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REVIEW

Fat tissue, aging, and cellular senescence

Tamara Tchkonia,1 Dean E. Morbeck,1 Thomas von
Zglinicki,2 Jan van Deursen,1 Joseph Lustgarten,1

Heidi Scrable,1 Sundeep Khosla,1 Michael D. Jensen1

and James L. Kirkland1

1Robert and Arlene Kogod Center on Aging, Mayo Clinic,

Rochester, MN 55905, USA
2Henry Wellcome Biogerontology Laboratory, Institute for Ageing

and Health, University of Newcastle, Newcastle upon Tyne, UK

Summary

Fat tissue, frequently the largest organ in humans, is at

the nexus of mechanisms involved in longevity and

age-related metabolic dysfunction. Fat distribution and

function change dramatically throughout life. Obesity is

associated with accelerated onset of diseases common in

old age, while fat ablation and certain mutations affect-

ing fat increase life span. Fat cells turn over throughout

the life span. Fat cell progenitors, preadipocytes, are

abundant, closely related to macrophages, and dysdiffer-

entiate in old age, switching into a pro-inflammatory,

tissue-remodeling, senescent-like state. Other mesenchy-

mal progenitors also can acquire a pro-inflammatory,

adipocyte-like phenotype with aging. We propose a

hypothetical model in which cellular stress and preadipo-

cyte overutilization with aging induce cellular senes-

cence, leading to impaired adipogenesis, failure to

sequester lipotoxic fatty acids, inflammatory cytokine

and chemokine generation, and innate and adaptive

immune response activation. These pro-inflammatory

processes may amplify each other and have systemic con-

sequences. This model is consistent with recent concepts

about cellular senescence as a stress-responsive, adaptive

phenotype that develops through multiple stages, includ-

ing major metabolic and secretory readjustments, which

can spread from cell to cell and can occur at any point dur-

ing life. Senescence could be an alternative cell fate that

develops in response to injury or metabolic dysfunction

and might occur in nondividing as well as dividing cells.

Consistent with this, a senescent-like state can develop in

preadipocytes and fat cells from young obese individuals.

Senescent, pro-inflammatory cells in fat could have pro-

found clinical consequences because of the large size of

the fat organ and its central metabolic role.

Key words: aging; cellular senescence; diabetes; fat

tissue; inflammation; obesity; preadipocyte.

Introduction

Fat tissue is at the nexus of mechanisms and pathways involved

in longevity, genesis of age-related diseases, inflammation, and

metabolic dysfunction. Major changes in fat distribution and

function occur throughout life. In old age, these changes are

associated with diabetes, hypertension, cancers, cognitive dys-

function, and atherosclerosis leading to heart attacks and

strokes (Guo et al., 1999; Lutz et al., 2008). Excess or dysfunc-

tional fat tissue appears to accelerate onset of multiple age-

related diseases, while interventions that delay or limit fat tissue

turnover, redistribution, or dysfunction in experimental animals

are associated with enhanced healthspan and maximum life

span. For example, obesity leads to reduced life span and clinical

consequences similar to those common in aging (Ahima, 2009).

Conversely, life span is extended: (i) by caloric restriction [which

preferentially leads to reduced visceral fat (Barzilai & Gupta,

1999; Masoro, 2006)]; (ii) in fat cell insulin receptor (FIRKO),

insulin receptor substrate-1 (IRS-1), and S6 kinase-1 knockout

mice [each of which has limited fat development (Bluher et al.,

2003; Um et al., 2004; Selman et al., 2008, 2009)]; (iii) in

growth hormone receptor knockout (GHRKO) mice [which have

reduced IGF-1, delayed increase in the ratio of visceral to subcu-

taneous fat, and most likely reduced fat cell progenitor turnover

(Berryman et al., 2008)]; (iv) with rapamycin treatment [which

limits fat tissue development (Chang et al., 2009; Harrison

et al., 2009)]; and (v) after surgical removal of visceral fat (Muz-

umdar et al., 2008). One reason why age-related changes in fat

tissue function may entail such profound systemic consequences

is that fat is frequently the largest organ in humans. Indeed, it

constitutes over half the body in an alarmingly high and increas-

ing number of people [e.g., in women, who have a higher per-

cent body fat than men, with a body mass index (BMI) over

35 kg m)2].

Exciting new data are beginning to point to the cell biological

and molecular mechanisms that determine how aging impacts

fat tissue function and how this, in turn, leads to age-related dis-

ease. Lessons from what happens in obesity are especially illumi-

nating. In particular, inflammatory processes linked to cellular

senescence in fat tissue could be pivotal. Fat tissue is important

in host defense, immunity, injury responses, and production of

inflammatory cytokines and chemokines. It is rich in progenitors
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that can produce pro-inflammatory factors and that are suscep-

tible to cellular senescence. We suggest the possibility that

cellular injury responses, activation of innate immunity, accumu-

lation of dysfunctional, dysdifferentiated progenitors [mesen-

chymal macrophage- and adipocyte-like default (MAD) cells

(Kirkland et al., 2002)], and cellular senescence may all be

within a spectrum of activated pro-inflammatory fates compris-

ing an alternative differentiation state. Accumulation of senes-

cent cells in fat with aging could be caused by increased

generation of these cells owing to a combination of replicative,

cytokine-induced, and metabolic stresses as well as reduced

removal of senescent cells because of failure of immune cells

from older individuals to respond efficiently to chemokines

released by senescent cells. In cancer, these chemokines cause

the immune system to hone in on senescent cells and the cancer

cells around them, resulting in destruction of the cancer cells

and removal of the senescent cells (Xue et al., 2007). Further-

more, there are indications that a senescent-like state can occur

in nonreplicating, differentiated cells in fat tissue. If true, these

points would challenge existing concepts about cellular senes-

cence. To begin to address these hypotheses, relevant findings

about aging, obesity, cellular senescence, and inflammation in

fat tissue will be considered.

Fat tissue

Fat tissue function

In addition to storing energy, fat is important in immune and

endocrine function, thermoregulation, mechanical protection,

and tissue regeneration. The main role of fat is to store calori-

cally dense fatty acids. These highly reactive, cytotoxic molecules

are sequestered as less reactive triglyceride within fat droplets,

protecting against systemic lipotoxicity [cytotoxicity owing to

fatty acids and lipid metabolites; (Tchkonia et al., 2006a)]. To

accommodate wide swings in nutrient availability, fat tissue is

capable of rapid, extensive changes in size, especially subcuta-

neous fat, which is not subject to the anatomic constraints to

growth that limit visceral fat. Growth is accomplished through

changes in fat cell size or number that vary in magnitude among

fat depots.

Adipose tissue is located strategically beneath the skin and

around vital organs, where it protects against infection and

trauma. Bacterial and fungal infections of fat are uncommon,

and metastases are unusual, likely related to the innate and

adaptive immune elements in fat tissue, as well as potentially

high local fatty acid concentrations that are lethal to pathogens

and nonadipose cell types (Tchkonia et al., 2006a). Dysregulat-

ed activation of fat tissue immune responses may predispose

individuals to the metabolic dysfunction common in both obes-

ity and aging.

Fat tissue produces hormones, including IL-6, angiotensin II,

leptin, adiponectin, and IGF-1 (in response to GH), and activates

hormones, for example glucocorticoids and sex steroids. It

releases paracrine factors in an endocrine-like fashion by devel-

oping in target organs and releasing factors that impact their

function. For example, fat in muscle regulates muscle glucose

homeostasis and insulin responses (Abel et al., 2001). In addi-

tion to regional variation in fat tissue endocrine and paracrine

factor production, differences in venous drainage contribute to

the distinct metabolic effects of different fat depots. For exam-

ple, omental and some regions of mesenteric fat drains directly

into the liver through the portal vein.

Adipose tissue is involved in thermoregulation, both by pre-

venting heat loss through its insulating effects and by generat-

ing heat in brown fat. Fat affords mechanical protection by

developing at sites of mechanical stress or pressure. It forms a

buffer that dissipates pressure over bony prominences, prevent-

ing skin breakdown. Fat is rich in mesenchymal progenitors that

can give rise to multiple cell types, including fat cells (Cartwright

et al., 2007). The multipotent progenitors resident in fat may

promote tissue regeneration during wound healing.

Aging

Fat tissue mass increases through middle age and declines in old

age (Visser et al., 2003; Raguso et al., 2006). Fat is redistributed

among different fat depots over time, especially during and after

middle age, when fat redistributes from subcutaneous to intra-

abdominal visceral depots (Meunier et al., 1971; Kotani et al.,

1994; Matsuzawa et al., 1995; Kyle et al., 2001; Raguso et al.,

2006; Slawik & Vidal-Puig, 2006; Cartwright et al., 2007; Rab-

kin, 2007; Kuk et al., 2009). Consistent with this, the percent of

meal fat stored in subcutaneous depots is lower in older than

younger men and women, and abdominal circumference

increases by 4.0 cm every 9 years in adult women (Hughes

et al., 2004; Koutsari et al., 2009). In old age, fat is redistributed

outside fat depots, accumulating in bone marrow, muscle, liver,

and other ectopic sites. As in aging, genetic and acquired lipody-

strophic syndromes are associated with fat tissue dysfunction,

subcutaneous fat loss, increased visceral and ectopic fat, and

metabolic syndrome [glucose intolerance, insulin resistance,

central obesity, dyslipidemia, and hypertension (Garg & Agar-

wal, 2009)]. Metabolic syndrome in the elderly, in turn, is associ-

ated with increased inflammation, cardiovascular and all-cause

mortality, cognitive impairment, and accelerated functional

decline (Koster et al. 2010; Morley, 2004).

As in humans, mice and rats have fat redistribution and ecto-

pic fat deposition with aging. This is delayed in mouse models

with increased maximum life span because of growth hormone

and ⁄ or insulin-like growth factor-1 (IGF-1) deficiency. While

short-term growth hormone exposure decreases visceral fat by

enhancing lipolysis, in animals with lifelong excess growth hor-

mone, fat redistribution begins earlier, advances faster, and is

associated with decreased life span (Berryman et al., 2004,

2009; Palmer et al., 2009). Removal of visceral fat enhances

insulin sensitivity and extends maximum life span in rats (Barzilai

et al., 1999; Muzumdar et al., 2008; Huffman & Barzilai, 2009).

Conversely, decreased ability of subcutaneous adipocytes to

store lipid, as occurs with aging, may contribute to metabolic
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complications by causing systemic lipotoxicity (Lelliott & Vidal-

Puig, 2004; Carley & Severson, 2005; Unger, 2005; Uranga

et al., 2005; Tchkonia et al., 2006a; Kuk et al., 2009). Thus, fat

redistribution with aging occurs across species and is associated

with age-related diseases, lipotoxicity, and reduced longevity,

while retention of a high ratio of functioning subcutaneous to

visceral fat is associated with enhanced longevity.

Substantial changes in fat tissue metabolic function occur dur-

ing aging, with declines in insulin, lipolytic, and fatty acid

responsiveness (Bertrand et al., 1980; Yu et al., 1982; Kirkland

& Dax, 1984; Yki-Jarvinen et al., 1986; Silver et al., 1993; Gre-

german, 1994; Kirkland & Dobson, 1997; Kirkland et al., 2002;

Das et al., 2004; Tchkonia et al., 2006a). Together with prea-

dipocyte dysfunction, impairments in ability to accumulate or

mobilize lipid with aging reduce the dynamic range over which

fat cells can store or release energy or respond to excess

systemic lipotoxic fatty acids.

Fat tissue cytokines, including tumor necrosis factor-a (TNFa)

and interleukin (IL-6), can increase with aging (Morin et al.,

1997; Starr et al., 2009). Increased adiponectin, a cytokine that

exists in several isoforms and that originates from fat as well as

other tissues, has been associated with reduced risk of metabolic

syndrome in the elderly (Lim et al. 2010; Stenholm et al., 2009).

It is higher in centenarians and their offspring than the general

population (Atzmon et al., 2008). However, increased adipo-

nectin is associated with increased mortality in the elderly,

perhaps related to production by the vascular system in athero-

sclerosis (Rizza et al. 2010; Poehls et al., 2009). More needs to

be done to understand whether there are age-related changes

in adiponectin production by cells in fat tissue and what the

consequences are.

Immune effector abundance appears to change with aging in

a fat depot-dependent manner. Macrophage abundance

increases in subcutaneous fat with aging in mice (Jerschow

et al., 2007). However, macrophage numbers that are already

high in intra-abdominal fat of young mice do not increase fur-

ther with aging (Harris et al., 1999; Jerschow et al., 2007). Little

is known about the impact of aging on fat tissue lymphocyte,

mast cell, or macrophage abundance in humans.

Brown fat generates heat through uncoupled mitochondrial

oxidative phosphorylation. Aging is associated with loss of

brown fat as well as brown fat preadipocyte dysfunction in

rodents (Gabaldon et al., 1998; McDonald & Horwitz, 1999;

Gabaldon et al., 2003). This is delayed by caloric restriction

(Valle et al., 2008). Brown fat also decreases with aging in

humans, in whom it is interspersed with white fat in the neck

and upper chest (Cypess et al., 2009). Decreased brown fat may

contribute to thermal dysregulation and energy imbalance.

Obesity

Obesity has been likened to an accelerated form of fat tissue

aging (Ahima, 2009; Minamino et al., 2009; Tchkonia et al.,

2009). Obesity causes premature death from many of the same

causes as those common in elderly lean individuals: diabetes,

heart attacks, strokes, cancer, and dementia (Bjorntorp, 1990;

Denke et al., 1993, 1994; Colditz et al., 1995; Lean, 2000).

Obesity and aging are both associated with chronic, low-grade

inflammation and insulin resistance, increased local and circulat-

ing proinflammatory, chemotactic, and procoagulant proteins,

and ectopic lipid deposition with lipotoxicity (Hotamisligil &

Spiegelman, 1994; Samad et al., 1996, 1997; Vgontzas et al.,

1997; Fried et al., 1998; Loffreda et al., 1998; Samad et al.,

1998; Ferri et al., 1999; Visser et al., 1999; Perreault & Marette,

2001; De Pergola & Pannacciulli, 2002; Weyer et al., 2002;

Sartipy & Loskutoff, 2003; Takahashi et al., 2003; Weisberg

et al., 2003; Xu et al., 2003; Curat et al., 2004; Tchkonia et al.,

2006a). This is especially true in massive or visceral obesity. As in

aging, fat tissue adipogenic transcription factor expression is

decreased in obesity, and inflammatory mediators, including

TNFa and IL-6, are increased (Nadler et al., 2000; Xu et al.,

2002; Weisberg et al., 2003; Xu et al., 2003; Nair et al., 2005;

Jerschow et al., 2007). Much more is known about fat tissue

dysfunction in obesity than aging. Analysis of processes causing

fat tissue dysfunction in obesity could point to mechanisms

contributing to metabolic dysfunction with aging and even the

aging process itself.

Events leading to fat tissue inflammation in obesity have been

investigated by examining effects of high fat feeding in rodents

(Fig. 1). These diets induce fat tissue inflammatory cytokine,

chemokine, and extracellular matrix (ECM)-modifying protein

production within days to weeks (Xu et al., 2003; Suganami

et al., 2005; Nishimura et al., 2009). This is associated with

shifts in T-lymphocyte subsets, rather than absolute numbers of

T lymphocytes (Feuerer et al., 2009; Nishimura et al., 2009).

High fat feeding results in an increased proportion of CD8+

effector T lymphocytes, with a progressive increase in cells

releasing pro-inflammatory TH1 cytokines, relative to CD4+

helper cells and T regulatory cells [Tregs; (Feuerer et al., 2009;

Nishimura et al., 2009; Winer et al., 2009)]. This also occurs in

humans: CD8A is higher and Tregs are reduced in fat tissue from

obese compared to lean humans (Feuerer et al., 2009; Nishim-

ura et al., 2009). Fat tissue from obese mice induces CD8+ lym-

phocyte activation and proliferation in coculture (Nishimura

et al., 2009), suggesting chemokines produced by fat could be

upstream of changes in T-lymphocyte subsets. Fat also becomes

infiltrated by mast cells as obesity develops in mice and humans

(Liu et al., 2009). Mast cells contribute to production of IL-6,

interferon-c, and metabolic complications of obesity, including

insulin resistance and fatty liver.

Following shifts in T-lymphocyte subsets and mast cell accu-

mulation during development of obesity, fat becomes infiltrated

by classically activated M1 macrophages (Weisberg et al., 2003;

Xu et al., 2003; Kintscher et al., 2008; Liu et al., 2009; Lumeng

et al., 2009; Nishimura et al., 2009). This is likely due to chemo-

kines, including interferon-c [from T lymphocytes, and mast cells

(Kintscher et al., 2008; Liu et al., 2009; Sebastian et al., 2009;

Winer et al., 2009)], monocyte chemoattractant protein-1

[MCP-1; from preadipocytes and other cell types (Gustafson

et al., 2009)], RANTES [from preadipocytes, endothelial cells,
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and other cell types (Feuerer et al., 2009)], and RARRES2 [from

preadipocytes (Kralisch et al., 2009)]. Little MCP-1 or RANTES is

produced by fat cells themselves (Fain et al. 2009).

The stromal vascular fraction of adipose tissue (comprising

preadipocytes, endothelial cells, immune cells, and other cell

types) may be the main source of inflammatory cytokines and

chemokines produced by fat (Fain et al. 2009; Wu et al., 2007;

Gustafson et al., 2009). Macrophage infiltration owing to a high

fat diet depends more on cells in the stromal vascular fraction of

fat tissue than fat cells (Weisberg et al., 2003). Once activated,

macrophages release yet more inflammatory cytokines that lead

to further production of MCP-1 and other chemokines, inducing

further macrophage infiltration and inflammation in a vicious

cycle. A central question that has not been fully answered is:

what cell types, metabolites, and ⁄ or antigens are upstream of

the shifts in T-lymphocyte subsets and mast cell accumulation

that precede macrophage infiltration?

Fat tissue distribution in obesity

Different fat depots make distinct contributions to the pro-

inflammatory and clinical consequences of obesity and, poten-

tially, aging. Visceral fat enlargement is more strongly associ-

ated with ectopic fat deposition, lipotoxicity, and metabolic

disease than generalized obesity, especially in old age (Carr

et al., 2004; Tchkonia et al., 2006a; Wannamethee et al.,

2007; Gustafson et al., 2009; Thomou et al., 2010). Even

otherwise lean individuals with relatively more intra- than extra-

abdominal fat are at increased risk for diabetes and mortality

(Pischon et al., 2008). Removing intra-abdominal fat reduces

insulin resistance more profoundly than removing subcutane-

ous fat from rodents (Barzilai et al., 1999; Weber et al., 2000;

Gabriely et al., 2002; Huffman & Barzilai, 2009). Removing

large amounts of subcutaneous fat from humans does not

improve insulin sensitivity (Klein et al., 2004). Subcutaneous fat

expansion in obesity may actually be protective (Kim et al.,

2007; Tran et al., 2008). Cytokine and chemokine production

by different fat depots varies, with visceral fat being more pro-

inflammatory (Samaras et al. 2010; Einstein et al., 2005; Tchko-

nia et al., 2006a; Huffman & Barzilai, 2009; Starr et al., 2009;

Thomou et al., 2010). IL-6 levels are higher in visceral than

subcutaneous fat in mice, and nutrient excess induces more

visceral fat expression of TNFa and plasminogen activator inhib-

itor-1 (PAI-1), a hemostatic factor associated with atherosclero-

sis [Einstein et al., 2005; Starr et al., 2009]).

Is obesity accelerated fat tissue aging?

While obesity is associated with accelerated development of dis-

eases common in old age, mechanisms of fat tissue dysfunction

Fig. 1 Hypothetical model of the chain of events culminating in fat tissue inflammation in obesity. Preadipocytes and fat tissue endothelial cells may acquire an

activated, pro-inflammatory, senescent-like phenotype in response to repeated replication, fatty acids, toxic metabolites, chronically high IGF-1, glucose, or other

stimuli (gray = inflamed). Inflammatory cytokines could spread this activated secretory phenotype from cell to cell and block full differentiation of preadipocytes

into insulin-responsive fat cells, amplifying the process. Chemokines, cytokines, and ECM modifiers produced by pro-inflammatory cells might activate adaptive

immune responses. Shifts from anti- to proinflammatory T-lymphocyte subsets and mast cell infiltration owing to cytokine and lymphokine production, toxic

metabolites (including fatty acids and reactive oxygen species), and cytokines released by inflamed preadipocytes and endothelial cells may combine to promote

M1 macrophage activation. The inflammatory cytokines could induce systemic effects, further impede adipogenesis, and promote fat cell lipolysis, releasing fatty

acids that aggravate the fat tissue pro-inflammatory state and cause systemic lipotoxicity. Similar processes could be involved in age-related fat tissue

dysregulation and metabolic dysfunction. Some of these processes appear to vary in extent among fat depots in obesity (Feuerer et al., 2009;

Nishimura et al., 2009; Winer et al., 2009) as well as aging (Cartwright et al., 2010).
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in obesity differ from aging in important ways. Fat cell size is

increased in many depots in obesity (Fried & Kral, 1987) and is

associated with fat cell death and macrophage infiltration

around the dying cells (Cinti et al., 2005). In aging, unlike obes-

ity, this may not contribute substantially to inflammation,

because fat cells are generally smaller in old than middle age

(Bertrand et al., 1978, 1980). Whole fat tissue gene expression

profiles differ in obesity from changes during development

(Miard & Picard, 2008). Fat tissue transcripts that change during

development (four compared with 12 month old mice) did not

correlate well with transcripts affected by obesity (4- month-old

obese compared to lean mice). This could be related to differ-

ences between changes in fat tissue cellular composition during

development from those in obesity. For example, macrophage

infiltration in visceral fat from young obese individuals is more

impressive than lean old individuals (Weisberg et al., 2003; Xu

et al., 2003; Wu et al., 2007).

Whether the basis of fat tissue dysfunction in obesity and

aging is the same is more than academic. Clinical consequences

of obesity are increasingly close to being amenable to novel

interventions based on targeting inflammation and fat tissue cel-

lular composition. For example, antibody-mediated CD8+ deple-

tion reduces high fat diet-induced TNFa, IL-6, and M1

macrophage abundance and improves insulin responsiveness in

mice (Nishimura et al., 2009). CD3 antibody restores Tregs,

decreases pro-inflammatory M1 relative to anti-inflammatory

M2 macrophages, increases antidiabetic IL-10, and reverses

insulin resistance for over 4 months despite a high fat diet

(Winer et al., 2009). Injection of an IL-2 antibody increases Tregs

and anti-inflammatory IL10 in abdominal fat and decreases

blood glucose in mice on a high fat diet (Feuerer et al., 2009).

Transplantation of anti-inflammatory TH2 cells into lymphocyte-

deficient mice reverses insulin resistance and MCP-1 owing to a

high-fat diet (Winer et al., 2009). Reducing mast cells by genetic

manipulation or pharmacologic stabilization with disodium

chromoglycate reduces hepatic steatosis, circulating inflamma-

tory cytokines and chemokines, angiogenesis, and insulin resis-

tance in obese mice (Liu et al., 2009). Blocking TLR4 in cells

originating from bone marrow or ablating CD11c+ macrophag-

es reduces insulin resistance in obese mice (Patsouris et al.,

2008; Saberi et al., 2009). To the extent that age-related fat

tissue dysfunction is similar to obesity, analogous interventions

might prevent clinical consequences of age-related fat tissue

dysfunction.

Preadipocytes

Preadipocyte function

Preadipocytes comprise 15–50% of cells in fat, one of the larg-

est progenitor pools in the body (Fig. 2). Preadipocytes replicate

in response to mitogens, including IGF-1 (Boney et al., 2001;

Sekimoto et al., 2005). They are mainly resident in fat depots,

although a small pool of circulating fat cell progenitors exists

Fig. 2 Impact of aging, obesity, anatomic origin, and serial passage on cell dynamic mechanisms of fat tissue turnover. Up to 50% of cells in fat tissue are

committed preadipocytes that arise from multipotent, slowly replicating mesenchymal progenitor cells and possibly circulating progenitors (Hong et al., 2005;

Crossno et al., 2006). Preadipocyte numbers are maintained by replication. Preadipocytes can reversibly switch into a slowly replicating subtype, can become

macrophage-like, and may be able to progress up or down the adipocytic lineage (Cousin et al., 1999; Charriere et al., 2003; Tchkonia et al., 2005; Gustafson

et al., 2009). Preadipocytes are depleted by differentiation into fat cells, apoptosis, necrosis, and cellular senescence. Enlargement of fat cells (lipid accumulation)

and maintenance of insulin responsiveness are tied to processes initiated during differentiation, including adipogenic transcription factor expression. Fat cells,

especially large fat cells, can be removed by a process with features of both apoptosis and necrosis and that can induce inflammation. The balance among these

cell dynamic properties determines preadipocyte and fat cell numbers. Cell dynamic processes that vary with aging are in bold, obesity are underlined, anatomic

origin in Italics, and serial passage in parentheses. These differences persist for at least 40 population doublings in cloned preadipocytes in the case of anatomic

origin, 16 in aging, and 8 in obesity.
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(Crossno et al., 2006). Preadipocytes, in turn, may arise from or

be the same as the multipotent mesenchymal progenitors (also

referred to as adipose tissue stem cells) that tend to be aligned

along fat tissue blood vessels in a pericyte-like fashion (Tang

et al., 2008). Preadipocytes resident in different fat depots are

distinct cell subtypes that differ in developmental gene expres-

sion and capacities for replication, differentiation, and apoptosis

(Yamamoto et al. 2010; Kirkland et al., 1990; Tchkonia et al.,

2001, 2002, 2006b, 2007b). These differences persist for at

least 40 population doublings in strains made by expressing telo-

merase in single human preadipocytes from different fat depots.

Regional differences in preadipocyte clonal capacities for repli-

cation and adipogenesis predict subsequent fat tissue growth

(Wang et al., 1989).

Preadipocyte metabolic and secretory profiles are distinct from

differentiated fat cells and vary among fat depots (Kirkland

et al., 1994, 2003; Tchkonia et al., 2007b). Preadipocytes

express toll-like receptors and have full innate immune response

capability (Lin et al., 2000; Chung et al., 2006; Vitseva et al.,

2008). Preadipocytes with activated immune responses likely

make a larger contribution than macrophages to age-related fat

tissue dysfunction because of their numbers (Xu et al., 2002;

Gustafson et al., 2009; Mack et al., 2009). Gene expression

profiles of preadipocytes are closer to macrophages than fat

cells (Charriere et al., 2003). TNFa and hypoxia induce preadipo-

cytes to release cytokines and chemokines that activate endo-

thelial cells and promote macrophage infiltration (Mack et al.,

2009). Treatment of undifferentiated human preadipocytes with

TNFa or lipopolysaccharide (LPS) induces CD68, MIP1a, IL-1b,

and GM-CSF expression (Gustafson et al., 2009). Activated

preadipocytes can even acquire a macrophage-like morpho-

logical phenotype (Cousin et al., 1999; Gustafson et al., 2009).

Their plasticity and capacity to mount innate immune responses

enable preadipocytes to participate in wound repair and defense

against infection but also predispose them to contribute to fat

tissue inflammation and dysfunction.

The main role of preadipocytes is to give rise to new fat

cells. Following initiation of differentiation through signaling

pathways activated by fatty acids, IGF-1, glucocorticoids, and

other stimuli, a cascade of transcription factors underlies

acquisition and maintenance of the fat cell phenotype (Low-

ell, 1999; Rosen, 2005). The key ‘bottleneck’ in this process

is at the level of the adipogenic transcription factors, peroxi-

some proliferator-activated receptor-c (PPARc) and CCAA-

T ⁄ enhancer binding protein-a [C ⁄ EBPa; (Lin & Lane, 1994;

Hu et al., 1995; Wu et al., 1995; Yeh et al., 1995; Wu et al.,

1999; Farmer, 2005)]. PPARc binds a ligand [e.g., endoge-

nous or dietary lipids or thiazolidinedione (TZD) antidiabetic

drugs], heterodimerizes with a ligand-bound retinoid receptor

and then induces C ⁄ EBPa (Wu et al., 1996; Hamm et al.,

2001). C ⁄ EBPa, in turn, further increases PPARc expression

(Clarke et al., 1997; Burgess-Beusse et al., 1999). C ⁄ EBPa

and PPARc cooperate in regulating downstream adipogenic

genes (Hollenberg et al., 1997; El Jack et al., 1999). Sus-

tained activity of both is necessary for development of fully

functional, insulin-responsive fat cells and for downregulating

the pro-inflammatory proclivities of preadipocytes.

Aging and preadipocyte function

Extensive changes in preadipocyte function occur with aging

[Fig. 2; (Djian et al., 1983; Wang et al., 1989; Kirkland et al.,

1990, 1993, 1994, 1997; Kirkland & Dobson, 1997; Kirkland &

Hollenberg, 1998; Caserta et al., 2001; Karagiannides et al.,

2001; Kirkland et al., 2002; Karagiannides et al., 2006b; Guo

et al., 2007; Tchkonia et al., 2007a; Cartwright et al., 2010)].

These include declines in preadipocyte replication (Djian et al.,

1983; Kirkland et al., 1990; Kirkland & Hollenberg, 1998; Schip-

per et al., 2008), decreased adipogenesis (Kirkland et al., 1990,

1993; Karagiannides et al., 2001, 2006b), increased susceptibil-

ity to lipotoxicity (Guo et al., 2007), and increased pro-inflam-

matory cytokine, chemokine, ECM-modifying protease, and

stress response element expression (Tchkonia et al., 2007a;

Cartwright et al., 2010). These changes progress at different

rates and to different extents in preadipocytes from different fat

depots (Djian et al., 1983; Kirkland et al., 1990; Schipper et al.,

2008; Cartwright et al., 2010). They are inherent: age-depen-

dent declines in replication and differentiation remain evident in

most clones derived from single preadipocytes cultured in paral-

lel from animals of different ages for over a month (Djian et al.,

1983; Kirkland et al., 1990). However, these changes do not

occur uniformly in every preadipocyte: occasional clones derived

from old animals replicate and accumulate lipid like the majority

of clones from young animals, and some clones from young

animals behave more like cells from old animals (Kirkland et al.,

1990).

C ⁄ EBPa, PPARc, and their target genes are lower in preadipo-

cytes cultured from older than younger humans and rats follow-

ing exposure to differentiation medium (Karagiannides et al.,

2001; Schipper et al., 2008). PPARc and C ⁄ EBPa are reduced in

fat tissue from various species in old age, including primates

(Hotta et al., 1999; Karagiannides et al., 2001). These adipo-

genic transcription factors also decline in serially passaged

human preadipocytes exposed to differentiation-inducing med-

ium, with six population doublings being sufficient to detectably

impair adipogenesis (Tchkonia et al., 2006b; Noer et al., 2009).

Human preadipocyte replicative arrest occurs after approxi-

mately 35 population doublings.

The age-related impairment in adipogenesis occurs at a point

between the early increase in C ⁄ EBPb transcription and subse-

quent increases in PPARc and C ⁄ EBPa (Karagiannides et al.,

2001). Overexpressing C ⁄ EBPa restores capacity for lipid accu-

mulation by preadipocytes from old individuals. Redundant

mechanisms impede adipogenesis at this point, including

increased expression of C ⁄ EBP homologous protein (CHOP) and

an alternatively translated, short C ⁄ EBPb isoform, C ⁄ EBPb liver-

activating protein (LIP), that lacks the full C ⁄ EBPb-transactivating

domain (Karagiannides et al., 2006b; Tchkonia et al., 2007a).

Increased binding of CUG triplet repeat-binding protein

(CUGBP) to the 5¢ region of C ⁄ EBPb mRNA with aging causes LIP
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to be translated (Karagiannides et al., 2006b). CUGBP activity,

LIP, and CHOP are cellular stress responsive and induced by

TNFa. Preadipocyte TNFa secretion, in turn, increases with aging

(Tchkonia et al., 2007a). Thus, redundant, stress responsive,

inherent processes impair adipogenesis with aging.

Decreased adipogenic transcription factors could contribute

to age-related declines in fat cell size, capacity to store lipid, and

insulin responsiveness [both PPARc and C ⁄ EBPa are required for

fat cells to be insulin–responsive; (El Jack et al., 1999)]. These

changes occur at different rates in different depots, with

subcutaneous depots being particularly affected, potentially

contributing to fat redistribution, lipodystrophy, ectopic lipid

accumulation, lipotoxicity, and metabolic dysfunction. Even

preadipocytes become susceptible to lipotoxicity because of

fatty acids in old age, related to reduced expression of adipo-

genic transcription factors and enzymes required for processing

fatty acids into triglycerides (Guo et al., 2007). Fatty acids also

induce fat tissue cytokine release (Suganami et al., 2005),

further impeding adipogenesis, leading to a downward spiral.

While influences extrinsic to fat tissue, including systemic dis-

ease and changes in diet, activity, and hormones, likely contrib-

ute to fat dysfunction in old age, inherent, age-related changes

in preadipocytes set the stage for fat tissue and systemic meta-

bolic dysfunction.

Reduced PPARc in mouse models is associated with lipodys-

trophy and reduced life span (Argmann et al., 2009). An

increase in maximum life span owing to manipulating PPARc

would need to be demonstrated before concluding definitively

that it is involved in progression of aging. On the other hand,

gene knock-in replacement of C ⁄ EBPa with C ⁄ EBPb results in

increased mean and maximum life span together with leanness,

resistance to diet-induced obesity, and increased energy expen-

diture (Chiu et al., 2004). Thus, age-related changes in prea-

dipocyte and fat cell adipogenic transcription factors may

contribute not only to morbidity, manipulating them may also

prove to delay age-related dysfunction.

MAD cells

Generation of MAD cells potentially contributes to ectopic lipid

accumulation in old age (Kirkland et al., 2002). Preadipocytes

are closely related to other mesenchymal progenitors, including

osteoblasts, muscle satellite cells, chondroblasts, and macro-

phages. In old age, muscle satellite cells, osteoblasts, and macro-

phages can sometimes dysdifferentiate into cells with an

incomplete, adipocyte-like phenotype, with lipid accumulation

and expression of the fat cell-specific fatty acid-binding protein,

aP2, and PPARc (but insufficient PPARc for differentiation into

fully functional, insulin-responsive fat cells). Failure to express

sufficient levels of the transcription factors that direct uncom-

mitted mesenchymal cells into becoming fully functional, spe-

cialized cells may contribute to their developing into partially

differentiated adipocyte-like cells by default. In muscle, satellite

cells from old mice acquire a partial adipocyte phenotype with

more lipid accumulation and aP2, C ⁄ EBPa, and PPARc expres-

sion than cells from young mice (Taylor-Jones et al., 2002). In

bone, osteoblast formation from mesenchymal progenitors is

decreased with aging, together with increased adipogenesis

(Jilka et al., 1996; Rosen et al., 2009). These changes might con-

tribute to age-related accumulation of fat in bone marrow and

muscle as well as osteoporosis.

Preadipocytes in obesity

Increased fat cell size accounts for increased fat mass in mild

obesity, while severe obesity leads to increased numbers of fat

cells and preadipocytes, together with increased fat cell turnover

because of apoptosis and ⁄ or necrosis (Shillabeer et al., 1990;

Cinti et al., 2005; Lacasa et al., 2007; Strissel et al., 2007). Pre-

adipocytes are driven to become new fat cells in massive obesity,

especially in subcutaneous fat, with preadipocyte replicative

history being increased (Cinti et al., 2005; Strissel et al., 2007;

Thomou et al., 2010). Up to 10 fold more preadipocytes can

be present in very massively obese than lean subjects (Table 1).

Additionally, preadipocyte turnover is likely increased, because

preadipocytes develop into new fat cells as fat cell number and

removal increase (Cinti et al., 2005; Strissel et al., 2007).

As in chronological aging and after serial passage in culture

(both of which are associated with increased preadipocyte repli-

cative histories), in obesity adipogenesis, C ⁄ EBPa, PPARc, and

their downstream targets are decreased in preadipocytes and

fat tissue (Turkenkopf et al., 1988; Shillabeer et al., 1990;

Permana et al., 2004; Nair et al., 2005; Dubois et al., 2006;

Tchkonia et al., 2006b; Gustafson et al., 2009). Stromal vascu-

lar cells that are aP2+ (a downstream target of C ⁄ EBPa and

PPARc) are reduced in obese women (Tchoukalova et al., 2007).

Impaired adipogenesis in obesity, associated with reduced

downregulation of preadipocyte pro-inflammatory genes and

restricted capacity to store excess fatty acid as triglyceride, may

contribute to fat tissue inflammation, ectopic lipid accumula-

tion, lipotoxicity, and insulin resistance, as occurs in aging

Table 1 Preadipocyte abundance is increased in obesity

Nonobese Obese

Height (m) 1.65 ± 0.02 1.70 ± 0.03

Weight (kg) 70 ± 6 241 ± 6

BMI (m kg)2) 25 ± 2 83 ± 2

Estimated body fat (%) 20 ± 2 58 ± 2

Fat tissue (kg) 14 ± 2 139 ± 5

Preadipocytes per g (·104) 45 ± 11 45 ± 6

Preadipocytes ⁄ subject (·109) 6.1 ± 2.2 63.1 ± 9.6

Preadipocyte numbers were determined in abdominal subcutaneous fat

from five nonobese and 15 massively obese subjects [as in (Kirkland et al.,

1994)]. Preadipocytes per g fat tissue differed little between nonobese and

obese subjects, as noted by others (van Harmelen et al., 2003). Amount of

fat tissue was increased considerably in the obese subjects, resulting in

many more preadipocytes ⁄ obese subject. The obese subjects had 31 fold

more senescent preadipocytes than nonobese subjects (95% confidence

limits 13–71), based on preadipocytes ⁄ subject and the ratio of SA b–gal+

cells in obese ⁄ lean fat tissue (=3.04). Mean ± SEM are shown.

BMI, body mass index.
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(Unger, 2002; Xu et al., 2002; Listenberger et al., 2003;

DeFronzo, 2004; Tchkonia et al., 2006a; Kim et al., 2007).

Despite low C ⁄ EBPa and PPARc, fat cell size is usually

increased in obesity. Differentiating preadipocytes with low

C ⁄ EBPa and PPARc can still accumulate lipid when exposed to

fatty acids but are insulin resistant and dysfunctional, consistent

with accretion of the large, insulin-resistant, C ⁄ EBPa- and

PPARc-deficient fat cells in obesity that are associated with dia-

betes (Xie et al., 2006; Kim et al., 2007). Restricted capacity to

increase fat cell number, with increases in fat cell size occurring

instead, is associated with lipotoxicity and elevated diabetes risk

(Dubois et al., 2006; Kim et al., 2007). Large fat cells in obesity

may have restricted capacity to take up excess fatty acid because

of: (i) low adipogenic transcription factor expression and conse-

quently impaired machinery to process fatty acids; (ii) insulin

resistance with inhibition of IRS-1 and Glut-4; (iii) increased

lipolysis with fatty acid release owing to insulin resistance;

(iv) instability from their large size, with increased risk of apopto-

sis ⁄ necrosis; and (v) high fat tissue concentrations of TNFa

[which is lipolytic and anti-adipogenic; (Cinti et al., 2005; Xie

et al., 2006; Gustafson et al., 2009)]. Fat cell dysfunction in

obesity, coupled with reduced ability of preadipocytes to differ-

entiate into fat cells, may contribute to failure to sequester fatty

acids, systemic lipotoxicity, and insulin resistance.

Fat tissue cellular senescence and
inflammation

Cellular senescence

Cellular senescence is considered to be an irreversible block to

cell cycle progression in populations of otherwise replication-

competent cells (Hayflick & Moorehead, 1961; Narita & Lowe,

2005; Beausejour & Campisi, 2007; Jeyapalan & Sedivy, 2008).

Replicative senescence in hyperproliferative states, such as can-

cer or massive obesity, may constitute a defense against morbid-

ity by removing dysfunctional or excess progenitors from

replicating pools of cells (Campisi, 2000, 2004, 2005; Xue et al.,

2007). The proportion of arrested cells in a population rises with

increasing population doublings, rather than all cells becoming

senescent at once (Martin-Ruiz et al., 2004; Passos et al., 2007).

This is reflected in vivo in particular regions in different organs in

old age, with a subset of cells, often less than 10%, expressing

p16 and other markers and effectors of senescence (Krishna-

murthy et al., 2004; Wang et al., 2009a). In addition to hyper-

proliferation, cellular senescence or stasis (Stress or Aberrant

Signaling-Induced Senescence) can be induced by stresses: telo-

mere shortening, disrupted chromatin, DNA damage, intense

mitogenic signals, oncogene activation, metabolic stress, and

stress owing to cell culture conditions (Sherr & DePinho, 2000;

Narita et al., 2003; Martin-Ruiz et al., 2004; Campisi, 2005). As

in replicative senescence, not all cells in a stressed population

undergo stasis at the same time, implying that genetic, epige-

netic, or paracrine ⁄ microenvironmental conditions confer sus-

ceptibility to senescence unequally within cell populations. This

could be related to somatic drift among the individual cells in tis-

sues (Martin, 2009). Features of cellular senescence include

large, flattened cells, enlarged nucleoli, senescence-associated

b-galactosidase [SA b-gal] positivity, and other markers and

mediators of senescence, such as phospho-Ser15-p53 ⁄ p21 and

p16 ⁄ hypophosphorylated Rb pathway component expression.

Unlike p21, p16 activity appears to increase in nearly all cells as

senescence progresses (Jeyapalan & Sedivy, 2008). SA b-gal+

cells are increased in hyperproliferative diseases [e.g., cancers,

psoriasis, prostatic hypertrophy, atherosclerotic plaques; (Choi

et al., 2000; Vasile et al., 2001; Narita & Lowe, 2005; Mimura &

Joyce, 2006; Jeyapalan & Sedivy, 2008; Charalambous et al.,

2007)].

Cellular senescence takes days to weeks to become fully

established, with autocrine biochemical loops involving reactive

oxygen species (ROS), IL-6, transforming growth factor-b, and

other signals eventually resulting in focal accumulation of

heterochromatin (Passos et al. 2010; Kuilman et al., 2008;

Kuilman & Peeper, 2009; Passos et al., 2009). These heterochro-

matic foci can be identified by 4¢,6-diamidino-2-phenylindole

(DAPI) staining and by the activated histones that contribute to

DNA repair and stabilization, including c-phosphorylated his-

tone-2AX [cH2AX; (Wang et al., 2009a)]. In human replicative

senescence, heterochromatic foci can be associated with telo-

meres (telomere-induced foci).

Cellular senescence leads to a senescent secretory phenotype

with increased inflammatory cytokines, altered production of

ECM-modifying proteases, and production of ROS (Freund

et al.; Passos et al. 2010; Krtolica & Campisi, 2002; Parrinello

et al., 2005; Xue et al., 2007; Coppé et al., 2008). Generation

of cytokines, chemokines, and ECM modifiers by senescent cells

leads to death of cells around them, tissue remodeling, and

attraction of immune elements. Although senescent cells are

often resistant to apoptosis (Campisi, 2003), activation of the

immune system by senescent cells causes removal of nearby cells

as well as the senescent cells themselves (Xue et al., 2007).

Indeed, activation of innate immunity appears to be required for

senescent cells to remove nearby cells. The innate immune

response capacity of macrophages appears to be compromised

with aging (Sebastian et al., 2009), potentially contributing to

senescent cell accumulation in old age.

Cellular senescence and inflammation in obesity

Obesity and serial passage both entail repeated preadipocyte

replication and cellular stress, as well as accumulation of senes-

cent cells, including senescent preadipocytes and endothelial

cells (Minamino et al., 2009; Tchkonia et al., 2009). Adipose

tissue SA b-gal activity and p53 increase with BMI. Abundance

of SA b-gal+ cells also increases in fat tissue in diabetes. Interest-

ingly, p53 and p21 are increased in the fat cell fraction from

subjects with diabetes (Minamino et al., 2009), suggesting a

senescent-like state might occur in differentiated adipocytes,

even though these cells are postmitotic and therefore would not

fit the usual definition of senescence.
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SA b-gal+ cells are more numerous in cultures of preadipo-

cytes and endothelial cells isolated from young obese than lean

rats and humans [Fig. 3; (Tchkonia et al., 2009)]. Extremely

obese subjects can have a burden of over 30-fold more senes-

cent preadipocytes than nonobese subjects (Table 1). These

senescent progenitors in fat tissue might initiate the infiltration

of immune cells that commonly occurs in obesity, a speculation

that merits testing. Immune cells, in turn, could further activate

the preadipocyte population into a pro-inflammatory state.

Consistent with this possibility, coculture of 3T3-L1 preadipo-

cytes with RAW264 macrophages without direct contact

induces a pro-inflammatory state with increased TNFa expres-

sion in the preadipocytes (Suganami et al., 2005). Neutralizing

anti-TNFa antibody prevents this.

A high burden of senescent cells in obesity could have sub-

stantial clinical impact because: (i) senescent cells restricted to a

single tissue can have widespread systemic effects (Keyes et al.,

2006); (ii) many of the pro-inflammatory cytokines and chemo-

kines released by these cells are associated with development of

diabetes and metabolic disease; and (iii) fat is frequently the

largest organ in humans. Consistent with this, upregulating p53

in fat cells and macrophages induces senescence and increases

insulin resistance and inflammatory cytokines in mouse fat (Min-

amino et al., 2009). Conversely, expressing dominant-negative

p53 in fat cells and macrophages confers protection against the

insulin resistance and increased fat tissue cytokines, macro-

phage infiltration, and SA b-gal activity caused by high fat diets

(Minamino et al., 2009). Thus, cellular senescence owing to high

p53 and the resulting pro-inflammatory secretory phenotype

could contribute to morbidity associated with obesity.

Diabetes itself is associated with cellular senescence in fat tis-

sue. Fat tissue from diabetic humans has increased SA b-gal

activity and p53, TNFa, and MCP-1 expression (Minamino et al.,

2009). Other fat tissue disorders, such as lipodystrophy in

patients with human immunodeficiency virus (HIV) infection

treated with certain antiretroviral drugs, cause fat redistribution,

diabetes, and metabolic syndrome. The antiretrovirals stavudine

and zidovudine cause senescence, with SA b-gal positivity,

senescent morphology, and increased p16 and p21, in cultured

human fibroblasts and 3T3-F442A murine preadipocytes (Caron

et al., 2008). Fat tissue from patients with HIV who are on these

drugs can contain senescent cells. Induction of senescence in

3T3-F442A preadipocytes, which are an immortal cell line, indi-

cates these agents can induce preadipocyte senescence inde-

pendently of replicative history. Cyclo-oxygenase-2 decreases in

parallel with induction of senescence by these antiretrovirals,

suggesting an association with oxidative stress. Consistent with

this, exposure of human preadipocytes to H2O2 causes increased

levels of p53, TNFa, and MCP-1 (Minamino et al., 2009).

Fat tissue inflammation and cellular senescence with

aging

As in obesity, aging is frequently associated with increased fat

tissue and circulating pro-inflammatory cytokines, including

TNFa and IL-6 (Morin et al., 1997; Starr et al., 2009). Increased

pro-inflammatory cytokine release by preadipocytes activates

adjacent cells into a pro-inflammatory state: TNFa exposure

increases preadipocyte TNFa mRNA (Mack et al., 2009).

Although TNFa and hypoxia also increase preadipocyte cyto-

kines that promote endothelial cell-monocyte adhesion and

macrophage infiltration (Mack et al., 2009), macrophages do

not appear to be a major source of pro-inflammatory cytokines

with aging in fat tissue (Wu et al., 2007). Capacity of macro-

phages to be activated into a pro-inflammatory state by chemo-

kines and cytokines generally declines with aging (Sebastian

et al., 2009). While macrophages increase in particular fat

depots with aging, these increases are less impressive than in

obesity, and macrophage numbers do not increase at all in some

fat depots with aging (Harris et al., 1999; Jerschow et al.,

2007). This is consistent with the possibility that fat cells and

preadipocytes could be the main sources of the increased fat tis-

sue inflammatory cytokines and chemokines with aging. Prea-

dipocytes from old rats release more TNFa than from young rats,

(A) (B) (C) (D)

Fig. 3 Senescent preadipocytes can accumulate in fat tissue of even young individuals. Freshly isolated, whole perirenal fat tissue isolated from 2-month-old

obese male Zucker rats was assayed for senescence-associated b-galactosidase (A; SA b-gal) or stained with DAPI to show nuclei (B; representative of N = 3

animals). Preadipocytes cultured from young obese rats had senescent-associated heterochromatic foci. Senescent cells are also increased in high fat-fed mice,

express p53 (Minamino et al., 2009), and are less frequent in age-matched ad libitum fed controls. Human preadipocytes from an obese young adult subject were

SA b-gal positive (C; age 21 years.; body mass index [BMI] 50; representative of six obese subjects), while fewer preadipocytes cultured from a lean subject were

senescent (D; age 26 years.; BMI 23; representative of nine lean subjects). Nevertheless, occasional senescent cells were found in preadipocytes cultured from all

nine young, lean subjects.
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with extent of TNFa release by preadipocytes from old animals

being similar to macrophages (Tchkonia et al., 2007a). IL-6

expression is also higher in preadipocytes from old than younger

rats (Cartwright et al., 2010). Preadipocytes from old rats and

the cytokines they produce can impede adipogenesis in nearby

fat cells, potentially contributing to age-related lipodystrophy

and fat redistribution (Tchkonia et al., 2007a; Gustafson et al.,

2009).

Age-related increases in fat tissue inflammatory cytokine and

chemokine expression vary among fat depots (Starr et al., 2009;

Cartwright et al., 2010). Basal IL-6, complement factor 1q, and

MMP3 and MMP12 increase with aging in extraperitoneal but

not intraperitoneal rat preadipocytes (Cartwright et al., 2010).

Increases in IL-6 caused by treatment with LPS are sixfold higher

in visceral (epididymal) and 33-fold higher in interscapular sub-

cutaneous fat from old (27 months) than younger (6 months)

mice (Starr et al., 2009). Thus, the extent of the age-related

increase in IL-6 response is 5- to 10-fold greater in subcutaneous

than visceral fat, suggesting that age-related changes in fat tis-

sue function are more extensive in subcutaneous than visceral

fat. Consistent with this, preadipocyte pro-inflammatory cyto-

kine, chemokine, and ECM modifier production is greater in

extra- than intra-peritoneal fat in old age (Cartwright et al.,

2010). These differences among depots in the trajectory of age-

related preadipocyte dysfunction may contribute to dispropor-

tional loss of subcutaneous fat.

Age-related changes in fat tissue inflammatory profiles resem-

ble those in obesity, in which senescent preadipocytes and

endothelial cells accumulate, as well as the senescent secretory

phenotype reported in skin fibroblasts and other cell types

in vitro [Table 2; (Krtolica & Campisi, 2002; Parrinello et al.,

2005; Xue et al., 2007; Coppé et al., 2008; Minamino et al.,

2009; Tchkonia et al., 2009; Cartwright et al., 2010)]. SA b-gal

activity and p16 reactivity are increased in fat tissue of mice with

accelerated aging phenotypes owing to hypomorphism of the

Bubr1 gene (Baker et al., 2006) and after several generations of

telomerase deficiency (Minamino et al., 2009). Importantly,

p16Ink4a ablation prevents accumulation of senescent cells in

BubR1 hypomorphic mice, implicating p16Ink4a in establishing

the senescent phenotype in this model (Baker et al., 2008).

Together, these findings suggest senescent cells could accumu-

late in fat tissue with chronological aging and that these cells

might contribute to age-related fat tissue inflammation and

dysfunction.

Hypothetical model and potential
implications

Cellular senescence could be pivotal in the impact of fat tissue

on systemic metabolism and healthspan. Cellular senescence,

arguably a normally adaptive response to injury or infection,

could instead become a root cause of inflammation, failure to

sequester fatty acids, and dysfunction both in fat tissue and sys-

temically during aging and in obesity (Fig. 1). In fat, extensive

progenitor turnover, high fatty acid levels, toxic metabolites,

prolonged IGF-1 exposure, and other mitogens could initiate

senescence. Senescence might then spread from cell to cell,

involving differentiated fat cells as well as preadipocytes and

endothelial cells. Cytokines and chemokines produced by senes-

cent cells appear to be capable of activating adaptive and innate

immune responses that could spread cellular senescence locally

and systemically. ECM-modifying proteases might expose fat tis-

sue autoantigens or generate neoantigens, further exacerbating

the process. Failure to remove senescent cells may contribute to

their accumulation, both because of age-related macrophage

dysfunction and effects of ECM-modifying proteases on recep-

tors and other proteins required for optimal immune clearance.

If this hypothetical model is valid, senescent cells and their prod-

ucts would be a logical target for therapeutic intervention in

age- and obesity-related metabolic disease.

This speculative model and recent findings about fat tissue

cellular senescence and inflammation prompt several questions

about cellular senescence (Table S1). Among these are the fol-

lowing: (i) Is cellular senescence effectively an alternative form

of differentiation? (ii) Can a senescent-like state develop in ter-

minally differentiated cells? (iii) Can senescence occur at any

stage during life? (iv) Does senescence spread from cell to cell in

fat tissue in vivo? (v) Does failure of the immune system to

remove senescent cells contribute to their accumulation in old

age? and (vi) Is cellular senescence really at the root of age- and

obesity-related fat tissue inflammation and metabolic dysfunc-

tion? As discussed later, suggestive evidence supports affirma-

tive answers to some of these questions, but more work is

required to address them definitively.

Is cellular senescence effectively an alternative form of differ-

entiation? Cellular senescence can be viewed as a response to

Table 2 Parallels among preadipocyte and fat tissue changes in obesity,

chronological aging, and after repeated replication of cultured preadipocytes

and fibroblasts

Property Obesity

Repeated

replication Aging

Dysdifferentiation � �* �
› Inflammation � � �
› TNFa, IL6, MMPs, PAI-1 � �† ��

Altered progenitor shape � � �
Insulin resistance � �
› Senescence associated b-gal �§ � �
fl b oxidation, PGC-1a �– �
› Stathmin-like-2 (Stmn-2) � ��

Cell dynamic and molecular mechanisms underlying fat tissue dysfunction

in obesity in younger individuals are strikingly similar to aging. Similarities

between changes in human preadipocyte and fibroblast function after

serial passage in vitro to those in preadipocytes from obese or old subjects

further support this (Tchkonia et al., 2006b, 2009). Thus, obesity, in some

respects, resembles an accelerated form of fat tissue aging, potentially

involving fat cell progenitor hyperplasia and cellular stress.

*In (Tchkonia et al., 2006b; Noer et al., 2009).

†In (Mu & Higgins, 1995).

�(Cartwright et al., 2010).

§In (Minamino et al., 2009; Tchkonia et al., 2009).

–In (Semple et al., 2004). Other references appear in the text.
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cellular stress (Ben-Porath & Weinberg, 2004). In preadipocytes,

cellular senescence, the age-associated MAD state, the pro-

inflammatory secretory state activated by cytokines, LPS, fatty

acids, ROS, ceramide, cellular stress pathways, or other signals,

and the macrophage-like phenotype that preadipocytes can

assume may all be related. In addition to preadipocytes, other

types of progenitors appear to be able to assume a state very

much like M1 activated macrophages, based on their gene

expression profiles (Charriere et al., 2006). Acquisition of this

pro-inflammatory state appears to involve extra- and intracellu-

lar signals that integrate to activate: (i) a chain of signaling

molecules; (ii) an orchestrated cascade of transcription factors;

(iii) banks of pro-inflammatory cytokines, chemokines, and

ECM-modifying proteases; (iv) mechanisms that shut down rep-

lication; and (v) mechanisms that prevent usual differentiation.

Perhaps senescence is an alternative cell fate that has much in

common with pro-inflammatory stress-activated states.

Can a senescent-like state develop in terminally differentiated

cells? Terminally differentiated fat cells might be able to acquire

a senescent-like state in both aging and obesity (Wu et al.,

2007; Minamino et al., 2009). Perhaps the view that a cellular

senescent-like state can only occur in dividing cells needs

reconsideration.

Can senescence occur at any stage during life? If our hypo-

thetical model is correct, cellular senescence should be inducible

at any phase in life. Even at early passage, some cells in cultured

human skin fibroblast strains express markers of senescence

(Martin-Ruiz et al., 2004). The proportion of these cells increases

with passaging or following imposition of cellular stress at early

passage (Passos et al., 2007). With respect to fat, senescent cells

can be found in fat tissue and preadipocytes from juvenile ani-

mals and young adult humans with obesity (Fig. 3). The answer

to this question appears to be yes.

Does cellular senescence spread from cell to cell? Cultured

human cells and mouse cells in vivo that have DNA double-

strand breaks and cH2AX induced by radiation can induce DNA

damage responses and cH2AX foci in nearby cells (Sokolov

et al., 2007). Cytokines secreted by activated preadipocytes,

macrophages, and endothelial cells can induce chemokine and

cytokine expression in bystander cells in a pattern like that of the

senescent secretory phenotype (Suganami et al., 2005; Mack

et al., 2009). TNFa induces cellular senescence in preadipocytes,

endothelial progenitor cells, and skin fibroblasts (Keyes et al.,

2006; Tchkonia et al., 2009; Zhang et al., 2009). Thus, it seems

senescence can spread locally from cell to cell. It will be interest-

ing to test whether fat tissue cellular senescence induced by

obesity leads to generation of senescent cells elsewhere, such as

in the brain. Indeed, high fat feeding induces cellular senescence

in aortic endothelium, a process that is mediated by Akt and

mTOR and inhibited by rapamycin (Wang et al., 2009b).

Whether aortic endothelial senescence results directly from

increased circulating lipids owing to the high fat diet, hormones

affected by the diet (e.g., insulin or IGF-1), cytokines released by

senescent cells in fat or elsewhere, or a combination of mecha-

nisms remains to be determined.

Does failure of the immune system to remove senescent cells

contribute to their accumulation in old age? Macrophage func-

tion generally declines with aging (Sebastian et al., 2009). Age-

related alterations in the stromal microenvironment, including

cytokine imbalance, could further impede macrophage function

(Stout & Suttles, 2005), possibly augmenting senescent cell

accumulation. This question needs to be addressed specifically

in fat tissue macrophages, because macrophage properties are

highly tissue dependent (Stout & Suttles, 2005; Sebastian et al.,

2009).

Is cellular senescence at the root of age- and obesity-related

fat tissue inflammation and metabolic dysfunction? The poten-

tially central role of preadipocytes in genesis of fat tissue inflam-

mation and metabolic dysfunction has not received much

attention. Preadipocyte cellular stress can result from repeated

replication, hypoxia, ROS, chronic effects of free fatty acids or

other lipids such as ceramide, hyperglycemia, or other metabolic

signals. These appear to activate innate immune responses in

preadipocytes, causing further cytokine and chemokine genera-

tion, potentially inducing spread of activation of pro-inflamma-

tory responses to nearby preadipocytes and other cell types and

attraction of immune cells. The preadipocyte pro-inflammatory

phenotype might impede protection against lipotoxicity, con-

tributing to systemic consequences in aging similar to those in

lipodystrophies and obesity. The pathways and processes culmi-

nating in this generation of activated or senescent preadipocytes

and fat cells represent potential new targets for intervention.

It seems a senescent-like, pro-inflammatory fate can be

acquired in response to intra- or extracellular danger signals,

inflammation, infection, excessive replication, or toxic metabo-

lites. This spectrum of cell fates may prevent differentiation

along pathways that are not desirable in the context of damage.

In the case of fat tissue, this could involve preventing develop-

ment of new fat cells or enlargement of existing ones in favor of

acquiring cells capable of facilitating repair. Perhaps terminally

differentiated cells are able to enter a senescent secretory state

related to the molecular pathways that initiate senescence in

dividing cell types. Studies in fat tissue are beginning to suggest

that cellular senescence could be an alternative cell fate involv-

ing activation of pro-inflammatory responses owing to intra- or

extracellular injury signals at any stage of life.
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