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Fat accumulation in the liver, pancreas, skeletal muscle,
and visceral bed relates to type 2 diabetes (T2D). How-
ever, the distribution of fat among these compartments
is heterogenous and whether specific distribution pat-
terns indicate high T2D risk is unclear. We therefore
investigated fat distribution patterns and their link to fu-
ture T2D. From 2,168 individuals without diabetes who
underwent computed tomography in Japan, this case-
cohort study included 658 randomly selected individuals
and 146 incident cases of T2D over 6 years of follow-up.
Using data-driven analysis (k-means) based on fat con-
tent in the liver, pancreas, muscle, and visceral bed, we
identified four fat distribution clusters: hepatic steatosis,
pancreatic steatosis, trunk myosteatosis, and steatopenia.
In comparisons with the steatopenia cluster, the adjusted
hazard ratios for incident T2D were 4.02 (95% CI 2.27–7.12)
for the hepatic steatosis cluster, 3.38 (1.65–6.91) for the
pancreatic steatosis cluster, and 1.95 (1.07–3.54) for the
trunk myosteatosis cluster. The clusters were replicated
in 319 German individuals without diabetes who under-
went MRI and metabolic phenotyping. The distribution of
the glucose area under the curve across the four clusters
found in Germany was similar to the distribution of T2D
risk across the four clusters in Japan. Insulin sensitivity

and insulin secretion differed across the four clusters.
Thus, we identified patterns of fat distribution with differ-
ent T2D risks presumably due to differences in insulin
sensitivity and insulin secretion.

The incidence of type 2 diabetes (T2D) is increasing, and
more individualized approaches to preventing and treating
T2D are needed (1). Obesity is the main modifiable risk
factor for T2D. The classification of obesity is typically
based on BMI. Although BMI is an easy-to-determine indi-
cator of overall adiposity, it gives no information about the
location of accumulated fat. This is important, as the loca-
tion of fat storage appears to be crucial for T2D risk (2).

Fat accumulation in the visceral bed (2,3), liver (4–6),
pancreas (7,8), and skeletal muscle (9,10) is associated
with T2D. “Visceral fat” refers to accumulation of adipose
tissue in the peritoneum and retroperitoneum (11). Having
large amounts of visceral fat is strongly linked to whole-
body insulin resistance, which is an important predictor of
T2D risk (3,11). Further important locations for excessive
lipid accumulation include the liver (in hepatocytes), pan-
creas (in adipocytes), and skeletal muscle (intramyocellular
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and in adipocytes). Proposed mechanisms connecting in-
creased lipid deposition in these three organs with T2D
include hepatic insulin resistance (12,13), impairment of
pancreatic insulin secretion (8,14), and muscle insulin
resistance (9,15), respectively. The development of T2D
probably depends on a complex interplay of those three
mechanisms (13,14). Indeed, our previous longitudinal study
showed how T2D risk is related to an interaction between
obesity and pancreas fat (7), for which there is also histolog-
ical and genetic evidence (16,17). While it has been proposed
that some individuals have distinct patterns of body fat
distribution that determine their likelihood to develop T2D
(7,10,18), the approaches that led to those proposals were
often hypothesis-driven and focused on effects of a limited
number of fat compartments.

To identify previously undetected patterns of fat stor-
age, we did a case-cohort study in Japan, using data-driven
cluster analysis to partition participants based on the dis-
tribution of liver, pancreas, muscle, and visceral fat mea-
sured by computed tomography (CT). We then studied the
longitudinal association of membership in the resulting
clusters with incident T2D. Then, cluster validation was
done in Germany among individuals with increased risk
of T2D. In that study, body fat was quantified with MRI
and 1H-MRS and additional glycemic traits were assessed
through 75-g oral glucose tolerance tests (OGTT).

RESEARCH DESIGN AND METHODS

We conducted a retrospective case-cohort study in Japan
and a cross-sectional study in Germany. Case-cohort stud-
ies use data from individuals who are randomly selected
members (i.e., subcohort) of a “total” cohort, and they ad-
ditionally use data on all of the cases in which the out-
come of interest occurred. This leads to efficient sampling
by reducing the need to perform expensive measurements
in a large sample of control subjects, while still using in-
formation on all cases, even if the outcome is not frequent
(19). The benefit of the case-cohort design over a case-
control design is that the randomly selected subcohort can
be used to estimate characteristics of the total cohort and
to select control subjects for multiple outcomes (20). A
study flow diagram with an explanation of the methods can
be found in Supplementary Fig. 1.

Participants in Japan
We used secondary data collected during health examina-
tions with CT at Keijinkai Maruyama Clinic. CT equipment
is easily accessible in Japan (21). We examined data from
2,793 individuals who underwent health examinations in-
cluding baseline CT between 1 May 2008 and 31 March
2013. We excluded all individuals with diabetes at baseline
(n 5 216), as well as those who met CT exclusion criteria
(n 5 27), those whose BMI data were missing (n 5 1),
and those without follow-up data (n 5 381). A radiologist,
who was blinded to data other than CT images, excluded
individuals with baseline CT scans that had substantial

artifacts, as well as those with pancreatic calcification,
space-occupying lesions in the pancreas, ambiguous pancre-
atic margin, pancreatic atrophy, splenic resection, or pan-
creatic resection. From the original 2,793 individuals,
2,168 were eligible for this study (i.e., the “total” cohort).
During the median follow-up period of 6.27 years (inter-
quartile range 4.04–8.20), there were 146 incident cases of
T2D in the total cohort. From the viewpoint of relative ef-
ficiency (22), a 1:4 ratio of case:control subjects was favor-
able for this case-cohort study. We randomly selected 30%
of the total cohort, and that 30% (658 participants) thus
became the subcohort. After pooling this randomly selected
subcohort and all remaining incident T2D case subjects
who were not selected in this subcohort, we obtained a
1:4 ratio of case:noncase subjects (n 5 146 and 608,
respectively). There were 50 participants who had an inci-
dent case of T2D and were also in the randomly selected
subcohort. Altogether, this case-cohort study comprised
754 participants.

Participants in Germany
We used secondary data from the T€ubingen Diabetes Family
Study (TDFS) (23), with recruitment of individuals with at
least one of the following: known prediabetes, family his-
tory of diabetes, history of gestational diabetes mellitus,
or obesity. We included individuals who underwent
MRI/1H-MRS to quantify visceral fat (T1-weighted fast
spin echo), liver fat (1H-MRS), pancreas fat, and muscle
fat (three-dimensional multiecho chemical-shift encoding-
based abdominal MRI), enabling assessment of all fat
compartments corresponding to the CT study.

Measurement of Indices of Fat Distribution in Japan
We quantified four fat distribution indices on unenhanced
CT: liver attenuation (liver fat), pancreas attenuation (pan-
creas fat), muscle attenuation (fat in trunk muscle), and
visceral fat area (visceral fat). We also measured muscle
area. Unenhanced CT images in which each slice was
10 mm thick were obtained with a single helical scan-
ner (Asteion KG TSX-021B; Toshiba, Otawara, Japan)
and a multislice helical scanner (Alexion TSX-032A;
Toshiba) before and after May 2012, respectively.

Using a workstation (TWS-5000; Toshiba), and under
the supervision of a radiologist, seven radiologic technolo-
gists who were blinded to data other than CT images mea-
sured liver attenuation and pancreas attenuation. Lower
liver attenuation (Hounsfield units [HU]) indicated greater
hepatic steatosis (24). Three round regions of interest
(ROIs) with areas of 1.0 cm2 were positioned on the he-
patic anterior segment, posterior segment, and left lobe.
The mean attenuation of those three ROIs was used to de-
rive liver fat content. Our previous study regarding inter-
rater reliability of this measure demonstrated an excellent
intraclass correlation coefficient of 0.98 (95% CI 0.96–0.99)
(7). Similarly, we measured pancreas fat by analyzing pan-
creas attenuation on CT images. This measure also negatively
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correlates with pancreas fat (25). Three ROIs with areas of
1.0 cm2 were positioned on thick segments of the pancreatic
head, body, and tail to minimize partial-volume effects. The
mean pancreas attenuation from these three ROIs was used
as the index of pancreatic steatosis. Our previous study re-
garding interrater reliability showed an intraclass correlation
coefficient of 0.89 (95% CI 0.82–0.94) (7).

Using an Automated Body composition Analyzer using
Computed tomography image Segmentation (ABACS) soft-
ware (Voronoi Health Analytics, Vancouver, Canada) and
sliceOmatic software (TomoVision, Magog, Canada), an
experienced radiologic technologist who was blinded to
participants’ information measured muscle area, muscle
attenuation, and visceral fat area at the level of the L3
lumbar segment. Previous studies showed that L3-level
measurements of muscle area and visceral fat area had
the highest correlation with whole-body muscle and whole-
body visceral fat (26). The ABACS software automatically
recognizes these tissues based on CT attenuation thresholds
(27). Muscle attenuation was automatically calculated as
mean attenuation of muscle area. Lower muscle attenua-
tion indicates more muscle fat (28,29). We evaluated in-
trarater reliability in 50 randomly selected participants:
intraclass correlation coefficients of muscle area, muscle
attenuation, and visceral fat area were all 1.00.

Measurement of Indices of Fat Distribution in Germany
All magnetic resonance (MR) examinations were performed
with a 3T whole-body imager (MAGNETOM Vida; Siemens
Healthineers, Erlangen, Germany). Visceral fat volume, pan-
creas fat, and muscle fat were measured with MRI, and liver
fat was quantified with 1H-MRS. Additionally, muscle area
was measured. Volumetric quantification of visceral fat was
performed from T1-weighted fast spin echo images with a
slice thickness of 10 mm acquired between the hip and the
thoracic diaphragm (30) with application of an automatic
fuzzy c-means algorithm and orthonormal snakes (31). For
determination of proton density fat fraction (PDFF) in pan-
creas and muscle, a three-dimensional multiecho gradient-
echo chemical shift encoding-based technique was applied,
with recording of six images with different echo times and
a slice thickness of 3 mm in a single breath hold (32). Pan-
creas fat was quantified by manual drawing of three ROIs
in the head, body, and tail of the pancreas. 1H-MRS of the
liver was done with application of a single-voxel STimu-
lated Echo Acquisition Mode (STEAM) technique in a vol-
ume of interest of 3 × 3 × 2 cm3 in the posterior part of
segment VII (30). Signals of methylene and methyl protons
(fat) were referenced to the sum of the fat and water sig-
nals to calculate liver fat in percent. All evaluations were
performed by an experienced medical physicist on a stand-
alone PC using MATLAB R2014A (MathWorks, Natick, MA)
for visceral fat and liver fat measurement and on the work-
station of the imager for pancreas fat measurement. Muscle
fat and muscle area were assessed at the level of the L3
lumbar segment. For this purpose, a random sample of

50 manually segmented PDFF MR images at the level of
the L3 lumbar segment were used to train an ensemble
of five two-dimensional U-Net models (nnU-Net) (33) with
fivefold cross validation to perform the segmentation of
muscle PDFF on a cluster graphics processing unit (Tesla
V100; NVIDIA, Santa Clara, CA). The nnU-Net ensemble
showed a mean Dice similarity coefficient of 0.9725 (95%
CI 0.9705–0.9744). The mean PDFF and MR image pixel
dimensionality were used to derive the muscle fat and
muscle area from the automatically segmented muscles,
respectively (Supplementary Fig. 2).

Assessment of T2D Incidence in Japan
The presence of at least one of the following criteria was
used to diagnose T2D: fasting plasma glucose $126 mg/dL,
HbA1c $6.5% (48 mmol/mol), or having a prescription for
any antidiabetes medication. The incidence of T2D was eval-
uated from the day of the baseline health examination with
CT imaging to the day of the last health examination before
31 December 2018.

Assessment of Glycemic Traits and Aerobic Capacity
in Germany
After an overnight fast, a 5-point 75-g oral glucose toler-
ance test was performed. We evaluated glycemia using the
area under the curve (AUC) of glucose from 0 to 120 min
(AUC Glucose0–120). Insulin sensitivity was assessed with
the nonesterified fatty acids–based insulin sensitivity in-
dex (NEFA-ISI), and insulin secretion was quantified by
the ratio of the AUC of C-peptide from 0 to 30 min to the
AUC of glucose from 0 to 30 min (AUC C-peptide0–30/AUC
Glucose0–30) (34). To estimate insulin secretion adjusted
for insulin sensitivity, we computed the residuals of AUC
C-peptide0–30/AUC Glucose0–30 from a linear regression of
this variable on NEFA-ISI and its quadratic term. Analytes
were measured as described previously (23). We evalu-
ated aerobic capacity (maximal oxygen uptake [VO2max]) on
a bicycle ergometer as previously described (35).

Cluster Analysis
To identify fat distribution clusters in Japan, we used
liver attenuation, pancreas attenuation, muscle attenua-
tion, and visceral fat area. Liver attenuation, pancreas at-
tenuation, and muscle attenuation were “flipped,” such
that higher values corresponded to more fat. To account
for sex-related differences in fat distribution, we stan-
dardized each of the four indices (mean 5 0, SD 5 1)
separately for the men and for the women in the ran-
domly selected subcohort (n 5 658). With these sex-strat-
ified standardized variables, we conducted k-means
clustering using the kmeans function in R. We selected a
k value of 4 based on visual inspection of the elbow plot
and majority vote of multiple indices to determine the
best number of clusters using the NbClust function in R
(36). We created a two-dimensional cluster plot based on
principal components analysis using the fviz_cluster
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function in R. Jaccard similarities to the original cluster
with 2,000 resamplings were calculated to evaluate cluster
stability with use of the cboot.hclust function in R. We
named the clusters based on cluster variable means.

To assign each of the 754 Japanese participants to one
of the clusters generated from the randomly selected sub-
cohort, we used the cluster centroids to identify the cluster
nearest to each participant by performing k-nearest neigh-
bor classification with k 5 1 using the knn function in R.
We used the assigned clusters to evaluate the risk of T2D.

As a validation test of the fat distribution clusters, we
applied the cluster analysis described above to 319 partici-
pants in the TDFS German cohort. We used the validated
clusters to evaluate glycemic traits in the cohort in Germany.

Statistical Analysis
Baseline characteristics of the participants were compared
between fat distribution clusters using Fisher exact test
for categorical data and Wilcoxon rank sum tests or the
Kruskal-Wallis test for continuous data.

Using the data from Japan, we conducted weighted
Cox regression analyses to evaluate the association between
the fat distribution clusters and the incidence of T2D. Be-
sides unadjusted analysis and analyses adjusted for age and
sex, we conducted three multivariable analyses. In model 1,
we adjusted for age, sex, alcohol intake (daily alcohol intake
or not), current smoking, and muscle area. In model 2, we
further adjusted for BMI. In model 3, we further adjusted for
systolic blood pressure, diastolic blood pressure, triglycerides,
HDL cholesterol, LDL cholesterol, antihypertensive drugs,
and lipid-lowering drugs. Despite a high correlation of BMI
with visceral fat, we adjusted for BMI to investigate the im-
portance of fat distribution clusters independent from BMI.
We also quantified interactions among pairs of the four fat
indices (liver attenuation, pancreas attenuation, muscle at-
tenuation, and visceral fat area on CT) regarding the inci-
dence of T2D.

Using the data from Germany, we estimated the mean
and 95% CI of the AUC Glucose0–120, NEFA-ISI, AUC
C-peptide0–30/AUC Glucose0–30, and AUC C-peptide0–30/
AUC Glucose0–30 residuals in the fat distribution clusters.
We also compared these glycemic traits using Wilcoxon
rank sum test. We also quantified interactions among
pairs of the four fat indices (liver fat, pancreas fat, muscle
fat, and visceral fat volume on MRI) regarding the AUC
Glucose0–120. In addition, linear regression models were
used to evaluate the association of each fat index with
NEFA-ISI, AUC C-peptide0–30/AUC Glucose0–30, AUC
C-peptide0–30/AUC Glucose0–30 residuals, and VO2max.

For statistical analyses, R, version 4.0.5 (R Foundation
for Statistical Computing, Vienna, Austria), and Stata 17
(StataCorp, College Station, TX) were used.

Ethics Considerations
The study in Japan was approved by the ethics commit-
tees of Kyoto University and Keijinkai Maruyama Clinic,

and written informed consent was not required because it
was retrospective. The study in Germany was approved by
the ethics committee of the University of T€ubingen, and
written informed consent was provided by all participants
before enrollment.

Data and Resource Availability
The data generated during the current study are not pub-
licly available due to them containing information that
could compromise research participant privacy/consent.
No applicable resources were generated or analyzed dur-
ing the current study.

RESULTS

Participants’ Characteristics and k-Means Clustering
Table 1 shows baseline data. k-means clustering identi-
fied four similarly configured clusters in both Japan and
Germany (Fig. 1 and Supplementary Fig. 3). Participants in
cluster 1 had the highest levels of liver fat as well as some-
what high levels of visceral fat, so cluster 1 was called the
hepatic steatosis cluster. Participants in cluster 2 had the
highest levels of pancreas fat, as well as somewhat high lev-
els of visceral fat and muscle fat, so cluster 2 was called
the pancreatic steatosis cluster. Participants in cluster 3
had high levels of muscle fat, so cluster 3 was called the
trunk myosteatosis cluster. Participants in cluster 4 had
low levels of fat in all compartments, so cluster 4 was
called the steatopenia cluster. Details of the clusters are
shown in Supplementary Table 1 and Supplementary Table
2. The stability of each cluster was estimated as its Jaccard
mean, which was $0.8 for all clusters except cluster 2 in
Germany, for which it was 0.64.

Association Between Fat Distribution Clusters and
Incidence of T2D
With the steatopenia cluster as the reference, hazard ra-
tios (HRs) and 95% CIs for the association of the other
three clusters with incidence of T2D are shown in Table 2.
In the unadjusted analysis, HRs for T2D incidence in all
three clusters were greater than the reference value of 1.
After adjustment for age, sex, alcohol intake, current smok-
ing, and muscle area, the associations of steatosis with
T2D were still substantial for all three clusters. After fur-
ther adjustment for BMI, the effect sizes were smaller, but
the HRs for T2D incidence in both the hepatic steatosis
cluster and the pancreatic steatosis cluster were still greater
than the reference value of 1 (P < 0.001 and P 5 0.016,
respectively). Results of pairwise comparisons are shown in
Supplementary Table 3.

Pairwise Interactions of Fat Compartments Regarding
T2D Risk
Three interactions were found (Supplementary Table 4),
and all three involved pancreas fat: visceral fat and pan-
creas fat (P for interaction 5 0.004), liver fat and
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pancreas fat (P for interaction 5 0.055), and muscle fat
and pancreas fat (P for interaction 5 0.001).

Differences in Glycemic Traits Across Fat Distribution
Clusters
With the steatopenia cluster as the reference, glycemic
traits of the other three fat distribution clusters are
shown in Table 3. Participants who were in the hepatic
steatosis cluster had the highest glycemia (P < 0.001)
and the lowest insulin sensitivity (P < 0.001). Compared
with the participants in the steatopenia cluster, those in
the pancreatic steatosis cluster had higher glycemia (P <

0.001), lower insulin sensitivity (P < 0.001), and the low-
est insulin secretion with adjustment for insulin sensitiv-
ity (P 5 0.081). Among those in the trunk myosteatosis
cluster, glycemia was high (P < 0.001), insulin sensitivity
was low (P < 0.001), and insulin secretion adjusted for

insulin sensitivity was low (P 5 0.081). Results of pair-
wise comparisons are shown in Supplementary Table 5.

Pairwise Interactions of Fat Compartments Regarding
Glycemia
Five interactions were found (Supplementary Table 6).
P values for all five interactions were <0.01. The only in-
teraction term that was not significantly different from
zero was the term for the interaction between liver fat
and muscle fat (P for interaction 5 0.34).

Association of Single Fat Compartments With Insulin
and With Aerobic Capacity
All four fat compartments were associated with insulin
sensitivity (Supplementary Table 7) (P < 0.001), with the
largest effect size observed for visceral fat. Only pancreas
fat was associated with lower insulin secretion adjusted

Table 1—Baseline characteristics
Japan

Germany, total (n 5 319)Noncase subjects (n 5 608) Case subjects (n 5 146) P

Age (years) 51 (43–59) 54 (47–59) 0.009 44 (34–60)

Male, n (%) 440 (72.4) 128 (87.7) <0.001 87 (27.3%)

BMI (kg/m2) 23.5 (21.6–25.8) 25.7 (23.6–28.7) <0.001 27.0 (23.0–31.5)

CT-based indicators
Liver fat (HU) 65.1 (60.4–68.4) 59.7 (49.4–65.2) <0.001 N/A
Pancreas fat (HU) 48.8 (43.4–52.3) 44.6 (39.1–48.5) <0.001 N/A
Muscle fat (HU) 40.8 (36.1–44.9) 39.3 (35.9–42.7) 0.009 N/A
Visceral fat (cm2) 86.3 (37.7–142.5) 156.1 (109.6–206.0) <0.001 N/A
Muscle area (cm2) 142.8 (110.5–161.6) 158.2 (138.8–174.8) <0.001 N/A

MRI-based indicators
Liver fat (%) N/A N/A 2.2 (0.8–5.8)
Pancreas fat (%) N/A N/A 3.5 (1.9–6.3)
Muscle fat (%) N/A N/A 7.1 (5.8–8.6)
Visceral fat (L) N/A N/A 2.6 (1.5–4.4)
Muscle area (cm2) N/A N/A 134.9 (123.1–158.7)

Fasting plasma glucose (mg/dL) 90.0 (84.0–95.0) 106.0 (97.0–113.0) <0.001 91.8 (84.6–97.2)

Fasting plasma glucose (mmol/L) 5.0 (4.7–5.3) 5.9 (5.4–6.3) <0.001 5.1 (4.7–5.4)

HbA1c (%) 5.3 (5.1–5.4) 5.8 (5.5–6.0) <0.001 5.5 (5.3–5.8)

HbA1c (mmol/mol) 34 (32–36) 40 (37–42) <0.001 37 (34–40)

Triglycerides (mg/dL) 92.0 (64.5–132.5) 122.5 (87.0–190.0) <0.001 91.0 (65.0–123.0)

HDL cholesterol (mg/dL) 57.0 (48.0–67.0) 51.0 (44.0–59.0) <0.001 54.0 (46.0–66.0)

LDL cholesterol (mg/dL) 120.0 (102.0–140.5) 130.0 (102.0–153.0) 0.025 115.0 (97.0–142.0)

Systolic blood pressure (mmHg) 120.0 (110.0–130.0) 125.0 (120.0–136.0) <0.001 130.0 (118.0–141.0)

Diastolic blood pressure (mmHg) 76.0 (70.0–81.0) 80.0 (72.0–88.0) <0.001 84.0 (77.0–92.0)

Current smoker, n (%) 176 (28.9) 53 (36.3) 0.089 22 (7.2)

Alcohol intake, n (%) 213 (35.0) 51 (34.9) 1.00 14 (4.6)

Family history of diabetes, n (%) 120 (19.7) 36 (24.7) 0.21 180 (56.4)

Antihypertensive drug, n (%) 82 (13.5) 47 (32.2) <0.001 18 (5.6)

Lipid-lowering drug, n (%) 67 (11.0) 23 (15.8) 0.12 7 (2.2)

Continuous data are expressed as median (interquartile range). Fisher exact test and Wilcoxon rank sum tests were used to compare
noncase subjects with case subjects in Japan. Missing data: muscle volume (n 5 9), systolic blood pressure (n 5 1), diastolic blood
pressure (n 5 1), current smoker (n 5 14), alcohol intake (n 5 13). N/A, not applicable.
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for insulin sensitivity (P 5 0.016). All four fat compart-
ments were associated with lower aerobic capacity, with
the largest effect size observed for muscle fat.

DISCUSSION

Individuals without diabetes had a highly heterogenous
distribution of fat in the liver, pancreas, skeletal muscle,

and visceral areas. Independently applying data-driven par-
titioning procedures to two cohorts, we identified four pat-
terns (four clusters) of fat distribution: a hepatic steatosis
cluster, a pancreatic steatosis cluster, a trunk myosteatosis
cluster, and a steatopenia cluster. An individual’s risk of
T2D was associated with a specific pattern of fat distribu-
tion. Compared with the individuals who had low levels of
fat in all areas studied (i.e., those in the steatopenia

Figure 1—k-means clustering of fat distribution. Distributions of visceral fat, liver fat, pancreas fat, and muscle fat are shown. k-means
clustering resulted in four clusters: a hepatic steatosis cluster (cluster 1), a pancreatic steatosis cluster (cluster 2), a trunk myosteatosis
cluster (cluster 3), and a steatopenia cluster (cluster 4).
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cluster), those in the other three clusters were at a greater
risk of incident T2D. The distribution of T2D risk among
clusters in one cohort was similar to the distribution
of glycemia among clusters in the other cohort. Insulin
sensitivity and insulin secretion differed across clusters,
which indicates the pathophysiologic contributions of
each fat distribution pattern to T2D risk (Supplementary
Fig. 4).

Our results are consistent with those of previous stud-
ies: individuals with a high amount of visceral fat and
liver fat had a high risk of T2D. Both visceral fat at base-
line and its increase over time were strongly linked to
high incidence of T2D (3). In a meta-analysis, liver fat
was found to be associated with a twofold higher risk of

T2D (12). The underlying mechanism most likely involves
hepatic and whole-body insulin resistance, by direct ef-
fects on hepatocytes and/or by effects on remote organs
mediated by hepatokines (37,38). Our present study con-
firmed the well-established associations of visceral fat and
liver fat with insulin resistance.

Two longitudinal studies detected associations of pan-
creas fat accumulation with increased risk of T2D (7,18).
The underlying mechanism is thought to be unfavorable
effects of this local fat accumulation on pancreatic insulin
secretion (8,14). However, pancreas fat is not always det-
rimental for insulin secretion. In previous MRI and patho-
logical studies, the association between pancreas fat and
insulin secretion impairment was found in individuals

Table 2—HRs and 95% CIs for the association between grouping in a fat distribution cluster at baseline and incidence of
diabetes, from the case-cohort study in Japan (n 5 754)

Cluster 1: hepatic
steatosis

Cluster 2: pancreatic
steatosis

Cluster 3: trunk
myosteatosis

Cluster 4:
steatopenia

Subcohort 118 (17.9) 62 (9.4) 224 (34.0) 254 (38.6)

Cases of type 2 diabetes* 56 (38.4) 23 (15.8) 44 (30.1) 23 (15.8)

Unadjusted analysis 5.49 (3.25–9.27), <0.001 5.15 (2.73–9.71), <0.001 2.36 (1.38–4.01), 0.002 1.00 (reference)

Age- and sex-adjusted analysis 5.15 (3.02–8.79), <0.001 3.74 (1.85–7.57), <0.001 1.98 (1.09–3.58), 0.024 1.00 (reference)

Multivariable-adjusted model 1 4.02 (2.27–7.12), <0.001 3.38 (1.65–6.91), 0.001 1.95 (1.07–3.54), 0.029 1.00 (reference)

Multivariable-adjusted model 2 3.23 (1.69–6.15), <0.001 2.65 (1.20–5.87), 0.016 1.76 (0.96–3.24), 0.068 1.00 (reference)

Multivariable-adjusted model 3 3.23 (1.62–6.44), 0.001 2.52 (1.12–5.67), 0.026 1.65 (0.88–3.10), 0.12 1.00 (reference)

Data are n (%) or HR (95% CI), P value. Weighted Cox regression analyses were conducted for estimation of the HRs, 95% CIs, and
P values. Model 1: adjustment for age, sex, alcohol intake, current smoking, and muscle area. Model 2: adjustment for age, sex,
alcohol intake, current smoking, muscle area, and BMI. Model 3: adjustment for age, sex, alcohol intake, current smoking, muscle area,
BMI, systolic blood pressure, diastolic blood pressure, triglycerides, HDL cholesterol, LDL cholesterol, antihypertensive drugs, and lipid-
lowering drugs. *Includes case subjects within and outside of the randomly selected subcohort.

Table 3—Glycemia, insulin sensitivity, and insulin secretion based on results of 75-g oral glucose tolerance tests, across fat
distribution clusters in Germany (n 5 319)

Cluster 1: hepatic
steatosis (n 5 39)

Cluster 2: pancreatic
steatosis (n 5 21)

Cluster 3: trunk
myosteatosis (n 5 103)

Cluster 4: steatopenia
(n 5 156)

Glycemia
AUC Glucose0–120 1,038.9 (969.4–1,108.4) 980.7 (905.1–1056.4) 956.5 (920.7–992.3) 806.7 (777.3–836.1)
P <0.001 <0.001 <0.001 Reference

Insulin sensitivity
NEFA-ISI 2.1 (1.9–2.3) 3.0 (2.3–3.8) 3.4 (3.1–3.6) 5.5 (5.2–5.8)
P <0.001 <0.001 <0.001 Reference

Insulin secretion
AUC C-peptide0–30/AUC Glucose0–30 215.8 (194.4–237.2) 169.2 (138.2–200.1) 170.3 (158.2–182.5) 145.7 (137.1–154.2)
P <0.001 0.12 <0.001 Reference

Sensitivity-adjusted insulin secretion
AUC C-peptide0–30/AUC Glucose0–30

residuals
9.7 (�9.1 to 28.5) �15.2 (�37.2 to 6.8) �5.9 (�16.8 to 5.1) 3.2 (�4.8 to 11.2)

P 0.57 0.081 0.081 Reference

Means and 95% CIs are shown. The unit of measure for AUC Glucose0–120 is mmol * min/mL. Insulin sensitivity and secretion are
in arbitrary units. P values were calculated from Wilcoxon rank sum tests comparing the steatopenia cluster with the other clusters.
To estimate insulin secretion adjusted for insulin sensitivity, we calculated AUC C-peptide0–30/AUC Glucose0–30 residuals from the
regression of AUC C-peptide0–30/AUC Glucose0–30 on NEFA-ISI and its quadratic term. Missing data: insulin sensitivity (n 5 3), insulin
secretion (n 5 4), sensitivity-adjusted insulin secretion (n 5 7).
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with high genetic risk for diabetes but not in those with
low genetic risk. Especially, the genetic risk related to in-
sulin resistance and liver lipid metabolism modulated the
relationship between pancreas fat and insulin secretion
(17). All of these findings show how the effect of pancreas
fat on T2D can be modified by many factors, including ge-
netic risk, metabolic state, and other interacting fat com-
partments (7,8). Coculture models suggest the presence
of a complex organ-organ cross talk modulating insulin
secretion (16,39). k-means clustering revealed a fat distri-
bution pattern that might fuel such a detrimental interor-
gan cross talk. Specifically, individuals in the pancreatic
steatosis cluster had lower insulin secretion than expected
for their degree of insulin resistance. The hypothesis that
pancreatic fat exerts its detrimental effects in combina-
tion with other factors is further supported by interac-
tions between fat in the pancreas and in the other tested
compartments in terms of glycemia and diabetes risk.

One interesting finding of our current analysis is the
contribution of muscle fat to the fat distribution patterns
that are associated with T2D risk. The relations among
muscle fat accumulation, insulin resistance, and T2D are
complex (40). While findings of several cross-sectional
analyses suggested that muscle fat can be a risk factor for
insulin resistance and T2D (9,10,13), it is well-known
that fat also accumulates in the muscle of athletes who
are very insulin sensitive (13,40). Most prior studies eval-
uated muscle fat in the lower extremities, but here we
quantified fat in trunk muscle (41). In concert with fat at
other locations, fat in trunk muscle appears to link to
T2D risk via muscle and systemic insulin resistance (13).
In a few previous studies investigators have already looked
at lower-extremity muscle fat when analyzing body fat dis-
tribution patterns and T2D. Miljkovic et al. (10) simulta-
neously evaluated liver fat, muscle fat, and visceral fat in
nonobese individuals. They showed that liver fat and mus-
cle fat were associated with concurrent T2D. Unlike in the
current study, in that study incident T2D was not evaluated
and pancreas fat was not measured. In another recent
study (42), subgroups defined by fat accumulation were
identified and were found to be associated with T2D, but
that study was also cross-sectional and pancreas fat was
not evaluated.

Besides comprehensively investigating multiple fat com-
partments that are known to affect T2D pathogenesis, we
aimed to address organ-organ interplay with our clustering
approach (16,39). This approach bore fruit, with the find-
ing of interactions between fat compartments for glycemia
and T2D risk. Furthermore, the clusters identified in this
study had specific constellations of fat distribution and
were strongly linked to T2D risk, likely via differences in
insulin sensitivity and insulin secretion. Further studies are
warranted to uncover the detailed mechanisms of interplay
among fat in different locations.

One limitation of this study is the fact that the cohorts
were not population based, so they might not reflect the

general population. Moreover, we cannot exclude that fat
accumulation in the analyzed trunk muscle behaves differ-
ently compared with other muscle compartments. Further-
more, there was some loss to follow-up, with a follow-up
rate of 85% in Japan.

In conclusion, using information on patterns of fat dis-
tribution, we identified four distinct groups of individuals.
Of note, the pattern of fat distribution was strongly asso-
ciated with insulin sensitivity, with insulin secretion, and
with the likelihood of future T2D. Unlike separately inves-
tigating fat in each location, this new approach provides
information on the interplay of excess fat in different lo-
cations. Our findings underline the importance of body
fat distribution rather than general adiposity. They can
provide a basis for more individualized approaches to pre-
venting and treating T2D.
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