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ABSTRACT: Plastic pollution is an emerging global threat for
marine wildlife. Many species of birds, reptiles, and fishes are
directly impaired by plastics as they can get entangled in ropes
and drown or they can ingest plastic fragments which, in turn,
may clog their stomachs and guts. Microplastics of less than 1
mm can be ingested by small invertebrates, but their fate in the
digestive organs and their effects on the animals are yet not
well understood. We embedded fluorescent microplastics in
artificial agarose-based food and offered the food to marine
isopods, Idotea emarginata. The isopods did not distinguish
between food with and food without microplastics. Upon
ingestion, the microplastics were present in the stomach and in
the gut but not in the tubules of the midgut gland which is the
principal organ of enzyme-secretion and nutrient resorption. The feces contained the same concentration of microplastics as the
food which indicates that no accumulation of microplastics happens during the gut passage. Long-term bioassays of 6 weeks
showed no distinct effects of continuous microplastic consumption on mortality, growth, and intermolt duration. I. emarginata
are able to prevent intrusion of particles even smaller than 1 μm into the midgut gland which is facilitated by the complex
structure of the stomach including a fine filter system. It separates the midgut gland tubules from the stomach and allows only the
passage of fluids and chyme. Our results indicate that microplastics, as administered in the experiments, do not clog the digestive
organs of isopods and do not have adverse effects on their life history parameters.

■ INTRODUCTION

Continuously increasing production and utilization of plastic
products cause serious global pollution problems.1,2 Plastics are
hard to degrade.3 Therefore, they accumulate in the environ-
ment and, particularly, in the oceans where they became the
dominant share of the marine debris2,4−7 Depending on size
and shape marine plastic litter can adversely affect a variety of
organisms.1,6,8,9 The most obvious and immediate threat of
plastic litter for marine wildlife is entanglement and
strangulation. Not less harmful is the ingestion of plastic
items as these can clog or injure the stomachs of fishes and
birds and kill these animals.1,2,6,10−13

UV-radiation and mechanical abrasion degrade plastic items
into very small pieces referred to as microplastics.14 Small
plastic fibers such as nylon filaments from breaking nets, ropes,
or clothing are the prevalent class of microplastics in the sea
followed by irregularly shaped plastic fragments, granules, and
films.5,15−17 The most abundant polymer types are poly-
ethylene, polypropylene, and polystyrene (styrofoam).15 The
majority of microplastics in pelagic and benthic habitats is
within the size range of 30 to 1,000 μm,15,18,19 but even smaller
particles were detected.5,20−22 Reported concentrations of
microplastics in subtidal marine habitats range from 3.7
particles·kg−1 to 124 particles·L−1 of sediment.5,17,23

Due to their size microplastics can be ingested by a wide
range of organisms including fish larvae and small invertebrates

which, in turn, are a food source for many other marine
organisms.5,7,9,24 At least 32 marine invertebrate species
including pelagic (e.g., copepods and euphausids) and benthic
representatives (e.g., mussels, lobsters, and polychaetes) have
been reported to ingest microplastics.24−27 Similar to larger
animals, small invertebrates may suffer from clogging of
digestive organs, reduced appetite, and incorporation of
microplastics into body tissue.9,20,25,27,28

The effects of ingested microplastics on invertebrates are not
consistent and predictable because many marine taxa are
adapted to ingest nonfood particles such as sediment grains,
spicules, or diatom frustules.29−31 Marine species exhibit
diverse mechanisms to select, dispose, or pass indigestible
materials unimpaired.28,32 Therefore, a reliable interpretation
and risk assessment of the biological effects of microplastics in
marine ecosystems is hampered by the poor knowledge about
their fate and impacts in many animal taxa. Particularly,
understanding of the effects of ingested microplastics on species
of lower trophic levels is scarce.5,9,20

The present study aims at investigating how marine isopods
cope with ingested microplastics. We chose Idotea emarginata

Received: March 25, 2014
Revised: August 6, 2014
Accepted: October 7, 2014
Published: October 7, 2014

Article

pubs.acs.org/est

© 2014 American Chemical Society 13451 dx.doi.org/10.1021/es501385y | Environ. Sci. Technol. 2014, 48, 13451−13458

pubs.acs.org/est


(Fabricius, 1793) as model species because it represents the
large group of marine isopods from sub- and eulitoral habitats.
It is common in temperate coastal regions of the Northeast
Atlantic and predominantly associated with macroalgal debris
on the sea bed.33 It is also common on floating macroalgae
which accumulate frequently with flotsam in convergence zones
of surface fronts.33−37 I. emarginata is an omnivorous scavenger
which has a broad diet that includes macroalgae, detritus, and
animal remains.36,38 Due to high densities of microplastics in its
habitat it is possible that the species ingests microplastics with
its food.
In laboratory experiments we offered the isopods artificial

food which was blended with fluorescent plastic particles. From
what we know about size and composition of marine
microplastics5,15 we tested polystyrene microbeads and frag-
ments (1−100 μm) as well as polyacrylic fibers of 20−2,500
μm and studied the deposition of the particles in the digestive
organs and in fecal pellets. In long-term experiments (bio-
assays) we evaluated the effects of chronic ingestion of large
amounts of microplastics on the life history parameters survival,
feeding activity, growth, and intermolt duration. We hypothe-
size that a) plastic particles accumulate in the digestive system
of the isopods and b) that long-term consumption of
indigestible microplastics reduces growth, as measured as
growth increment and duration of intermolt periods.

■ MATERIALS AND METHODS

Origin of Animals.Marine isopods, Idotea emarginata, were
collected from floating seaweed around the island of Helgoland
(North Sea, 54°10′N 7°53E) but were raised and maintained in
batch cultures at the Alfred Wegener Institute in Bremerhaven.
Aquaria with a volume of 50 L were run as flow through
systems with natural seawater at 15 °C. The animals were fed
regularly with fresh macroalgae (Fucus vesiculosus).
Fluorescent Microparticles. Three different kinds of

microplastic preparations were used to trace the microscopic
particles in the digestive tract of Idotea emarginata: commercial
microbeads, plastic fragments, and plastic fibers. Each of these
preparations consisted of fluorescent particles which allowed
for a microscopic identification of administered items. The
specific fluorescent properties also enabled a clear distinction
from other environmental plastic contaminants. Detailed
information about the sources and characteristics of the
microplastic preparations is presented in the Supporting
Information.
Microplastic-Supplemented Food. Artificial agar-based

food was prepared with defined amounts of seaweed powder
and supplements of microparticles. The standard food
preparation39 contained 0.9 g of freeze-dried and pestled fine
powder of Fucus vesiculosus, which was suspended in 3.5 mL of
demineralized water (aqua dem.). Defined amounts of
microplastics were added to the Fucus-suspension. Depending
on the purpose of the experiment the supplemented food
contained low or high concentrations of particles. These were
12 or 120 microbeads per mg and 20 or 350 PE-fragments per
mg, respectively. The concentration of fibers was always 0.3 mg
per gram of food. The plastic fibers could not be
homogeneously suspended in water for counting. Therefore,
the amount of plastic fibers used in the experiments is given by
weight and not by numbers (see the Supporting Information).
Agarose (0.12 g, Sigma-Aldrich A 4679) was mixed with 7.5 mL
of aqua dem. and heated in a microwave oven until boiling
(∼45 s). The hot agarose was added to the Fucus-suspension

and stirred continuously until homogeneity. The melted
agarose mixture was evenly poured onto a Petri dish to a
thin layer of ca. 1.5 mm. The agarose polymerized almost
immediately, and the algal powder and the different micro-
plastics were embedded and homogeneously dispersed in the
agar food preparations. Pieces of ca. 2−4 cm2 were cut off this
layer and offered as food to each isopod in the experiments.

Experimental Setup. All experiments were carried out at
13 °C and at a light:dark cycle of 12:12 h. The animals were
maintained individually in 100 mL plastic vials filled with 60−
70 mL of natural seawater. The water was exchanged daily.
Every day at the same time during the experiments survival and
molts were scored in each replicate.

Food Choice Experiments. Food choice assays were
carried out to test whether the isopods distinguish between
microplastic-supplemented and nonsupplemented food. I.
emarginata (body length: 9−11 mm, wet weight = w.w.: 20−
50 mg) were maintained individually for 3 days and fed with
two pieces of artificial food. One of these pieces contained
either microbeads (at high and low concentration), fragments,
or fibers. The other piece contained only algal powder without
microplastics. The two pieces of food were tagged with
differently colored cotton strings (ca. 1 cm long). Each feeding
experiment was run with 24 individuals. Another five or six vials
contained one piece of each food type in seawater without
isopod to determine autogenic changes of weight of the food
due to soaking or leaching. The offered food was weighed
(w.w., precision: 0.1 mg) at the beginning and at the end of the
feeding experiment and corrected for the average autogenous
weight change, and the specific feeding rate was calculated in
relation to the individual wet weight of the animals and
expressed as mg food per mg animal weight and day.40 The
equations are presented in the Supporting Information.

Localization of Microparticles in the Digestive Tract.
Histological analyses were conducted to investigate the
distribution of microplastics within the digestive tract of I.
emarginata. Juvenile isopods (body length: 8−10 mm) were
maintained individually in 100 mL plastic vials as described
above and fed for 3 days food with high concentrations of
microbeads (∼120 particles·mgfood

−1), fragments (∼350 par-
ticles·mgfood

−1), and fibers (0.3 mg·gfood
−1), respectively.

Animals selected for histological studies were carefully blotted
dry on paper tissue, stretched straight, and frozen with liquid
nitrogen (−196 °C). The frozen animals were stored at −80
°C. For the preparation of histological cryo-sections (20 μm)
whole frozen animals or parts thereof were mounted on a
microtome stage (chuck) with a cryogenic medium (NEG
50Tm, Thermo Scientific Richard Allan Scientific). The samples
were sliced longitudinally or transversally in a cryo-microtome
(Microm HM 500 OM) at −23 °C. Frozen slices were
transferred onto microscopy glass slides and dried at room
temperature for ca. 3 min. The slices were neither fixed nor
stained. They were mounted in Kaiser’s glycerol gelatin (ca. 70
°C), dried, and stored in the dark at room temperature.
Microscopy was performed with a Nikon Multizoom AZ100
fluorescence microscope equipped with a 1×, 2×, and 5× lens
and related zoom stages (1−8). The fluorescent particles were
detected with the Nikon filter devices B-2A (Ex. 450−490 nm)
and UV-2A (Ex. 330−380) and photographed with a Nikon
camera DS-Ri1 and related NIS-software.

Quantification of Microparticles in the Digestive
Tract. The numbers of microplastics were quantified in the
major organs of the digestive system of I. emarginata as well as
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in the food and in the feces. First, three groups of ten adult
isopods each (body length: 15−20 mm) were fed for 3 days
with one of the three artificial feeds (∼120 microbeads·
mgfood

−1, ∼350 fragments·mgfood
−1, or 0.3 mg fibers·gfood

−1).
After feeding, the isopods were frozen with liquid nitrogen. The
digestive tract was dissected from the frozen animals and
separated into the proventriculus (stomach), the midgut
diverticula (midgut glands), and the gut. The dissected organs
were transferred into 2 mL reaction cups, weighed (w.w.), and
homogenized in 1.5 mL of aqua dem. with a micropestle. Pieces
of the foods offered during the experiment and the feces of each
individual (ca. 10 mg w.w.) which were released during the
feeding period were collected and homogenized as well.
Microplastics were counted in a Sedgewick-Rafter counting
cell under a fluorescence binocular (Nikon Multizoom AZ100).
Long-Term Bioassays. Long-term experiments were

conducted to assess potential effects of chronic (6−7 weeks)
ingestion of microplastics on the vitality, intermolt duration,
size increment, and ingestion rate of juvenile I. emarginata.
Details are given in the Supporting Information.
Scanning Electron Microscopy (SEM). SEM of stomachs

of I. emarginata was carried out to study the internal
ultrastructure of the organ. Stomachs were carefully dissected
from deep frozen animals from the batch cultures which were
not fed with microplastics. Connective tissue surrounding the
stomach was removed by soaking the organ overnight in a mild
detergent solution. Subsequently, the stomachs were rinsed
with distilled water and dehydrated in an ethanol-series: 2 × 15
min 50% ethanol, 2 × 15 min 70% ethanol, 2 × 15 min in 90%
ethanol, 2 × 15 min in 100% ethanol, 1 × 30 min in
ethanol:hexamethyldisilazane (HMDS) solution (1:1 vol) and
finally incubated for 60 min in pure HMDS. The organs were
then air-dried and mounted on SEM stubs with double sided
carbon tape and sputter coated with gold/paladium. The
proventricular structures were examined with a Quanta 3D 200
(FEI) scanning electron microscope and the related doc-
umentation module.
Data Analysis. Food choice assays: Individuals which did

not eat due to molting (max. two within one food choice assay)
were excluded from the statistical analysis. The effect of food
quality (microplastics vs no microplastics) on the per capita
ingestion rates of the isopods was analyzed for each artificial
food type (containing microbeads, fibers, or fragments)
separately by a t test after an F-test for homogeneity of
variances.40 Variance heterogeneity revealed by the F-test could
be ignored as the subsequent t test did not reveal any effect of
food quality on the consumption rates. The results were
presented as daily ingestion rate (mg of food) per mg body
weight (mgf·mgbw

−1
·d−1).

Quantification of Microplastics. The concentrations of
particles within different sections of the digestive tract were
mutually dependent. Therefore, the nonparametric Friedman
test was applied to test for differences in particle concentrations
among the food, the organs, and the feces based on a
significance level of α = 0.05. Subsequently, Dunn’s multiple
comparison test was performed for posthoc pairwise compar-
isons of particle concentrations in the food, the different
sections of the digestive tract, and in the fecal pellets. Friedman
test and Dunn’s test were performed with the software package
GraphPad Prism Version 5.04 (GraphPad Software Inc., La
Jolla, CA).
Bioassays. The results of the bioassays were analyzed by

one-factorial Analyses of Variance (ANOVA) and repeated

measures ANOVA (rm-ANOVA) as described in detail in the
Supporting Information. The tests were performed with the
software package Statistica Version 7.1 (StatSoft Inc., Tulsa,
OK). The results are presented in the text and in the graphs as
means and standard error of the mean (SEM).

■ RESULTS

Food Choice Experiments. Idotea emarginata readily fed
on all food preparations and did not distinguish between
artificial food with and without microplastics irrespective of
whether the microplastics were microbeads at different
concentrations (12 or 120 per mg), fragments, or fibers
(Figure 1, each p > 0.05. Microbeads low concentration: t =

0.11; df = 27; p = 0.91. Microbeads high concentration: t =
0.55; df =28; p = 0.59. Fragments: t = 0.43; df = 25; p = 0.67.
Fibers: t = 0.87; df = 27; p = 0.39.). All isopods survived the
food choice experiments. However, two specimens fed with
microbeads (12 per mg), one specimen fed with fragments and
one specimen fed with fibers did not eat due to molting. The
average consumption rates for the control food without
microplastics ranged from 0.82 ± 0.10 mgf·mgbm

−1
·d−1 (mg

food per mg body mass and day) to 1.33 ± 0.13 mgf·mgbm
−1
·

d−1. The average consumption rates for the artificial food
containing microplastics varied between 0.91 ± 0.09 mgf·
mgbm

−1
·d−1 for food with 12 microbeads per mgf and 1.33 ±

0.63 mgf·mgbw
−1
·d−1 for food with fibers.

Observation of Microparticles in the Digestive Tract.
Low numbers of microbeads were observed in the stomachs,
whereas high numbers of microbeads were found in the guts.
However, none of the cryosections displayed microbeads in the
midgut glands (Figure 2 a-c). Similar to the microbeads, plastic
fragments were also rarely observed in the stomachs of the
isopods, whereas fragments were abundant in the guts. Again,
the midgut gland tubules were void of microplastic fragments in
all observed individuals. Fibers were present in the stomachs
and guts of each of the observed isopods. None of the
cryosections displayed fibers in the midgut glands. The ingested
microbeads, fragments, and fibers were homogeneously
dispersed within the ingested food mass along the gut. No
conspicuous aggregation of particles was observed.

Figure 1. Ingestion rates of artificial agar based food by Idotea
emarginata. The food contained different concentrations of microbe-
ads, fragments, and fibers. Control food (C) contained agar based food
without microplastics. Means ± SEM, n = 22−24.
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Quantification of Microparticles. The distribution of
microplastic particles was significantly nonrandom among all
compartments (range of Friedman statistic: 27.8−32.5; p <
0.001 for each type of microplastics) but similar among the
different plastic sources (Figure 3). On average, less than 1 to
about 3.5 microplastic particles were detected per mg stomach
tissue. Only one single microbead and one single fragment were
detected in two out of 28 midgut gland samples. Within the
digestive tract, the amount of microplastics was always highest
in the gut yielding on average 66 ± 22 microbeads (Figure 3a)
and 90 ± 21 fragments (Figure 3b) per mg gut tissue. Isopods
fed with fibers displayed on average less than one fiber per mg
gut tissue (Figure 3c). One gut homogenate contained six
fibers. The concentration of microplastics in the fecal pellets
was on average 130 ± 15 microbeads and 369 ± 79 fragments
per mg. These values were in the same range as the particle
concentration in the food (112 ± 14 microbeads per mg and
361 ± 73 fragments per mg; Dunn’s multiple comparison test:
p > 0.05 for each type of microplastics). Likewise, the
concentration of fibers was similar in the food (1.6 ± 0.3
fibers per mg) and in the feces (1.2 ± 0.2 fibers per mg; Dunn’s
multiple comparison test: p > 0.05).
Long-Term Bioassays. The ingestion rates of isopods

feeding on artificial food with different microplastics and
without microplastics varied substantially during the 6 week
bioassay. Supplement of microplastics had no distinct effect on
life history parameters of the isopods. Detailed results of the
experiment are presented in the Supporting Information.

Ultrastructure of the Stomach. The stomach of isopods
bears a complex triturating system including ossicles, spines,
and ridges (Figure 4). It performs the mastication of the
food.36,42 A paired bristle plate in the anterior part (cardia) of
the stomach forms the primary filter (F1). The gaps between
the setae of the primary filter are in the size range of only a few
μm. The posterior part of the stomach (pylorus) includes
another prominent filter apparatus, the secondary filter (F2),
which consists of various lamellae and setose structures. The
secondary filter covers the connection to the ventrally arising
midgut gland tubules.44,45 The gaps between the filtering setae
are about 1 μm or smaller. As reported for other crustacean
species it allows the passage of particles <1.2 μm43−48 into the
midgut gland, which is the principal organ where the secretion
of digestive enzyme and the absorption of nutrients
happens.45,49,50 More details about the function and the
ultrastructure of the digestive system of isopods are provided
in the Supporting Information.

■ DISCUSSION

Our results indicate that the ingestion of microplastics has no
negative impact on the marine isopod Idotea emarginata. The
isopods ingested microplastic particles (1−100 μm) and fibers
(20−2,500 μm) with the food. Microparticles and fibers
appeared in the stomach and in the gut but were continuously
egested. None of the different types of microplastics
accumulated in the stomach or were transferred into the
tubules of the midgut gland, the principal site where the
particles could be absorbed. Moreover, chronic ingestion of
microplastics had no distinct adverse effects on survival,

Figure 2. Fluorescence images of whole mount cryosections of Idotea
emarginata. a) Overview on digestive organs and gut containing
microbeads. b) Detailed view on microbeads in the gut. No
microbeads were present in the midgut gland. c) Transveral slice
through the gut with a microplastic particle and the six midgut gland
tubules void of microplastics. (C = cuticle, G = gut, M = midgut gland,
arrows indicate microbeads).

Figure 3. Concentrations of a) microbeads, b) fragments, and c) fibers
in the food, the digestive organs (S = stomach, M = midgut gland, G =
gut) and in the feces of isopods, I. emarginata. Means ± SEM, n = 9−
10. When bars were too small, numbers were provided in addition.
Different letters (A, B) indicate statistically different values (p < 0.05).
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intermolt duration, and growth of the isopods (also see the
Supporting Information).
I. emarginata did not distinguish between food supplemented

with microplastics and food without microplastics, even when
present at very high concentrations of 120 particles per mg
food. Nonselective ingestion of microplastics smaller than 100
μm has been reported for several marine species with different
feeding modes including the filter-feeding mussel Mytilus edulis,
the deposit feeding lugworm Arenicola marina, suspension-
feeding benthic holothurians, echinoderm larvae, and various
zooplankton species.5,9,24−26,51−54 Nonselective uptake of
microplastics was also demonstrated for a decapod crustacean,
the Norway lobster Nephrops norvegicus. Feeding experiments
in the laboratory showed that all of the maintained lobsters had
ingested microplastic fibers that were supplemented to the
offered food.55 Moreover, field studies revealed that 83% of
Norway lobsters captured from the Scottish Clyde Sea
contained microplastic fibers in their stomachs, which proves
that the lobsters do ingest microplastics under natural
conditions. A similar process of feeding and concomitant
uptake of adherent microplastics is likely for marine isopods as
well because microplastics constitute an omnipresent pollutant
in their habitats. Various studies demonstrated the presence of
microplastics in the North Sea with maximum concentrations
of up to 86 fibers·kg−1 sediment (dry weight) in subtidal
habitats.5,9,17−19,21,22 Especially zones of low hydrodynamic
action or dense macroalgal cover can reduce the water
turbulence and thereby enhance deposition and sedimentation
of particulate matter.15,56 Additionally, Fucus canopies create a
complex surface where plastic particles and fibers could stick to
or get trapped. Accordingly, it is very likely that microplastics
are closely associated with the natural food of I. emarginata and,
thus, can be ingested by the isopods.
The microplastics displayed a clear distribution pattern in the

alimentary tract of I. emarginata. Microplastics of each of the

administered type were detected in the stomach, the gut, and in
the feces. The concentrations of microparticles in the food and
in the feces were similar, indicating that no retention or
accumulation of microparticles happens during the gut passage.
The concentrations of microparticles were lower in the stomach
than in the food. This can be explained by the anatomy of the
stomach. The dissected stomach consists of a chitinous capsule
and surrounding connective tissue and muscle tissue. Thus, the
weight of the organ is quite high compared to the weight of the
content of the stomach which, consequently, yields a low
specific particle concentration. The same effect is valid for the
gut which, however, shows a higher weight ratio between the
content and the organ. In contrast to the stomach and the gut,
no microparticles were present within the midgut gland tubules
as indicated by the histological slices. Only two out of 28
midgut gland samples contained one single microparticle.
These cases may be handling artifacts caused by cross-
contamination of tissues during the dissection of the tiny
organs and subsequent preparation of the homogenates. Our
findings are in accordance with recent laboratory studies on
zooplankton species from the northeast Atlantic. The uptake of
microplastics (1.4 to 30.6 μm) in copepods and other
zooplankton was examined.27,54 Ingested particles were trans-
ferred into the midgut and the hindgut from where the plastics
were egested in fecal pellets after a few hours. Gut clearance
experiments on grass shrimps, Palaemonetes pugio, likewise,
displayed the absence of microbeads (2−4 μm) in the digestive
glands of all animals.57 Microbeads were quickly transferred
from the esophagus into the proventriculus and further passed
through the hindgut, as it was shown in our study for I.
emarginata. Moreover, the microplastics were homogeneously
dispersed within the stomach and hindgut of all specimens.
There was no evidence for aggregation or blockage of organs or
for the abrasion or infraction of internal tissues.

Figure 4. Scanning electron micrographs of the stomach of Idotea emarginata. a) Dorsal view on the opened stomach showing the primary filter (F1)
and the secondary filter (F2). b) Secondary filter apparatus in the pyloric chamber. c, d) Details of the setose structures of the fine-meshed secondary
filter.
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Apparently, the unique organization of the digestive organs
and, particularly, the complex anatomy and function of the
isopod stomach is the reason for the absence of microplastics in
the tubules of the midgut gland.41,45,57 Isopods possess strong
chitinous mouthparts which are well adapted for the
indiscriminate ingestion of large food masses.36 The food
passes unhindered through a short esophagus into the stomach.
There, sclerotized structures in the anterior stomach chamber
grind and crush the ingested food material and mix it with
digestive enzymes to a chyme which is then passed toward the
digestive tubules.36,41,45 Fine-meshed filters in the anterior
stomach prevent particles from entering the midgut gland
tubules.41,45 Hence, this mechanism hinders the passage of
particles into the digestive glands. These are the most likely, if
not only, sites where microparticles may enter the cells via
pino- or phagocytosis. The remaining indigestible food mass is
passed into the hindgut and egested as feces. Moreover, isopods
produce peritrophic membranes in their hindgut. These
peritrophic membranes consist of a very fine-meshed (nm-
range) net of chitinous fibers. They enclose the food remains
forming so-called fecal pellets or fecal strings.58,59 The
peritrophic membrane separates the food remains from the
gut epithelia and, thus, prevents the mechanical infraction of
the sensitive epithelia by sharp fragments. Moreover, the
peritrophic membranes assemble and concentrate the food
remains within the fecal strings and accelerate the evacuation of
the gut.49,59

The size retention of the gastric filters of Crustacea is
commonly about 1 μm. Phyllosoma larvae of the spiny lobster,
Sagmariasus verreauxi, for example, showed a fully functional
filter press already in the early larval stages. The gaps between
the filter setae were 0.91 μm. The filter press retained more
than 99% of particles larger than 1 μm from entering the
midgut gland but allowed passing of smaller particles.60 Trophic
transfer of 0.5 μm fluorescent polystyrene microspheres was
observed from blue mussels, Mytilus edulis, to the shore crab,
Carcinus maenas. Mussels which were exposed to high
concentrations of microspheres (109 L−1) for 1 h were fed to
crabs. After feeding, the microspheres were detected in the
stomach, in the midgut gland, and in the hemolymph of the
crabs indicating uptake and, thus, trophic transfer of the
microspheres into the digestive organs and body fluids of the
predator.61 After 21 days, however, the microspheres were
evacuated from the crab tissues and hemolymph. In our study,
different types and sizes of microplastic particles were used.
The microbeads of 10 μm and the fibers were too large to pass
the pyloric filter press of I. emarginata. However, the
preparation of plastic fragments also contained particles smaller
than 1 μm. Nevertheless, we could not locate those particles in
the midgut gland. Probably, the isopods exhibit a higher
retention of the pyloric filter than other crustaceans which,
however, needs to be investigated in future experiments.
Additionally, the way how microplastics are administered may
affect their distribution in the body. We embedded micro-
particles together with powdered algae in an agarose matrix.
The isopods bite off pieces from their food which, upon
ingestion, are further macerated in the stomach. Depending on
the efficiency of maceration the microparticles may be entirely
liberated from the food matrix or they may remain attached to
fragments of the matrix. In the latter case, the attached matrix
material would mask the real size of the microparticles and
make them appear and behave like larger particles. Accordingly,
the uptake and, finally, the effects of microparticles strongly

depend on the way how the particles are available in the
environment and on the feeding mode, the completeness of
decomposition, and the assimilation efficiency of the consumer.
In contrast to isopods, bivalves, for example, do not possess

this kind of filter and separation mechanisms. In the filter-
feeding blue mussel, Mytilus edulis, the capture and selection of
food particles is facilitated by the gills. The ciliated labial palps
and the oral groove select the filtered particles for size and
chemical cues. From there the particles are either rejected as
pseudofeces or transported to the mouth.62,63 Once ingested,
the particles enter the stomach and the digestive tubules
unobstructed and can be absorbed by the midgut gland
cells.64,65 In contrast to isopods, M. edulis showed microplastic
aggregation in the gut and transfer of microparticles into the
digestive tubules (hepatopancreas).24,25 Moreover, micro-
plastics smaller than about 10 μm were subsequently
transferred into the circulatory system of the bivalve.24 It was
also shown that microplastics (<80 μm) were taken up into
epithelial cells of blue mussels via endocytosis entailing
toxicological responses. Aggregates of high-density PE micro-
plastics caused inflammatory reactions in the hepatopancreas.25

We conclude that the effects of microplastics on marine
organisms are not consistent among species but depend on
various factors such as the size and deposition of microplastics
in the environment, the availability and the feeding mode of the
consumer, and, finally, the anatomy and physiology of the
digestive organs. Particularly deposit and detritus feeders are
well adapted to the uptake of solid nonfood particles such as
sediment grains.28,55 Ingested particulate matter could even
positively contribute to the internal grinding processes of the
gastric mill in Crustacea.66 Besides, the specific crustacean
proventriculus with its fine-meshed filter structures seems to be
an effective tool to prevent the passage of indigestible particles
>1 μm into the relevant digestive organs.41,45,57 Hence, it
appears that microplastics of 1−100 μm in size and fibers of
20−1,500 μm do not pose a mechanical threat to marine
isopods. The present results, therefore, suggest that marine
isopods might be less affected by microplastic pollution than
other marine invertebrate species such as filter-feeding bivalves.
Although our long-term assay indicated reduced uptake of food
which was supplemented with microplastic, we could not detect
negative effects on growth and survival of the isopods.
However, it still remains unclear if and how microplastics

smaller than 1 μm and larger than 1,000 μm may affect marine
crustaceans and thus should be an issue of interest in future
experiments. It turns out that a comprehensive understanding
of the effects of marine plastic litter on individuals,
communities, and food webs can only be achieved after
intensive studies on species from different taxa representing the
entire range of living and feeding modes and also considering
their external and internal anatomical peculiarities.
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