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ABSTRACT 10 

Manure composting has general benefits for production of soil amendment, but the 11 

effects of composting on antibiotic persistence and effects of antibiotics on the composting 12 

process are not well-characterized, especially for antibiotics commonly used in dairy cattle.  This 13 

study provides a comprehensive, head-to-head, replicated comparison of the effect of static and 14 

turned composting on typical antibiotics used in beef and dairy cattle in their actual excreted 15 

form and corresponding influence on composting efficacy. Manure from steers (with or without 16 

chlortetracycline, sulfamethazine, and tylosin feeding) and dairy cows (with or without 17 

pirlimycin and cephapirin administration) were composted at small-scale (wet mass: 20-22 kg) in 18 

triplicate under static and turned conditions adapted to represent US Food and Drug 19 

Administration guidelines. Thermophilic temperature (>55°C) was attained and maintained for 3 20 

d in all composts, with no measureable effect of compost method on the pattern, rate, or extent of 21 

disappearance of the antibiotics examined, except tylosin. Disappearance of all antibiotics, 22 

except pirlimycin, followed bi-phasic first-order kinetics. However, individual antibiotics 23 

displayed different fate patterns in response to the treatments. Reduction in concentration of 24 

chlortetracycline (71 to 84%) and tetracycline (66 to 72%) was substantial, while near-complete 25 

removal of sulfamethazine (97 to 98%) and pirlimycin (100%) was achieved. Tylosin removal 26 

during composting was relatively poor. Both static and turned composting were generally 27 

effective for reducing most beef and dairy antibiotic residuals excreted in manure, with no 28 

apparent negative impact of antibiotics on the composting process, but with some antibiotics 29 

apparently more recalcitrant than others. 30 

Keywords: antibiotics, beef and dairy manure, static and turned composting  31 
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CORE IDEAS 32 

 Antibiotics excreted in their natural forms did not influence manure composting. 33 

 Antibiotic transformation did not always follow single-phase first-order kinetics. 34 

 Composting enhanced antibiotic removal from manure, but tylosin was recalcitrant.  35 
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INTRODUCTION 36 

Antibiotics are the most commonly used drugs in livestock production and are 37 

administered to treat bacterial infection, prevent disease, or promote growth. According to the 38 

US Food and Drug Administration (FDA), 13.5 million kg of antibiotics were sold in the US for  39 

livestock use in 2011, accounting for about 70% of total antibiotic sales (FDA, 2012; 2014a). 40 

Antibiotics are known to be excreted in feces and urine with up to 90% of administered 41 

antibiotics remaining as parent compound, metabolites, or both (Kemper, 2008). Excreted 42 

antibiotic residues can enter the environment via land application of manure, which is a growing 43 

concern to animal, human, and environmental health. Antibiotics have been shown to persist in 44 

stored manure, soil, and water and, even at subinhibitory concentrations, play a role in 45 

stimulating, selecting, and disseminating antibiotic resistance among bacteria (Beaber et al., 46 

2004; Gullberg et al., 2011; Kuchta and Cessna, 2009; Kumar et al., 2005; Lamshoft et al., 47 

2010). Antibiotics in soil may also be taken up by plants and deposited in roots, stems, leaves, 48 

and fruits, making consumption of raw produce a potential contributor to unintended exposure of 49 

humans to antibiotics (Bassil et al., 2013; Dolliver et al., 2007; Kang et al., 2013). 50 

Among antibiotics commonly used in the dairy and beef industry, macrolides are 51 

considered “critically important” in human medicine by the World Health Organization (WHO), 52 

while cephalosporins, sulfonamides, and tetracyclines are considered “highly important” 53 

(Collignon et al., 2009). Cephapirin accounts for an estimated 31% of dry cow therapy 54 

administrations in the US (USDA, 2008) and pirlimycin is used to treat ~20% of mastitis 55 

infections (Pol and Ruegg, 2007; USDA/APHIS/VS/CEAH., 2008). Antibiotics are administered 56 

to feedlot cattle via feed or water to prevent diseases, treat respiratory and hepatic disorders, and 57 

improve average daily gain and feed conversion efficiency. Common classes of antibiotics used 58 
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in beef cattle are tetracycline, macrolides, sulfonamides, and aminoglycosides (Mathew et al., 59 

2007; Sarmah et al., 2006; USDA, 2000). Tylosin, a macrolide, is fed to cattle on about 20% of 60 

all feedlots, and the combination of chlortetracycline and sulfamethazine is used on 17% of all 61 

feedlots (USDA, 2000).  62 

Recycling nutrients to soil by land application of treated manure is considered to be 63 

environmentally-friendly, with guidelines under development to ensure the health and safety of 64 

manure treatments. For example, in the most recent FDA Food Safety Modernization Act (FDA 65 

FSMA) proposed guidelines, a manure treatment processes is acceptable if it can reduce the 66 

number of specified pathogens before land-application (FDA, 2015). However, the efficiency of 67 

FDA-approved manure treatment processes in removal of antibiotics has not been assessed. 68 

Storage of manure in lagoons or pits is one low-cost management approach that has indicated 69 

some success for reducing antibiotics before land application, but long-term storage may not 70 

always be feasible and could require long-distance transport (Boxall et al., 2004; Chee-Sanford 71 

et al., 2009; Kemper, 2008). Anaerobic digestion can also be effective for reducing antibiotic 72 

loads in manure (Arikan et al., 2006), but there are reports that residual antibiotics can disrupt 73 

this sensitive microbial process (Beneragama et al., 2013; Poels et al., 1984; Stone et al., 2009). 74 

Composting is also a process driven by microbiological activity and is a preferred manure and 75 

biosolid management strategy for stabilizing nutrients, reducing mass and volume, killing 76 

pathogens, and reducing odor (Larney and Hao, 2007; Larney et al., 2003; Michel et al., 2004). 77 

Composting has also been used effectively to stimulate biodegradation of chemicals of emerging 78 

concerns such as pharmaceuticals, personal care products, pesticides, and hormones (Bartelt-79 

Hunt et al., 2013; Büyüksönmez et al., 2000; Ho et al., 2013; Xia et al., 2005). Therefore 80 

composting of manure has been suggested to reduce environmental loading of antibiotics from 81 
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livestock farms, and has demonstrated success in removing some antibiotics (Cessna et al., 2011; 82 

Dolliver et al., 2008b; Mitchell et al., 2015), but the efficiency is often inconsistent. Dissipation 83 

(rate and extent) of antibiotics during composting has been observed to vary with respect to type 84 

of antibiotics, type of feedstocks (i.e. type of manure and amendments), size of compost pile, and 85 

composting approach (turning vs. no turning) (Cessna et al., 2011; Dolliver et al., 2008b; 86 

Storteboom et al., 2007). Therefore it is difficult to form generalizable conclusions about the 87 

efficiency of composting in reducing or removing antibiotics from livestock manure. 88 

 While there is no report on the effect of composting on dissipation of cephalosporin and 89 

lincosamide antibiotics in dairy manure, there are some reports on the dissipation of macrolide, 90 

sulfonamode, and tetracycline in beef manure during composting. However, the majority of 91 

studies used beef manure spiked with antibiotics to evaluate the efficiency of composting in the 92 

removal of antibiotics. To better understand real-world conditions, considertion of actual 93 

excreted antibiotics is ideal. There is also a paucity of information about the effect of composting 94 

approach on disappearance of antibiotics in manure, with benchmarking against recent FDA 95 

guidelines of particular interest. Therefore, the objective of this study was to determine the effect 96 

of static and turned composting of beef and dairy manures, collected during peak excretion 97 

following antibiotic administration, on the disappearance of  cephalosporin, lincosamide, 98 

macrolide, sulfonamide, and tetracycline antibiotics. Of further interest was the effect of 99 

antibiotics and type of manure on efficacy of the composting process.  100 

MATERIALS AND METHODS 101 

Animal Experiment and Manure Collection 102 

To generate manure for composting experiments, nine healthy yearling Hereford steers 103 

(body weight: 341 ± 35 kg) were selected for homogeneity of body weight, housed in individual 104 



7 
 

pens and adapted to a grain-based diet gradually over 28 days. None had a history of antibiotic 105 

treatment. After the diet adaptation period, the steers were fed a basal diet containing corn silage 106 

(45%) and non-medicated or medicated grain mix (55%) for seven days and offered free choice 107 

water. Three steers were fed chlortetracycline plus sulfamethazine at 350 mg of each 108 

antibiotic/steer d-1 and three steers were fed tylosin at 11 mg kg-1 feed. The three remaining 109 

steers were fed the basal diet containing non-medicated grain mix. The steers were fed a 110 

restricted amount of feed (~9 kg dry weight) to ensure complete consumption of antibiotic doses. 111 

Total collection (feces and urine) was conducted from d 3 to 7 post-treatment and manure from d 112 

3 (when peak excretion of antibiotic resistance genes was expected) was used for the composting 113 

experiment. Manure from control steers served as control beef manure.  114 

To generate dairy manure, six healthy, peak lactation dairy cows and three cows at the 115 

end of their current lactation cycle were used. Three peak lactation cows were treated 116 

therapeutically with pirlimycin (intramammary dose typical for clinical mastitis; two doses of 50 117 

mg each, 24 h apart) and three end of lactation cows received cephapirin (intramammary dry cow 118 

therapy; single dose of 300 mg into each of four quarters). The three remaining healthy lactating 119 

cows were used as negative controls with no antibiotic treatment. Experimental cows were 120 

selected for homogeneity of body weight and stage of lactation, and none had received antibiotic 121 

treatment in the current lactation. 122 

 All cows were offered free choice water and ad libitum total mixed ration and were 123 

housed in tie stalls (1.25 × 2.25 m) throughout the study. After 24 h of acclimation period, the 124 

cows were treated with the assigned antibiotic. Total (24 h) collection of feces and urine was 125 

conducted on d 3 post treatment. Feces and urine from 3 cows of each treatment were 126 

composited and mixed to achieve homogeneous dairy manure. Manure from cephapirin and 127 
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pirlimycin treated cows were mixed on wet weight basis (1:1, w/w) to get composited dairy 128 

manure containing both antibiotics. Manure from control cows contained no antibiotics and 129 

served as control dairy manure.  130 

Composter Set up 131 

Compost tumblers [71 cm (L) × 64 cm (dia.)] were used in this experiment. The 132 

composters were equipped with 20 holes to facilitate natural aeration and placed in a temperature 133 

controlled room (average room temperature: 27°C). Four different types of manure 1) dairy 134 

control, 2) dairy antibiotics (cephapirin and pirlimycin), 3) beef control, and 4) beef antibiotics 135 

(chlortetracycline, sulfamethazine, and tylosin) were composted using either static or turned 136 

composting methods. Raw materials used to prepare compost mixtures were dairy or beef 137 

manure, alfalfa hay, mulch (pine bark), and sawdust with proportions set to achieve a C:N ratio 138 

of 25-30 and moisture content of 55 to 65%. Dairy manure was mixed with alfalfa hay, mulch, 139 

and sawdust at a ratio of 5:1:3.3:1.5 (w/w, wet weight basis). Beef control and antibiotic manures 140 

were mixed with alfalfa hay, mulch, and sawdust at a ratio of 5:1:3.8:2 and 5.5:1:3.8:1.5 (w/w, 141 

wet weight basis). It may not be a standard practice to use alfalfa hay and pine bark as raw 142 

materials in commercial compost facilities, but the presence of these materials is not uncommon 143 

in dairy or beef farm waste, given that alfalfa hay and sawdust are commonly used feed 144 

ingredients and bedding materials, respectively. It is assumed that the addition of these high 145 

lignocellulosic materials may prolong the persistence of organic matter (OM) during short-term 146 

small-scale composting and thus may reduce antibiotic degradation by providing more sorption 147 

sites on OM for antibiotics (Lynch and Wood, 1985; Zhang et al., 2012). 148 

Each manure type × composting approach combination was replicated 3 times. Static 149 

composters were not turned after initial mixing and loading into the composters. Static 150 
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composters were aerated using an air pump (Model: DOA-P704-AA, GAST, MI) at a flow rate 151 

of 0.1 CFM. The pump was on for 5 min every hour during the thermophilic phase and then for 1 152 

min every hour during the mesophilic phase. Turned composters were turned four times daily 153 

during the thermophilic phase, and once daily during the mesophilic stage. The composters were 154 

insulated (R 21 Double reflective Insulation, Reflectix, Markleville, IN), except for the holes. 155 

Temperature was monitored by placing two temperature sensors at the depth of 7.5 and 22.5 cm 156 

and recorded every 15 min using HOBO temperature data loggers (HOBO UX120-006M, Onset 157 

Computer Corp., Bourne, MA).  158 

Sampling and Analysis 159 

Raw Materials and Compost Properties 160 

Sub-samples of raw materials were collected and analyzed for moisture, total C, total N, 161 

and pH. Compost samples were collected on day 0, 4, 7, 14, 21, 28, and 42. Because of the 162 

heterogeneous nature of compost, samples were collected from several locations at different 163 

depths, and then composited and mixed. Two sets of sub-samples were collected, with one set 164 

immediately frozen at -80°C and freeze-dried (for antibiotic analysis), and another set frozen (-165 

20°C) to evaluate compost characteristics (moisture, total C and total N). Additional samples 166 

were collected on d 0 and 42 and stored frozen for ash analysis or used to measure pH and EC 167 

immediately. Detailed sample analysis plan can be found in supplemental materials (Sample 168 

Analysis). 169 

UPLC-MS/MS Quantification of Antibiotics 170 

Freeze-dried samples of dairy and beef compost were respectively analyzed for 171 

cephapirin and pirlimycin using the methods described previously (Ray et al., 2014a; b) and for 172 

sulfamethazine, tylosin, chlortetracycline, and tetracycline using a method modified from 173 
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published methods (Jacobsen et al., 2004). Freeze-drying of a sample prior to extraction to remove 174 

water interference is a common protocol used to target total recovery of organic compounds in solid 175 

environmental samples for analysis (Jacobsen and Halling-Sørensen, 2006; Khairnar et al., 2012). 176 

Freeze-dried compost samples were extracted using methanol: phosphate buffer (70:30, v/v) or 177 

methanol: McIlvaine buffer (50:50, v/v) and extracts were clarified using solid phase extraction 178 

(SPE). Clarified extracts were analyzed using UPLC-MS/MS (Agilent 1290 UPLC coupled with 179 

Agilent 6490 Triple Quad tandem mass spectrometry) for antibiotics. Detailed antibiotic 180 

quantification is available in supplemental materials. 181 

Statistical Analysis 182 

All data were analyzed using the GLIMMIX procedure in SAS (SAS Institute Inc., Cary, 183 

NC) with composter (n = 3) as the experimental unit. The effects of manure type, composting 184 

approach, day of composting, and their interactions on compost properties were evaluated using 185 

a mixed statistical model which included manure type and composting method as fixed effects 186 

with day as a repeated factor and composter as random variable. Data from day 0 were used as a 187 

covariate in the model. Antibiotic concentration and reduction data were analyzed using a mixed 188 

model with composting approach as a fixed effect and day as a repeated factor. The effect of 189 

composting approach on antibiotic half-life and dissipation rate constants was evaluated using a 190 

mixed model with composting method as a fixed effect. Means of main effects were separated 191 

using a multiple comparison test following the Tukey-Kramer method. Data were reported as 192 

least square means and standard errors, and statistical significance of difference was declared at 193 

P < 0.05. 194 

http://stanxterm.aecom.yu.edu/wiki/index.php?page=McIlvaine_buffer
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RESULTS AND DISCUSSION 195 

Temperature 196 

Thermophilic temperature (≥ 55°C) was achieved and maintained for 3 d in all composts, 197 

as recommended by US FDA Food Safety and Modernization Act (FSMA) guidelines (FDA, 198 

2014b). Thermophilic phase duration was not influenced by manure type (dairy or beef), 199 

antibiotic content (with or without antibiotics) or composting approach (static or turned; Fig. 1). 200 

With or without antibiotics, the temperature during static composting of dairy manure reached 201 

≥55°C by d 2 of composting, continued to increase for the next 24 h to attain peak temperature, 202 

and then gradually declined below 55°C by d 5. Lack of any negative influence of residual 203 

antibiotics in manure on the temperature profiles during composting confirms that microbial 204 

activity and exothermic processes during composting were not compromised. This is similar to 205 

the observation when composting swine and poultry manure, where the presence of antibiotic 206 

residues did not influence temperature profiles (Hu et al., 2011). The temperature profile during 207 

static composting of beef manure (with or without antibiotics) was similar to that during static 208 

composting of dairy manure, but thermophilic temperature was achieved on the 4th d of beef 209 

manure composting. Temperature in beef compost gradually increased for the next 36 h to reach 210 

peak temperature and declined below 55°C by day 7.  211 

The temperature profile during turned compost of dairy or beef manure with or without 212 

antibiotics followed the same pattern observed during static composting of the respective manure 213 

type. A similar lack of effect of manure type (poultry vs. swine) on temperature profiles during 214 

composting was reported by others (Bao et al., 2009; Hu et al., 2011).  215 

Turning the compost did not extend the duration of the thermophilic phase, which was 216 

not expected based on some previous reports (Cáceres et al., 2006; Derby et al., 2011). The ~3 d 217 
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thermophilic phase achieved for turned composting in this study would not meet the criteria for 218 

turned composting (15 d at 55°C) in the recent FSMA recommendation (2011). Therefore, the 219 

present study provides insight into the effect of turning itself as a more high-intensity manure 220 

management approach, benchmarked against static-composting achieving FSMA standards. Lack 221 

of an extended thermophilic phase during turned composting in this study was likely due to the 222 

relatively small size of the composters, which was necessary to compare a variety of manures in 223 

a replicated and head-to-head fashion. During composting of dairy manure with sawdust, high 224 

temperature (>40°C) in larger windrows was maintained longer than in smaller windrows 225 

(Tirado and Michel, 2010). The effect of compost size on temperature evolution was also 226 

observed during a small scale (5 kg dry wt. of manure) composting of broiler manure with hay 227 

(Ho et al., 2013). 228 

Physico-chemical Parameters 229 

Moisture content was influenced by the interaction of manure type and composting 230 

approach (P < 0.05; Supplemental Table S1). Average moisture content across all sampling days 231 

(59 to 61%) did not differ between manure types during turned composting and was consistent 232 

with a range reported to be optimal for biodegradation during composting (Richard et al., 2002). 233 

Static composted beef manure with no antibiotics had lower moisture content compared to static 234 

composted dairy manure with no antibiotics (48 vs. 56%; P < 0.05). The interactions of manure 235 

type by day and composting approach by day also influenced the moisture content (P < 0.05; 236 

Supplemental Table S1). Moisture content in dairy compost did not vary with time, but beef 237 

control compost was wetter on day 0 than other sampling days. Moisture content was not 238 

influenced by composting approach from d 0 through 4, but static compost was drier than turned 239 

compost thereafter. Moisture content did not vary substantially in turned compost throughout the 240 
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entire study period, but initial moisture content (d 0 and 4) in static compost was higher 241 

compared to all subsequent sampling days. This more uniform moisture profile in turned 242 

compost is in agreement with the results of a swine manure composting experiment and could be 243 

attributed to the turning process (Derby et al., 2011). 244 

Manure type and composting approach did not influence total carbon (TC) concentration 245 

(Supplemental Table S). The average concentration of TC (averaged across all manure types and 246 

composting approaches) decreased sharply (3.22% of initial concentration) within the first 4 days 247 

of composting, overlapping with the thermophilic phase, and then decreased gradually for the 248 

next 38 days. The concentration of total nitrogen (TN) was influenced by composting approach 249 

(Supplemental Table S1). Static compost had higher concentrations of TN compared to turned 250 

compost (2.11 vs. 2.04%), suggesting greater TN loss as ammonia during the turning process 251 

(Cook et al., 2015; Tirado and Michel, 2010). Loss of TC was more rapid than volatilization of 252 

ammonia, as indicated by increasing TN concentration from d 0 through d 14. This was followed 253 

by a phase of decline in TN until d 42. A similar temporal pattern of TN concentration change 254 

was observed during composting of poultry (Ho et al., 2013) and cattle manure (Michel et al., 255 

2004; Parkinson et al., 2004). In the current study, temporal variation in some physico-chemical 256 

parameters such as total P and K (Supplemental Table S1), pH, EC, and ash content was 257 

observed, but there was no major influence of antibiotic residues or composting method 258 

(Supplemental Table S2). Overall, temperature and physico-chemical data indicate that the 259 

presence of antibiotic residues in the manure did not have any major negative influence on the 260 

composting process. 261 
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Transformation Patterns: Beef Antibiotics 262 

Initial (d 0) concentrations of chlortetracycline in static and turned compost derived from 263 

antibiotic-treated steers were 1,198 and 675 ng g-1 dry compost, respectively. The transformation 264 

of chlortetracycline was rapid during first 2 weeks of composting (Fig. 2). In static compost, 265 

chlortetracycline concentration was reduced by 33 and 60% of its initial concentration after 4 and 266 

14 d of composting, respectively (Supplemental Table S3). Turned composting was effective in 267 

removing chlortetracycline by 54 and 73% of d 0 concentration after 4 and 14 d, respectively. 268 

After 2 weeks, removal was relatively slower in both static and turned composting with 269 

chlortetracycline concentration reduced by 71% and 84% of the initial concentration after 42-d 270 

composting. The initial concentrations of tetracycline in antibiotic-static and antibiotic-turned 271 

compost were 96.9 and 81.6 ng g-1 dry compost, respectively.  272 

Although tetracycline was not intentionally fed in this study, it was detected in the feces 273 

of antibiotic-fed steers over a range of 91.1 to 102 ng g-1 dry manure, likely indicating that 274 

tetracycline was present as an impurity in antibiotic mix used to prepare the medicated grain. The 275 

transformation of tetracycline followed a temporal pattern similar to that of chlortetracycline 276 

(Supplemental Fig. S1). By day 4 of composting, the reduction in tetracycline concentration was 277 

28 and 19% of the initial concentration for static and turned compost, respectively (Supplemental 278 

Table S3).  In static and turned compost, the extent of reduction in tetracycline concentration 279 

after 14 d of composting was 57 and 45% of the initial concentration, respectively. Relatively 280 

slower transformation after 14 d resulted in 63 and 66% removal of tetracycline in static and 281 

tuned compost, respectively.   282 

 Initial (d 0) concentrations of sulfamethazine in static and turned antibiotic beef compost 283 

were 1200 and 992 ng g-1 dry compost, respectively. The transformation pattern for 284 
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sulfamethazine was similar to those observed for chlortetracycline and tetracycline 285 

(Supplemental Fig. S1). Removal of sulfamethazine was >90% of initial concentration in static 286 

and turned compost after 14 and 7 d of composting, respectively (Supplemental Table S3). 287 

However, relatively slower transformation after 2 weeks resulted in only 1 and 5% additional 288 

decline in sulfamethazine concentration during static and turned composting, respectively. By 289 

the end of composting (d 42), over 95% of sulfamethazine was removed in all compost. By 290 

contrast, Dolliver et al. (2008a) did not observe any transformation of sulfamethazine during 35-291 

d composting of turkey litter, which could have been affected by lack of microbial adaptation or 292 

a strong adsorption effect preventing biological transformation. However, our results were 293 

consistent with a recent study examining the transformation of sulfamethazine in turned vessel 294 

composting of beef manure (Amarakoon et al., 2016), where 93 to 99% of the initial 295 

sulfamethazine concentration in fortified and excreted manure was transformed after 30 d. 296 

The initial concentrations of tylosin in static and turned antibiotic beef compost were 49.3 297 

and 36.1 ng g-1, respectively. The mean concentration of tylosin increased in the first week and 298 

then declined in both compost types (Fig. 2). Similarly, the concentration of tylosin in spiked 299 

turkey manure increased during compost (Dolliver et al., 2008b). Deconjugation of conjugated 300 

tylosin or transformation of metabolites to their parent compound (tylosin) during composting 301 

might have contributed to the increase in tylosin concentration. In the current study, the 302 

concentration of tylosin in static and turned compost increased by 138 and 356% of the initial 303 

concentration and reached a peak (116 and 161 ng g -1, respectively) by 7 days. The removal of 304 

tylosin after 14 d of static composting was 43% of tylosin concentration observed on d 7, while 305 

the removal in turned compost was 79% of d 7 concentrations (Supplemental Table S4). In static 306 

and turned compost, the tylosin concentration was reduced by 63 and 81%, respectively, relative 307 
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to their d 7 concentration, after 4 weeks of composting. The concentration of tylosin in finished 308 

static and turned compost (45.7 and 23.1 ng g-1) was comparable to their initial concentration. 309 

Overall reduction in chlortetracycline, tetracycline, sulfamethazine, and tylosin after 42-d 310 

composting ranged from 71 to 84, 66 to 72, 97 to 98, and 62 to 86%, respectively.  311 

Parallel to the composting study, beef antibiotic manure was stored at 4°C for 42 d, which 312 

resulted in relatively less reduction in chlortetracycline, tetracycline, sulfamethazine, and tylosin 313 

(59, 22, 50, and 47%, respectively). Thus, the transformation of antibiotics could be contributed 314 

by abiotic and biotic process associated with composting, both of which rely largely on 315 

temperature. The observations here were consistent with the corresponding temporal pattern 316 

during composting. During composting, thermophilic conditions (>55°C) were attained and 317 

maintained for 3 d, and then gradually reduced to a range of 30-40°C by d 14. Arikan (2008) 318 

reported transformation of chlortetracycline due to abiotic process(es). With a higher 319 

temperature, the frequency of molecular collision increases and more molecules hold energy to 320 

overcome the barrier for reaction activation. Also, microbial activity is strongly temperature-321 

dependent, with the slowdown of transformation observed here consistent with trends in 322 

reduction of overall heterotrophic bacterial plate counts (data no shown). A correlation between 323 

temperature and transformation of chlortetracycline and tetracycline was reported by Loftin et al. 324 

(2008). Increasing temperature greatly accelerated the transformation of chlortetracycline in both 325 

manure and soils (Zhang and Zhang, 2010). In the present study, significant differences (P < 326 

0.05) in transformation were observed in the second phase between different composting 327 

approaches. In turned compost, transformation of antibiotics continued even after the 328 

temperature reached steady-state, while the antibiotics were relatively stable in static compost. 329 

Given that there was no difference in temperature at steady-state between static and turned 330 
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composting, this suggests that biotic processes might have played a role in the removal of 331 

sulfamethazine during the second phase. In particular, oxygen availability is an important factor 332 

for biodegradation (Ali et al., 2013). It is possible that more oxygen was supplied using the 333 

turned approach and resulted in increased microbial activities during the second phase of turned 334 

composting. 335 

Transformation Kinetics: Beef Antibiotics 336 

Transformation of the four beef antibiotics followed a bi-phasic pattern, except for 337 

tylosin in static compost (Fig. 2, Supplemental Fig. S1). Each phase followed first order kinetics, 338 

with distinct transformation rate constants (Table 1; Supplemental Table S5) and half-lives 339 

(Table 2; Supplemental Table S6) noted for each phase. Transformation rate constants did not 340 

differ between static and turned compost, except in the case of tylosin (Table 1). The 341 

transformation rate constant for tylosin was higher during the first phase of turned composting 342 

compared to static composting (0.223 vs. 0.047 d-1). Overall, transformation rate constants in the 343 

first phase were higher than those in the second phase, consistent with a general slow-down of 344 

transformation after 2 weeks (Table 1). 345 

Other than sulfamethazine, the half-lives of beef antibiotics were not influenced by 346 

composting approach (Table 2). The half-life of sulfamethazine during the second phase of static 347 

composting was higher compared to turned composting (73.7 vs. 21.5 d; Supplemental Table 348 

S6). Overall, the half-lives of antibiotics in the first phase were significantly shorter compared to 349 

those in the second phase, consistent with their higher transformation rate constants (Table 2). 350 

During static composting, the half-life of sulfamethazine for the first phase was shorter compared 351 

to the second phase (2.03 vs. 73.7 d-1; Supplemental Table S6). 352 
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In this study, the half-lives of chlortetracycline in the first phase (8.68 and 6.12 d for 353 

static and turned compost, respectively) were comparable to a half-life of 8.2 d reported for 354 

composting of swine manure (Arikan, 2008). However, Dolliver et al. (2008b) observed a 355 

relatively shorter half-life of 1 d during composting of turkey manure. The difference in 356 

degradation rates might be due to either the activities of microbes or abiotic factors, both of 357 

which rely on the environmental factors such as temperature. In the current study, half-lives of 358 

sulfamethazine observed in first phase (2.03 and 2.78 d for static and turned, respectively) were 359 

comparable to those reported in swine manure-amended soils under aerobic conditions (1.2-6.6 360 

d-1) (Lertpaitoonpan et al., 2015). A short half-life of 1.4 d for sulfadiazine, a structurally similar 361 

sulfonamide, was also noted during composting of broiler manure (Ho et al., 2013) . Relatively 362 

faster dissipation of sulfadiazine was also observed during composting of swine manure 363 

(complete removal within 3 days) (Selvam et al., 2012). Dolliver et al. (2008b) did not observe 364 

any degradation of sulfamethazine during 35-day composting of turkey litter, with the 365 

persistence of sulfamethazine likely due to the lack of microbial adaptation or a strong 366 

adsorption effect preventing biodegradation. Reported half-lives of tylosin ranged from less than 367 

2 to 30 d (Dolliver et al., 2008b; Ho et al., 2013; Ingerslev and Halling-Sorensen, 2001; Lee et 368 

al., 2001; Loke et al., 2000). In the current study, the half-life of tylosin was 18 d, which was 369 

comparable to a half-life of 19 d during composting of turkey manure spiked with tylosin 370 

(Dolliver et al., 2008b). 371 

Transformation Patterns and Kinetics: Dairy Antibiotics 372 

Cephapirin was present in d 0 compost samples, but was not detected thereafter. Initial 373 

concentrations of cephapirin in static and turned dairy compost were 11.0 and 14.2 ng g-1 dry 374 

compost, respectively. Rapid disappearance of cephapirin was not surprising considering the 375 
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instability of cephapirin at high temperature. In aqueous solution, degradation of cephapirin at 376 

37°C was 40% after 24 h (Berendsen et al., 2009). Pirlimycin was detected in d 0 compost 377 

samples at comparatively higher concentrations (154 and 109 ng g-1 dry compost for static and 378 

turned compost, respectively) and, as observed generally for beef antibiotics, its reduction was 379 

not influenced by composting approach (Supplemental Table S4). In static and turned compost, 380 

the reduction in pirlimycin concentration was 32 and 48% of initial concentrations, respectively, 381 

by d 4. The decline in pirlimycin concentration was almost 70% of initial concentration by d 7 of 382 

composting. In both static and turned compost, the removal of pirlimycin was more than 90% of 383 

initial concentration after 14 days and was almost complete by 42 days (99.8 and 99.9% of initial 384 

concentration for static and tuned compost, respectively). While near complete removal was 385 

achieved during composting, only 55% reduction in pirlimycin concentration was observed after 386 

42-d storage of dairy antibiotic manure at 4°C.  387 

It is likely that that disappearance of pirlimycin during composting involved both biotic 388 

and abiotic process. Pirlimycin was transformed to its nucleotide adducts by microflora in dairy 389 

cow feces (Hornish et al., 1992). In addition to abiotic degradation, adsorption of pirlimycin to 390 

organic matter (such as humic acid) might have also contributed to reducing the concentration of 391 

pirlimycin as adsorption sites were generated during composting (Hartlieb et al., 2003).  Most 392 

likely such adsorption would be strong and irreversible, given that a strong solvent extraction 393 

method was employed in this study. Since composting is an aerobic process, oxidation of 394 

pirlimycin to pirlimycin sulfoxide and pirlimycin sulfone should also be considered as a 395 

plausible explanation for reduction. The concentrations of pirlimycin in the final product of static 396 

and turned composting were 0.26 and 0.06 ng g-1 dry compost, respectively. The transformation 397 

of pirlimycin in both static and turned compost followed first-order kinetics (Fig. 3), with no 398 
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significant difference in transformation rate constants between static and turned compost (Table 399 

1). Similarly, the half-life of pirlimycin was not influenced by composting approach, with values 400 

of 4.67 and 4.41 d for static and turned compost, respectively (Table 2). 401 

Limitations and Suggested Further Studies 402 

It is important to note that the present study focused on the fate of parent antibiotic 403 

compounds fed to the cattle. It is likely that many antibiotics are transformed into metabolites 404 

that retain antimicrobial activity. Isochlortetracycline has been reported to be the primary 405 

metabolite during degradation of chlortetracycline in swine manure (Shelver et al., 2012), while 406 

tylosin B and D were believed to be major and the minor degradation products of tylosin A (the 407 

type of tylosin analyzed in this study), respectively (Loke et al., 2000).  Almost complete 408 

dissipation of sulfamethazine observed in the current study might be partly or completely due to 409 

its transformation into the metabolite N4-acetylsulfamethazine (Grant et al., 2003). Therefore, it 410 

cannot be assumed based on the present study that loss of antimicrobial activity is equivalent to 411 

the dissipation of the parent compound.  412 

Phase partitioning and bioavailability could also affect the residual antimicrobial activity 413 

in the compost with time. In this study we employed a bulk extraction approach to recover the 414 

total residual parent compound.  However, this approach may not represent the bioavailable 415 

fraction of antibiotics because compost is rich in organic carbon (OC), which can bind to 416 

antibiotics and influence their activity. Hydrophobic antibiotics are more likely to partition to 417 

organic matter, with water-OC partition coefficients (KOC) for sulfamethazine and tylosin 418 

reported to range from 82-208 and 553-7990 L kg-1, respectively (Sarmah et al., 2006). Given 419 

that the concentration of OC in soils is very low (1 to 6%) compared to compost (≈50%), 420 

extrapolation of soil KOC values to compost predicts availability of sulfamethazine and tylosin in 421 
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the range of 0.6 to 1.6% and 0.01 to 0.2%, respectively. However, when normalizing to OC, the 422 

effect of hydrophilic interactions (e.g., as a result of ionic functional groups) is not taken into 423 

account and such predictions of availability may not be accurate. 424 

It is also important to acknowledge that small-scale composting is not a perfect 425 

representation of full-scale because parameters such as heat accumulation and loss, moisture, 426 

aerobic or anaerobic conditions, and substrate compaction vary with the scale of composting 427 

(Petiot and Guardia, 2004). The overall effect of smaller scale tends to be accelerated reaction 428 

rates. Therefore, while the general patterns reported in this study at small-scale are expected to 429 

translate to full-scale, the precise rates of antibiotic transformation may differ. For example, 430 

Dolliver et al. (2008) reported slightly slower rate of chlortetracycline dissipation in full-scale 431 

composting compared to smaller scale vessel composting. In contrast, first-order degradation rate 432 

constants of organic micro-pollutants were not different between bench-scale and full-scale 433 

composting (Sadef et al., 2015). In future large scale composting experiment should be 434 

conducted where metabolites of antibiotics in addition to parent compounds should be 435 

quantified. In addition to total extracted antibiotics any effect of composting on bioavailable 436 

fraction of antibiotics should be monitored.  437 

Conclusions and Implications for Composting Manure with Antibiotics 438 

Overall temperature profile, physico-chemical properties, and temporal patterns of 439 

nutrient concentrations were not influenced by manure type and indicated that presence of 440 

antibiotics did not negatively influence the process of composting. While the static compost 441 

condition achieved federal time × temperature guidelines for pathogen reduction, the turned 442 

condition did not achieve the recommended extended thermophilic stage, which is likely related 443 

to the small-scale employed in this study. Under the conditions of this study, the transformation 444 
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of antibiotics was not strongly affected by static versus turned composting; both static and turned 445 

compost resulted in complete removal of cephalosporin, lincosamide, and sulfonamide 446 

antibiotics while removal of tetracycline antibiotics ranged from 66 to 84%. Removal of tylosin 447 

was poor over the 42 d of composting. The transformation of all antibiotics, except lincosamide 448 

followed, bi-phasic first-order kinetics. Antibiotic transformation rates generally decreased from 449 

first to second phase, corresponding to the shift in thermophilic to mesophilic conditions. Overall 450 

it is concluded that composting is promising for the reduction of downstream impacts of 451 

antibiotics from livestock to crops and the environment, but future studies should verify that the 452 

benefits carry over to metabolites and verify rates at full-scale. 453 

  454 
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Fig. 1. (A) Temporal pattern (28 days) of temperature during static composting of dairy control, 660 

dairy antibiotic, beef control, and beef antibiotic manure. (B) Temporal pattern (28 days) of 661 

temperature during turned composting of dairy control, dairy antibiotic, beef control, and beef 662 

antibiotic manure. Dairy and beef control: No antibiotic in manure; Dairy antibiotic: Manure 663 

from cows after intramammary infusion of cephapirin and pirlimycin at 1200 mg and 100 mg per 664 

cow, respectively. Temperature data from only 28 days is presented because temperature was 665 

similar to ambient temperature after 28 days. 666 

Fig. 2. Dissipation kinetics of (A) chlortetracycline and (B) tylosin during static and turned 667 

small-scale composting of beef manure. Manure was collected from steers fed chlortetracycline 668 

sulfamethazine each at 350 mg d-1 and tylosin at a daily dose of 11 mg kg-1 feed. 669 

Fig. 3. Dissipation kinetics of pirlimycin in dairy manure during static and turned small-scale 670 

composting. Manure was collected from dairy cows after intramammary infusion of cephapirin 671 

and pirlimycin at 1200 and 100 mg per cow, respectively. 672 
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Table 1. Transformation rate constants of different antibiotics during static and turned small-scale composting of beef and 

dairy manure 

 Chlortetracycline Tetracycline Sulfamethazine Tylosin† Pirlimycin‡ 

 ---------------------------------------------------d-1---------------------------------------------------- 

Composting 

Static§ 0.049 ± 0.014 0.042 ± 0.007 0.188 ± 0.031 0.047 ± 0.027a 0.154 ± 0.005 

Turned§ 0.072 ± 0.014 0.030 ± 0.007 0.149 ± 0.031 0.223 ± 0.027b 0.162 ± 0.005 

Phase   

First 0.106 ± 0.012a¶ 0.052 ± 0.006a 0.316 ± 0.031a 0.223 ± 0.026a - 

Second 0.015 ± 0.012b 0.019 ± 0.006b 0.021 ± 0.031b 0.010 ± 0.026b - 

 P value 

Composting 0.32 0.32 0.43 <0.05 0.34 

Phase <0.05 <0.05 <0.05 <0.05 - 

Composting × Phase 0.52 0.12 0.24 - - 

† Effect of composting reflects first phase data and effect of phase reflects turned composting data for tylosin transformation. 

‡ Pirlimycin transformation followed single phase first order kinetics. 

§ Static and turned are static and turned composting approaches. 

¶ Within antibiotic, means followed by different letters are significantly different (P < 0.05).  
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Table 2. Half-lives of different antibiotics during static and turned small-scale composting of beef and dairy manure 

 Chlortetracycline Tetracycline Sulfamethazine Tylosin† Pirlimycin‡ 

 -----------------------------------------------d------------------------------------------------- 

Composting 

Static§ 86.9 ± 25.3 26.8 ± 4.88 37.9 ± 4.31 18.0 ± 4.21 4.51 ± 0.13 

Turned§ 20.4 ± 25.3 27.6 ± 4.88 12.1 ± 4.31 3.32 ± 4.21 4.30 ± 0.13 

Phase   

First 7.40 ± 24.8a¶ 14.9 ± 3.87a 2.41 ± 4.31# 3.31 ± 23.1a - 

Second 100 ± 24.8b 39.5 ± 3.87b 47.6 ± 4.31 88.9 ± 23.1b - 

 P value 

Composting 0.14 0.91 <0.05 0.07 0.34 

Phase <0.05 <0.05 <0.05 <0.05 - 

Composting × Phase 0.14 0.29 <0.05 - - 

† Effect of composting reflects first phase data and effect of phase reflects turned composting data for tylosin transformation. 

‡ Pirlimycin transformation followed single phase first order kinetics. 

§ Static and turned are static and turned composting approaches. 

¶ Within antibiotic, means followed by different letters are significantly different (P < 0.05). 

# Mean separation is not provided if Composting × Phase is significant.
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