Smolders E. & Degryse F. (2002). Fate and effect of zinc from tire debris in soil. *Env. Sci. Technol.* 36, 3706-3710

Abstract, tables and figures

The full version is available through ACS publications

http://pubs.acs.org/doi/abs/10.1021/es025567p

Fate and effect of zinc from tyre debris in soil

Erik Smolders^{*} and Fien Degryse

Laboratory of Soil Fertility and Soil Biology,

Department of Land Management

K.U. Leuven

Kasteelpark Arenberg 20

B-3001 Heverlee, Belgium.

*Corresponding author

Tel. ++ 32 16 329677

Fax ++ 32 16 321997

Email: erik.smolders@agr.kuleuven.ac.be

Abstract

Tyre debris contains significant quantities of zinc (Zn) and there is concern about the diffuse Zn contamination of soils from tyre wear. An experiment was set-up to quantify the fate and effect of Zn from tyre debris in soil. Two different soils were mixed with the <100- μ m fraction of car and truck tyre debris (25 g kg⁻¹ soil) or zinc sulphate (ZnSO₄) as a reference. Soils were transferred to soil columns with free drainage and placed outdoors for 11 months. Leachates of the tyre debris amended soils did not contain significantly (P>0.05) more Zn than control soils except for a 3-fold increase in one soil amended with car tyre debris. The increase in Zn leaching due to tyre debris was only 3 % of the corresponding increase in the ZnSO₄ treatment at the same total Zn in soil. Tyre debris application increased the soil nitrification potential whereas ZnSO₄ application, at corresponding or smaller total Zn concentration, decreased nitrification potential. An increase in soil pH was observed in all soils treated with tyre debris was isotopically exchangeable in soil sampled after 1 year weathering. It is concluded that a significant fraction of Zn is released from the rubber matrix within 1 year but the parallel increase in soil pH limits the mobilisation of Zn in soil.

<u>Synopsis:</u> Tyre wear is a significant source of zinc in roadside soils but only minor mobilisation of Zn was found in soils amended with finely ground tyre rubber.

	soil B	soil T
Texture	Sandy	silt loam
% clay	2	17
% silt	8	72
% sand	90	11
Organic carbon (%)	2.1	0.9
CEC (pH 7) cmol _c kg ⁻¹	6.8	10.2
pH (CaCl ₂ 0.01 M) [§]	4.9	6.1
Aqua regia soluble metals		
$Zn (mg kg^{-1})$	26	37
$Cd (mg kg^{-1})$	0.4	0.4

Table 1. Selected characteristics of the non-contaminated soils.

[§] in control samples 8 month after the start of the experiment

Table 2. Zn concentrations (mg L⁻¹) in membrane filtered soil solutions. Means followed by same character within columns are not significantly different at α <0.05.

Treatment	soil B (acid sand)					soil T (silt loam)				
	09-Nov-99	13-Dec-99	28-Feb-00	28-Jun-00	06-Oct-00	09-Nov-99	13-Dec-99	28-Feb-00	28-Jun-00	06-Oct-00
control	0.51 ^d	0.28 ^e	0.11 ^f	0.25 ^c	0.34 ^{c,d}	0.11 ^b	0.17 ^c	0.04 ^{b,c}	0.03 ^c	0.01 ^c
truck tyre	0.31 ^e	0.50 ^{d,e}	0.22 ^d	0.16 ^c	0.19 ^d	0.13 ^b	0.11 ^c	0.02 ^c	0.03 ^c	0.01 ^{b,c}
car tyre	3.3 ^c	1.0 ^c	0.70 ^b	1.6 ^b	0.88 ^{b,c}	0.17 ^b	0.11 ^c	0.07 ^b	0.05 ^c	0.03 ^b
ZnO	14.8 ^b	4.5 ^b	2.8 ^a	4.5 ^{a,b}	2.7 ^{a,b}	3.30 ^{a,b}	1.6 ^b	0.37 ^a	0.31 ^b	0.38 ^a
ZnSO ₄	73.6 ^a	12.5 ^a	3.1 ^a	10.1 ^a	4.0^{a}	23.5 ^a	14.6 ^a	0.75 ^a	0.85 ^a	0.52 ^a
truck tyre (surface)	0.44 ^d	0.48 ^{d,e}	0.17 ^e	0.25 ^c	0.14 ^d	n.d.	0.34 ^c	0.04 ^{b,c}	0.04 ^c	0.01 ^c
car tyre (surface)	n.d.	0.69 ^{c,d}	0.52°	1.1 ^b	1.0 ^{b,c}	n.d.	0.12 ^c	0.10 ^b	0.04 ^c	0.03 ^b

n.d.: not detected

Table 3. Soil Zn mass balance after 11 months outdoor weathering in comparison with nominal application. Means followed by same character within columns are not significantly different at α <0.05.

Treatment		soil B (a	cid sand)		soil T (silt loam)			
	total Zn soil ⁽¹⁾	Zn lost by	initial Zn ⁽³⁾	nominal Zn	total Zn soil ⁽¹⁾	Zn lost by	initial Zn ⁽³⁾	nominal Zn
	±SD	leaching ⁽²⁾		application ⁽⁴⁾	±SD	leaching ⁽²⁾		application ⁽⁴⁾
		mg Z	n/kg _{dw}			mg Z	n/kg _{dw}	
Control	26 (1)	0.6 ^d	27	0	37 (3)	0.2 ^b	37	0
truck tyre	559 (69)	0.7^{d}	560	714	511 (9)	1.6 ^b	513	714
car tyre	318 (34)	2.1 ^c	320	338	269 (16)	0.3 ^b	269	338
ZnO	309 (10)	10.2 ^b	319	360	305 (76)	2.6 ^{a,b}	308	360
ZnSO ₄	290 (6)	45.2 ^a	335	360	294 (12)	16.5 ^a	310	360
truck tyre (surface)	562 (94)	0.7 ^d	563	714	532 (34)	0.3 ^b	532	714
car tyre (surface)	251 (8)	0.6 ^d	252	338	254 (24)	0.3 ^b	254	338

(1) measured on oven dried soils sampled at 6-Oct-00; (2) calculated from Zn concentration in leachates and total leachate volume of soil columns sampled at 6-Oct-00 (data converted to soil dry weight); (3)=(1)+(2); (4) dry weight based

Table 4. The Potential Nitrification Rate (PNR, mg N kg⁻¹ d⁻¹) in the soils sampled on two occasions. Means followed by same character within columns are not significantly different at α <0.05. Reduced values of the PNR indicate stress on the nitrifying organisms.

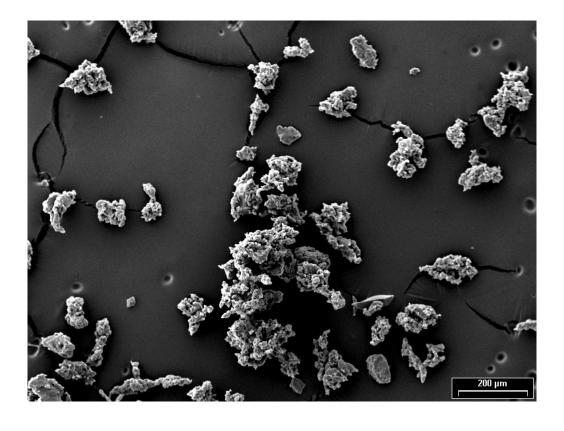

Treatment		soil B (aci	d sand)		soil T (silt loam)			
	28-Feb-00		1-Sep-00		28-Feb-00		1-8	5ep-00
	PNR	% of control	PNR	% of control	PNR	% of control	PNR	% of control
control	5.2 ^c	100	3.5 ^c	100	7.3 ^a	100	5.1 ^{a,b}	100
truck tyre	23.1ª	440	16.6 ^a	478	9.6 ^a	131	6.5 ^{a,b}	128
car tyre	9.2 ^b	176	7.6 ^b	218	6.6 ^a	91	6.0 ^{a,b}	119
ZnO	4.7 ^c	89	3.7 ^c	106	5.8 ^a	79	5.6 ^{a,b}	111
ZnSO ₄	3.3 ^d	63	3.2 ^c	91	3.0 ^b	41	4.6 ^b	90
truck tyre (surface)	19.4 ^d	371	15.3 ^a	441	9.3ª	128	7.0 ^{a,b}	138
car tyre (surface)	8.3 ^b	159	6.3 ^b	181	8.7ª	120	7.8 ^a	153

Table 5. The radiolabile Zn content (E-value) in soils sampled on 6 October, 2000.Means and standard deviations (in brackets) of two replicates. The labile fraction ofadded Zn relative to total added Zn is calculated with Eqn (1).

treatment	E value (mg Zn/kg)	Labile fraction of added Zn relative to total added Zn (%)				
	soil B (acid sand)					
control	13 (1)					
truck tyre	114 (8)	19 (3)				
car tyre	128 (8)	39 (5)				
ZnO	298 (16)	101 (7)				
ZnSO ₄	276 (5)	100 (3)				
truck tyre (surface)	71 (14)	11 (3)				
car tyre (surface)	78 (31)	29 (14)				
	soil T (silt loam)					
control	11 (1)					
truck tyre	82 (5)	15 (1)				
car tyre	80 (3)	30 (3)				
ZnO	183 (46)	64 (25)				
ZnSO ₄	223 (24)	82 (10)				
truck tyre (surface)	61 (3)	10 (1)				
car tyre (surface)	55 (2)	20 (3)				

Table 6. Pore water Zn concentrations relative to control values in soils sampled 1 year after application of tyre debris. Predictions are based on the radiolabile Zn concentration and soil pH (Eqn. 3) and observations are based on data of Table 2.

	soil B (a	cid sand)	soil T (silt loam)		
	predicted	observed	predicted	observed	
control	1.0	1.0	1.0	1.0	
truck tyre	0.8	0.6	2.4	2.0	
car tyre	4.7	2.6	4.9	4.4	
truck tyre (surface)	0.5	0.4	1.8	1.1	
car tyre (surface)	3.1	3.1	2.7	3.6	

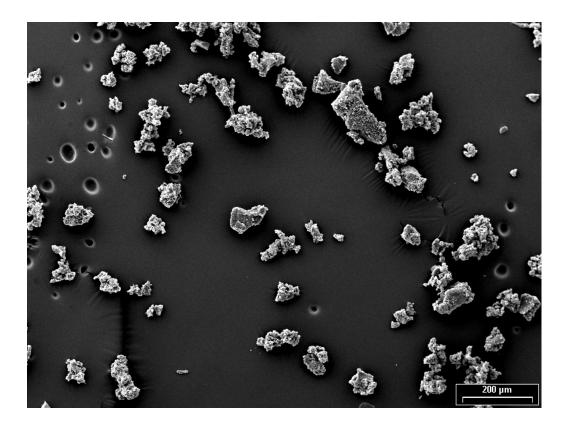
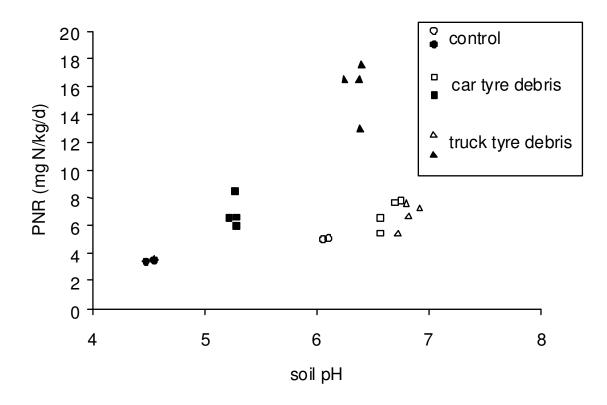



Figure 1. SEM photographs of the $<100\mu$ m fraction of truck (top) and car (bottom) tyre debris

Figure 2. Soil pH and not soil Zn concentrations explain the Potential Nitrification Rate (PNR) in the soils amended with car/truck tyre debris (mixed or surface applied). Data of soils sampled 11 months after application of the debris. Open symbols: soil T(silt loam); closed symbols: soil B (acid sand)