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Abstract

Purpose—This paper focuses on developing a novel non-iterative fat water decomposition 

algorithm more robust to fat water swaps and related ambiguities.

Methods—Field map estimation is reformulated as a constrained surface estimation problem to 

exploit the spatial smoothness of the field, thus minimizing the ambiguities in the recovery. 

Specifically, the differences in the field map induced frequency shift between adjacent voxels are 

constrained to be in a finite range. The discretization of the above problem yields a graph 

optimization scheme, where each node of the graph is only connected with few other nodes. 

Thanks to the low graph connectivity, the problem is solved efficiently using a non-iterative graph 

cut algorithm. The global minimum of the constrained optimization problem is guaranteed. The 

performance of the algorithm is compared with that of state-of-the-art schemes. Quantitative 

comparisons are also made against reference data.

Results—The proposed algorithm is observed to yield more robust fat water estimates with 

fewer fat water swaps and better quantitative results than other state-of-the-art algorithms in a 

range of challenging applications.

Conclusion—The proposed algorithm is capable of considerably reducing the swaps in 

challenging fat water decomposition problems. The experiments demonstrate the benefit of using 

explicit smoothness constraints in field map estimation and solving the problem using a globally 

convergent graph-cut optimization algorithm.
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INTRODUCTION

The separation of water and fat in MRI is an important problem, with several clinical 

applications (1–5). While frequency selective excitation/saturation schemes are available (6–

9), multi-echo Dixon-like schemes have enjoyed a lot of attention in the past decade due to 

their ability to account for large B0 field inhomogeneity (10, 11). These methods acquire 
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images at multiple echo-times and exploit the dependence of temporal variations in 

magnetization on the unknown fat and water concentrations, fat water chemical shift, 

magnetic field inhomogeneity induced frequency shift, and  decay terms. The unknown 

parameters are then estimated by fitting the signal model to the measured data.

Classical multi-echo methods rely on voxel-by-voxel fitting of the signal model to the 

measured data (10–12). The voxel-by-voxel fitting approach suffers from the non-convexity 

of the associated maximum likelihood criterion, which makes iterative algorithms such as 

Iterative decomposition of water and fat with echo asymmetry and least-squares estimation 

(IDEAL) (12) sensitive to field map initializations. The estimation is also made difficult by 

the presence of phase wraps in body regions with large field inhomogeneity and ambiguities 

in voxels with only one metabolite (e.g. water-only voxels), which manifest as spurious fat 

water swaps in the decompositions. Several extensions of the IDEAL algorithm such as 

region growing (13), region merging (14), multi-resolution based methods (15), hybrid 

approaches (16), as well as multi-seed region growing algorithms (17) are introduced to 

overcome these ambiguities by taking advantage of the assumption of field map smoothness.

While the above methods work well most of the time, they may result in fat water swaps in 

challenging applications such as lung scans with multiple unconnected regions and regions 

of low signal to noise ratio. An alternative to the above implicit approaches to exploit field 

map smoothness is the global optimization scheme that relies on an explicit smoothness 

penalty. In (18), the estimation of the field map at all voxels is formulated as the 

minimization of a global criterion, which is the linear combination of the sum of the voxel-

independent criteria and a field map smoothness penalty, and solve it using an iterative 

graph cut algorithm. Since the direct discretization of the problem results in a large graph, 

whose solution is computationally infeasible, the authors rely on an iterative approach. 

Specifically, a one-layer graph is constructed at each iteration; the vertices at each voxel 

correspond to the frequency value at the previous iteration and a new guess (18). The global 

optimum of this one-layer graph problem is obtained using efficient s-t cut algorithms (19–

24). While this iterative approach is computationally efficient, the whole algorithm is not 

guaranteed to converge to the global minimum of the specified cost function.

The main focus of this paper is to introduce a novel non-iterative graph cut algorithm for fat 

water decomposition. We formulate the recovery of the field map at all the image voxels as 

a constrained optimization scheme. The proposed global criterion is the sum of the voxel-

independent maximum likelihood criteria. While this global optimization scheme is similar 

to that of Hernando et al.(18), the main difference is the lack of smoothness penalty term in 

our global criterion. We instead rely on constraints to enforce the smoothness of the field 

map. Specifically, the differences in field map between adjacent voxels are constrained in a 

small range. The discretization of this problem yields a graph optimization problem, where 

each vertex of the graph is constrained to be connected with a small number of its neighbors. 

Thanks to the reduced connectivity, the three-dimensional graph search problem can be 

directly solved using an optimal surface segmentation algorithm (24) in a realistic run time. 

The non-iterative algorithm is guaranteed to converge to the global minimum of the 

constrained optimization problem. We compare the proposed algorithm against several state-

of-the-art fat water decomposition algorithms available in the ISMRM fat water toolbox on 
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several challenging cases. These datasets are made available as part of the 2012 ISMRM 

Challenge. The qualitative and quantitative comparisons demonstrate that the proposed 

scheme is capable of minimizing fat water swaps in these challenging cases.

THEORY

Background

We now briefly review the mathematical formulation that is essential for the discussion in 

later sections. We will also review the iterative graph cut algorithm of Hernando et al. (18) 

to highlight its differences from the proposed scheme. In multi-echo water and fat 

decomposition, a sequence of images are collected with different echo time (TE) shifts, t1, 

t2, …, tN. The signal at each individual voxel is described by the model in (25):

[1]

Here, ρwater(r) and ρfat(r) are complex-valued concentrations of water and fat, respectively. 

The fat signal is modelled using an M peak model, where δi is the chemical shift between 

the ith fat peak and water, measured in Hz, and βi > 0 is the relative weight of each peak. The 

relative weights add up to unity (Σβi = 1). The parameters βi and δi are assumed to be 

known; the decomposition process involves the estimation of the unknown concentrations 

ρfat, ρwater, as well as f(r) and  from the measured data. The field inhomogeneity 

induced frequency shift and  decay terms are consolidated in the parameter 

. Here, f(r) is the local frequency shift due to magnetic field 

inhomogeneity at the spatial location r = (x, y), while  models the decay due to intra-

voxel dephasing. The consolidation of the  decays of fat and water into a single term is 

shown to reduce bias and improved noise stability (18, 25). This model can be expressed in 

the matrix form as:

[2]

The unknown parameters are obtained by minimizing the least-squares error between the 

model and the measured data:

[3]

Since the above minimization is dependent on many parameters, the standard practice is to 

decouple them using the VARPRO approach (26). Specifically, the criterion is minimized 

with respect to some of the variables by assuming the others to be fixed, thus eliminating 

them from the optimization. Minimizing the above cost function with respect to the 
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concentrations, assuming γ to be fixed, we obtain the optimal concentration estimates as 

. Substituting the optimal concentrations back in [3], and solving for γ, 

we obtain

[4]

One can again minimize the expression with respect to  to obtain a cost function that is 

only dependent on f:

[5]

Since the estimation of  values does not suffer from ambiguities, an exhaustive search 

over possible  values is used to obtain  from Cr (26).

In order to address the sensitivity of the voxel-by-voxel optimization strategy specified by 

[5] to multiple feasible solutions and phase wrapping, Hernando et al. (18) formulated the 

joint recovery of the field map at all the voxels as a smoothness regularized optimization 

scheme. The global criterion is the linear combination of the sum of (r, f) and a 

smoothness penalty (18):

[6]

Here, (r) is the local neighborhood of the voxel at location r and wr,s are pre-defined 

weights that specify the relative importance of each difference term. The first term is the 

sum of the voxel-independent criteria in [5], while the second term promotes field map 

smoothness. Hernando et al., convert the above continuous problem to a discrete 

optimization scheme by restricting the field map to a set of discrete values.

The direct discrete minimization of [6] using a graph cut algorithm is computationally 

infeasible, since it involves a large and fully connected graph. Hence, the authors solve it 

iteratively by solving a sequence of binary decision problems at each iteration; these 

decision problems are solved efficiently using graph cut. At the (n + 1)th iteration, they 

consider two possible solutions at each voxel: Γn+1(r) = {fn(r), gn(r)}. Here, fn(r) is the 

optimal solution from the previous iteration, while gn(r) is chosen as fn(r) ± β, where β is a 

pre-specified constant, or picked randomly a set of local minimizers of (f(r)). Each binary 

decision problem is efficiently solved using graph cut and is guaranteed to converge to a 

global minimum. However, the iterative algorithm is still not guaranteed to converge to the 

global minimum of the cost function. The local minima effects sometimes manifest as fat 

water swaps in challenging datasets
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Reformulation as a smoothness constrained surface estimation problem

We formulate the estimation of the field map f(r) as the constrained optimization scheme:

[7]

where ex = (1, 0) and ey = (0, 1) are the unit vectors in the x and y directions, respectively. 

Instead of the smoothness penalty on the field map used in (18), we constrain the differences 

between field map values at adjacent voxels to be less than F (Hz) to minimize the 

ambiguities. Decreasing the maximum step size will result in a smoother field map. Note 

that [7] simplifies to a fully decoupled voxel-by-voxel search when the restrictions are 

removed (i.e, F = ∞). Since the above problem is non-convex, simple gradient descent 

schemes are not guaranteed to converge to the global minimum of the criterion.

We discretize the problem by restricting the possible field map values at each location to a 

uniform grid specified by f = n Δ. Here n = −Nmax, …, Nmax −1 is the discrete index and 

Δ(Hz) is the grid spacing. The discretization error can be controlled by setting Δ sufficiently 

small. The discrete optimization scheme is thus equivalent to fitting a smooth surface S to 

the 3-D discrete dataset (r, f) (see Fig. 1.(a)); the height of the surface at the spatial 

location r is f(r). The number of discrete points in the surface is equal to NxNy, where the 

image is assumed to be of size Nx × Ny. The summation in [7] is essentially the sum of the 

values of the 3-D function (r, f) along the surface. The function (r, f) can be interpreted 

as the negative of the likelihood that the surface passes through the point (r, f). The 

likelihood of the surface is obtained by summing the likelihoods of the points on the surface. 

The constraints in [7] can be conveniently expressed by representing the discrete dataset as a 

connected graph G(V, E) (Fig. 1.(b)), where V denotes the set of vertices and E are the 

edges. Correspondingly, the size of the graph is Nx × Ny × Nf, where Nf = 2Nmax is the 

number of layers in the graph (the number of discrete field map values). We have one vertex 

for each discrete point (r, n), while the edges of the graph (denoted by E) are specified by 

the constraints in [7]. Specifically, an edge exists between the vertex (r, n) and (r′, n′) if and 

only if |n−n′| ≤ α, with α is the smoothness constraint in the graph and r and r′ are 

neighbouring voxels; the four neighbors of the voxel r are (r + ex), (r − ex), (r + ey), and (r 
− ey). If we let Rf denote the complete search range of the uniform grid (Hz), then F = α Δ, Δ 

= Rf/Nf. It can be seen that a graph surface S is a subset of V if only if it satisfies the 

constraints in [7]. This enables us to rewrite [7] as

[8]

In the above equation, V(S) are the vertices of the surface. Note that each vertex is a point in 

3-D: v = (r, f). In the next subsection, we introduce the graph cut algorithm to solve [8].
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Optimal surface estimation using graph cut algorithm

In (27), Wu and Chen have shown that the optimal surface estimation problem can be 

transformed to the detection of a minimum-cost closed set in a transformed graph. A closed 

set  in a directed graph is a subset of graph vertices such that there is no edge from a vertex 

in  to a vertex in its complement  (Fig. 2.(a)). The cost of the closed set  is defined as 

the total sum of the costs of all vertices in . The transformation of the original problem to 

minimum-cost closed set enables us to solve [8] using efficient polynomial time s-t cut 

schemes (28, 29). This approach is akin to transformation of a surface integral to a volume 

integral using Gauss theorem in the context of parametric snakes (30).

The key step in the graph transformation is the identification of a closed set B(S), which has 

a one-to-one mapping with a surface S. For a feasible surface S, we define B(S) as the set of 

all the vertices of G that are on or below S. It can be observed that for any feasible surface S 

in G, the bottom-most neighbors of every vertex in B(S) are also contained within B(S). The 

bottom-most neighbour of a vertex v ∈ V is the vertex in the neighboring column with the 

smallest f-coordinate, which can co-exist with v on a feasible surface (See Fig. 2.(b)). We 

also transform the cost of each vertex in the graph G (denoted by ):

[9]

Note that (r, n) is essentially the derivative of (r, n) along the frequency direction, with 

the appropriate boundary conditions. We can recover the value of  from  as 

. Using this property (27), we can rewrite the surface sum 

Σv∈V (T) (v) in [8] as

[10]

Thus, instead of finding the optimal surface S* directly, we seek the closed set B(S*) with 

the minimum cost E(S*), which uniquely defines the surface S*. The algorithm to solve [10] 

proceeds by creating a directed vertex-weighted graph G′(V′, E′) from G(V, E) (27). The 

vertices v′(x, y, f) ∈ G′ has a one-to-one correspondence with the vertices v(x, y, f) in G. Arcs 

(directed edges) are added to G′ to make sure that each closed set in G′ includes all the 

vertices associated to the corresponding surface vertices plus all the “lower” vertices in G. 

This is done by adding two types of arcs: intracolumn arcs and intercolumn arcs. The 

intracolumn arcs ensure that all vertices below a given vertex (within one column) are also 

included in the closed set. The intercolumn arcs ensure that the smoothness constraints are 

satisfied. As an example in Fig. 2.(c), we will consider the added arcs for one vertex v′. It 

will be associated with two intracolumn arcs: one directed towards the vertex immediately 

below it in the column and one from the vertex immediately above it. Two intercolumn arcs 

will also exist for each neighbouring column in the x-direction (y-direction): one directed to 

the bottom-most neighbour of v′ on the neighbouring column and one from the vertex on the 

neighbouring column whose bottom-most neighbour on the column of v′ is vertex v′. We do 
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not show the boundary conditions to avoid cluttering the exposition of the key ideas. An 

outline of the algorithm is also described in the pseudo-code below.

Algorithm

Graph surface search for optimal field map ( (x, y, f))

1 Construct 3D graph G(x, y, f) and assign costs (x, y, f) to each node

2 Transform the surface estimation problem to closed set estimation: G → G′

a. Transform cost at each node to (x, y, f) using [9]

b. Build intra- and inter-column edges

3 Solve for the optimal closed set using minimum s-t cut algorithm

4 Recover the optimal surface S* and refine the solution

Once the optimal surface is determined using maximum flow/s-t cut algorithm on the 

transformed graph G′, the solutions are refined by searching on a finer grid in the range [f(r) 

− Δ, f(r) + Δ] (see Fig. 3). This search minimizes the effect of discretization. Since the 

search is constrained in the specified frequency range, the search is computationally 

inexpensive and the solution is still guaranteed to satisfy the constraints in [7]. We also 

determine the optimal  for each frequency value by an exhaustive search.

METHODS

Implementation details

We use a six peak fat model, where the location of the peaks, denoted by δi in [1] 

correspond to 3.8 ppm, 3.4ppm, 2.6 ppm, 1.93 ppm, 0.39 ppm, −0.6 ppm for all the 

experiments. The relative weights of these peaks, denoted by βi in [1] are 0.0870, 0.693, 

0.1280, 0.0040, 0.0390, 0.0480, respectively. These parameters are adopted from (25).

We use a discrete search procedure to determine (r, f) from (r, γ) according to [5]. This 

approach similar to the one followed in (18). Specifically, for each value of f, we search over 

Nr discrete values of  in the range 0 s−1 to 500 s−1. This search process introduces 

minimal biases since the criterion is considerably smoother along the  dimension. We set 

the field map search range Rf to be [−8 ppm, 8 ppm]. Our experiments show that this search 

range is large enough to account for the range of field maps. The criterion specified is 

computed on a voxel-by-voxel basis. The optimal field map surface is then obtained by 

running the graph cut algorithm on the discretized problem. The discrete field map derived 

using the above algorithm is refined to minimize the effect of discretization. The refinement 

process involves an exhaustive search in the frequency range [f(r)−Δ, f(r)+Δ] and the 

range. The range is discretized with approximately a 1 Hz spacing and exhaustively 

searched to obtain the minimum. The same rule applies to the refinement of . Finally, the 

fat and water volumes are estimated by solving ; the fat volume 

fraction is then obtained from the derived concentrations. Since the proposed scheme is 

currently only implemented in 2-D, each of the slices in multi-slice datasets are processed 

separately. See Fig. 3 for the data flow in the proposed scheme.
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Metric used for the comparisons

We use the same metric as in 2012 ISMRM Challenge to evaluate the performance of the 

proposed algorithm as well as other state-of-the-art algorithms. Specifically, the 

performance of the algorithm is specified by the score

[11]

where FF is the fat fraction obtained from the specific algorithm and FFref is the reference 

fat fraction. The fat fraction is defined as the ratio of fat intensity to the sum of fat and water 

intensities. In the above equation, P is the mask, and Nvoxels is the total number of voxels. 

The multiplication factor is to obtain the scores in percent.

The decompositions obtained by the proposed scheme were also evaluated by an expert 

radiologist (JDN) on a four point scale. The scales were chosen as (1): too many fat water 

swaps & not diagnostic quality, (2): few swaps & may be clinically misleading, (3): few 

swaps, but not clinically misleading, (4): no swaps & good quality.

Optimization of parameters

As mentioned in theory section, the proposed algorithm is dependent on three parameters:

1. Nf, the number of layers used in the graph optimization,

2. Nr, the number of discrete values of , prior to graph optimization, and

3. α, the smoothness constraint assumed in the graph optimization; F = α * Rf/Nf.

We determine the optimal parameters by running the proposed algorithm with different 

parameter choices and comparing the scores of the resulting decompositions with the 

reference fat water ratios on the first four datasets.

Comparison of algorithms

We compare the proposed scheme with the implementations of the current algorithms 

available in the ISMRM fat water toolbox. Specifically, comparisons are performed between 

the proposed method and four state-of-the-art fat water algorithms: Iterative Graph Cut 

Algorithm (IGCA) in (18), Safest-first Region Growing Algorithm (SRGA) in (17), Golden 

Section Search Algorithm (GSSA) in (13), and Hierarchial IDEAL of Multiresolution Field 

map (HIMF) algorithm in (15). We assumed the default parameters provided in the toolbox 

for all the comparisons.

Datasets used for the experiments

Seventeen multi-echo datasets used in this study are distributed as part of 2012 ISMRM 

Challenge. The multi-slice coil-combined datasets correspond to different anatomical 

regions and were acquired on different institutions and different field strengths (1.5 and 3T). 

See Table 1 for details of these datasets. The reference fat-fractions and the masks 

corresponding to the image regions, where the fat fractions are compared, were downloaded 
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from 2012 ISMRM Challenge website. The reference fat fractions were derived from larger 

number of echoes (typically 12–16 echoes) using the iterative graph cut algorithm (18). The 

masks were generated by thresholding the raw images, followed by manual segmentation 

and binary morphological operations to exclude isolated voxels and to erode edges which 

are likely to be partial volume voxels. These masks were checked by an expert for validity. 

The number of echoes that are used for the proposed decomposition and comparison with 

other methods varied between the datasets, as shown by the second row in Table 1. All 

datasets were processed on a desktop computer with 3.2GHz Intel Xeon CPU and 23.6GB 

RAM.

RESULTS

We study the effect of the parameters Nf and Nr in Fig. 4.(a) and the effect of the smoothness 

constraint in Fig. 4.(c). We observe that the scores vary in a small range when α ≤ 3. The 

performance degrades when α > 3. This is expected since the algorithm becomes similar to 

voxel-independent schemes with increasing α. Since the optimal performance is obtained at 

this value, we set α = 3 in all the experiments. Specifically, the average scores from the first 

four datasets are obtained for different values of Nf and Nr, assuming α = 3; the plot for 

different choices are shown in Fig. 4.(a). We observe that the algorithm is relatively 

insensitive to the choice of Nr, while the optimal performance is achieved around Nf = 100. 

Therefore, as we chose field map search range as [−8pm, 8pm], the grid spacing δ is 

approximately 10Hz for a field strength of 1.5 T and 20Hz for 3 T. Note that the constraint 

on the field map gets stronger as we increase Nf since F is inversely proportional to Nf. This 

explains why the scores drop slightly when Nf is increased beyond 100. Based on this study, 

we fix Nf = 100 and Nr = 20 in the rest of the paper. Note that the computational complexity 

of the algorithm is dependent on Nf and Nr. The refinement is conducted in two steps: a) The 

field map values in the range of [f(r) − Δ, f(r) + Δ] at each location are exhaustively 

searched with a 1 Hz resolution, assuming the  values from the first pass. b) Once the 

optimal frequency is determined, the  values are similarly searched exhaustively with a 1 

ms−1 resolution. We plot the average computation time for the different choices in Fig. 4.(b). 

The average computation time for a 256×256 sized image is 90 seconds. These optimized 

parameters from the first four datasets are used for all the experiments.

The quantitative comparisons of the GOOSE algorithm against the leading algorithms in the 

fat water toolbox (IGCA, SRGA, and HIMF schemes) are shown in Table 2. The GSSA 

algorithm often results in higher errors and hence were excluded from the studies. The 

SRGA algorithm is designed for uniformly spaced echoes and hence could not be run on 

dataset #3; the score is marked as N/A. The best score in each case is shown in bold. It is 

observed that the proposed scheme provides better results in most of the challenging cases. 

While it provides slightly lower scores in dataset #11 and dataset #14, the scores are very 

close to the best performing algorithm. The qualitative scores of the decompositions 

obtained by the proposed algorithm by the expert radiologist (JDN) are also reported in the 

last row of Table 2. The qualitative scores agreed with the quantitative scores overall. The 

main inconsistency was in the context of dataset #9, where the quantitative scores were high. 

The low qualitative scores were mainly due to the presence of small swaps in the trabecular 
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bone regions with low signal intensity. None of the current algorithms were capable of 

avoiding these small swaps from limited number of echoes.

The decomposition obtained from the five algorithms on a foot dataset (dataset #7) is shown 

in Fig. 5. This is a rather challenging dataset due to the large range of field inhomogeneity. 

It is seen that IGCA, GSSA, HIMF suffer from fat water swaps near the ankle. Similarly, 

GSSA and HIMF have more swaps on both leg and toe region. The field maps derived by 

these algorithms (see bottom row) exhibit abrupt variations indicating convergence to local 

minima. We observe that the SRGA algorithm, as well as the proposed scheme, is capable of 

providing good estimates in this example. A noticeable difference in the field map recovered 

by the proposed scheme is that it takes small values outside the anatomical region. This can 

be attributed to the constrained formulation [7]. Specifically, the data-consistency term (r, 

f) is considerably smaller in amplitude in regions with low signal than regions with signal. 

Hence, many different values of f may give the same cost. The constrained formulation will 

pick one solution among the possible ones that satisfy the constraints. Due to the 

transformation [9], the solutions at these voxels often correspond the first few nodes at these 

voxels.

Another example, corresponding to the head/neck and upper thorax dataset (dataset #2) is 

shown in Fig. 6. This set is challenging due to the larger magnetic field inhomogeneity and 

multiple disconnected regions. From Fig. 6, we observe that all algorithms, except the 

proposed method, suffers from multiple fat water swaps in the region under neck. The 

failure of the SRGA scheme, which performed well in the other datasets, may be due to the 

disconnected nature of the regions and the large dynamic range; these challenges probably 

make the accurate seed placement in the region-growing algorithm difficult.

Fig. 7 shows the decomposition on an axial liver dataset (dataset #12). We observe that the 

existing schemes result in swaps in all the three slices, while the proposed scheme correctly 

recovered the fat and water in slices 1 & 3. The GOOSE algorithm also failed in slice 2, 

resulting in a swap. The main reason for the failure of the GOOSE algorithm in this case is 

that the anatomical regions are disconnected; the algorithm is not able to propagate the 

correct solution to the region of failure. This is a fundamental problem associated with 

algorithms that exploit field map smoothness.

Fig. 8 shows the fat water decomposition of two slices of a breast dataset (dataset #15). The 

IGCA scheme resulted in large and obvious swaps, while the SRGA method resulted in 

subtle swaps, indicated by arrows. The GOOSE scheme is capable of providing results that 

are in good agreement with the ground truth in most regions. It resulted in a small swap in 

the middle, which is also indicated by arrows.

DISCUSSION & CONCLUSION

We introduced a novel fat water decomposition scheme, which we term as globally optimal 

surface estimation (GOOSE) algorithm. The proposed algorithm uses explicit constraints to 

exploit the smoothness of the field map, thus minimizing the ambiguities in maximum 

likelihood estimation. Specifically, the differences in the field map between adjacent voxels 

are constrained to be within a small range (less than 25Hz). The discretization of the 
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criterion yields a problem that can be efficiently solved using graph cut optimization. 

Thanks to the considerably reduced graph connectivity, the algorithm is guaranteed to yield 

the global minimum of the cost function in a short computation time. While the algorithm 

shares some similarities with the global optimization scheme of Hernando et al. (18), the key 

difference is the constrained formulation. The global optimality guarantees of the algorithm 

are seen to be beneficial in practical settings. We have compared the proposed algorithm 

against some of the algorithms available in the ISMRM fat water toolbox. Overall, the 

comparisons show that the proposed scheme yields fewer swaps and thus better fat water 

decompositions. The algorithm is also evaluated independently by the 2012 ISMRM 

challenge committee; the decompositions using the GOOSE scheme resulted in scores that 

were only 0.04% lower than the winning team (31), which combined the results of several 

decomposition schemes in the ISMRM fat water toolbox using a perceptual quality metric 

(31). While the proposed scheme may be improved by combining it with other methods in a 

similar fashion, the resulting performance improvement is not expected to be significant.

A major limitation of the proposed implementation is that it is restricted to two dimensions. 

Currently, the different slices in multi-slice datasets are processed independently without 

considering the field map smoothness across slices. The extension of this algorithm to three 

dimensions can provide further improvement in performance of the current two-dimensional 

method. Specifically, the smoothness of the field map between the slices can enable us to 

resolve the ambiguities in datasets with disconnected regions. For example, we anticipate 

that this extension will improve the performance in the context of dataset #12 (see Fig. 7). 

Specifically, the 2-D scheme recovers the first and third slices accurately, while the second 

slice had a swap due to the disconnected regions. This will be part of our future work.

We have adopted the fat water model in [1], which is relatively established in the fat water 

community. Hence, our algorithm shares the benefits and drawbacks associated with the 

specific model. For example, the proposed algorithm is dependent on the number of fat 

peaks and their relative strengths in the model. This assumption considerably reduces the 

unknowns and offers a proportional reduction in variance. However, it is likely to result in 

biases when the relative strengths differ from actual values. Similarly, we have consolidated 

the decay parameters of fat and water into a single term. While the consolidation of the 

decay terms of fat and water into a single  term is shown to be beneficial (18, 25), this 

approach may introduce biases in regions where this assumption is violated.
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Fig. 1. 
Illustration of the graph cut algorithm. (a) The residues specified by (r, f) are discretized 

on a uniform frequency grid nΔ; n = −Nmax, …, Nmax − 1. The discrete optimization is 

essentially a surface detection problem on a graph with 2Nmax layers, where the residues at 

each vertex are the vertex costs. Note that there are both local and global minimal costs in 

the graph. In this example the local minimal cost at f1 are very close to the global minimal 

cost at f2, for which voxel-independent schemes mostly fail. (b) Illustration of the 

constraints in graph-cut optimization. Each vertex on a specific voxel is connected with (2α 

+ 1) neighbors. For example, the vertex a at the spatial location (x, y) is only connected with 

b1, b2, and b3 in the column corresponding to its neighbouring voxel (x + 1, y). Similarly, it 

is only connected to (2α + 1) neighbors in the voxel (x, y + 1). S is the surface that intersects 

one voxel at each column within the smoothness constraint. The objective of the graph cut 

optimization is to search for the surface with minimal costs.
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Fig. 2. 
Illustration of the concepts in graph-cut optimization. (a) Closed set: vertices a, b and c do 

not form a closed set, because vertex d which is a successor of b and c is not in the set. 

Nonetheless, vertices d, e and f form a closed set. (b) An example of bottom-most 

neighbour. Vertex a is on the surface, b is an bottom-most neighbour of a. Similarly, c is a 

bottom-most neighbour of b. (c) The task of finding an optimal surface S* is transformed 

into finding the minimum-cost closed set B(S*) (indicated as gray vertices) beneath S* in the 

directed graph G′.

Cui et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2015 April 28.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 3. 
Information flow in the proposed method. The residue specified by D(r, f) in [5] is 

discretized on a uniform grid. The global optimum of the proposed constrained optimization 

problem is obtained using a globally optimal graph cut optimization to yield the initial field 

map and the initial  map. This solution is refined using a finer discrete search 

around the initial results provided by the graph cut algorithm. The refined field maps are 

used to estimate the fat water concentrations as .
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Fig. 4. 
Dependence of the solution on the parameters. In (a). The number of f grid points (Nf ) and 

 points (Nr) are varied and the resulting average scores are plotted. We observe that the 

results are not too sensitive to Nr, while the best scores are obtained for Nf ≈ 100. The 

average run times of the algorithms are shown in (b). For the optimal parameters, the 

average run time is approximately 90 seconds. The effect of the smoothness constraints on 

the scores are shown in (c). Here, we assume Nf = 100 and Nr = 20. We observe that the best 

results are obtained when α = 3 (i.e., 7 neighbors).

Cui et al. Page 17

Magn Reson Med. Author manuscript; available in PMC 2015 April 28.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 5. 
Qualitative comparisons of the algorithms on a foot dataset (2012 Challenge dataset #7). 

Top row: Fat; Second row: Water; Third: Field map. Fat water swaps are seen in IGCA, 

GSSA and HIMF indicated by arrows. The proposed and SRGA scheme are seen to provide 

good decompositions, which is also evident from the quantitative scores in Table 2 (also 

shown at the top left corner of each fat image).
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Fig. 6. 
Qualitative comparisons on a head and neck dataset (2012 ISMRM Challenge dataset #2). 

Top row: Fat; Second row: Water; Third: Field map. All of the algorithms except the 

GOOSE scheme result in swaps between water and fat. Quantitative comparison can be seen 

from Table 2 (also shown at the top left corner of each fat image).
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Fig. 7. 
Comparison of the algorithms on 2012 ISMRM Challenge dataset #12. First column: Fat 

Fraction (FF) map for reference from 2012 ISMRM Challenge committee; Second: FF from 

SRGA; Third: FF from IGCA; Fourth: FF from GOOSE; Fifth: Field map from GOOSE. 

Each row corresponds to one slice in the dataset. This is a challenging example due to the 

disconnected regions in the dataset. We observe that all algorithms except the proposed one 

result in swaps in all the slices. The proposed scheme is capable of recovering the fractions 

correctly in slices 1 & 3 (first and third row), while it results in a swap in the second slice. 

Quantitative scores are shown at the top left corner of each FF map.
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Fig. 8. 
Comparison of the algorithms on a breast dataset (2012 ISMRM Challenge dataset #15). 

First row: Fat Fraction (FF) map for reference from 2012 ISMRM Challenge committee; 

Second: FF from IGCA; Third: FF from SRGA; Fourth: FF from GOOSE; Fifth: Field map 

from GOOSE. Each column corresponds to one slice in the dataset. IGCA results in large 

and obvious swaps. In contrast, the SRGA scheme results in several subtle swaps pointed by 

arrows. The proposed scheme is seen to agree well with the reference dataset, which is also 

evident from the quantitative comparisons in Table 2 (also shown at the top left corner of 

each FF map).
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