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Abstract

We consider two variations on the Mandelbrot fractal percolation
model. In the k-fractal percolation model, the d-dimensional unit cube
is divided in Nd equal subcubes, k of which are retained while the oth-
ers are discarded. The procedure is then iterated inside the retained
cubes at all smaller scales. We show that the (properly rescaled) perco-
lation critical value of this model converges to the critical value of ordi-
nary site percolation on a particular d-dimensional lattice as N →∞.
This is analogous to the result of Falconer and Grimmett in [8] that
the critical value for Mandelbrot fractal percolation converges to the
critical value of site percolation on the same d-dimensional lattice.

In the fat fractal percolation model, subcubes are retained with
probability pn at step n of the construction, where (pn)n≥1 is a non-
decreasing sequence with

∏∞
n=1 pn > 0. The Lebesgue measure of the

limit set is positive a.s. given non-extinction. We prove that either the
set of connected components larger than one point has Lebesgue mea-
sure zero a.s. or its complement in the limit set has Lebesgue measure
zero a.s.
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1 Introduction

In [11] Mandelbrot introduced the following fractal percolation model. Let
N ≥ 2, d ≥ 2 be integers and consider the unit cube [0, 1]d. Divide the unit
cube into Nd subcubes of side length 1/N . Each subcube is retained with
probability p and discarded with probability 1 − p, independently of other
subcubes. The closure of the union of the retained subcubes forms a random
subset D1

p of [0, 1]d. Next, each retained subcube in D1
p is divided into Nd

cubes of side length 1/N2. Again, each smaller subcube is retained with
probability p and discarded with probability 1 − p, independently of other
cubes. We obtain a new random set D2

p ⊂ D1
p. Iterating this procedure

in every retained cube at every smaller scale yields an infinite decreasing
sequence of random subsets D1

p ⊃ D2
p ⊃ D3

p ⊃ · · · of [0, 1]d. We define the
limit set Dp :=

⋂∞
n=1D

n
p . We will refer to this model as the Mandelbrot

fractal percolation (MFP) model with parameter p.
It is easy to extend and generalize the classical Mandelbrot model in

ways that preserve at least a certain amount of statistical self-similarity
and generate random fractal sets. It is interesting to study such models to
obtain a better understanding of general fractal percolation processes and
explore possible new features that are not present in the MFP model. In this
paper we are concerned with two natural extensions which have previously
appeared in the literature, as we mention below. We will next introduce the
models and state our main results.

1.1 k-fractal percolation

Let N ≥ 2 be an integer and divide the unit cube [0, 1]d, d ≥ 2, into
Nd subcubes of side length 1/N . Fix an integer 0 < k ≤ Nd and re-
tain k subcubes in a uniform way, that is, all configurations where k cubes
are retained have equal probability, other configurations have probability
0. Let D1

k denote the random set which is obtained by taking the closure
of the union of all retained cubes. Iterating the described procedure in re-
tained cubes and on all smaller scales yields a decreasing sequence of random
sets D1

k ⊃ D2
k ⊃ D3

k ⊃ · · · . We are mainly interested in the connectivity
properties of the limiting set Dk :=

⋂∞
n=1D

n
k . This model was called the

micro-canonical fractal percolation process by Lincoln Chayes in [5] and both
correlated fractal percolation and k out of Nd fractal percolation by Dekking
and Don [7]. We will adopt the terms k-fractal percolation and k-model.

For F ⊂ [0, 1]d, we say that the unit cube is crossed by F if there exists
a connected component of F which intersects both {0}× [0, 1]d−1 and {1}×
[0, 1]d−1. Define θ(k,N, d) as the probability that [0, 1]d is crossed by Dk.
Similarly, σ(p,N, d) denotes the probability that [0, 1]d is crossed by Dp.
Let us define the critical probability pc(N, d) for the MFP model and the
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critical threshold value kc(N, d) for the k-model by

pc(N, d) := inf{p : σ(p,N, d) > 0}, kc(N, d) := min{k : θ(k,N, d) > 0}.

Let Ld be the d-dimensional lattice with vertex set Zd and with edge set
given by the adjacency relation: (x1, . . . , xd) = x ∼ y = (y1, . . . , yd) if and
only if x 6= y, |xi−yi| ≤ 1 for all i and xi = yi for at least one value of i. Let
pc(d) denote the critical probability for site percolation on Ld. It is known
(see [8]) that pc(N, d)→ pc(d) as N →∞. We have the following analogous
result for the k-model.

Theorem 1.1. For all d ≥ 2, we have that

lim
N→∞

kc(N, d)

Nd
= pc(d).

Remark 1.2. Note that the choice for the unit cube in the definitions of
θ(k,N, d) and σ(p,N, d) (and thus implicitly also in the definitions of kc(N, d)
and pc(N, d)) is rather arbitrary: We could define them in terms of crossings
of other shapes such as annuli, for example, and obtain the same conclu-
sion, i.e. kc(N, d)/Nd → pc(d) as N →∞, where θ(k,N, d) and kc(N, d) are
defined using the probability that Dk crosses an annulus. One advantage of
using annuli is that the percolation function σ(p,N, d) is known to have a
discontinuity at pc(N, d) for all N, d and any choice of annulus [2, Corollary
2.6]. (This is known to be the case also when pc(N, d) is defined using the
unit cube if d = 2 [3, 6], but for d ≥ 3 it is proven only for N sufficiently
large [1].) In the present paper we stick to the “traditional” choice of the
unit cube.

Remark 1.3. For the MFP model it is the case that, for p > pc(d),

σ(p,N, d)→ 1, (1)

as N → ∞. This is part (b) of Theorem 2 in [8]. During the course of
the proof of Theorem 1.1 we will prove a similar result for the k-model, see
Theorem 3.2.

Next, consider the following generalization of both the k-model and the
MFP model. Let d ≥ 2, N ≥ 2 be integers and let Y = Y (N, d) be a
random variable taking values in {0, . . . , Nd}. Divide the unit cube into
Nd smaller cubes of side length 1/N . Draw a realization y according to Y
and retain y cubes uniformly. Let D1

Y denote the closure of the union of
the retained cubes. Next, every retained cube is divided into Nd smaller
subcubes of side length 1/N2. Then, for every subcube C in D1

Y (where
we slightly abuse notation by viewing D1

Y as the set of retained cubes in
the first iteration step) draw a new (independent) realization y(C) of Y and
retain y(C) subcubes in C uniformly, independently of all other subcubes.
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Denote the closure of the union of retained subcubes by D2
Y . Repeat this

procedure in every retained subcube at every smaller scale and define the
limit set DY :=

⋂∞
n=1D

n
Y . We will call this model the generalized fractal

percolation model (GFP model) with generator Y . Define φ(Y,N, d) as the
probability of the event that [0, 1]d is crossed by DY .

By taking Y equal to an integer k, resp. to a binomially distributed
random variable with parameters Nd and p, we obtain the k-model, resp. the
MFP model with parameter p. If Y is stochastically dominated by a binomial
random variable with parameters Nd and p, where p < pc(N, d), then by
standard coupling techniques it follows that φ(Y,N, d) = 0. Likewise, if
Y (N, d) dominates a binomial random variable with parameters Nd and
p, where p > pc(d), then φ(Y (N, d), N, d) ≥ σ(p,N, d) → 1 as N → ∞,
as mentioned in Remark 1.3. The following theorem, which generalizes (1),
shows that the latter conclusion still holds if for some p > pc(d), P(Y (N, d) ≥
pNd)→ 1 as N →∞.

Theorem 1.4. Consider the GFP model with generator Y (N, d). Let p >
pc(d). Suppose that P(Y (N, d) ≥ pNd)→ 1 as N →∞. Then

lim
N→∞

φ(Y (N, d), N, d) = 1.

Remark 1.5. Observe that by Chebyshev’s inequality the condition of The-
orem 1.4 is satisfied if, for some p > pc(d), EY (N, d) ≥ pNd for all N ≥ 2
and Var(Y (N, d))/N2d → 0 as N →∞.

Open problem 1.6. It is a natural question to ask whether a “symmetric
version” of Theorem 1.4 is true. That is, if e.g. P(Y (N, d) ≤ pNd) → 1 as
N →∞, for some p < pc(d), implies φ(Y (N, d), N, d)→ 0 as N →∞. The
proof of Theorem 1.4 can not be adapted to this situation.

1.2 Fat fractal percolation

Let (pn)n≥1 be a non-decreasing sequence in (0, 1] such that
∏∞
n=1 pn > 0.

We call fat fractal percolation a model analogous to the MFP model, but
where at every iteration step n a subcube is retained with probability pn and
discarded with probability 1−pn, independently of other subcubes. Iterating
this procedure yields a decreasing sequence of random subsets D1

fat ⊃ D2
fat ⊃

D3
fat ⊃ · · · and we will mainly study connectivity properties of the limit set

Dfat :=
⋂∞
n=1D

n
fat. In [4] it is shown that if pn → 1 and

∏∞
n=1 pn = 0, then

the limit set does not contain a directed crossing from left to right.
For a point x ∈ Dfat, let Cxfat denote its connected component :

Cxfat := {y ∈ Dfat : y connected to x in Dfat}.

We define the set of “dust” points by Dd
fat := {x ∈ Dfat : Cxfat = {x}}.

Define Dc
fat := Dfat \ Dd

fat, which is the union of connected components
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larger than one point. Let λ denote the d-dimensional Lebesgue measure. It
is easy to prove that λ(Dfat) > 0 with positive probability, see Proposition
4.1. Moreover, we can show that the Lebesgue measure of the limit set is
positive a.s. given non-extinction, i.e. Dfat 6= ∅.

Theorem 1.7. We have that λ(Dfat) > 0 a.s. given non-extinction.

It is a natural question to ask whether both Dc
fat and Dd

fat have positive
Lebesgue measure. The following theorem shows that they cannot simulta-
neously have positive Lebesgue measure.

Theorem 1.8. Given non-extinction of the fat fractal process, it is the case
that either

λ(Dd
fat) = 0 and λ(Dc

fat) > 0 a.s. (2)

or
λ(Dd

fat) > 0 and λ(Dc
fat) = 0 a.s. (3)

Part (ii) of the following theorem gives a sufficient condition under which
(2) holds. Furthermore, the theorem shows that the limit set either has an
empty interior a.s. or can be written as the union of finitely many cubes a.s.

Theorem 1.9. We have that

(i) If
∏∞
n=1 p

Ndn

n = 0, then Dfat has an empty interior a.s.;

(ii) If
∏∞
n=1 p

Nn

n > 0, then λ(Dd
fat) = 0 a.s.;

(iii) If
∏∞
n=1 p

Ndn

n > 0, then Dfat can be written as the union of finitely
many cubes a.s.

Open problem 1.10. Part (ii) of Theorem 1.9 shows that if
∏∞
n=1 p

Nn

n > 0,
then (2) holds. However, we do not have an example for which (3) holds,
and we do not know whether (3) is possible at all.

In two dimensions, we have the following characterizations of λ(Dc
fat)

being positive a.s. given non-extinction of the fat fractal process.

Theorem 1.11. Let d = 2. The following statements are equivalent.

(i) λ(Dc
fat) > 0 a.s., given non-extinction of the fat fractal process;

(ii) There exists a set U ⊂ [0, 1]2 with λ(U) > 0 such that for all x, y ∈ U
it is the case that P(x is in the same connected component as y) > 0;

(iii) There exists a set U ⊂ [0, 1]2 with λ(U) = 1 such that for all x, y ∈ U
it is the case that P(x is in the same connected component as y) > 0.

Let us now outline the rest of the paper. The next section will be devoted
to a formal introduction of the fractal percolation processes in the unit cube.
We also define an ordering on the subcubes which will facilitate the proofs
of Theorems 1.1 and 1.4 in Section 3. In Section 4 we prove our results
concerning fat fractal percolation.
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2 Preliminaries

In this section we set up an ordering for the subcubes of the fractal processes
in the unit cube which will turn out to be very useful during the course of
the proofs. We also give a formal probabilistic definition of the different
fractal percolation models. We follow [8] almost verbatim in this section; a
simple reference to [8] would however not be very useful for the reader, so
we repeat some definitions here.

Order Jd := {0, 1, . . . , N − 1}d in some way, say lexicographically by
coordinates. For a positive integer n, write Jd,n := {(i1, . . . , in) : ij ∈
Jd, 1 ≤ j ≤ n} for the set of n-vectors with entries in Jd. Set Jd,0 := {∅}.
With I = (i1, . . . , in) = ((i1,1, . . . , i1,d), . . . , (in,1, . . . , in,d)) we associate the
subcube of [0, 1]d given by

C(I) = c(I) + [0, N−n]d,

where

c(I) =

 n∑
j=1

N−jij,1, . . . ,

n∑
j=1

N−jij,d


and c(∅) is defined to be the origin. Such a cube C(I) is called a level-n cube
and we write |I| = n. A concatenation of I ∈ Jd,n and j ∈ Jd is denoted
by (I, j), which is in Jd,n+1. We define the set of indices for all cubes until
(inclusive) level-n as J (n) := Jd,0 ∪ Jd,1 ∪ · · · ∪ Jd,n and we order them in
the following way. We declare I = (i1, . . . , ia) < I′ = (i′1, . . . , i

′
b) if and only

if

• either ir < i′r (according to the order on Jd) where r ≤ min{a, b} is
the smallest index so that ir 6= i′r holds;

• or a > b and ir = i′r for r = 1, . . . , b.

To clarify this ordering we give a short example, see Figure 1. Suppose
N = 2, d = 2 and J2 is ordered by (1, 1) > (1, 0) > (0, 1) > (0, 0), then the
ordering of J (2) starts with

∅ > ((1, 1)) > ((1, 1), (1, 1)) > ((1, 1), (1, 0))

> ((1, 1), (0, 1)) > ((1, 1), (0, 0)) > ((1, 0)) > . . .

We introduce the following formal probabilistic definition of the fractal
percolation models. As noted before, the k-model and MFP model can be
obtained from the GFP model with generator Y by setting Y ≡ k, resp.
Y binomially distributed with parameters Nd and p ∈ [0, 1]. Therefore, we
only provide a formal probabilistic definition of the GFP model and the fat
fractal percolation model. Define the index set J :=

⋃∞
n=0 J

d,n. We define
a family of random variables {Zmodel(I)}, where I ∈ J and – here as well as
in the rest of the section – “model” stands for either p, fat, k or Y .
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C((1,1),(1,0))

C((1,1),(0,1)) C((1,1),(1,1))

C((1,0),(1,1))

C((1,0),(1,1))C((1,0),(0,0))

C((1,1),(0,0))

3

2

7

12

17

4

5

6

9111

C((1,0),(0,1))

10 8

C((0,1))

C((0,0))

Figure 1: Illustration of the ordering of subcubes in J (2), for N = 2 and d =
2. A black dot denotes the corner point c(I) of a subcube C(I). The number
in the lower left corner of a subcube indicates the rank of the subcube in
the ordering: e.g. the unit cube, i.e. C(∅), has rank 1 and C((0, 0)) has rank
17.

1. GFP model with generator Y : For every I ∈ J , let y(I) denote a
realization of Y , independently of other I′. We define J(I) as a uniform
choice of y(I) different indices of Jd, independently of other J(I′). For
j ∈ Jd define

ZY (I, j) =

{
1, j ∈ J(I),
0, otherwise.

2. Fat fractal percolation with parameters (pn)n≥1: For every I ∈ J and
j ∈ Jd, let n = |I| and define

Zfat(I, j) =

{
1, with probability pn+1,
0, with probability 1− pn+1,

independently of all other Zfat(I
′).

For each I ∈ J we define the indicator function 1model(I) by

1model(∅) = 1, 1model(I) = Zmodel(i1)Zmodel(i1, i2) · · ·Zmodel(I),

where I = (i1, i2, . . . , in) ∈ Jd,n. We retain the subcube C(I) if 1model(I) =
1 and we write Dn

model for the set of retained level-n cubes. Note that
D1

model, D
2
model, . . . correspond to the sets informally constructed in the intro-

duction. We denote by Pmodel the distribution of the corresponding model
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on Ω = {0, 1}C , where C := {C(I) : I ∈ J } denotes the collection of all
subcubes, endowed with the usual sigma algebra generated by the cylinder
events. To simplify the notation, we will drop the subscripts fat, k, p, Y when
there is no danger of confusion.

3 Proofs of the k-fractal results

In this section we prove Theorem 1.1 and Theorem 1.4. The proof of Theo-
rem 1.1 is divided in two parts. First we treat the subcritical case and show
that lim infN→∞ kc(N, d)/Nd ≥ pc(d).

Theorem 3.1. Consider the k-model. We have

lim inf
N→∞

kc(N, d)/Nd ≥ pc(d).

In the supercritical case, we prove that the crossing probability converges
to 1 as N →∞. Again, for future reference we state this as a theorem.

Theorem 3.2. Let p > pc(d) and let (k(N))N≥2 be a sequence of integers
such that k(N)/Nd ≥ p, for all N ≥ 2. We have

lim
N→∞

θ(k(N), N, d) = 1.

Theorem 1.1 follows immediately from these two theorems.
We prove Theorems 3.1 and 3.2 in Sections 3.1 and 3.2, respectively. In

Section 3.3 we prove Theorem 1.4, using the idea of the proof of Theorem
3.1 and the result of Theorem 3.2.

3.1 Proof of Theorem 3.1

Let p < pc(d) and consider a sequence (k(N))N≥2 such that k(N)/Nd ≤ p,
for all N ≥ 2, and k(N)/Nd → p as N → ∞. Our goal is to show that
the probability that the unit cube is crossed by Dk(N), is equal to zero for
all N large enough. Let N ≥ 2 and let Dp0 be the limit set of an MFP
process with parameters p0 and N , where p < p0 < pc(d). First, part (a) of
Theorem 2 in [8] states that

pc(d) ≤ pc(N, d), (4)

for all N . Hence, the MFP process with parameter p0 < pc(d) is subcriti-
cal. Therefore, a natural approach to prove that the probability that Dk(N)

crosses the unit cube equals zero for N large enough would be to couple
the limit set Dk(N) to the limit set Dp0 in such a way that Dk(N) ⊂ Dp0 .
However, a “direct” coupling between the limit sets Dk(N) and Dp0 is not
possible, since with fixed positive probability at each iteration of the MFP
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process the number of retained subcubes is less than k(N). We therefore
need to find a more refined coupling.

The following is an informal strategy of the proof. We will define an
event E on which the MFP process contains an infinite tree of retained
subcubes, such that each subcube in this tree contains at least k(N) retained
subcubes in the tree. Next, we perform a construction of two auxiliary
random subsets of the unit cube, from which it will follow that the law of
Dk(N) is stochastically dominated by the conditional law of Dp0 , conditioned

on the event E. In particular, the probability that Dk(N) crosses [0, 1]d is
less than or equal to the conditional probability that Dp0 crosses the unit
cube, given E. The latter probability is zero for N large enough, since the
event E has positive probability for N large enough and the MFP process
is subcritical.

Let us start by defining the event E. Consider an MFP process with
parameters p0 and N . For notational convenience we call the unit cube
the level-0 cube. A level-n cube, n ≥ 0, is declared 0-good if it is retained
and contains at least k(N) retained level-(n + 1) subcubes. (We adopt the
convention that [0, 1]d is automatically retained.) Recursively, we define the
notion m-good, for m ≥ 0. A level-n cube, for n ≥ 0, is (m+ 1)-good if it is
retained and contains at least k(N) m-good subcubes. We say that the unit
cube is ∞-good if it is m-good for every m ≥ 0. Define the following events

Em := {[0, 1]d is m-good},
E := {[0, 1]d is ∞-good}. (5)

The following lemma states that we can make the probability of E arbi-
trary close to 1, for N large enough. In particular, E has positive probability
for large enough N , which will be sufficient for the proof of Theorem 3.1.

Lemma 3.3. Let p0 < pc(d). Let (k(N))N≥2 be a sequence of integers satis-
fying lim supN→∞ k(N)/Nd < p0. Consider an MFP model with parameters
p0 and N . For all ε > 0 there exists N0 such that Pp0(E) > 1 − ε for all
N ≥ N0.

Proof. Let δ > 0 and N0 be such that k(N)/Nd ≤ p0 − 2δ =: p for all
N ≥ N0. Choose N1 ≥ N0 so large that p0/(4δ

2Nd) < δ for N ≥ N1. We
will show that

Pp0(Em) ≥ 1− 1

4δ2Nd
, (6)

for all m ≥ 0 and N ≥ N1. Since Em decreases to E as m → ∞, it follows
that

Pp0(E) = lim
m→∞

Pp0(Em) ≥ 1− 1

4δ2Nd
,

for N ≥ N1. Now take N2 ≥ N1 so large that 1 − 1
4δ2Nd > 1 − ε for all

N ≥ N2. It remains to show (6).
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We prove (6) by induction on m. Consider the event E0, i.e. the event
that the unit cube contains at least k(N) retained level-1 subcubes. Let
X(n, p) denote a binomially distributed random variable with parameters
n ∈ N and p ∈ [0, 1]. Since the number of retained level-1 cubes has a bino-
mial distribution with parameters Nd and p0, it follows from Chebyshev’s
inequality that, for every N ≥ N1, we have (writing P for the probability
measure governing the binomially distributed random variables)

Pp0(E0) = P(X(Nd, p0) ≥ k(N))

≥ P(X(Nd, p0) ≥ pNd)

≥ 1− VarX(Nd, p0)

4δ2N2d

= 1− p0(1− p0)Nd

4δ2N2d

≥ 1− 1

4δ2Nd
.

Next, let m ≥ 0 and N ≥ N1 and suppose that (6) holds for this m and
N . Recall that Em+1 is the event that the unit cube contains at least k(N)
m-good level-1 cubes. The probability that a level-1 cube is m-good, given
that it is retained, is equal to Pp0(Em). Using the induction hypothesis, we
get

Pp0(Em+1) = P(X(Nd, p0Pp0(Em)) ≥ k(N))

≥ P(X(Nd, p0(1− 1
4δ2Nd )) ≥ k(N)).

By our choices for δ and N it follows that p0(1 − 1
4δ2Nd ) > p + δ. Hence,

using Chebyshev’s inequality, we get

P(X(Nd, p0(1− 1
4δ2Nd )) ≥ k(N)) ≥ P(X(Nd, p+ δ) ≥ k(N))

≥ P(X(Nd, p+ δ) ≥ pNd)

≥ 1− VarX(Nd, p+ δ)

δ2N2d

≥ 1− 1

4δ2Nd
.

Therefore, the induction step is valid and we have proved (6).

Proof of Theorem 3.1. Let p, p0 be such that p < p0 < pc(d). Let (k(N))N≥2

be a sequence such that k(N)/Nd ≤ p, for all N ≥ 2, and k(N)/Nd → p as
N →∞. Consider an MFP model with parameters p0 and N and define the
event E as in (5). Henceforth, we assume that N is so large that Pp0(E) > 0,
which is possible by Lemma 3.3. In order to prove Theorem 3.1 we will use
E to construct two random subsets, D̃p0 and D̃k(N), of the unit cube, on a
common probability space and with the following properties:
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(i) D̃k(N) ⊂ D̃p0 ;

(ii) the law of D̃p0 is stochastically dominated by the conditional law of
Dp0 , conditioned on the event E;

(iii) the law of D̃k(N) is the same as the law of Dk(N).

It follows that the law of Dk(N) is stochastically dominated by the con-
ditional law of Dp0 , conditioned on the event E. Hence, the probability that
the unit cube is crossed by Dk(N) is at most the conditional probability that
Dp0 crosses the unit cube, conditioned on the event E. By (4) the MFP
process with parameter p0 is subcritical, thus the latter probability equals
zero. Using the fact that k(N)/Nd → p as N →∞, we conclude that

lim inf
N→∞

kc(N, d)

Nd
≥ p.

Since p < pc(d) was arbitrary, we get

lim inf
N→∞

kc(N, d)

Nd
≥ pc(d).

It remains to construct random sets D̃p0 , D̃k(N) with the properties (i)-

(iii). First we construct two sequences (D̃n
p0)n≥1, (D̃

n
k(N))n≥1 of decreasing

random subsets. Let L be the conditional law of the number of ∞-good
level-1 cubes of the MFP process, conditioned on the event E. Note that
the support of L is {k(N), k(N)+1, . . . , Nd}. Furthermore, for a fixed level-
n cube C(I), L is also equal to the conditional law of the number of∞-good
level-(n+ 1) subcubes in C(I), conditioned on C(I) being ∞-good.

Choose an integer l according to L and choose l level-1 cubes uniformly.
Define D̃1

p0 as the closure of the union of these l level-1 cubes. Choose k(N)

out of these l cubes in a uniform way and define D̃1
k(N) as the closure of the

union of these k(N) cubes. For each level-1 cube C(I) ⊂ D̃1
p0 , pick an integer

l(I) according to L, independently of other cubes, and choose l(I) level-2
subcubes of C(I) in a uniform way. Define D̃2

p0 as the closure of the union

of all selected level-2 cubes. For each level-1 cube C(I) ⊂ D̃1
k(N), uniformly

choose k(N) out of the l(I) selected level-2 subcubes. Define D̃2
k(N) as the

closure of the union of the k(N)2 selected level-2 cubes of C(I). Iterating
this procedure yields two infinite decreasing sequences of random subsets
(D̃n

p0)n≥1, (D̃
n
k(N))n≥1.

Now define

D̃p0 :=

∞⋂
n=1

D̃n
p0 , D̃k(N) :=

∞⋂
n=1

D̃n
k(N).
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By construction, for each n ≥ 1, we have that (1) D̃n
k(N) ⊂ D̃

n
p0 , (2) the law

of D̃n
p0 is stochastically dominated by the conditional law of Dn

p0 given E

and (3) the law of D̃n
k(N) is equal to the law of Dn

k(N). It follows that the

limit sets D̃p0 , D̃k(N) satisfy properties (i)-(iii).

3.2 Proof of Theorem 3.2

Let us start by outlining the proof. The first part consists mainly of setting
up the framework, where we use the notation of Falconer and Grimmett [8],
which will enable us in the second part to prove that the subcubes of the
fractal process satisfy certain “good” properties with probability arbitrarily
close to 1 as N →∞. Informally, a subcube is good when there exist many
connections inside the cube between its faces and when it is also connected
to other good subcubes. Therefore, the probability of crossing the unit cube
converges to 1 as N →∞.

Although we will partly follow [8], it does not seem possible to use Theo-
rem 2.2 of [8] directly. First, we state (a slightly adapted version of) Lemma
2 of [8], which concerns site percolation with parameter π on Ld. We let
every vertex of Ld be colored black with probability π and white otherwise,
independently of other vertices. We write Pπ for the ensuing product mea-
sure with density π ∈ [0, 1]. We call a subset C of Ld a black cluster if it is a
maximal connected subset (with respect to the adjacency relation on Ld) of
black vertices. Denote the cube with vertex set {1, 2, . . . , N}d by BN . Let
L be the set of edges of the unit cube [0, 1]d, that is L contains all sets of
the form

Lr(a) = {a1} × {a2} × · · · × {ar−1} × [0, 1]× {ar+1} × · · · × {ad}

as r ranges over {1, . . . , d} and a = (a1, a2, . . . , ad) ranges over {0, 1}d. For
each L = Lr(a) ∈ L we write

LN = {x ∈ BN : xi = max{1, aiN} for 1 ≤ i ≤ d, i 6= r}

for the corresponding edge of BN .

Lemma 3.4. Suppose π > pc(d), ε > 0 and let q be a positive integer.
There exist positive integers u and N1 such that the following holds for all
N ≥ N1. Let U(1), . . . , U(q) be subsets of vertices of BN such that for
each r ∈ {1, . . . , q}, (i) |U(r)| ≥ u and (ii) there exists L ∈ L such that
U(r) ⊂ LN . Then,

Pπ

(
there exists a black cluster CN such that |CN ∩ LN | ≥ u
for all L ∈ L, and |CN ∩ U(r)| ≥ 1, for all r ∈ {1, . . . , q}

)
≥ 1− ε

2
.

(7)
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Our goal is to show that the following holds uniformly in n: With proba-
bility arbitrarily close to 1 as N →∞, there is a sequence of cubes in Dn

k(N),
each with at least one edge in common with the next, which crosses the unit
cube. In order to prove this we examine the cubes C(I), for I ∈ J (n),
in turn according to the ordering on J (n), and declare some of them to
be good according to the rule given below. Since the probabilistic bounds
on the goodness of cubes will hold uniformly in n, the desired conclusion
follows.

Fix integers n, u, k ≥ 1 until Lemma 3.7. For m ≥ 1, identify a level-m
cube with a vertex in BNm ⊂ Ld in the canonical way. A set of level-m
cubes {C(I1), . . . , C(Il)} is called edge-connected if they form a connected
set with respect to the adjacency relation of Ld. Whether a cube C(I),
for I ∈ J (n), is called (n, u)-good or not, is determined by the following
inductive procedure. Let I ∈ J (n), and assume that the goodness of C(I′)
has been decided for all I′ < I. We have the following possibilities:

(a) |I| = n. Then C(I) is always declared (n, u)-good.

(b) 0 ≤ |I| = m < n.

In the latter case we act as follows. Note that the subcubes C(I, j) with
j ∈ Jd have already been examined, since (I, j) < I. Define the following set
of level-(m+ 1) subcubes of C(I),

D(I) := {C(I, j) : j ∈ Jd with C(I, j) (n, u)-good and Zk(I, j) = 1}. (8)

We declare C(I) to be (n, u)-good if there exists an edge-connected set
H(I) ⊂ D(I) such that

(i) Each edge of C(I) intersects at least u cubes of H(I);

(ii) For every (n, u)-good level-m cube C(I′) with I′ < I that has (at least)
one edge in common with C(I), there are a cube of H(I′) and a cube
of H(I) with a common edge.

(If there is more than one candidate for H(I) we use some deterministic rule
to choose one of them.) This procedure determines whether C(I) is (n, u)-
good for each I in turn. Note that it is easier for higher level cubes to be
(n, u)-good than for lower level cubes. In particular, for the unit cube, i.e.
C(∅), it is the hardest to be (n, u)-good.

The next lemma shows that if the unit cube is (n, u)-good then there
is a sequence of cubes in Dn

k , each with at least one edge in common with
the next, which connects the “left-hand side” of [0, 1]d with its “right-hand
side”. If such a sequence of cubes exists in Dn

k we say that percolation occurs
in Dn

k .

Lemma 3.5. Suppose [0, 1]d is (n, u)-good, then percolation occurs in Dn
k .
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Proof. Assume that the unit cube, i.e. C(∅), is (n, u)-good. We will show,
with a recursive argument, that for 1 ≤ m ≤ n there exists an edge-
connected chain of retained (n, u)-good level-m cubes which joins {0} ×
[0, 1]d−1 and {1} × [0, 1]d−1. In particular, this holds for m = n and hence
percolation occurs in Dn

k .
Since the unit cube is assumed to be (n, u)-good, D(∅) contains by defini-

tion an edge-connected subset H(∅) of retained (n, u)-good level-1 subcubes,
such that each edge of C(∅) intersects at least u cubes of H(∅). In particular,
there is a sequence of retained (n, u)-good edge-connected level-1 cubes that
connects the left-hand side of [0, 1]d with its right-hand side.

Let 1 ≤ m < n and assume that there exists an edge-connected chain
C(I1), . . . , C(Il) of retained (n, u)-good level-m cubes which connects the
left-hand side of [0, 1]d with its right-hand side. For each i, 1 ≤ i ≤ l, either
Ii < Ii+1 or Ii+1 < Ii. By condition (ii), there exist level-(m + 1) cubes of
H(Ii+1) which are edge-connected to level-(m + 1) cubes of H(Ii). These
level-(m+ 1) cubes C(J) are all (n, u)-good and have Zk(J) = 1, by (8) and
the definition of the H(I). It follows that there is an edge-connected chain
of retained (n, u)-good level-(m+ 1) cubes C(J) which joins {0} × [0, 1]d−1

and {1} × [0, 1]d−1.

For I ∈ J (n), define the index I− ∈ J (n) by

I− = max{I′ : I′ < I and |I′| ≤ |I|}.

If there is no such index, I− is left undefined. For each I ∈ J (n) we let F(I)
denote the σ-field

F(I) = σ(Zk(I
′, j) : |I′| ≤ n− 1, I′ ≤ I, j ∈ Jd).

If I− is undefined, we take F(I−) to be the trivial σ-field. Note that F(I) is
generated by those Zk that have been examined prior to deciding whether
C(I) is (n, u)-good. In particular, by virtue of the ordering on the cubes
as introduced in Section 2, F(I−) does not contain any information about
subcubes of I.

Let p > pc(d) and let (k(N))N≥2 be a sequence such that k(N)/Nd ≥ p,
for all N ≥ 2. We want to prove that, for every ε > 0, the probability that
[0, 1]d is (n, u)-good in the k(N)-model is at least 1− ε, for N ≥ N0, where
N0 is an integer which has to be taken sufficiently large to satisfy certain
probabilistic bounds but is independent of n.

Let us first give a sketch of the proof. FixN ≥ N0 and consider the k(N)-
model. We use a recursive argument. The smallest level-n cube according to
the ordering on J (n) is by definition (n, u)-good. Let I ∈ J (n) and assume
that Pk(N)(C(I′) is (n, u)-good | F(I′−)) ≥ 1 − ε for all I′ < I. We prove
that, given F(I−), C(I) is (n, u)-good with probability at least 1 − ε. The
proof of this consists of a coupling between a product measure with density
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π ∈ (pc(d), (1 − ε)p) in the box BN and the law of the set of subcubes
C(I, j) of C(I) which are (n, u)-good and satisfy Zk(N)(I, j) = 1. Applying
Lemma 3.4 to the product measure combined with the coupling yields that
the subcubes satisfy properties (i) and (ii) with probability at least 1 − ε.
Therefore, given F(I−), C(I) is (n, u)-good with probability at least 1 − ε.
Iterating this argument then yields that the unit cube is (n, u)-good with
probability at least 1− ε, for N ≥ N0.

The proof in [8] of the analogous result that σ(p,N, d) → 1 as N → ∞
for p > pc(d) is considerably less involved. In the context of [8], subcubes
are retained with probability p independently of other cubes, which is not
the case in k-fractal percolation. Therefore, they can directly show that
there exists π > pc(d) such that, for I ∈ J (n), the law of the set of subcubes
C(I, j) of C(I) which are good and satisfy Zp(I, j) = 1, dominates an i.i.d.
process on the box BN with density π.

We need the following result for binomially distributed random variables,
which we state as a lemma for future reference. Since the result follows easily
from Chebyshev’s inequality, we omit the proof.

Lemma 3.6. Let p > pc(d) and let (k(N))N≥2 be a sequence of integers such
that k(N)/Nd ≥ p for all N ≥ 2. Let ε > 0 be such that (1 − ε)p > pc(d),
let π ∈ (pc(d), (1 − ε)p) and define M := ((1 − ε)p + π)Nd/2. There exists
N2 such that

P({X(k(N), 1− ε) ≥M} ∩ {X ′(Nd, π) ≤M}) ≥ 1− ε/2,

for N ≥ N2, where X and X ′ are independent, binomially distributed ran-
dom variables with the indicated parameters.

We now prove that, for any ε > 0, the unit cube is (n, u)-good with
probability at least 1− ε, for N large enough but independent of n.

Lemma 3.7. Let p > pc(d) and let (k(N))N≥2 be a sequence of integers such
that k(N)/Nd ≥ p, for all N ≥ 2. Let ε > 0 be such that (1 − ε)p > pc(d).
Take π ∈ (pc(d), (1− ε)p) and set q = 3d. Let u and N1 be given by Lemma
3.4. Let N2 be given by Lemma 3.6. Set N0 = max{N1, N2}. Then, for all
n ≥ 1,

Pk(N)([0, 1]d is (n, u)-good) ≥ 1− ε, (9)

for all N ≥ N0.

Proof. Fix N ≥ N0 and n ≥ 1 and consider the k(N)-fractal model. Our
aim is to show that

Pk(N)(C(I) is (n, u)-good | F(I−)) ≥ 1− ε (10)

holds for all I ∈ J (n). Taking I = ∅ then yields (9). We prove this with a
recursive argument. Let I0 be the smallest index in J (n), according to the
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ordering on J (n). By virtue of the ordering, we have |I0| = n. Hence, by
definition, C(I0) is (n, u)-good. In particular, (10) holds for I0.

The recursive step is as follows. Take an index I ∈ J (n) and assume that

Pk(N)(C(I′) is (n, u)-good | F(I′−)) ≥ 1− ε, (11)

has been established for all indices I′ in J (n) less than I. We have to show
that (10) holds for I given this assumption. We have two cases:

(a) |I| = n; then Pk(N)(C(I) is (n, u)-good) = 1 and (10) is true.

(b) 0 ≤ |I| = m < n.

For case (b), given F(I−), the goodness of C(I′) is determined (in par-
ticular) for all I′ < I with |I| = m. Let

Q =

{
I′ : I′ < I and C(I′) is an (n, u)-good level-m

cube with an edge in common with C(I)

}
.

For each I′ ∈ Q, let E(I′) be some common edge of C(I) and C(I′). Since
C(I′) is (n, u)-good, there are at least u level-(m + 1) subcubes in H(I′)
which intersect E(I′); call this set of subcubes U(I′). To see whether C(I) is
(n, u)-good, we look at C(I, j(l)) where j(l), 1 ≤ l ≤ Nd, are the vectors of
Jd arranged in order. We have (I, j(l)) < I, so by the induction hypothesis
(11) we have

Pk(N)(C(I, j(l)) is (n, u)-good | F((I, j(l))−)) ≥ 1− ε, (12)

for all l. Note that F((I, j(1))−) = F(I−).
We identify each subcube of C(I) in the canonical way with a vertex in

BN . We will construct three random subsets G1, G2, G3 of BN on a common
probability space with the following properties:

(I) the law of G1 equals the law of the set of subcubes C(I, j) of C(I)
which are (n, u)-good and satisfy Zk(N)(I, j) = 1;

(II) G2 is obtained by first selecting k(N) vertices of BN uniformly and
then retaining each selected vertex with probability 1 − ε, indepen-
dently of other vertices;

(III) the law of G3 is the Bernoulli product measure with density π on BN ;

(IV) G1 ⊃ G2;

(V) P(G2 ⊃ G3) ≥ 1− ε/2.
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From (12) and a standard coupling technique, sometimes referred to
as sequential coupling (see e.g. [9]), the construction of G1 and G2 with
properties (I), (II) and (IV) is straightforward. The construction of G3

such that properties (III) and (V) hold is given below. Let |G2| denote
the cardinality of the set G2. Define M = ((1 − ε)p + π)Nd/2 and let R
be a number drawn from a binomial distribution with parameters Nd and
π, independently of G1 and G2. If |G2| ≥ M and M ≥ R we select R
vertices uniformly out of the |G2| retained vertices of G2 and call this set
G3. Otherwise, we select, independently of G1 and G2, R vertices of BN
in a uniform way and call this set G3. From the construction (note that
also G2 was obtained in a uniform way) it is clear that G3 satisfies property
(III). Observe that |G2| has a binomial distribution with parameters k(N)
and 1− ε. From Lemma 3.6 it follows that

P({|G2| ≥M} ∩ {R ≤M}) ≥ 1− ε/2.

Hence, property (V) also holds.
Let us now return to the goodness of C(I). As before, we identify the

random subsets G1, G2, G3 of BN with the corresponding sets of subcubes of
C(I) in the canonical way. It then follows from property (III) and Lemma
3.4 (note that Q has cardinality at most 3d = q) that G3 has an edge-
connected subset which satisfies the following properties with probability at
least 1− ε/2:

(i) intersects every edge of C(I) with at least u cubes;

(ii) contains a cube that is edge-connected to a cube of U(I′), for all I′ ∈ Q.

Combining properties (IV), (V) and the previous paragraph we obtain

Pk(N)(C(I) is (n, u)-good | F(I−))

≥ P({G1 ⊃ G3} ∩ {G3 satisfies properties (i) and (ii)})
≥ 1− ε.

Therefore, (10) holds for the index I given that (11) holds for all indices
I′ < I. A recursive use of this argument – recall that (10) is valid for I0 (the
smallest index according to the ordering) – yields that (10) holds for all I.
Taking I = ∅ in (10) proves the lemma.

We are now able to conclude the proof of Theorem 3.2.

Proof of Theorem 3.2. Let p > pc(d) and consider a sequence (k(N))N≥2

such that k(N)/Nd ≥ p, for all N ≥ 2. We get, using both Lemma 3.7 and
Lemma 3.5, that for any ε > 0 such that (1 − ε)p > pc(d), there exists N0,
depending on ε, such that

Pk(N)(percolation in Dn
k(N)) ≥ Pk(N)([0, 1]d is (n, u)-good) ≥ 1− ε, (13)
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for N ≥ N0. It is well known (see e.g. [8]) that

{[0, 1]d is crossed by Dk(N)} =

∞⋂
n=1

{percolation in Dn
k(N)}.

Hence, taking the limit n→∞ in (13) yields that for ε > 0 small enough

Pk(N)([0, 1]d is crossed by Dk(N)) ≥ 1− ε, (14)

for N ≥ N0. Therefore,
θ(k(N), N, d)→ 1,

as N →∞.

3.3 Proof of Theorem 1.4

Proof of Theorem 1.4. We use the idea of the proof of Theorem 3.1 and
the result of Theorem 3.2. Fix some p0 such that pc(d) < p0 < p and
set k(N) := bp0N

dc. Consider the event F that in the GFP model with
generator Y = Y (N, d) there exists an infinite tree of retained subcubes
such that each subcube in the tree contains at least k(N) retained subcubes
in the tree. Similar to the proof of Lemma 3.3, we prove that P(F )→ 1 as
N → ∞. We then show that the law of Dk(N) is stochastically dominated
by the conditional law of DY , conditioned on the event F . By Theorem 3.2
we can then conclude that φ(Y (N, d), N, d)→ 1 as N →∞.

Consider the construction of DY . We will use the same definition of m-
good as in Section 3.1, that is, if a level-n cube is retained and contains at
least k(N) retained subcubes, we call this level-n cube 0-good. Recursively,
we say that a level-n cube is (m + 1)-good if it is retained and contains at
least k(N) m-good level-(n+ 1) subcubes. We call the unit cube ∞-good if
it is m-good for every m ≥ 0. Define the following events

Fm := {[0, 1]d is m-good},
F := {[0, 1]d is ∞-good}.

We will show that for every ε > 0 such that (1 − ε)p > p0 there exists
N0 = N0(ε) such that, for all m ≥ 0,

P(Fm) > 1− ε, for all N ≥ N0. (15)

The proof of (15) is similar to the proof of Lemma 3.3. Let ε > 0 be
such that (1− ε)p > p0. Take δ > 0 such that (1− ε)p > p0 + δ. Then, take
N0 so large that

1− 1

4δ2N
> 1− ε/2 and (16)

P(Y ≥ pNd) > 1− ε/2, (17)
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for all N ≥ N0. We prove that (15) holds for this N0 and all m ≥ 0, by
induction on m. Since k(N) = bp0N

dc ≤ pNd it follows from (17) that
P(F0) > 1− ε, for all N ≥ N0.

Next, assume that (15) holds for some m ≥ 0. The probability that a
level-1 cube is m-good, given that it is retained, is equal to P(Fm). It follows
that, given that the number of retained level-1 cubes equals y, the number
of m-good level-1 cubes has a binomial distribution with parameters y and
P(Fm). By our choices for N0 and δ we get

P(Fm+1) =
∑

y≥k(N)

P(X(y,P(Fm)) ≥ k(N))P(Y = y)

≥ P(X(bpNdc,P(Fm)) ≥ p0N
d)P(Y ≥ bpNdc)

≥ P(X(bpNdc, 1− ε) ≥ p0N
d)(1− ε/2)

≥
(

1− VarX(bpNdc, 1− ε)
(p0 − (1− ε)p)2N2d

)
(1− ε/2)

≥
(

1− (1− ε)εpNd

δ2N2d

)
(1− ε/2)

≥
(

1− 1

4δ2Nd

)
(1− ε/2)

≥ (1− ε/2)(1− ε/2) > 1− ε,

for all N ≥ N0. Hence, the induction step is valid.
Analogously to the proof of Theorem 3.1 we use the event F =

⋂∞
m=1 Fm

to construct two random subsets D̃k(N) and D̃Y on a common probability
space, with the following properties:

(i) D̃k(N) ⊂ D̃Y ;

(ii) the law of D̃Y is stochastically dominated by the conditional law of
DY , conditioned on the event F ;

(iii) the law of D̃k(N) is equal to the law of Dk(N).

This construction is the same (modulo replacing the binomial distribution
with Y ) as in the proof of Theorem 3.1 and is therefore omitted.

From properties (i)-(iii) and Theorem 3.2 we get

P([0, 1]d is crossed by DY (N,d)|F )

≥ P([0, 1]d is crossed by D̃Y (N,d))

≥ P([0, 1]d is crossed by D̃k(N))

= P([0, 1]d is crossed by Dk(N))→ 1,

as N →∞. Since (15) implies that P(F )→ 1 as N →∞, we obtain

P([0, 1]d is crossed by DY (N,d))→ 1,

as N →∞.
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4 Proofs of the fat fractal results

In this section we prove our results concerning fat fractal percolation. First,
we state an elementary property of the fat fractal percolation model; it
follows immediately from Fubini’s theorem and we omit the proof.

Proposition 4.1. The expected Lebesgue measure of the limit set of fat
fractal percolation is given by

Eλ(Dfat) =
∞∏
n=1

pn.

4.1 Proof of Theorem 1.7

Since
∏∞
n=1 pn > 0 it follows from Proposition 4.1 that with positive proba-

bility the limit set has positive Lebesgue measure given Dfat 6= ∅. Theorem
1.7 states that the latter holds with probability 1.

Proof of Theorem 1.7. Let Zn denote the number of retained level-n cubes
after iteration step n and set Z0 := 1. Since the retention probabilities pn
vary with n, the process (Zn)n≥1 is a so-called branching process in a time-
varying environment. Following the notation of Lyons in [10] let Ln be a
random variable, having the distribution of Zn given that Zn−1 = 1. Note
that Ln has a binomial distribution with parameters Nd and pn.

Define the process (Wn)n≥1 by

Wn :=
Zn∏n

i=1 piN
d
.

It is straightforward to show that (Wn)n≥1 is a martingale:

E[Wn|Wn−1] =
E[Zn|Zn−1]∏n

i=1 piN
d

=
Zn−1∏n
i=1 piN

d
E[Zn|Zn−1 = 1]

=
Zn−1pnN

d∏n
i=1 piN

d
= Wn−1.

The Martingale Convergence Theorem tells us that Wn converges almost
surely to a random variable W . Theorem 4.14 of [10] states that if

A := sup
n
||Ln||∞ <∞,

then W > 0 a.s. given non-extinction. It is clearly the case that A < ∞,
because Ln can take at most the value Nd. Therefore, Wn converges to a
random variable W which is stricly positive a.s. given non-extinction.
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The Lebesgue measure of the retained cubes at each iteration step n is
equal to Zn/N

dn. We have

λ(Dn
fat) =

Zn
Ndn

=

(∏n
i=1 piN

d
)
Wn

Ndn
=

(
n∏
i=1

pi

)
Wn. (18)

Letting n→∞ in (18) yields λ(Dfat) = (
∏∞
i=1 pi)W . Since

∏∞
i=1 pi > 0 and

W > 0 a.s. given non-extinction, we get the desired result.

4.2 Proof of Theorem 1.8

We start with a heuristic strategy for the proof. For a fixed configuration
ω ∈ Ω, let us call a point x in the unit cube conditionally connected if the
following property holds: If we change ω by retaining all cubes that contain
x, then x is contained in a connected component larger than one point.
We show that for almost all points x it is the case that x is conditionally
connected with probability 0 or 1. We define an ergodic transformation T on
the unit cube. The transformation T enables us to prove that the probability
for a point x to be conditionally connected has the same value for λ-almost
all x. From this we can then conclude that either the set of dust points or
the set of connected components contains all Lebesgue measure.

Proof of Theorem 1.8. First, we have to introduce some notation. Let U
be the collection of points in [0, 1]d not on the boundary of a subcube. For
each x ∈ U there exists a unique sequence (C(x1, . . . ,xn))n≥1 of cubes of the
fractal process, where xj ∈ Jd for all j, such that

⋂
n≥1C(x1, . . . ,xn) = {x}.

Therefore, we can define an invertible transformation φ : U → (Jd)N by
φ(x) = (x1,x2, . . .). For each n ∈ N let µn be the uniform measure on
(Xn,Fn), where Xn = Jd and Fn is the power set of Xn. Let (X,F , µ) =⊗∞

n=1(Xn,Fn, µn) be the product space. Since φ : (U,B(U), λ)→ (X,F , µ)
is an invertible measure-preserving transformation, we have that (X,F , µ)
is by definition isomorphic to (U,B(U), λ). Here B(U) denotes the Borel
σ-algebra.

Next, we define the transformation T : U → U , which will play a crucial
role in the rest of the proof. Define the auxiliary shift transformation T ∗ :
X → X by T ∗((x1,x2,x3, . . .)) = (x2,x3, . . .), for (x1,x2, . . .) ∈ X. The
transformation T ∗ is measure preserving with respect to the measure µ and
also ergodic, see for instance [12]. Let T := φ−1 ◦ T ∗ ◦ φ be the induced
transformation on U and note that T is isomorphic to T ∗ and hence also
ergodic. Informally, T sends a point x ∈ U to the point Tx, in such a way
that the relative position of Tx in the unit cube is the same as the relative
position of x in its level-1 cube C(x1); see Figure 2.

Recall that ω ∈ Ω denotes a particular realization of the fat fractal
percolation process. For x ∈ U , we define the following event.

Ax := {ω : if we set ω(C(x1, . . . ,xn)) = 1 for all n ≥ 1, then Cxfat 6= {x}} .
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x

Tx

Figure 2: Illustration of the transformation T . Note that the relative posi-
tion of x in the level-1 cube is the same as the relative position of Tx in the
unit cube.

In other words, Ax consists of those configurations ω such that when we
change the configuration by retaining all C(x1, . . . ,xn), then in this new
configuration, x is in the same connected component as some y 6= x. Observe
that

Ax ∩ {x ∈ Dfat} = {x ∈ Dc
fat}. (19)

It is easy to see that Ax is a tail event. Hence, by Kolmogorov’s 0-1 law we
get P(Ax) ∈ {0, 1} for all x ∈ U .

However, a priori it is not clear that for almost all x in the unit cube
P(Ax) has the same value. To this end, define the set V := {x ∈ U : P(Ax) =
0}. We will show that λ(V ) ∈ {0, 1}. Recall that the relative position of Tx
in the unit cube is the same as the relative position of x in the level-1 cube
C(x1). It is possible to construct a coupling between the fractal process in
the unit cube and the fractal process in C(x1), given that C(x1) is retained,
with the following property: For every cube C(I) in C(x1), it is the case that
if TC(I) is retained in the fractal process in the unit cube, then C(I) is also
retained in the fractal process in C(x1), given that C(x1) is retained. It is
straightforward that such a coupling exists since the retention probabilities
pn are non-decreasing in n. Hence,

P(ATx) ≤ P(Ax|C(x1) is retained). (20)

Furthermore, since Ax is a tail event, we have

P(Ax) = P(Ax|C(x1) is retained). (21)

It follows from (20) and (21) that P(ATx) ≤ P(Ax) for all x. This implies
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that V ⊂ T−1V . Because T is measure preserving it follows that

λ(V∆T−1V ) = λ(V \ T−1V ) + λ(T−1V \ V ) = 0 + λ(T−1V )− λ(V ) = 0.

Ergodicity of T now yields that λ(V ) ∈ {0, 1}.
Suppose λ(V ) = 0. Then P(x ∈ Dd

fat) = P({x ∈ Dfat} \ Ax) = 0 for
almost all x ∈ [0, 1]d, by (19). Applying Fubini’s theorem gives

Eλ(Dd
fat) =

∫
Ω

∫
[0,1]d

1Dd
fat

(x, ω)dλdP

=

∫
[0,1]d

∫
Ω

1Dd
fat

(x, ω)dPdλ

=

∫
[0,1]d

P(x ∈ Dd
fat)dλ = 0.

Therefore λ(Dd
fat) = 0 a.s. By Theorem 1.7 we have λ(Dc

fat) > 0 a.s. given
non-extinction.

Next suppose that λ(V ) = 1. Then with a similar argument we can show
that λ(Dc

fat) = 0 and λ(Dd
fat) > 0 a.s. given non-extinction.

4.3 Proof of Theorem 1.9

Proof of Theorem 1.9. (i) Suppose that Dfat has a non-empty interior with
positive probability. Then we have

0 < P(Dfat has non-empty interior)

= P(∃n,∃i1, . . . , in : C(i1, . . . , in) ⊂ Dfat)

≤
∑

n,i1,...,in

P(C(i1, . . . , in) ⊂ Dfat).

Since we sum over countably many cubes, there must exist n and i1, . . . , in
such that P(C(i1, . . . , in) ⊂ Dfat) > 0. Hence, by translation invariance,
P(C(i1, . . . , in) ⊂ Dfat) > 0 for this specific n and all i1, . . . , in. We can
apply the FKG inequality to obtain P(Dfat = [0, 1]d) = P(C(i1, . . . , in) ⊂
Dfat ∀i1, . . . , in) > 0. Since P(Dfat = [0, 1]d) =

∏∞
n=1 p

Ndn

n , this proves the
first part of the theorem.

(ii) Suppose
∏∞
n=1 p

Nn

n > 0. Then for each x ∈ [0, 1]d−1 we have
P({x}× [0, 1] ⊂ Dfat) ≥

∏∞
n=1 p

Nn

n > 0. Let λd−1 denote (d−1)-dimensional
Lebesgue measure. Applying Fubini’s theorem gives

Eλd−1({x ∈ [0, 1]d−1 : {x} × [0, 1] ⊂ Dfat})

=

∫
Ω

∫
[0,1]d−1

1{x}×[0,1]⊂Dfat
dλd−1dP

=

∫
[0,1]d−1

∫
Ω

1{x}×[0,1]⊂Dfat
dPdλd−1

=

∫
[0,1]d−1

P({x} × [0, 1] ⊂ Dfat)dλd−1 > 0.

23



Hence,
λd−1({x ∈ [0, 1]d−1 : {x} × [0, 1] ⊂ Dfat}) > 0 (22)

with positive probability. Observe that

Dc
fat ⊃

⋃
x∈[0,1]d−1:{x}×[0,1]⊂Dfat

{x} × [0, 1].

In particular,

λ(Dc
fat) ≥ λd−1({x ∈ [0, 1]d−1 : {x} × [0, 1] ⊂ Dfat}).

From (22) we conclude that λ(Dc
fat) > 0 with positive probability. It now

follows from Theorem 1.8 that the Lebesgue measure of the dust set is 0 a.s.
(iii) Next assume that

∏∞
n=1 p

Ndn

n > 0. For each level n, we have P(Dn
fat =

Dn−1
fat ) ≥ pNdn

n . Since
∏∞
n=1 p

Ndn

n > 0 is equivalent to
∑∞

n=1(1− pNdn

n ) <∞,
we have

∞∑
n=1

P(Dn
fat 6= Dn−1

fat ) ≤
∞∑
n=1

(1− pNdn

n ) <∞.

Applying the Borel-Cantelli lemma gives that, with probability 1, {Dn
fat 6=

Dn−1
fat } occurs for only finitely many n. Hence, with probability 1 there

exists an n such that Dfat can be written as the union of level-n cubes.

4.4 Proof of Theorem 1.11

Proof of Theorem 1.11. (iii)⇒ (ii). Trivial.
(ii) ⇒ (i). Suppose P(x connected to y) > 0 for all x, y ∈ U , for some

set U ⊂ [0, 1]2 with λ(U) > 0. Fix y ∈ U . By Fubini’s theorem

Eλ(Dc
fat) =

∫
Ω

∫
[0,1]2

1Dc
fat

(x, ω)dλ(x)dP(ω)

=

∫
[0,1]2

∫
Ω

1Dc
fat

(x, ω)dP(ω)dλ(x)

=

∫
[0,1]2

P(x ∈ Dc
fat)dλ(x)

≥
∫
U\{y}

P(x connected to y)dλ(x) > 0.

Hence λ(Dc
fat) > 0 with positive probability. By Theorem 1.8 it follows that

λ(Dc
fat) > 0 a.s. given non-extinction of the fat fractal process.
(i) ⇒ (iii). Next suppose that λ(Dc

fat) > 0 a.s. given non-extinction
of the fat fractal process. For points x ∈ [0, 1]2 not on the boundary of
a subcube, define the event Ax as in the proof of Theorem 1.8. It follows
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from the proof of Theorem 1.8 that P(Ax) = 1 for all x ∈ V , for some set
V ⊂ [0, 1]2 with λ(V ) = 1. By (19) we have for all x ∈ V

P(x ∈ Dc
fat) = P(x ∈ Dfat) > 0.

Let x ∈ V . Then

0 < P(x ∈ Dc
fat) ≤

∞∑
n=1

P(diam(Cxfat) >
1
n),

where diam(Cxfat) denotes the diameter of the set Cxfat. So there exists a
natural number nx such that P(diam(Cxfat) >

1
nx

) > 0. Hence

P(x connected to S(x, 1
2nx

)) > 0,

where S(x, 1
2nx

) is a circle centered at x with radius 1
2nx

. Write x = (x1, x2)

and define the following subsets of R2

H1 = [0, 1]× [x2 − 1
4nx

, x2],

H2 = [0, 1]× [x2, x2 + 1
4nx

],

V1 = [x1 − 1
4nx

, x1]× [0, 1],

V2 = [x1, x1 + 1
4nx

]× [0, 1].

Note that for every x ∈ [0, 1]2 it is the case that at least one horizontal strip
Hi and at least one vertical strip Vj is entirely contained in [0, 1]2. Define
the event Γx by

Γx =
⋂

i∈{1,2}:Hi⊂[0,1]2

{horizontal crossing in Hi}

∩
⋂

j∈{1,2}:Vj⊂[0,1]2

{vertical crossing in Vj}.

See Figure 3 for an illustration of the event Γx. From Theorem 2 in [3]
it follows that in the MFP model with parameter p ≥ pc(N, 2), the limit
set Dp connects the left-hand side of [0, 1]2 with its right-hand side with
positive probability. It then follows from the RSW lemma (e.g. Lemma 5.1
in [6]) and the FKG inequality that Pp(Γx) > 0. Let An denote the event
of complete retention until level n, i.e. ω(C(I)) = 1 for all I ∈ J (n−1).
Since

∏∞
n=1 pn > 0 there exists an integer n0 such that pn ≥ pc(N, 2) for all

n ≥ n0. Hence, the probability measure Pfat(·|An0) dominates Ppc(N,2)(·).
Since Pfat(An0) > 0 it follows that Pfat(Γx) > 0.

Observe that for x, y ∈ V

{x connected to y}
⊃ {x connected to S(x, 1

2nx
)} ∩ Γx ∩ {y connected to S(y, 1

2ny
)} ∩ Γy.

Since all four events on the right-hand side are increasing and have positive
probability, we can apply the FKG inequality to conclude that for all x, y ∈
V we have P(x connected to y) > 0.
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Figure 3: Realization of the event Γx.
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