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Fate decision of mesenchymal stem cells: adipocytes
or osteoblasts?

Q Chen1,2,4,5, P Shou2,5, C Zheng2, M Jiang2, G Cao2, Q Yang2, J Cao2, N Xie2, T Velletri2, X Zhang2, C Xu2, L Zhang1,3, H Yang1, J Hou1,

Y Wang*,2 and Y Shi*,1,2,3

Mesenchymal stem cells (MSCs), a non-hematopoietic stem cell population first discovered in bone marrow, are multipotent cells

capable of differentiating into mature cells of several mesenchymal tissues, such as fat and bone. As common progenitor cells of

adipocytes and osteoblasts, MSCs are delicately balanced for their differentiation commitment. Numerous in vitro investigations

have demonstrated that fat-induction factors inhibit osteogenesis, and, conversely, bone-induction factors hinder adipogenesis. In

fact, a variety of external cues contribute to the delicate balance of adipo-osteogenic differentiation of MSCs, including chemical,

physical, and biological factors. These factors trigger different signaling pathways and activate various transcription factors that

guide MSCs to commit to either lineage. The dysregulation of the adipo-osteogenic balance has been linked to several

pathophysiologic processes, such as aging, obesity, osteopenia, osteopetrosis, and osteoporosis. Thus, the regulation of MSC

differentiation has increasingly attracted great attention in recent years. Here, we review external factors and their signaling

processes dictating the reciprocal regulation between adipocytes and osteoblasts during MSC differentiation and the ultimate

control of the adipo-osteogenic balance.
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Bone is a rigid organ that provides support and physical

protection to various vital organs of the body. Throughout the

life, bone is in the dynamic balance involving a complex

coordination of multiple bone marrow cell types. It is estimated

that in adult human body, the entire skeleton is renewed every

7 years. Bone formation by osteoblasts and resorption by

osteoclasts are tightly regulated processes responsible for

continuous bone remodeling. Osteoclasts originate from

hematopoietic stem cell precursors (HSCs) along the myeloid

differentiation lineage;1 whereas osteoblasts are derived from

a common progenitor cell with adipocytes, bone marrow

mesenchymal stem cells (MSCs).2,3 The imbalance between

bone formation and resorption results in various diseases,

such as osteopetrosis, osteopenia, and osteoporosis.1 These

bone malformations also participate in other diseases such as

cancer and autoimmunity. As a common progenitor, the tightly

controlled lineage commitment of MSCs has a critical role in

the maintenance of bone homeostasis. Although a variety

of cell types can be derived from MSCs, the commitment of

MSCs to adipocytes and osteoblasts has been specially

implicated in pathological conditions of abnormal bone

remodeling.4–6 For example, increased marrow fat content

has been observed in osteoporosis patients, the most

common bone remodeling disorder worldwide.7,8 Actually,

the increase in bone marrow adiposity has been observed in

most bone loss conditions, including aging,8,9 and various

pathological conditions.10–17 Therefore, modulating lineage

commitment of MSCs could provide effective therapeutic

regime for related bone diseases.

The lineage commitment of MSCs to adipocytes and

osteoblasts definitely warrants further detailed studies, not

only because they share a common precursor, but also for the

critical roles they play in the bone marrow microenvironment.

Investigations in these directions will undoubtedly offer

insights into various metabolic and hematological abnormal-

ities during conditions such as obesity, osteoporosis, cancer,

and aging. Here, we will review the signaling mechanisms

involved in adipogenesis and osteogenesis and discuss the

factors that determine the lineage commitment of MSCs.

Mesenchymal Stem Cells

Friedenstein et al.18 first discovered mesenchymal stem cells

as spindle-shaped, adherent, non-hematopoietic stem cells in
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bone marrow. Decades of studies have offered significant

in-depth understanding of these cells. MSCs can be easily

obtained from many tissues, such as bone marrow, umbilical

cord, placenta, fat, lung, liver, and skin.19,20 The most

intensely studied MSCs are those derived from adult bone

marrow. In fact, in bone marrow, MSCs are a minimal fraction

of nucleated cells, representing 0.001–0.01% of nucleated

cells.21,22 They are typically isolated from whole bone marrow

aspiration after removing the non-adherent cells. The adher-

ent mononuclear layer of bone marrow is often cultured in

DMEM supplemented with 10% fetal bovine serum and basic

fibroblast growth factor (bFGF).23When a lag phase is broken,

the enrichedMSCswill proliferate rapidly, reaching confluence

at time intervals related to plating density and origins, but often

in less than 5 days.24 After expansion and serial passaging,

the enriched MSCs are usually heterogeneous, though in

most culture, more than 95% are MSCs. Individual MSC

clones can be obtained through seeding cells in 96-well plates

by limited dilution.25 These homogenous MSC clones can be

picked and expanded for studies. As no specific markers have

been identified, the purified MSCs are characterized by a

combination of positive markers (for human: Sca-1, CD44,

CD71, CD73, CD90, and CD105;26,27 for murine: Sca-1,

CD44, CD105, and CD140a28) and negative markers, such as

the hematopoietic and endothelial markers (CD45, CD34,

CD19, CD11b, CD11c, CD79a, and CD31), costimulatory

molecules (CD80, CD86, and CD40), and MHC molecules

(negative for class II and low for class I).21,29,30 Another

important criterion for defining MSCs is their multipotency.

MSCs have been confirmed to be induced to differentiate into

mature cells of several cell lineages of other types of tissue,

such as cartilage, bone, tendon, ligament, and adipose

tissue.21,22 In most laboratories, the differentiation into

adipocytes, chondrocytes, and osteoblasts has been used to

define MSCs,30 though in vivo bone formation has been urged

to be adapted as gold standard for MSC designation

(Figure 1).

Molecular Regulation of the Adipo-Osteogenic

Differentiation of MSCs

Signaling pathways in adipo-osteogenic differentiation

of MSCs. The differentiation of MSCs is a two-step process,

lineage commitment (from MSCs to lineage-specific pro-

genitors) and maturation (from progenitors to specific cell

types). Intensive studies in recent decades have demon-

strated that a number of critical signaling pathways are

involved in regulating the lineage commitment of MSCs,

including transforming growth factor-beta (TGFβ)/bone mor-

phogenic protein (BMP) signaling, wingless-type MMTV

integration site (Wnt) signaling, Hedgehogs (Hh), Notch,

and fibroblast growth factors (FGFs). As these pathways are

well-established, we only briefly review their roles in MSC

differentiation (Figure 2).

TGFβ/BMPs family: The TGFβ superfamily consists of

more than 30 members, which are widely involved in

regulating cell proliferation, cell differentiation, and embryonic

development.31 The TGFβ superfamily is divided into three

subtypes: TGFβ1, TGFβ2, and TGFβ3 and BMPs belong to

TGFβ1 family.32 Different members exert various functions,

being dose dependent for some of them,33 in MSC

differentiation.34 For example, BMP4 alone can promote

Figure 1 Isolation, expansion, and differentiation of MSCs. MSCs can be isolated from various tissues of either human or mouse. This minor population of cells can be
isolated, expanded, and enriched after serial passages in vitro. A combination of positive and negative markers can be used to determine the purity of MSCs. In addition to self-
renewal, these multipotent MSCs can also undergo differentiation in culture. One of the gold standards for defining MSCs is their differentiation ability to cell lineages such as
adipocytes and osteoblasts
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adipogenic differentiation of MSCs,35 while BMP2 needs to

work together with rosiglitazone to induce adipogenic

differentiation.36 Furthermore, low dose of BMP2 promotes

C3H10T1/2 to differentiate into adipocytes. However, high

dose of BMP2 accelerates osteogenic and chondrogenic

differentiation of C3H10T1/2.33 The TGFβ/BMPs signaling

pathway has been generally recognized to have dual roles

in regulating adipogenic and osteogenic differentiation of

MSCs.34 By binding to their transmembrane serine-threonine

kinase receptors (type I and type II), TGFβ/BMPs activate

canonical Smad-dependent pathways (TGFβ/BMP ligands,

receptors, and Smads) and non-canonical Smad-indepen-

dent signaling pathway (e.g., p38 mitogen-activated protein

kinase (MAPK) pathway).37 Upon TGFβ/BMPs stimulation,

the expression of runt-related gene 2 (Runx2/Cbfa1)32 and

peroxisome proliferator-activated receptor-γ (PPARγ)34 can

be regulated by either the Smad or the p38 MAPK pathway.

The altered expression level of lineage-specific transcription

factors directly control MSC differentiation. Therefore, the

composition and concentration of cytokines in the micro-

environment of the MSC niche are critical for MSC lineage

commitment.

Wnt: The Wnt family consists of a large number of secreted

glycoproteins, which function in either paracrine or auto-

crine manner.38 As a highly conserved signaling pathway

during the evolution of multicellular organisms, Wnt signaling

is involved in many critical biological processes, including

development,38 metabolism,39 and maintenance of stem

cells.40 Through binding to the 7-transmembrane domain-

spanning Frizzled receptor (FZD) and LRP5/6 coreceptors,

Wnt ligands stabilize β-catenin via preventing its phos-

phorylation.41 Unphosphorylated β-catenin translocates into

the nucleus and regulates target genes expression.38

Increasing evidence suggests that Wnt signaling may have

an important role in regulating MSC differentiation.42,43 The

activation of Wnt signaling has been reported to facilitate

osteogenic differentiation44 and inhibit adipogenic differentia-

tion of MSCs.43 Wnt3a has been specifically shown to

stimulate osteogenic differentiation through activation of TAZ

by PP1A-mediated dephosphorylation.45 Most recently, it has

been demonstrated that YAP/TAZ could mediate alternative

Wnt signaling-induced osteogenesis.44 Animal studies

showed that activation of Wnt signaling by overexpression

of Wnt10b or supplementation of lithium could increase the

thickness of trabecular bone.46 Accordingly, deficiency of

Wnt10b leads to decrease in bone density.47 Aging-

associated increase in adipocytes is also thought to be

related to the reduction of Wnt10b.46,47 In addition, the loss

of β-catenin in the mesenchyme of the developing mouse

uterus was found to be a switch to adipogenesis in the

myometrium.48 These studies provide strong evidence for the

role of Wnt signaling in regulating the balance between

adipogenic and osteogenic differentiation of MSCs.

Notch: The Notch signaling pathway involves Notch, Notch

ligand (Delta/Serrate/LAG-2, DSL protein), and CBF1/Su (H)/

Lag-1 (CSL, DNA binding protein).49 Both Notch and Notch

ligands are single transmembrane proteins, which involve

cell–cell communication to regulate various cell differentiation

processes. Like a double-edged sword, Notch showed an

inhibitory role and an absolute necessary role in adipogenic

Figure 2 Signaling pathways and key transcription factors in regulating the adipo-osteogenic differentiation of MSCs. The fine balance of adipogenic and osteogenic
differentiation of MSCs is achieved by the actions of critical signaling pathways and key transcription factors. MSCs exist in specific microenvironments or niches, which is
composed of various extracellular matrix components, growth factors, cytokines, and chemokines. Upon interaction with MSCs, these components activate or inhibit the lineage
commitment of MSCs. In addition, the initiated cellular signaling pathways can also interfere each other to form a fine regulatory network. Ultimately, this signaling network
maintains a delicate differentiation balance through regulating key transcription factors such as PPARγ and C/EBPs or Runx2 and Osterix for adipogenesis or osteogenesis
respectively. OPN, osteopontin; FZD, Frizzled receptor; Hh, Hedgehog; Ptc, Patched; Smo, Smoothened
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differentiation, as demonstrated by studies of the 3T3-L1

model. The expression of PPARγ and C/EBPα was blocked

by exposure to Notch ligand jagged1 or overexpression of the

Notch target gene Hes-1 in 3T3-L1 cells. Surprisingly, the

adipogenic differentiation capability can be reduced in these

cells by knockdown of Hes-1 using siRNA.50 Recently, it has

been demonstrated that blocking Notch signaling promotes

autophagy-mediated adipogenic differentiation of MSCs via

the PTEN-PI3K/AKT/mTOR pathway.51 Besides its role in

adipogenic differentiation, Notch signaling has also been

shown to suppress osteogenic differentiation via inhibiting

Wnt/β-catenin signaling.37 However, other studies showed

that Notch signaling could also promote osteogenic differ-

entiation through cross-talk with BMP2 signaling.52 There-

fore, Notch signaling pathway regulates both adipogenesis

and osteogenesis of MSCs in a complex manner through

direct targeting related genes or interacting with other

signaling pathways.

Hedgehogs: Hedgehogs are secreted proteins consisting of

three orthologs: Sonic Hedgehog (SHh), Indian Hedgehog

(IHh), and Desert Hedgehog (DHh). Hedgehog precursor is

cleaved to produce an active 19 kD N-terminal fragment,

which binds to membrane proteins, Patched (Ptc) and

Smoothened (Smo). With the ligation of Hedgehog, Smo is

released, resulting in activation of the transcription factor

Cubitus Interruptus in fly (vertebrate orthologs Gli1, Gli2, and

Gli3) to regulate the expression of Hedgehog targeted

genes.37 The components of Hedgehog signaling pathway

such as SHh, IHh, and DHh as well as Gli are highly

expressed in MSCs. During adipogenic differentiation of

MSCs, Hedgehog signaling is downregulated due to the

decreased expression of Gli. Consistent with this observa-

tion, activation of Hedgehog signaling blocked adipogenic

differentiation by inhibiting PPARγ and C/EBPα expression

and lipid accumulation in 3T3-L1and C3H10T1/2 cells. In

addition, inhibition of Gli could promote adipogenic

differentiation.53 Regarding osteogenic differentiation, the

Hedgehog pathway has a positive role.54–56 Furthermore,

the cross-talk between Hedgehog signal and BMP signal has

also been shown to promote osteogenic differentiation

through modulating Smad.57 In conclusion, these studies

clearly demonstrate that the Hedgehog signaling pathway is

pro-osteogenic and anti-adipogenic.

Other signaling molecules involved in MSC differentiation:

Several other signaling pathways have also been implicated

in regulating adipogenic and osteogenic differentiation

of MSCs, including FGFs, PDGF, EGF, and IGF.58–60 Their

roles in MSC differentiation mainly exert through regulating

signaling pathways we discussed previously, such as Wnt

and TGFβ/BMP pathways.

FGFs have been implicated in both adipogenesis and

osteogenesis.61 The FGF family consists of 23 structurally

related members that are ubiquitously expressed in almost all

tissue types. After the binding of FGF, FGF receptors dimerize

and set off the downstream signaling cascade. The FGF

receptor signaling cascade has been shown to involve

ERK1/2, p38 MAPK, SAPK/JNK, PKC, and PI3K path-

ways,61,62 which all have been shown to play important roles

in regulatingMSC differentiation. FGFmembers exert different

effects on adipogenic and osteogenic differentiation of MSCs.

For example, the osteogenic transcription factor Runx2 can be

upregulated by FGF2, FGF4, and FGF8.63 In addition, FGF2

could induce alkaline phosphatase activity in rat bone marrow

precursors,64 and promote mineralization during the late

phase of osteogenic differentiation, together with FGF9 and

FGF18. In terms of adipogenic differentiation, FGF1, FGF2,

and FGF10 have been shown to possess strong adipogenic

effect under the adipogenic condition.65–67 Accumulating

evidence has clearly shown that FGF2 exerts dual roles in

regulating adipogenic and osteogenic differentiation. This is

probably due to the interactions between FGF-initiated

signaling pathways and other differentiation-related signaling

pathways.

It is important to emphasize that the signaling pathways

discussed above do not function in isolation. The lineage

commitment of MSCs is determined by a network of various

signaling pathways (Figure 2) that can be activated simulta-

neously by stimuli in specific microenvironment. For example,

BMP2 signaling can interact with Wnt pathway through

β-catenin and N-cadherin,68 which may explain the dual roles

of BMP2 in the adipogenic and osteogenic differentiation

of MSCs.

microRNAs: Compared with well-known molecular signaling

pathways, microRNAs involved in the lineage commitment of

MSCs have just been caught on. It is found that various

microRNAs are related to the regulation of differentiation

of MSCs. Some of them have roles in lineage commitment

while others are critical for terminal differentiation.69–71 Here,

we summarize the microRNAs involved in lineage determina-

tion of MSCs.

Huang et al.72 demonstrated that miR-204 promoted

adipogenic differentiation of MSCs via targeting Runx2, an

osteogenic transcription factor. Overexpression of miR-204

and its human homolog miR-211 suppressed osteogenic

differentiation and enhanced adipogenic differentiation. By

targeting Osterix, another important osteogenic transcription

factor, miR-637 promoted adipogenesis while inhibited

osteogenesis.73miR-27b was reported to inhibit adipogenesis

by blunting PPARγ and C/EBPα, key adipogenic transcription

factors.74 In addition, miR-21 has been suggested as a

negative regulator of TGFβ signaling. Overexpression of

miR-21 can restore the inhibition effect of TGFβ on adipogenic

differentiation of MSCs. Further study showed that miR-21

was transiently upregulated after adipogenic differentiation

along with the decreased TGFβR2 expression. miR-21

blocked the TGFβ signaling via inhibiting the phosphorylation

of Smad3. Therefore, miR-21 might have a negative role in

osteogenic differentiation via inhibiting TGFβ signaling.75,76

Besides controlling the balance of adipo-osteogenic differ-

entiation in MSCs, there are some other microRNAs that exert

a parallel effect on adipogenic and osteogenic differentiation.

The expression of miR-335, high level in quiescent human

MSCs (hMSCs), decreased during osteogenesis. However,

overexpression of miR-335 inhibited both osteogenic and

adipogenic differentiation ability of hMSCs. Further studies

showed that miR-335 regulated the differentiation of hMSCs

through direct targeting Runx2.70 Similarly, miR-138 has also

been reported to inhibit both adipogenic and osteogenic

differentiation of MSCs.77,78 The regulation of MSC differ-

entiation by microRNAs has recently been reviewed
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elsewhere. The bone homeostasis controlled by microRNAs

was summarized recently.79 In addition, detailed lists of target

genes of various microRNAs and related signaling pathways

during osteogenic and adipogenic differentiation have also

been published.80,81 Interestingly, during the last 2 years,

along with the understanding of the MSC biology, remarkable

progress has been accomplished in this exciting field. Hereby,

we present a summary of latest identified microRNAs with the

capacity to regulate MSC differentiation (Table 1).

Transcription factors involved in osteogenic and adipo-

genic differentiation of MSCs. Transcription factors that

help to initiate and promote the differentiation process

are direct or indirect targets of various signaling pathways.

Multiple transcription factors have been demonstrated to be

critical for the differentiation of MSCs to adipocytes or osteo-

blasts. The PPARγ and C/EBPs are involved in adipogenic

differentiation of MSCs,82–85 while Runx2 and Osterix are

required for osteogenic differentiation.68 Here, we provide

detailed descriptions of transcriptional cascades for adipo-

genic and osteogenic differentiation of MSCs.

During adipogenic differentiation, the level of cyclic AMP is

elevated in the adipogenic condition, which results in

phosphorylation of cyclic AMP response element-binding

protein (CREB).86 The phosphorylated CREB induces the

expression of C/EBPβ, a member of the C/EBP family. The

other two C/EBP family members (C/EBPα and C/EBPδ) have

also been implicated in adipogenic differentiation of MSCs.83

C/EBPβ and C/EBPδ are rapidly (within 4 h) upregulated

following the induction of adipogenic differentiation; however,

C/EBPβ is inactive and unable to bind to DNA. C/EBPβ

requires activation through phosphorylation on Thr188

by MAP kinase and on Thr179 or Ser184 by GSK3β. Then,

the transcription of PPARγ and C/EBPα is activated after the

binding of C/EBPβ to regulatory elements in their proximal

promoters.86 Once expressed, C/EBPα maintains the con-

tinuous expression of both PPARγ and C/EBPα through

binding to their respective C/EBP regulatory elements. PPARγ

and C/EBPα work together to regulate large group of genes

that induce the adipocyte phenotype.87 Unlike the down-

regulation of C/EBPβ in later stage of differentiation process,

the expression of PPARγ and C/EBPα maintains a high level

through the entire differentiation process and continue the

expression throughout the whole life of adipocytes.

Runx2 and Osterix are considered as master transcription

factors in regulating osteogenic differentiation of MSCs.88,89

During osteoblast differentiation, most signaling pathways

investigated so far are targeted at Runx2.88 Upregulation of

Runx2 in MSCs promotes their differentiation potential into

immature osteoblasts, while inhibits their lineage commitment

to the adipocytes.90 In addition, Runx2 has been shown to be

required for the induction of major bone matrix genes in

immature osteoblasts, while unnecessary for themaintenance

of these genes in mature osteoblasts.91 Indeed, one recent

study has demonstrated that the feedforward regulation

between Runx2 and Glut1 (a glucose transporter) facilitates

the initiation of osteoblast differentiation.92 On the other hand,

Osterix and β-catenin are required for the maturation of osteo-

blasts,89,90 while Runx2 is decreased during the maturation

process.93Although great progress has beenmade in the past

few years, further studies are required for better understanding

of the transcriptional network regulating osteogenic differen-

tiation compared with the well-established transcriptional

cascade during adipogenic differentiation.

Regulators Controlling the Balance Between Adipogenic

and Osteogenic Differentiation of MSCs

Meunier et al.7 reported that there’s a replacement of cell

populations of the bone marrow by adipose tissue in

osteoporosis patients. The balance between adipocytes and

osteoblasts in bone marrow has attracted significant attention

ever since. As the prevalence of obesity and osteoporosis

increases in the past few years, the commitment of MSCs has

been intensely studied. Accumulating information clearly

shows that the lineage commitment of MSCs is directed by a

multitude of cues. Here, we will discuss the cues controlling

the balance between adipogenic and osteogenic differentia-

tion of MSCs, including chemical, physical, and biological

factors (Figure 3).

Chemical factors. The stemness of freshly isolated MSCs is

determined using well-established assays in differentiation

medium containing several chemicals. For adipogenic

differentiation, MSCs are usually cultured in medium supple-

mented with isobutylmethylxanthine (IBMX), indomethacin,

dexamethasone (Dex), and insulin.21,25 IBMX and Dex are

important for the initiation of adipogenic differentiation. It is

Table 1 Role of microRNAsa in the regulation of MSC differentiation

MicroRNA Protein
encoded by
target gene(s)

Effect Reference

miR-20a TGFBR2,
KDM6B

↑Adipogenesis 142

miR-26a Smad1

GSK3β

↓Osteogenesis
(ADSCs)
↑Osteogenesis
(BMSCs)

143

Tob1 ↑Osteogenesis
(BMSCs)

144

miR-30e LRP6 ↑Adipogenesis
↓Osteogenesis

71

IGF2 ↓Osteogenesis 145

miR-140 bNEAT1
(lncRNA)

↑Adipogenesis 146

miR-153 BMPR2 ↓Osteogenesis 147

miR-188 HDAC9,
RICTOR

↓Osteogenesis
↑Adipogenesis

148

miR-194 COUP-TFII ↑Osteogenesis
↑Adipogenesis

69

miR-199a-5p N/A ↑Osteogenesis 149

miR-216a c-Cbl ↑Osteogenesis 150

miR-223 FGFR2 ↑Adipogenesis
↓Osteogenesis

151

miR-320 Runx2 ↑Adipogenesis
↓Osteogenesis

152

miR-375 N/A ↑Adipogenesis 153

miR-455-3p Runx2 ↑Chondrogenesis 154

Abbreviations: ADSCs, adipose tissue-derived stem cells; BMSCs, bone
marrow-derived mesenchymal stem cells; N/A, not available
aMicroRNAs reported in last 2 years; refer to these excellent reviews for more
(Fang et al.,80 Hamam et al.,81 and Lian et al.79)
bTarget of microRNA-140 is a long non-coding RNA (lncRNA)
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reported that IBMX can inhibit phosphodiesterases, which

causes an elevation of intracellular cAMP.94 Elevated cAMP

then leads to the alteration in transcription factors through

protein kinase A. At the same time, IBMX can directly induce

C/EBPβ expression as well. Similarly, Dex activates C/EBPδ

expression through binding to intracellular glucocorticoid

receptor.83 Indomethacin is a well-known inhibitor of COX1/2

though its adipogenic activity is not due to the inhibition of

COX, but the activation of PPARγ.95 Insulin functions to

promote the uptake of glucose for the synthesis of

triglycerides in adipocytes.

To differentiate into osteoblasts, MSCs are usually cultured

in osteogenic medium containing Dex, L-ascorbic acid (AA),

and β-glycerophosphate (βGP).21,25 To analyze the effects of

these chemicals on the differentiation of MSCs, Coelho and

Fernandes96 cultured MSCs in standard medium supplemen-

ted with AA, βGP, or Dex alone, or two combinations: AA+βGP

and AA+βGP+Dex. AA was found to initiate the formation

of a collagenous extracellular matrix (ECM), which further

led to the upregulation of alkaline phosphatase (ALP) and

osteocalcin. Similar observation was also made previously by

another group.97 Dex, however, promoted the cell prolifera-

tion,98 which resulted in the induction of ALP activity99 and

mineral deposition.96 βGP, on the other hand, was hydrolyzed

by ALP, and thus provided high level of phosphate ions for

mineral deposition of ECM.96

The differentiation of MSCs is driven by several biological

processes, such as proliferation, morphological changes,

expression of lineage-specific markers, lipid accumulation,

and mineral deposition. The chemicals mentioned above

undertake the work mutually, cooperate closely, and regulate

the MSC differentiation interactively.

Physical factors. In vivo, MSCs are not in isolation, but

physically interact with components in the microenvironment.

For several decades, physical factors including cell shape,

external mechanical forces, ECM, and geometric structures

have been implicated in stem cell fate decision (Figure 4).

MSCs exist in almost all adult tissues and have been isolated

from a variety of tissues, such as muscle, umbilical cord,

bone marrow, brain, and amniotic fluid.19,20 Thus, MSCs

physically exist in diverse microenvironment. Engler et al.100

documented that ECM controls the lineage commitment of

naive MSCs. Matrices mimicking the brain physical force

support neurogenic differentiation. Stiffer matrices promote

myogenic differentiation, while rigid matrices support osteo-

genic differentiation. It was found that non-muscle myosin II is

the key mechano-transducer of this ECM physical property-

dependent control of MSCs fate decision.

Integrins are transmembrane receptors mediating cell–

matrix and cell–cell interactions. Integrins are a family of

transmembrane heterodimer adhesion molecules that trans-

duce signals to and from the cytoplasm across the plasma

membrane. Ligands binding to integrins lead to its activation,

which results in phosphorylation of focal adhesion kinase

(FAK) and followed by activation of a series of signaling

proteins including phosphatidylinositol 3-kinase (PI3K), MAPK

ERK1/2, protein kinase C (PKC), and GTPases of the Rho

family.101 FAK-mediated activation of ERK1/2 and p38 has

been reported to phosphorylate and activate Runx2, resulting

in increased osteogenic differentiation of MC3T3-E1 cells.102

Pref-1/DLK1, a known inhibitor of adipocyte differentiation,

was reported to be involved in skeletal malformations, growth

retardation, and obesity during development.103 Initially, it was

believed to regulate adipogenic differentiation via Notch

signaling. Recent study has proved that Pref-1 interacts with

fibronectin to inhibit adipogenesis.104,105 Fibronectin is an

important component of the ECM, which interacts with various

integrin receptors and results in suppression of known

transcription factors of adipogenesis.106

Integrins can be sensors of mechanical forces through

transducing mechanical signals to the actin cytoskeleton.107 It

Figure 3 Multiple factors control MSC differentiation. The lineage commitment of MSCs can be regulated by three major cues, including chemical, physical, and biological
factors. Chemical factors have been proven to be important in directing adipogenesis and osteogenesis of MSCs in vitro through regulating key transcription factors during MSC
differentiation. In vivo, the differentiation of MSCs can also be altered by physical factors in the stem cell niche. Investigations into the regulation of MSC differentiation commitment
by cell shape, external mechanical forces, extracellular matrix or geometric structures have provided very useful information for stem cell-based bone tissue regeneration/
engineering. Meanwhile, tilted differentiation balance of MSCs is also observed during aging or other pathological processes, arguing for the roles of biological factors in lineage
commitment of MSCs. Taken together, these three types of factors likely work closely and cooperate with each other to regulate MSC differentiation. IBMX,
isobutylmethylxanthine; βGP, β-glycerophosphate
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has been shown that mechanical forces could facilitate

osteogenic differentiation and inhibit adipogenic differentiation

of MSCs.108 Interestingly, modulation of actin using depoly-

merizing drugs cytochalasin D or latrunculin A, and stabilizing

drug jasplakinolide during mechanical loading, was demon-

strated to regulate ERK and AKT-mediated signal transduction

and mechanical force-induced MSC differentiation.107 Mean-

while, the role of mTORC2 in mechanically induced signaling

transduction and MSC differentiation was also investigated. It

was found that Fyn, a Src family kinase, mediated the

mechanical activation of mTORC2 and phosphorylation of

FAK, an enhancer for mTORC2 activation. This mechanically

induced Fyn/FAK/mTORC2 signaling pathway decreases

adipogenic differentiation of MSCs via enhancing β-catenin

signaling and regulates cytoskeleton by activating RhoA.109 In

addition, a recent study showed that mTORC2 is also involved

in cytoskeleton reconstruction. Deficiency of mTORC2 in

MSCs has been found to abolish strain-induced cytoskeletal

reorganization, and impair osteogenic differentiation while

facilitate adipogenic differentiation of these cells.110 These

studies provide important information for the understanding of

exercise therapy regimens in treating osteogenesis and

adipogenesis related diseases, such as osteoporosis.

Recently, osteopontin (OPN) has been demonstrated to

inhibit adipogenic differentiation and promote osteogenic

differentiation in MSCs through interacting with integrin αvβ1

and regulating C/EBPs expression.111 Blockade of OPN by

neutralizing antibody or siRNA knockdown of OPN promotes

robust adipogenic differentiation, while inhibiting osteogenic

differentiation. Its role in MSC differentiation is further verified

in a hydroxyapatite-tricalcium phosphate-based implantation

model in vivo. Although the OPN-deficient mice develop

normally, these mice show an increase ratio of both sub-

cutaneous and visceral fat tissue to body weight.111 It

indicates that OPN has a critical role in regulating the balance

between adipogenesis and osteogenesis during the

development.

Geometric cues showed dramatic effects on MSC lineage

commitment. Nanoscale disorders have been shown to

stimulate MSC differentiation into osteoblasts in the absence

of osteogenic inducers.112 In addition, by culturing geome-

trically patterned MSCs in medium containing both adipogenic

and osteogenic chemical inducers, it has been shown that

geometric cues of native contractile cytoskeleton were osteo-

genic, while those disrupting contractility were adipogenic.113

A micro-patterning technique was developed to study the

effect of geometric cues on MSC differentiation. By using

this technology, researchers were able to precisely monitor

MSCattachment by depositing specific proteins (cell resistant)

on substrate and control the cell culture substrates

geometrically.114 Therefore, the interaction between MSCs

and patterned substrates can be specifically analyzed

Figure 4 Physical factors regulating lineage commitment of MSCs. MSCs physically interact with various components in the tissue microenvironment in vivo. The physical
factors including cell shape, external mechanical forces, extracellular matrix, and geometric structures are involved in stem cell fate decision. By regulating RhoA-ROCK signaling
pathway, spread cells tend to differentiate into osteoblasts while round cells tend to become adipocytes (a). Different physical forces can also direct MSCs to differentiate into
different lineages via controlling myosin II activity (b). Meanwhile, components of extracellular matrix, such as osteopontin and fibronectin, can regulate the adipo-osteogenic
balance of MSCs through binding to integrin receptors (c). In addition, geometric cues such as nanoscale changes can also effectively dictate the differentiation of MSCs (d)
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through applying this technique. Chen et al.115 reported that

geometrically patterned substrates controlled the cell growth

and viability of endothelial cells. Recently, McBeath and Chen

used this technique to control the cell shape and found that

spread cells tend to differentiated into osteoblasts whereas

round cells tend to differentiate into adipocytes. This cell

shape-controlled lineage commitment was exerted through

activating the RhoA-ROCK signaling, which was activated by

actin-myosin-generated tension. Moreover, as the culture

density determines the spreading degree of cells,116 it might

be a potential explanation for the different requirement of cell

density during the differentiation of MSCs into adipocytes,

osteoblasts, or chondrocytes.21

To better mimic the cell biology properties of physical factors

in vivo, three-dimensional culture systems have been con-

structed. This is a millstone for the cell biology moving from

in vitro to in vivo. These three-dimensional culture systems

could better imitate the in vivo microenvironment, so that

scientists are able to control the cell shape artificially in three

dimensions.117 Usually, three-dimensional systems are built

relying on poly (ethylene glycol)-based hydrogels. In hydro-

gels, the cells are more rounded than those cultured in

standard two-dimensional systems. Recently, it was reported

that the shape of MSCs could be modulated dynamically

through creating photodegradable poly (ethylene glycol)-

based hydrogels.118 This system makes it possible to study

the dynamic physical interactions between ECM andMSCs as

well as the effect of these dynamic interactions on MSC

differentiation.

In addition to the physical contact with ECM, the membrane

potential also has important roles in controlling the differentia-

tion of MSCs. Interestingly, depolarization suppresses the

adipogenic and osteogenic differentiation of MSCs while

hyper-polarization promotes osteogenic differentiation.119

Moreover, uniaxial mechanical tension and fluid flow-induced

shear stress have been shown to significantly increase

alkaline phosphatase activity and the expression of osteo-

genic genes in MSCs.120,121 Therefore, in order to better

understand the role of physical factors in the differentiation of

MSCs, models better mimicking the in vivo situations are

awaiting to be developed.

Other biological factors

Aging: It has been known for a long time that bone loss

during aging and some pathological processes are accom-

panied by increased bone marrow adiposity due to the shift of

differentiation balance between osteoblasts and adipocytes

of bone marrow mesenchymal stem cells.7–9 However,

detailed mechanisms underlying this balance shift are poorly

understood. Sun et al.122 had examined the effects of aging

on osteogenic differentiation of MSCs by using proteomics

analysis. Several molecules associated with this age-related

loss of osteogenic potential were identified in MSCs. Chloride

intracellular channel 1 (CLIC1) and prohibitin were found to

be decreased in aged MSCs, while LIM and SH3 domain

protein 1 (LASP1) and annexin V were increased. As aging

progressing, reactive oxygen species (ROS) and oxidative

stress have been shown to be increased and to play impor-

tant roles in age-related bone loss and adipo-osteogenic

differentiation through forkhead homeobox type O (FOXO),

Wnt, and PPARγ.123–125

PPARγ, as the central transcription factor in adipogenic

differentiation, suppresses osteoblast differentiation. Moer-

man et al.9 demonstrated that the expression of PPARγ was

increased in aged bone marrow MSCs by unknown PPARγ

activators. The increased PPARγ expression promoted adi-

pogenesis and inhibited osteogenesis of bone marrow MSCs

in old animals. Rosiglitazone, an activator of PPARγ for type II

diabetes therapy, was reported to cause side effects on bone

metabolism, such as osteoporosis. It was also found to induce

ROS accumulation specifically in osteoblasts resulting in

PPARγ-dependent apoptosis.126 Interestingly, adipocytes

were protected from rosiglitazone-induced ROS-related apop-

tosis. Therefore, aging alters the elaborate balance system

between osteogenic differentiation and adipogenic differentia-

tion in MSCs.

Metabolism: Accumulative evidence shows that altered

metabolic processes, such as mitochondrial metabolism,127

oxidative stress,128 and glucose uptake,92 have been impli-

cated to affect MSC differentiation. An increase in mitochon-

drial metabolism and ROS generation is a key property of

MSCs undergoing adipogenic differentiation.129,130 However,

it is unknown whether this increase is a causal factor or a

consequence of adipogenic differentiation. It has been

demonstrated that mitochondrial-targeted antioxidants could

decreased the adipogenic differentiation of MSCs, while

exogenous hydrogen peroxide could restore it. In addition, it

has been showed that ROS generated by mitochondrial

complex III is essential for the activation of adipogenic

transcription factors.130 These results implicate that the

increased mitochondrial metabolism is an early causal factor

for adipogenesis. Indeed, increased mitochondrial metabo-

lism has been shown to be prerequisite of adipogenic

differentiation demonstrated by specific blocking the mito-

chondrial respiratory pathways.127 On the other hand,

hypoxia signaling that shifts metabolism from oxidative to

glycolysis has been shown to inhibit both osteogenic131–133

and adipogenic134 differentiation of MSCs. However, it has

also been demonstrated that hypoxia pretreatment of human

adipose tissue MSCs could facilitate both adipogenic and

osteogenic differentiation under normoxic condition.135 In

addition, there is another report shows that the osteogenic

and adipogenic differentiation of MSCs is not affected by

either hypoxia or normoxic conditions.136 There are several

possibilities for these contradictory findings: (1) variation in

the standards of hypoxia and normoxia; (2) differences in

culture time under hypoxia (short-term, long-term, or tran-

sient); and (3) different regimes of hypoxia and normoxic

culture conditions, such as pretreatment with hypoxia for a

while then transfer into normoxia conditions for differentiation

assay, or first normoxic conditions then transfer into hypoxic

conditions. Although considerable progress have been made

in deciphering the role of metabolism in regulating MSC

differentiation, criteria should be put forward to standardize

the experiment system and reasonable care should be taken

when performing a direct extrapolation of in vitro findings to

the situations in vivo.137

Fate decision of MSCs
Q Chen et al

1135

Cell Death and Differentiation



Reciprocality Between Adipogenesis and Osteogenesis

Over decades of study, it is more and more clear that

the adipogenesis and osteogenesis of MSCs are competing

and reciprocal. For example, the BMP signaling pathway

has a dual role in regulating the adipogenic and osteogenic

differentiation of MSCs. BMP4 subjects MSCs to adipo-

genic differentiation.35 Interestingly, BMP2 promotes osteo-

genic differentiation at high concentrations while favors

adipogenic differentiation at low concentrations.33

Usually, adipose tissue is recognized as an organ of energy

storage. Recently, accumulating studies have identified

adipose tissue as an active endocrine organ because of the

secretion of various active molecules (adipokines), such as

leptin, adiponectin, IL-6, and TNF-α.138 Similarly, bones have

also been recognized as endocrine organs besides their role

in supporting the body. They secrete a variety of active

cytokines (osteokines), including osteopontin, osteocalcin,

and osteoprotegerin.139 These adipokines and osteokines

have key roles in bone and fat metabolism reciprocally.

It has been reported that PKA stimulators can promote

adipogenesis and inhibit osteogenesis through leptin expres-

sion and secretion.140 This effect of PKA stimulators on MSCs

differentiation can be blocked by adding leptin exogenously.

In addition, leptin can restore skeletal ossification in IBMX-

treated developing zebrafish. Recently, it has been confirmed

that overexpression of leptin in MSCs upregulates osteocalcin

expression and promotes ALP activity. Cbfα1 and Cbfβ, key

osteogenic transcription factors, were also upregulated in

those MSCs.141 In summary, adipogenesis and osteogenesis

are reciprocally regulated processes of MSC differentiation.

They modulate each other through secreting various active

adipokines and osteokines.

Conclusions and Future Directions

Investigations from various groups in different systems have

demonstrated that biological, chemical, and physical cues can

exert their effects via a batch of signaling pathways on the

balance between adipogenesis and osteogenesis of MSCs by

affecting initiation, commitment, and differentiation. These

signals finally converge at a tightly controlled cascade of

transcription events, including C/EBPs and PPARγ for

adipogenesis and Runx2 and TAZ for osteogenesis.86 The

chemical cues provide us a well-established system to identify

and study the commitment of MSCs. The physical cues,

especially those from the ECM, promise MSCs a future in

biomaterial-based regenerative medicine. The critical roles of

biological factors, including various types of cytokines and

microRNAs, provide us a better understanding of pathophy-

siology control of MSC differentiation. These remarkable

advances in understanding the fate decision of MSCs are still

preliminary and more intense studies including ‘MSC omics’

are urgently needed to fully understand the mechanisms

underlying the balance between adipogenic and osteogenic

differentiation of MSCs. These new data will be of great value

to identify the pathogenic causes of fat and bone marrow

related diseases, to develop novel therapies for these

diseases, and to better clinical application of MSCs in tissue

engineering and regenerative medicine.
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