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nants, to form foam cells. There is convincing evidence 
that foam cells can progress to form fibrous atheroscle-
rotic plaques. There is a large body of scientific evidence, 
both in animal models and corroborated by human ob-
servational and intervention studies, showing that di-
etary fat intake is causally involved in atherogenesis and 
may also influence arterial thrombosis. With regard to 
the experimental feeding studies in animals, the evidence 
is convincing that elevations of plasma lipids caused by 
modification of dietary fat intake result in atherosclero-
sis. These animal studies indicate that fats high in satu-
rated (SFA), monounsaturated (MUFA) and  trans  fatty 
acids (TFA) promote atherosclerosis [Brown et al., 2007], 
whereas diets containing oils high in polyunsaturated 
fatty acids (PUFA) inhibit atherosclerosis and low-fat di-
ets do not promote atherosclerosis. This review focuses 
on the evidence from dietary intervention studies in man 
that dietary fat intake influences metabolic factors asso-
ciated with risk of CVD.

  Fasting Plasma Lipid and Lipoproteins and Dietary 

Fat Intake 

 Plasma total cholesterol (TC) concentration shows a 
continuous association with CVD risk without a thresh-
old, but with the absolute risk increasing with age, smok-
ing habit and raised blood pressure [Lewington et al., 

   Introduction 

 Dietary fat intake influences the physiological pro-
cesses that transport fat between tissues as well as influ-
encing the substrates for metabolic processes. Lipids need 
to be transported as lipoprotein complexes owing to the 
poor water solubility of lipids. Variations in plasma li-
poprotein concentration influence the development of 
atherosclerosis. Atherosclerosis is the underlying patho-
logical disorder underlying the major cardiovascular dis-
eases (CVD; ischemic heart disease and ischemic cere-
brovascular disease), which are leading causes of death 
worldwide. Clinical events usually result from the rup-
ture of a plaque and subsequent thrombus formation. El-
evated concentrations of apolipoprotein B100-contain-
ing lipoproteins (very-low-density lipoprotein (VLDL), 
intermediate-density lipoprotein and low-density lipo-
protein (LDL)) are causally linked to the atherogenic pro-
cess. Atherogenesis is a chronic inflammatory process 
that results from the accumulation of fatty streaks in 
large/medium arteries, which progress to form fibrous 
plaques over time [Ross, 1999]. The foam cells that con-
stitute the initial lesion (the fatty streak) result from
the uptake of apolipoprotein B100-containing proteins 
(mainly LDL) by tissue macrophages. Native LDL is not 
taken up by macrophages, but chemically modified (i.e., 
oxidated or glycated) apolipoprotein B100 is avidly taken 
up by the tissue macrophages, as are chylomicron rem-
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2007]. Reductions in TC and LDL concentrations with 
statin therapy convincingly lower CVD risk, but the ef-
fects on CVD risk reductions using other agents (drug or 
diet) are less well established. Elevated plasma lipopro-
tein Lp(a) is associated with increased CVD risk, espe-
cially when it is associated with elevated plasma LDL 
 cholesterol (LDL-C) concentrations [Seed et al., 1990]. 
The relationship between fasting plasma triacylglycerol 
(TAG) concentration and CVD risk is more complex be-
cause it can be transiently changed by diet, alcohol intake 
and physical activity. However, prolonged elevation of 
plasma TAG, which is often associated with the insulin-
resistance syndrome and increased VLDL synthesis, gen-
erates small dense LDL particles (which are rich in apoli-
poprotein B relative to cholesterol) and causes a fall in 
high-density lipoprotein (HDL; measured as apolipopro-
tein A1 or HDL cholesterol (HDL-C)). This atherogenic 
dyslipidaemia (high TAG, small dense LDL-C and low 
HDL-C) is now recognized as conferring a substantial 
increase in CVD risk [Expert Panel on Detection, Evalu-
ation, and Treatment of High Blood Cholesterol in Adults, 
2001]. The ratio of TC:HDL-C (which indicates the ratio 
of apolipoprotein B:apolipoprotein A1) is twice as infor-
mative [Lewington et al., 2007] of individual CVD risk 
than TC or LDL-C, and differences in this ratio within 
and between populations are predominantly due to life-
style factors (diet, physical activity, obesity, alcohol use). 
Thus, the ratio of TC:HDL-C is probably the most robust 
lipid metric to estimate lifestyle factor-related CVD 
risk.

  Variation across population groups in plasma lipids 
has traditionally been due to differences in TC and LDL-

C, although, with the worldwide obesity pandemic, ath-
erogenic dyslipidaemia (raised TAG, low HDL-C) is in-
creasingly prevalent. The equation developed by Keys has 
been widely used to predict changes in TC between diets 
[Keys and Parlin, 1966]:

   � serum cholesterol mg/dl = 2.3( � S) –  � P + 1.5 ( �  � C)

   � S is the difference in % energy from SFA excluding stea-
ric acid,  � P is the difference in % energy from PUFA and 
 � C is the difference in cholesterol content in mg/1,000 
kcal; to convert to mmol/l divide by 38.5.

   Table 1  summarizes the influence of different individ-
ual fatty acids on the different lipoprotein fractions that 
have been evaluated in a numerous controlled studies. 
Meta-analyses of these studies provide convincing evi-
dence that SFA (C12–16) elevate TC, LDL-C and HDL-C 
compared with carbohydrates. The replacement of my-
ristic (C14:   0) and palmitic (C16:   0) acids with carbohy-
drates results in little net change in the TC:HDL-C ratio. 
Lauric acid (C12:   0) raises LDL-C and HDL-C and de-
creases the TC:HDL-C ratio by –0.037 for each 1% energy 
when it replaces carbohydrates [Mensink et al., 2003]. 
However, it is to be noted that coconut oil, which is the 
major dietary source of lauric acid, has a less favourable 
effect on the TC/HDL-C ratio than palm oil, which is rich 
in palmitic and oleic acid [Ng et al., 1992; Sundram et al., 
1994]. Stearic acid (C18:   0) does not have any significant 
effects on TC or LDL-C or the TC:HDL-C ratio com-
pared with carbohydrates. There is possible evidence to 
suggest that the TC- and LDL-C-raising effects of pal-
mitic acid are lower for vegetable than animal sources, 
because it is present predominantly in the sn–1 and sn–3 

Table 1. Summary of the change in serum lipids predicted from replacing 1% energy by individual fatty acids for carbohydrate based 
on the meta-analysis [adapted from EFSA, 2004] and changes from increasing intake of dietary cholesterol by 100 mg based on analy-
sis of Weggemans et al. [2001]

TC LDL-C HDL-C TC:HDL-C

Lauric acid (12:0) +0.069 (0.040 to 0.097) +0.052 (0.026 to 0.078) +0.027 (0.021 to 0.033) –0.037 (–0.057 to –0.017)
Myristic acid (14:0) +0.059 (0.036 to 0.082) +0.048 (0.027 to 0.069) +0.018 (0.013 to 0.023) –0.003 (–0.026 to 0.021)
Palmitic acid (16:0) +0.041 (0.028 to 0.054) +0.039 (0.027 to 0.051) +0.010 (0.007 to 0.013) +0.005 (–0.008 to 0.019)
Stearic acid (18:0) –0.010 (–0.026 to 0.006) –0.004 (–0.019 to 0.011) +0.002 (–0.001 to 0.006) –0.013 (–0.030 to 0.003)
Elaidic acid (18:1 trans) +0.031 (0.020 to 0.042) +0.040 (0.020 to 0.060) 0.000 (–0.007 to 0.006) +0.022 (0.005 to 0.038)
Oleic acid (18:1 cis) –0.006 (0.020 to 0.042) –0.009 (–0.014 to –0.003) +0.008 (0.005 to 0.011) –0.026 (–0.035 to –0.017)
PUFA –0.021 (0.020 to 0.042) –0.019 (0.020 to 0.060) +0.006 (0.007 to 0.006) –0.032 (0.005 to 0.038)
Dietary cholesterol

(+100 mg/day) +0.056 (0.046 to 0.065) +0.050 (0.042 to 0.058) +0.008 (0.042 to 0.058) +0.020 (0.010 to 0.030)

Data presented in mmol/l with 95% CI in parentheses.
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position as opposed to the sn–2 position as in animal fats 
such as lard [Choudhury et al., 1995; Zhang et al., 1997]. 
Animal fats also contain dietary cholesterol, and while 
the influence of dietary cholesterol on plasma TC and 
LDL-C is often dismissed as trivial, Keys and Parlin 
[1966] estimated that each 100 mg of dietary cholesterol 
raised TC by 4 mg/dl (0.11 mmol/l). A more recent meta-
analysis [Weggemans et al., 2001] concluded that for most 
individuals over the range of practical intake (0–400 mg/
day), each 100 mg leads to increases in TC by 0.056
mmol/l (95% CI: 0.046–0.065 mmol/l) and HDL-C by 
0.008 mmol/l (95% CI: 0.005–0.010 mmol/l), increasing 
the TC:HDL-C ratio by 0.02. However, some individuals, 
especially those carrying the apolipoprotein E  � 4 allele, 
are more sensitive to dietary cholesterol and a 10% in-
crease in TC can result from an additional 300 mg choles-
terol/day [Sarkkinen et al., 1998]. There is also some evi-
dence to suggest an interaction between SFA and TFA in-
take with dietary cholesterol. Plant sterols and stanols 
block the absorption of dietary and biliary cholesterol, 
and lower TC, LDL-C and the TC:HDL-C ratio indepen-
dent of changes in fatty acid composition, but these effects 
are only significant following the consumption of food 
products fortified with plant sterols/stanols [Law, 2000].

  Compared with carbohydrates, the major MUFA (ole-
ic acid; C18:   1n–9) has a neutral effect on plasma LDL-C, 
and PUFA (mainly linoleic acid; C18:   2n–6) have a slight 
lowering effect on TC and LDL-C. Compared with oleic 
acid, SFA increase HDL-C, and intakes of linoleic acid 
above 12% energy lower HDL-C. There is convincing ev-
idence that the replacement of SFA with unhydrogenated 
vegetable oils rich in  cis  unsaturated fatty acids results
in a reduction in the TC:HDL-C ratio by approximately 
0.029, and by 0.035 for each 1% energy of SFA replaced 
with oleic acid and linoleic acid, respectively [Mensink et 
al., 2003]. This meta-analysis indicated that replacement 
of saturated or C18  cis  unsaturated fats with carbohydrate 
increases fasting TAG, at least in the short term.

  Compared with carbohydrate, TFA raise LDL-C, but 
have a similar effect as carbohydrate on HDL-C [Men-
sink and Katan, 1990; Nestel et al., 1992; Judd et al., 1994; 
Almendingen et al., 1995; Aro et al., 1997; Lichtenstein et 
al., 1999; Sanders et al., 2003b; Mozaffarian and Clarke, 
2009]. Replacing 1% energy TFA by carbohydrate, oleic 
acid or linoleic acid lowers the TC:HDL-C ratio by 0.022, 
0.054 and 0.067, respectively. Most studies have investi-
gated the effect of partially hydrogenated vegetable oil, 
although 3 studies used chemically isomerized high oleic 
sunflower oil as a source of TFA [Mensink and Katan, 
1990; Aro et al., 1997; Sanders et al., 2003b]. A recent 

study compared the effects of 5% energy of TFA (11–12 
g/day) from natural sources compared to those derived 
from industrial sources in men and women. This study 
reported that only industrially produced TFA lowered 
HDL-C [Chardigny et al., 2008], but the natural sources 
raised LDL-C compared with the industrial sources. Sub-
group analysis suggested the effect was more marked in 
women. A second study [Motard-Bélanger et al., 2008] 
compared low (4.2 g/day) and high intakes (10.2 g/day) of 
ruminant TFA with industrial TFA in 38 men. This study 
showed a significant increase in TC and LDL-C, with the 
high intake of  trans  from either natural or industrial 
sources, and in the TC:HDL-C ratio. The reduction in 
HDL-C following an increased intake of TFA is a conse-
quence of a fall in HDL 2  cholesterol concentrations [Judd 
et al., 1994; Sanders et al., 2003b; Motard-Bélanger et al., 
2008], which is not dissimilar to the effect observed when 
carbohydrate replaces fat. However, the LDL-C:HDL-C 
ratio is higher following an increased intake of TFA com-
pared with the diets high in carbohydrate. Some [Nestel 
et al., 1992; Judd et al., 1994; Almendingen et al., 1995; 
Aro et al., 1997; Motard-Bélanger et al., 2008] have re-
ported that TFA increase Lp(a) concentration, but this 
difference could equally be explained by differences in 
fatty acid chain length of the predominant fatty acids in 
the diet [Sanders et al., 1997]. Many of the comparisons 
have used palmitic-, myristic- and lauric-rich fats to re-
place C18:   1  trans , and this might explain why palm oil 
resulted in a lower Lp(a) concentration compared with 
partially hydrogenated soybean oil [Sundram et al., 1997]. 
Sanders et al. [2003b], in a head-to-head comparison of 
C18:   1 provided either as  cis  or  trans,  found no difference 
in Lp(a) concentrations; a result echoed in a recent com-
parison [Chardigny et al., 2008] of industrially produced 
and naturally occurring TFA.

  Most studies that have demonstrated effects of TFA on 
serum lipids have used very high intakes, and the impact 
of lowering intakes from 2 to 1% of the energy would have 
a smaller impact on the TC:HDL-C ratio than decreasing 
the intake of SFA by 5% energy. For example, replacing 1% 
energy TFA with 1% energy from oleate would lower TC 
by 0.036 mmol/l and increase HDL-C by 0.008 mmol/l, 
whereas replacing 5% energy from SFA (3.3% from C16:   0, 
1.2% from C18:   0, 0.3% from C14:   0) with oblate would low-
er TC by 0.2 mmol/l without changing HDL-C.

  Interesterification is a technique increasingly being 
used by the food industry to generate fats with defined 
physical properties as an alternative to the partial hydro-
genation of fats. However, the health effects of these 
changes have received little attention. Zock et al. [1995] 
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noted a greater increase in LDL-C of 0.08 mmol/l when 
palmitate was in the sn–2 position in men, but not in 
women. Sundram et al. [2007], in a cross-over study of 
30 Malaysian subjects (20 female and 10 male), reported 
that palm olein had a more favourable effect on the TC:
HDL-C ratio than partially hydrogenated soybean oil or 
an interesterified fat made from fully hydrogenated soy-
bean oil and unhydrogenated soybean oil, which was 
rich in stearic acid. Mensink [2008] compared products 
made from a high-palmitic-acid  trans -free semi-liquid 
fat or a high-oleic-acid low- trans  high-stearic-acid semi-
liquid fat and found that the palmitic acid-rich diet raised 
LDL-C and HDL-C by 0.34 and 0.06 mmol/l, respective-
ly, compared with the high-oleic interesterified blend. 
Berry et al. [2007a] compared native shea butter, rich in 
stearic acid and naturally present exclusively in the sn–1 
and sn–3 positions, with randomized shea butter in 19 
male subjects before and after a low-stearate diet and 
found no difference in TC or HDL-C between random-
ized and native shea butter or with the low-stearate run-
in period. The evidence to date thus suggests that inter-
esterified fats where stearic acid is present in the sn–2 
position probably have a neutral effect on blood lipids 
[Berry, 2009]. However, further research is urgently need-
ed on whether the commercial interesterification of veg-
etable fats (including fully hydrogenated fats), which is 
widely carried out in the food industry, influences plas-
ma LDL-C and HDL-C and other indices of CVD risk.

  Long-chain n–3 PUFA [n–3 LCP: mainly eicosapen-
taenoic acid (C20:   5n–3; EPA) and docosahexaenoic acid 
(C22:   6n–3; DHA)] generally supplied in the diet by oily 
fish have no effect on TC [Bays, 2006], but lower plasma 
TAG and VLDL cholesterol and raise LDL-C concentra-
tions [Theobald et al., 2004; Caslake et al., 2008] in 
amounts exceeding 0.7 g/day ( � 0.3% energy). Dietary 
supplements, usually providing in excess of 3 g n–3 LCP/
day, lower plasma TAG on average by 27%, but have vari-
able effects on LDL-C and HDL-C depending on the 
dose, type of fatty acid and lipoprotein phenotype: on av-
erage they increase both LDL-C (6%) and HDL-C (1.4%) 
concentrations, but also LDL and HDL particle size 
[Minihane et al., 2000; Griffin et al., 2006; Kelley et al., 
2007]. DHA from algal sources in the range of 0.7–1.5
g/day raises TC and LDL-C between 6 and 12%, but has 
little influence on the TC:HDL-C ratio [Theobald et al., 
2004; Geppert et al., 2006; Sanders et al., 2006a]. Linole-
nic acid does not share the effects shown by n–3 LCP and 
does not influence plasma lipid concentrations within 
the range of intakes likely to be encountered in human 
diets [Balk et al., 2006].

  There is convincing evidence [Whitlock et al., 2009] 
that individuals who maintain a healthy weight are less 
likely to develop a raised TC:HDL ratio. Furthermore, 
weight loss in overweight or obese subjects results in im-
provements in circulating lipid concentrations, including 
raising HDL-C, lowering TAG and TC, and improving 
the TC:HDL-C ratio [Yu-Poth et al., 1999].

  Despite the global increase in obesity, TC and LDL-C 
have fallen in several economically developed countries 
[Vartiainen et al., 2000; Evans et al., 2001; Carroll et al., 
2005] where the fat supply has changed from predomi-
nantly animal fats (dairy fats, lard, lamb and beef fat), 
rich in SFA, to vegetable oils rich in  cis  unsaturated fatty 
acids [Vartiainen et al., 2000]. In contrast, there is evi-
dence to suggest that TC and LDL-C are increasing in 
some emerging economies such as China [Critchley et al., 
2004], and that this is accompanied by an increase in to-
tal and saturated fat from both animal and vegetable 
sources. However, in many developing countries, it is not 
possible to dissociate the effect on TC of an increase in 
BMI from lean to moderately elevated BMI [Whitlock et 
al., 2009].

  Postprandial Lipid Metabolism 

 While most attention has focused on fasting lipid and 
lipoprotein concentrations, for most of the time humans 
are in the postprandial state, and variations in the non-
fasting lipid concentrations may also influence the ath-
erogenic process. Elevated postprandial lipid concentra-
tions, resulting from meals typically containing 30–50 g 
fat, and persistent elevation of postprandial plasma TAG 
are associated with progression of atherosclerosis and in-
creased risk of thrombosis. Impaired postprandial lipae-
mia is associated with obesity, insulin resistance and type 
2 diabetes. Compared with meals low in fat and high in 
carbohydrate, meals high in long-chain fatty acids (C14–
18) result in substantial lipaemia. Short- and medium-
chain fatty acids (C2–C12) do not result in substantial li-
paemia [Oakley et al., 1998; Sanders et al., 2000, 2001]. 
Stearic-rich fats result in variable effects on postprandial 
lipaemia according to the physical properties of the fat 
[Sanders et al., 2000, 2001, 2003a; Tholstrup et al., 2001; 
Berry et al., 2007a]. Most stearic-rich TAG result in de-
creased postprandial lipaemia compared to oleic acid-rich 
TAG, and this appears to be a consequence of the high 
melting point of the TAG delaying its absorption.

   Trans  isomeric fatty acids have similar effects com-
pared to  cis  isomeric fatty acids [Sanders et al., 2000, 
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2003b; Tholstrup et al., 2001]. Intakes in excess of 1.5 g 
n–3 LCP result in decreased postprandial lipaemia, both 
acutely and chronically [Harris and Muzio, 1993; Zam-
pelas et al., 1994; Griffin et al., 2006], probably by way of 
their effects on reducing VLDL synthesis, which in turn 
reduces competition for clearance of chylomicron rem-
nants. There is consistent evidence that prolonged eleva-
tions of plasma TAG concentrations result in an increased 
proportion of small dense LDL particles that are associ-
ated with increased progression of atherosclerosis and 
 increased risk of coronary heart disease [Kwiterovich, 
2002]. Diets containing a higher proportion of carbohy-
drate in place of fat result in an increase in plasma TAG 
concentrations in the fasting state, but a lower plasma 
TAG concentration in the postprandial state. However, 
there is no consistent evidence from randomized con-
trolled trials to indicate that diets with a reduced propor-
tion of energy from fat result in an increased proportion 
of small dense LDL. There is, however, evidence to show 
that weight loss, leading to a reduction in adipose tissue, 
decreases the proportion of small dense LDL [Siri-Tarino 
et al., 2009].

  Insulin Sensitivity 

 Regular physical activity and weight loss in overweight 
or obese subjects improve insulin sensitivity [Costacou 
and Mayer-Davis, 2003; Roumen et al., 2008]. Animal 
studies indicate that diets rich in SFA impair insulin sen-
sitivity, and that n–3 LCP improve insulin sensitivity. The 
euglycaemic insulin clamp technique is regarded as the 
gold standard for the measurement of insulin sensitivity. 
However, few studies have investigated the effect of fat 
modification using this technique, and where it has been 
employed, the sample size is insufficient to come to any 
clear conclusion. Most of the larger studies have assessed 
insulin sensitivity using the intravenous glucose toler-
ance test. While this technique measures tissue sensitiv-
ity to insulin, it does not fully measure the response to 
diet, which is also influenced by incretins secreted in the 
gut in response to food.

  There is limited evidence that replacing SFA from an-
imal sources with MUFA from plant sources improves 
insulin sensitivity and glycaemic control in type 2 diabe-
tes [Garg, 1998]. However, randomized controlled trials 
[Vessby et al., 2001; Griffin et al., 2006; Tardy et al., 2009] 
have generally failed to show any consistent effect of 
changing either the level of fat or the type of fat on insu-
lin sensitivity when changes in weight or physical activ-

ity are taken into account. Where a reduction in the di-
etary intake of fat is accompanied by a reduction in en-
ergy intake and weight loss, an improvement in insulin 
sensitivity is likely.

  Indices of Oxidative Stress 

 There is convincing mechanistic evidence [Griendling 
and FitzGerald, 2003] to implicate lipoprotein oxidation 
in the pathogenesis of atherosclerosis, but the conse-
quences of altering lipoprotein oxidation [Reaven et al., 
1991; Finnegan et al., 2003; Caslake et al., 2008] in human 
studies through increasing/decreasing the proportion of 
dietary PUFA are not well established. A number of bio-
markers of oxidative damage are available, but none are 
strongly predictive of risk of CVD, and there is no con-
vincing evidence to demonstrate that modifying the 
composition of dietary fat has a significant impact on the 
process of lipoprotein oxidation in vivo. Furthermore, 
randomized controlled trials of antioxidant compounds 
have failed to demonstrate any benefit on cardiovascular 
risk [Bjelakovic et al., 2007].

  Inflammatory Markers 

 Chronic inflammation results in the elevation of 
acute-phase proteins, including fibrinogen and C-reac-
tive protein, and is believed to be mediated by elevated 
production of cytokines, particularly IL-6. Chronic in-
flammation, as indicated by mild elevations of C-reactive 
protein, increases the risk of CVD – especially if the TC:
HDL-C ratio is high [Ridker, 2001]. Obesity may directly 
contribute to the increased production of IL-6 from adi-
pose tissue. Postprandial lipaemia may also stimulate the 
production of inflammatory cytokines. One mechanism 
suggested is that postprandial lipaemia may increase the 
absorption of endotoxin from the gut [Erridge et al., 
2007]. Evidence has also been presented [Byrne et al., 
1998; Grainger et al., 2000] that TAG-rich lipoproteins 
sequester the active form of the atheroprotective cytokine 
TGF � 1. High intakes of n–3 LCP ( 1 3 g/day) in the form 
of dietary supplements [Meydani, 2000; Vedin et al., 
2008] decrease cytokine production and probably de-
crease inflammatory markers, but randomized con-
trolled trials, using lower intakes as may habitually be 
consumed in usual diets, have failed to demonstrate any 
clear effects on cytokines, adhesion molecules or C-reac-
tive protein [Blok et al., 1997; Balk et al., 2006; Theobald 



 Metabolic Effects of Fat and Fatty Acid 
Intake 

Ann Nutr Metab 2009;55:162–172 167

et al., 2007]. There is possible evidence that TFA increase 
systemic inflammation [Baer et al., 2004], but not all 
studies have consistently shown such effects [Motard-
Bélanger et al., 2008].

  Procoagulant and Fibrinolytic Activity 

 Elevated procoagulant FVII and fibrinogen and de-
creased indices of fibrinolytic activity (as assessed by 
measures of clot lysis time or elevated plasminogen acti-
vator inhibitor PAI-1 activity) are associated with an in-
creased risk of atherothrombosis [Meade et al., 1993; 
Heinrich et al., 1994; Folsom et al., 2001]. Hyperlipidae-
mia is associated with elevated FVII and fibrinogen, and 
insulin resistance syndrome is associated with elevated 
PAI-1. There is possible evidence that n–3 LCP, provided 
as dietary supplements, increase FVIIc [Sanders et al., 
2006a], but this effect was not evident with an increased 
intake from oily fish [Sanders et al., 2006b]. There is con-
vincing evidence that meals high in fat (usually 50 g fat) 
compared to meals high in carbohydrate and low in fat 
( ! 15 g fat) acutely increase the concentration of FVIIa 
[Oakley et al., 1998; Sanders et al., 1999, 2000, 2001, 2003b, 
2006b; Tholstrup et al., 2003; Sanders and Berry, 2005]. 
There is probable evidence that the increase in FVIIa is 
greater following meals rich in MUFA (oleic acid) than for 
some sources of SFA [Sanders et al., 2000, 2006b; Thol-
strup et al., 2003; Sanders and Berry, 2005; Berry et al., 
2007a, b]. There is insufficient evidence to demonstrate 
chronic effects of different types of fatty  acids on fibrino-
gen or fibrinolytic activity [Miller, 2005; Sanders et al., 
2006b], but fibrinolytic activity improves with intensive 
lifestyle intervention (weight reduction and increased 
physical activity) [Hamalainen et al., 2005].

  Blood Pressure and Arterial Stiffness 

 Both systolic and diastolic blood pressure increase 
with age in economically developed communities and 
show a continuous association with risk of CVD without 
a threshold [Lewington and Clarke, 2005]. Elevated blood 
pressure is a self-amplifying condition and is strongly as-
sociated with BMI. There is also a strong association be-
tween the development of hypertension and hyperlipidae-
mia. There is convincing evidence that weight loss results 
in a fall in blood pressure [Neter et al., 2003]. A 5-kg loss 
in weight results in systolic/diastolic blood pressure falls 
of 4.4/3.6 mm Hg. In this respect, a reduction in total fat 

intake that results in lower energy intake and weight loss 
will lower blood pressure. However, there is no clear evi-
dence to indicate the superiority of low-calorie diets that 
contain a higher proportion of fat than carbohydrate.

  There is convincing evidence for a blood pressure-
lowering effect of replacing SFA with MUFA as part of a 
healthy lifestyle diet [Appel et al., 2003, 2005] with an in-
creased proportion of fruit and vegetables, wholegrains 
and reduced salt intake. There is insufficient evidence 
that replacement of saturated fats with MUFA alone has 
a significant effect on blood pressure [Shah et al., 2007]. 
There is possible evidence from cross-sectional studies 
that linoleic acid may contribute to the prevention of 
raised blood pressure [Miura et al., 2008]. High intakes 
( 1 2 g/day) of n–3 LCP convincingly lower blood pressure 
[Geleijnse et al., 2002], and there is possible evidence that 
habitual intakes at lower levels have the same effect 
[Ueshima et al., 2007]. Over the age of 60 years, systolic 
blood pressure increases more than diastolic blood pres-
sure, and this is likely in part to be a consequence of arte-
rial stiffening. Arterial stiffness is emerging as a strong 
predictor of CVD risk in the elderly [Terai et al., 2008; 
Anderson et al., 2009]. There is possible evidence that 
n–3 LCP may decrease arterial stiffening [Hamazaki et 
al., 1988; Yamada et al., 2000; Tomiyama et al., 2005; Te-
rai et al., 2008].

  Endothelial Function 

 Impaired endothelial function plays a central role in 
atherogenesis and also increases the risk of arterial 
thrombosis. The capacity of the vascular endothelium to 
synthesize nitric oxide (NO) and NO bioavailability are 
important determinants of normal endothelial function. 
NO appears to have both anti-thrombotic and anti-ath-
erosclerotic properties. The capacity of the endothelium 
to synthesise NO can be assessed in vivo by measuring 
flow-mediated dilatation of the brachial artery. Impaired 
flow-mediated dilatation is associated with the risk of 
atherosclerotic disease [Yeboah et al., 2007]. Hyperlipid-
aemia and hyperglycaemia are 2 factors known to impair 
endothelial function. Meals high in long-chain fatty ac-
ids, which induce substantial lipaemia compared with 
meals low in fat but high in carbohydrate, result in an 
impairment of endothelial function in the postprandial 
period in healthy subjects [Vogel et al. 1997, 2000; Ong 
et al., 1999; Bae et al., 2001; Cortés et al., 2006]. There is 
possible evidence that n–3 LCP may improve [Goodfel-
low et al., 2000; Leeson et al., 2002; Engler et al., 2004] 
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and TFA [de Roos et al., 2001] may impair endothelial 
function. Early chronic feeding studies have been subject 
to operator-dependent variability [Hall, 2009]. Conse-
quently, there is insufficient evidence to conclude that 
there are any other differences between MUFA, PUFA 
and SFA.

  Dietary Interactions with Genotype 

 Several gene polymorphisms for lipid and haemostat-
ic risk factors have been identified that may have interac-
tions with dietary fat intake. Subjects who carry the  � 4 
allele for apolipoprotein have higher TC and LDL-C con-
centrations compared to those carrying the common  � 3 
allele. These  � 4 carriers appear to show greater absolute 
(but not proportionately different) falls in TC and LDL-C 
compared with  � 3 carriers when they decrease their in-
takes of SFA and cholesterol [Lefevre et al., 1997]. How-
ever, the LDL-C-raising effect of n–3 LCP does not differ 
between  � 4 and  � 3 carriers [Theobald et al., 2004; Caslake 
et al., 2008]. Cross-sectional data do not suggest that the 
apolipoprotein E genotype is an important determinant 
in the LDL-C response to SFA [Wu et al., 2007]. Subjects 
who are homozygous for the  � 2 allele do not show an in-

crease in serum cholesterol in response to dietary choles-
terol, but this genotype is associated with an increased 
prevalence of WHO type II hyperlipoproteinaemia, 
which responds to a low-fat diet.

  About 1:   500 people carry mutations for the LDL re-
ceptor. These individuals have higher TC and LDL-C and 
a 25-fold increased risk of developing premature CVD. 
Plasma TC and LDL-C concentrations in individuals 
who carry this mutation are relatively unresponsive to 
changes in the level or type of dietary fat [Poustie and 
Rutherford, 2001].

  Conclusions 

 There is convincing evidence that the major determi-
nants of differences in metabolic risk factors within and 
across populations are due to behavioural and lifestyle 
factors (diet, physical activity, obesity, smoking, alcohol 
use) rather than genetic differences. Decreasing the in-
take of SFA C12–16 and their replacement with oleic and 
linoleic acids lowers TC and LDL-C without lowering 
HDL-C and has a more favourable effect on the TC:
HDL-C ratio than replacement with carbohydrate, par-
ticularly in populations where a high proportion of the 

Table 2. Summary of strength of evidence for metabolic risk factors excluding fasting lipids

Blood
pressure

Arterial
stiffness

Endothelial
function

Fibrinogen FVII Fibrinolytic
activity

Inflamma-
tion

Insulin
sensitivity

Postprandial
lipaemia

Total fat P – NR I PS d P – NR C d P – NR I P – NR C d
Trans fatty acid P – NR I PS d P – NR C d P – NR PS d PS – NR C d
SFA PS d I I P – NR P d P – NR I I C d

Lauric P – NR I I P – NR C f I I I P – NR
Myristic P – NR I I P – NR P d I I I C d
Palmitic P – NR I I P – NR C d P – NR P – NR I C d
Stearic P – NR I I P – NR P f PS – NR P – NR I C f
Oleic P – NR I I P – NR C d PS – NR P – NR PS f C d

MUFA P – NR I I P – NR C d P – NR I PS f C d
PUFA PS f I I P – NR P d P – NR I P – NR C d
n–6 PUFA PS f I I P – NR P d P – NR I P – NR C d
Linoleic acid PS f I I PS – NR P d P – NR P – NR P – NR C d
Arachidonic

acid I I I I I I I I I
n–3 LCP P f PS f PS f P – NR P d P – NR PS f P – NR C f
�-Linolenic

acid P – NR I I P – NR PS d P – NR I P – NR PS d
EPA I PS f I I I I I I C f
DHA PS f PS – NR PS f P – NR PS d P – NR I P – NR P f

C = Convincing; P = probable; PS = possible; I = Insufficient; d increased risk; f decreased risk; NR = no relationship.
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population is overweight or obese. The intake of SFA has 
fallen close to 10% in several economically developed 
countries because the fat supply has changed from pre-
dominantly animal fats (dairy fats, lard, lamb and beef 
fat), rich in SFA, to vegetable oils rich in  cis  unsaturated 
fatty acids. Consequently, in those countries, the capacity 
to decrease SFA much further is limited without major 
changes in dietary patterns, and is only likely to result in 
modest reductions in TC and LDL-C. TFA have adverse 
effects on the TC:HDL-C ratio. Therefore, replacing TFA 
with  cis  unsaturated fatty acids is preferred, but some 
food applications require high-melting-point fats. Stea-
ric acid appears to have no effect on the LDL-C or TC:
HDL-C ratio. Thus, this need could be met by the use of 
fully hydrogenated vegetable oils interesterified with un-
hydrogenated fat, which results in the production of TAG 
with a significant proportion of stearic acid in the sn–2 
position, or by blending with fats that have high melting 
points, such as palm oil. Further research on the health 
effects of these approaches is required.

  The effects of total fat and the various fatty acids on 
other CVD risk factors are shown in  table 2 . There is pos-
sible evidence to suggest that long-chain n–3 fatty acids 
may influence arterial stiffening and have favourable ef-
fects on endothelial function, but this requires further 

research. Dietary fat intake has no clear effect on blood 
pressure, inflammation, fibrinolysis or insulin sensitivi-
ty, whereas these risk factors are strongly influenced by 
obesity. Meals high in fat, however, cause postprandial 
lipaemia and may promote atherosclerosis as well has 
having a potentially adverse influence on the risk of 
thrombotic events by way of effects on procoagulant ac-
tivity and endothelial function. There is a need for fur-
ther research in this area as the modulation of risk of 
thrombosis may be of greater importance in older popu-
lations who have established atherosclerosis and are most 
at risk of cardiovascular events.
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