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I. Introduction 

Mitosporic fungi represent more than half of the Ascomycota and are very important as parasites and 

saprophytes. This group of fungi produce their spores asexually (conidia or oidia) or by budding and generally 

fall in two groups: species that lack the morphology of sex altogether and make only mitospores or no spores at 

all, and those that can make sexual structures with meiospores, but only rarely. In nature, both groups are 

usually encountered only in their mitosporic states. They are commonly known as imperfect fungi 

(Deuteromycetes) because they do not fit into the commonly established taxonomic classifications of fungi that 

are based on biological species concepts or morphological characteristics of sexual structures. The 

Deuteromycota (Greek for "second fungi") was once considered as a formal phylum of the Kingdom Fungi. 

However, now it is used informally to denote species of fungi that are asexually reproducing members of the 

fungal Phyla Ascomycota and Basidiomycota. Initially, these organisms were segregated in the Fungi Imperfecti 

or Deuteromycota and generally assumed to be clonal with very widespread distribution. In the last decade, 

analysis of nucleic acid has shown that mitosporic fungi can be classified with their meiosporic relatives and can 

recombine in nature and show genetic differentiation and isolation as do meiosporic fungi. There are about 

25,000 species that have been classified in the Deuteromycota and many of them are Basidiomycota or 

Ascomycota anamorphs. 

Mitosporic fungi are generally easily dispersed and are able to colonize a wide variety of substrates and can 

withstand many different environmental conditions. They are particularly skilled in colonizing as they persist in 

novel environments, use novel resources and form novel associations, taking advantage of the suites of traits 

that they carry at the time of encountering new conditions. This process known as ecological fitting works very 

well with fungi due to their ecological, biological and morphological plasticity [1]. Fungi have many different 

functions in soils, which include both active roles, such as, degradation of dead plant material, and inactive roles 

where propagules are present in the soil as resting states. Fungi also play an important role in biogeochemical 

cycling of the elements (e.g., carbon, nitrogen, phosphorus, sulphur, etc.), which is interlinked with their ability 

to adopt a variety of growth, metabolic and morphological strategies, their adaptive capabilities to 

environmental extremes and their mutualistic associations with animals, plants, algae and cyanobacteria [2]. The 

saprobic fungi represent the largest proportion of fungal species in soil and they perform a crucial role in the 

decomposition of plant structural polymers, such as, cellulose, hemicelluloses and lignin, thus contributing to 

the maintenance of global carbon cycle [3]. Fungi are also major biodeteriorating agents of stone, wood, plaster, 

cement and other building materials, and it is now realized that they are important components of rock-

inhabiting microbial communities with significant roles in mineral dissolution and secondary mineral formation 

[2]. In semidesert and desert environments, where primary production is greatly reduced, soil microorganisms 

experience not only physical stress, but also the harsh oligotrophic conditions. However, it is known that fungi 

are not only able to survive but are also able to propagate in various environmental extremes [4]. 

Abstract: Deserts are apparently lifeless. Yet, they may consist of numerous minute and microscopic habitats 

and microenvironments that are inhabited by many microorganisms. These may adopt different lifestyles, for 

example saprotrophs, symbionts or parasites. Some species are cosmopolitan with a wide distribution, while 

others due to their ecological plasticity may adapt to harsh environments precluded to most of life forms. 

Since stress allows only the tolerant forms to grow, the microorganisms not only dominate such habitat but 

also grow sufficiently to impart special visible features to the habitat. In stressing conditions, their role is 

even more crucial for the recycling of organic matter and uptake of nutrients. When the conditions become 

extreme and competition is low, fungi focus on extremotolerance and evolve peculiar competences to exploit 

natural or xenobiotic resources in the particular constrains imposed by the environment. The study of fungi 

in the natural extreme environments may be of valuable biotechnological potential for the production of 

extremozymes, specific metabolites and for their exploitation in bioremediation programmes.  
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II. Exploration of extreme environments by fungi 
Most of the fungi exhibit a filamentous growth habit, which provides the ability to adopt both explorative and 

exploitative growth strategies and the formation of linear organs of aggregated hyphae for protected fungal 

translocation [2]. Some fungi are polymorphic, occurring as both filamentous mycelium and yeast-like cells, as 

in black meristematic or microcolonial fungi colonizing rocks [5-6]. Fungi can also grow inside their own 

parental hyphae, utilizing dead parts of the colony under the protection of parental cell walls [6]. This unique 

ability of fungi to translocate nutrients through the mycelial network is an important feature for exploring 

extreme environments [7-8]. 

Fungi may thrive in unusual environments, which range from extremely dry and cold deserts in the Antarctic 

and other very cold areas worldwide [9], highest mountain peaks [10] to deep permafrost soils [11-12], 

geothermal and humid soils in volcanic areas [13], acid mine drainages with sulphuric acid [10-14] or in the 

highly alkaline sites [15]. An extreme environment is defined as “one that differs considerably from the range of 

culture conditions that we believe is normal, either in natural settings or in the laboratory” [16]. Instead of 

calling these environments extreme, they preferred to call them “stressful” where certain abiotic factor(s) 

imposed a condition that restricts or prevents growth of most organisms. Environments with extreme 

physicochemical parameters were thought of as being hostile until microbiologists discovered that they are 

actually inhabited by a wide diversity of microorganisms [17]. Organisms that survive and thrive under 

conditions that are detrimental to the majority of other species have become a focus of increasing scientific 

attention over the last few years, with some ground breaking discoveries of stress tolerating mechanisms [17]. 

Extremophiles are promising models to further strengthen our understanding of the functional evolution of stress 

adaptation. Their biology widens our views on the diversity of terrestrial life and it has come as a surprise that 

not only prokaryotes but also eukaryotes have a great capacity to adapt to extreme conditions [17]. 

 
III. Mitosporic fungi from cold deserts 

Ice in nature has long been considered as only enclosing those microorganisms, which have been randomly 

deposited on its surface [18]. However, it is now known that different types of ice such as snow, glacial ice and 

sea ice provide environments that can support active microbial growth and reproduction [19-22]. In particular, 

several fungal species have been isolated in considerable numbers from subglacial ice of polythermal glaciers 

[4]. In cold deserts, for example, in the dry valleys of Antarctica, fungi are widely distributed in the soil but with 

low abundance [23]. Endemic fungi have been found associated with wood of historic expedition huts on Ross 

Island [24]. Similarly, in the dry polar desert soils, only yeasts have been found as endemic species [25]. In 

these extreme and isolated areas, endemic species showing physiological and morphological adaptations have 

locally evolved. It has been observed that 0
o
C is not in itself an extreme condition and that cold environments 

may be considered extreme only if another factor creates adverse conditions, for example, low water activity in 

arid Antarctic soil, low nutrient availability and high pressure in the deep sea [26]. 

Low temperature is the major stress factor that exerts a strong direct and indirect effect on microbial life 

processes by inducing different adaptation strategies and the establishment of psychrotrophic and psychrophilic 

forms. A psychrophile is defined as an organism capable of growth at or below 0°C but unable to grow above 

20°C, whereas a psychrotolerant (also termed psychrotrophic) organism is capable of growth at around 0°C and 

can also grow above 20°C [27]. Under low temperature environments, the importance and distinction between 

psychrophiles and psychrotrophs or psychrotolerants have also been recognized [28]. Psychrotolerant microbes 

are important in high-altitude agroecosystems since they survive and retain their functionality at low 

temperature conditions, while growing optimally at warmer temperatures [29]. Low temperature creates other 

stress conditions, for example, water is biologically unavailable when frozen. It is also assumed that due to 

prevailing low nutrient conditions, fungi live in soil as dormant propagules that become active when fresh 

organic matter enters the ecosystem. Extremely low temperatures not only restrict microbial enzyme activity and 

membrane integrity [30-31], but also constrain the availability of liquid water for the hydration of biomolecules 

and as a medium for biochemical processes [32]. 

True psychrophillic microorganisms are restricted to permanently cold habitats, such as oceans, polar areas, 

alpine soils and lakes, snow and ice fields and caves as they have optimum temperatures of 16
o
C and a 

maximum growth temperature of 20
o
C, but they can also grow at 0

o
C. Psychrotolerant microorganisms, in 

contrast, have maximum growth temperatures above 20
o
C, although they can grow at 10

o
C. Well known 

psychrophilic and psychrotolerant fungi are found in genera such as Alternaria, Cladosporium, Keratinomyces, 

Leptomitus, Penicillium, etc [26]. In polar regions, the occurrence of fungi is coupled to water availability, just 

like that in the warm desert ecosystems. Yeasts tend to predominate in the undisturbed areas of dry interior 

valleys of Antarctica. Cryptococcus albidus is one of the most prevalent psychrophillic species [33]. However, 

as research activity has increased at the poles, some previously unknown fungi have been detected. For example, 

Cameron [33] listed two species of Phycomycetes; two species of Ascomycetes; 27 species of mitosporic 

Ascomycetes, of which Chrysosporium, Penicillium and Phialophora represented the majority of the taxa. In 

addition, they also found 10 species of yeasts from the Antarctic soils. Species diversity of fungi isolated from 
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dry Arctic soils was similar to that from dry regions of Antarctica [34]. Onofri [35] reported that in Antarctica, 

0.6% of the known fungal species were water molds (Kingdom Chromista) and 99.4% were composed of true 

fungi including yeasts (unicellular organisms) and filamentous fungi from the Phyla Chytridiomycota, 

Zygomycota, Ascomycota and Basidiomycota. A key study that included Dry Valley sites revealed that some 

locations (e.g., Mt Fleming and Allan Hills) supported cultivable free living soil fungi including Cryptococcus 

antarcticus, C. friedmannii, C. vishniacii and Candida parapsilosis [36]. Most of the fungi recorded in the 

Antarctic continent are anamorphic forms. This may be attributed to the fact that the fungi gave up sexual 

reproduction as this simplification means that life cycles can be concluded in a shorter time and without 

metabolic costs. 

There is evidence that as temperature falls, the changing strengths of different types of molecular interactions 

can cause proteins to denature [37] and even the enzymes that remain properly folded, may slow or halt the 

release of reaction products [38-39]. Many microbes exhibit optimization of turnover rate relative to substrate 

binding and increased thermolability, such as, lower denaturing temperatures [39]. There is also evidence that 

different extracellular enzymes with lower thermal maxima are expressed when fungal cells are chilled [40-41] 

and that membrane composition is altered at low temperature [42-44]. However, the physiological and 

ecological mechanisms in cold-tolerant fungi that permit low temperature growth are still not fully understood 

[30-46].  

 
IV. Mitosporic fungi from cold desert soils of India 

The cold desert area in India covers 12 out of 131 desert blocks in India and is spreaded over an approximate 

area of 74, 809 sq. kms. This includes regions of Leh and Kargil districts of Ladakh in Jammu & Kashmir and 

Lahaul and Spiti along with some parts of Chamba and Kinnaur districts of Himachal Pradesh. Only few studies 

have been conducted on the soil mycoflora in the cold deserts in India. Sagar [48] isolated 45 species of fungi 

from the rhizosphere of various plants of the cold desert areas of Himachal Pradesh. Also, Deshmukh [49] and 

Kotwal [50] isolated keratinophillic from selected soils of Ladakh. Recently, Nonzom [51] isolated 32 

mitosporic fungi from the cold arid base soil of Moonland landscape, Ladakh. It must be emphasized that it is 

impossible to accomplish an exhaustive survey of the soil mycoflora. Due to different growth rates, it is very 

difficult to recover some of the fungal species. It is well known that the dilution plate method, which is widely 

used in soil mycological investigations, favours isolation of heavily sporulating fungi [52]. But in the highly 

stressful habitats, some fungi lose their dominant position, and the contribution of slower-reproducing but 

stress-selected micromycetes (such as most of melanin-containing species) in the community structure becomes 

much more significant. 

 
V. Role of melanins in the survival of fungi inhabiting extreme environment 

Sometimes single strategies are not specific for single stress factors but may allow the microorganisms to cope 

with more than one unfavourable condition. Many fungi constitutively synthesize melanin [53], which is likely 

to confer a survival advantage in the environment [54] by protecting against UV and solar radiation [55]. In 

fungi, melanin is an important protective factor against the adverse effects of environmental stresses, such as 

UV radiation, drying, high concentrations of salts, heavy metals, and radionuclides. The presence of melanin 

allows fungi to exist under the influence of high electromagnetic radiation, for example, in high mountain 

regions, desert soils, and on plant surfaces. Recently, the dominance of melanised fungi such as Ulocladium, 

Alternaria, Cladosporium, Drechslera, Humicola was observed in the cold deserts of moonland landscape, 

Ladakh [51]. Under extreme conditions, the proportion of melanized fungi in mycobiota usually increases, for 

example, in ecotopes contaminated with radionuclides [56-59]. It has been shown experimentally those dark 

colored spores of many fungi are resistant to UV irradiation [60-61]. The presence of melanin pigments ensures 

a high survival rate during high levels of UV radiation, while non-pigmented forms die within a few minutes. 

Melanised fungi also exhibit improved resistance to high concentrations of salts. Hortaea werneckii, Phaeotheca 

triangularis, Trimmatostroma salinum, Aureobasidium pullulans, and Cladosporium species live in salterns and 

are able to tolerate high (close to saturation) salt concentrations [62]. For some types of these fungi (Hortaea 

werneckii, Phaeotheca triangularis and Trimmatostroma salinum), hypertonic sodium chloride solutions are 

their natural environment [63]. Further, it has been suggested that the presence of melanin in the cell wall of H. 

werneckii reduces the flow of salt into the cell [63]. 

The presence of melanin also ensures the survival of microscopic fungi under the conditions of technogenic 

pollution. In industrial and roadside areas, an increase in the proportion of dark colored melanin containing 

fungi, which were more resistant to contamination in urban areas by heavy metals and unsaturated 

hydrocarbons, was observed [64-65]. Similarly, in the air and snow samples of urban areas, representatives of 

the genera Cladosporium and Alternaria were dominant [66]. Radionuclide contamination led to a change in 

fungal communities, an increased proportion of melanised fungi, and a reduced diversity of species [58-67]. 

Most common in contaminated zones were the species of Cladosporium, Ulocladium, Stachybotris and 

Humicola. Some of the widely available species included Cladosporium sphaerospermum, C. herbarum, C. 
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cladosporioides, Alternaria alternata, and Aureobasidium pullulans [58-68]. Melanized fungi (mainly 

Cladosporium spp., A. alternata, A. pululans, and Hormoconis resinae) have been found even in environs of 

destroyed reactor in Chernobyl [68]. The distribution of melanized fungi in areas with high levels of radiation 

undoubtedly reflects their advantage over light colored fungal species. However, a majority of the basic 

mechanisms of radiation resistance of living organisms are not currently established [69].  

There are three main types of melanins: eumelanins (black and dark colored polymers), pheomelanins (yellow 

and red polymers), and the most heterogeneous group of allomelanins, including soluble piomelanins [70]. In 

fungi, there are melanins of all three types [70-71]. Despite the difference in their origins, melanin pigments 

have a number of common characteristics that allow them to fulfill their protective function. Melanins are 

chemically stable compounds that are not soluble in water and organic solvents. They can form a solution in an 

alkaline medium and are discolored in the presence of strong oxidants. The presence of quinoid groups explains 

the presence of paramagnetic centers and the ability of melanin pigments to deactivate free radicals and 

peroxides and absorb heavy metals and toxic electrophilic metabolites. These pigments exhibit strong 

antioxidant properties [72-74]. Melanin containing cells are more resistant to H2O2 and NO [75]. The gene 

expression of melanin synthesis enzymes increases the resistance of fungi to oxidants [76]. A hypothesis that 

melanins trap free radicals formed during the radiolysis of water by radiation was suggested for the mechanism 

of radioprotective action [77-78]. It was also assumed that melanin pigments participating in redox reactions are 

able to perceive the energy of radiation (UV, visible light, and radiation) and make it available for metabolic 

processes [58, 79-80]. Probably, this explains the activation of metabolic processes and the growth of fungal 

hyphae under the influence of different types of radiation, found in melanin containing fungi [79, 81]
.
 It was 

also shown that irradiating melanin caused its oxidation, which was more expressed in the presence of reducing 

agents, such as ascorbate [82]. This confirms the possibility of participation of melanin inactive electron transfer 

in living cells and the existence of a hypothetical mechanism of transfer of radiation energy for the maintenance 

of metabolic processes. Further research in this area can provide a better understanding of the nature of the radio 

and UV protective effect of melanin. 

Melanized microorganisms inhabit some remarkably extreme environments including high altitude, Arctic and 

Antarctic regions with the latter habitats being characterized by the naturally occurring higher radiation levels 

than those at lower altitudes [83]. First reports on black fungi with aggregated micro-colonies in cold deserts of 

Antarctica were published by Friedmann [84] and Friedmann [85]. Black fungi share a number of universally 

present characters such as strong melanization, thick and multi-layered cell walls and production of 

exopolysaccharides, which result in an extraordinary ability to tolerate chemical and physical stress [86]. It is 

likely that such strategies allow fungi of both cold and hot deserts to withstand strong shifting in environmental 

conditions [87]. According to Ma [88], black fungi have a worldwide distribution especially in places where 

environmental conditions are extreme due to extreme temperature, low nutrient availability, high radiation and 

lack of water. Rocks inhabiting black fungi together with some lichens are today assumed to be the most stress 

resistant eukaryotic organisms known on the Earth [89]. Experiments have shown that their stress resistance 

against solar radiation, radioactivity, desiccation and oligotrophic conditions even allows them to survive in 

space [90]. For this reason, black fungi are now model organisms for Astrobiology [90]. 

The most extensive work on diversity and taxonomy of microcolonial fungi from the Antarctic environment was 

done by Onofri [91] and Selbmann [9] who isolated and described black fungal species from the Antarctic 

desert. Melanin is more prevalent in aerial fungi living on the leaves and rocks [92-93]. Infact, melanins 

produced by Cladosporium and Oidiodendron species protect against UV and gamma radiation [94] and also 

against artificial solar irradiation [95]. Similarly, Ursi [93] noted preponderance of black fungi on and within 

rocks sampled in Europe and proposed that this was because of the protective effects of melanin against UV, 

sunlight and desiccation. Melanin is also known to protect certain fungi against lysis in natural soils. For 

example, cell wall melanin of the conidia of Cochliobolus sativus is known to protect them against lysis in 

natural soils and by lytic enzyme preparations [96]. There are also some reports, which indicate that microbial 

melanin protects against extremes of temperature [97-98]. 

 
VI. Soil factors affecting mitosporic fungi inhabiting cold deserts 

The number and kind of microorganisms present in the soil depend on many environmental factors, such as, 

amount and type of available nutrients, available moisture, degree of aeration, pH, temperature, etc. 

Microorganisms respond to nitrogen [99-100], organic matter [101-102] and soil moisture [100-103]. Their 

abundance in soil varies spatially as well as temporally, and this pattern is related to temporal and spatial 

variations in the quantity and quality of nutrients [100, 104]. Among the various nutrients, organic carbon, 

nitrogen, phosphorous and potassium are very important for fungi. In the absence of any one of these, the 

growth and sporulation of fungi and other microorganisms gets hampered. Magnesium, manganese and iron 

though needed in very small quantities, are also essential [05]. The availability of other micro nutrients such as, 

Fe, Mn, Cu and Zn in 1–25 ppm concentration is also essential [106]. In addition, soil temperature, pH and 

moisture are some of the major factors affecting fungal population and diversity [107]. Onofri [108] observed a 

http://www.sciencedirect.com/science/article/pii/S1754504811001437#bib37
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strong influence of the amount of carbon source on the growth and antibiotic activity of fungi in Antarctic rocks 

and soil. Fernandez [109] showed temperature and moisture to be the dominant abiotic controls of soil 

respiration in the cold desert of southeastern Utah. In a recent study, Nonzom [110] observed that the soil 

physico-chemical properties such as electrical conductivity, texture, pH, also affect the soil mitosporic diversity 

in the cold desert of Ladakh. In addition, they also observed the influence of macronutrients such as nitrogen, 

carbon, organic matter, etc and micronutrients such as iron, zinc, manganese and copper on the diversity and 

distribution of mitosporic fungi [110]. 

 
VII.  Importance of mitosporic fungi inhabiting extreme cold environments 

The beneficial effects of soil microorganisms are manifold and range from nitrogen fixation and organic matter 

decomposition to breakdown of metabolic byproducts and agrochemicals enhancing the bioavailability of 

nitrates, sulphates, phosphates and essential metals [111]. Fungi, together with bacteria, are responsible for most 

of the recycling, which returns dead material to the soil in a form in which it can be reused. Fungi are considered 

general manager in nutrient recycling department of nature without which the recycling activities would be 

seriously reduced. The fungal populations are correlated with the nitrogen levels and moisture of the soil [112]. 

Fungi have 40–55% carbon use efficiency so they store and recycle more carbon (C) compared to bacteria and 

help recycle both nitrogen (N) and phosphorus (P) to plants. Due to their smaller size and much greater surface 

area, fungi can efficiently scavenge for N and P better than plant root hairs and greatly increase the plant root 

nutrient extraction efficiency. Fungi perform enormous functions in various fields including ecological, 

pharmaceutical, industrial, agricultural, food and beverage industries, biocontrol, bioremediation, etc. 

Apart from their disease causing nature [113], soil fungi have many beneficial effects including their role in the 

industrial area [114-116]. Fungi perform important services related to water dynamics, nutrient cycling and 

disease suppression. Along with bacteria, fungi are important as decomposers (Nature’s recyclers) in the soil 

food web, converting hard to digest organic material into usable forms. As decomposers, they play most 

important role in our economy because fertility of soil greatly depends on microbial activity. 

Fungi, particularly mitosporic fungi, are important producers of biologically active molecules, including 

cyclosporin A, the immune-suppressant drug used in organ transplant operations, lavastatin the cholesterol-

reducing substance and a group of antibiotics, which include cephalosporin, griseofulvin, sordarin, fusidic acid, 

etc., that possess several antibacterial and antifungal activities. 

Fungi serve as the source of commercially important enzymes and natural products ranging from abscisic acid to 

zymosterol that result in a billion dollar industry [117-118]. Therefore, fungal fementation processes for a 

variety of enzymes such as protease, pectinase, cellulase, lipolase, amylase, etc., have been standardized on a 

large scale and several commercial scale plants established for their manufacture. They are increasingly used to 

ferment solid organic waste substrates into usable products such a methane and fertilizers [119] and are 

invaluable as substitutes for chemicals in the pulp and paper industry
 
[120]. Fungal species screened for 

secondary metabolites using modern techniques are less than 1% of those that may exist [121]. Thus, the 

potential is enormous for the discovery of valuable natural products resulting from a directed search and 

screening of fungi from unexplored habitats.  

 
VIII. Conclusion 

These findings provide important insights that aid our understanding of the diversity and distribution of 

mitospoic fungi in natural ecosystems and their adaptations in these extreme habitats. Information on fungal 

diversity and functions in extreme habitats might provide scope for bioprospecting of new source of drugs and 

other industrially important biomolecules and enzymes. Due to their enormous stress tolerance, desert fungi 

could also be a promising source for new biotechnological and medical adaptations, as for example protective 

agents against oxidative stress. Despite the severe conditions of cold deserts, the overall portrait shows a 

relatively rich mycoflora, more diversified than one might expect. They show a range of morphological and 

physiological adaptations, similar to those adopted by other taxa from different extreme environments. One such 

adaptation of considerable importance is melanisation, which confers significant survival advantage in such 

hostile environments. It is probable that these fungi have been possibly selected among a highly diversified 

mycoflora, originally present in such environments. These positively selected microfungi appear as the 

predominant group in these environments because they are benefited by their extremotolerance ability and the 

absence of faster growing competitors. 
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