 100 to 800, the gap increases

from 0.3 dB to 9 dB. Furthermore, the presence of the

NOPICE block seems to uniformly improve the performance

of FASURA. Our proposed scheme also substantially outper-

forms the tensor based modulation scheme in [20]. We should

mention, however, that these benefits in terms of Eb/N0 come

at the expense of additional computations.

https://github.com/EngProjects/mMTC


V. CONCLUSION

This article considers the massive MIMO unsourced random

access problem on a quasi-static Rayleigh fading channel. We

propose a novel communication scheme called FASURA that

outperforms existing schemes when K ≥ 100. FASURA splits

the payload into two parts and encodes the first part to a

set of randomly generated pilots and spreading sequences.

The remainder of the information bits are encoded using a

polar code. Then the modulated coded symbols are spread

using the spreading sequences. The receiver is equipped with

multiple antennas, and the objective is to recover the trans-

mitted messages. The decoding process includes; pilot detec-

tion, channel and symbol estimation, polar list decoding, and

successive interference cancellation. We explore a different

way to perform channel estimation, which we call NOPICE,

whereby after temporary decoding decisions have been made,

the channel is re-estimated assuming that the decoded mes-

sages are accurate. This scheme is somewhat reminiscent

of the certainty equivalent principle in control theory. With

NOPICE, the proposed scheme outperforms the pilot-based

scheme recently published in [21], when the number of users

is more than 100. Also, through numerical simulations, we

conduct a comparative study of FASURA with and without

NOPICE. It seems that the approach adopted within the

NOPICE block leads to uniformly better performance, with

gains of 0.4 dB on average.

VI. FUTURE WORK

While the results for FASURA are encouraging, the pa-

rameters of the scheme have not been optimized, and it may

be interesting to see how much performance we can gain

through fine turning. The tradeoff between the length of the

spreading sequence and code rate should be investigated. An

interesting question to raise is when the spreading sequence

plays an important role to mitigate the interference during the

single-user decoding when the number of antennas is fixed.

From a design point of view, a key question would be if there

are spreading sequences with complex entries that have better

correlation properties. Furthermore, by introducing NOPICE,

a question arises on how many pilots should be allocated in

order to start the decoding process. Another future task is to

investigate when the NOPICE block fails. In other words, how

many errors can the system handle when the channel is re-

estimated using the pilots and the temporary decisions.

Very recently, a scheme based on using multiple stages

of orthogonal pilots has been proposed in [22] and it has

been shown to exhibit good performance. A comprehensive

comparison between our proposed scheme and the scheme in

[22] would illuminate the advantages and disadvantages of

spreading versus sparsification in time.
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