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Abstract 

Nitrogen is the main limiting nutrient after carbon, hydrogen and oxygen for photosynthetic process, phyto-hormo-
nal, proteomic changes and growth-development of plants to complete its lifecycle. Excessive and inefficient use of 
N fertilizer results in enhanced crop production costs and atmospheric pollution. Atmospheric nitrogen (71%) in the 
molecular form is not available for the plants. For world’s sustainable food production and atmospheric benefits, there 
is an urgent need to up-grade nitrogen use efficiency in agricultural farming system. The nitrogen use efficiency is the 
product of nitrogen uptake efficiency and nitrogen utilization efficiency, it varies from 30.2 to 53.2%. Nitrogen losses 
are too high, due to excess amount, low plant population, poor application methods etc., which can go up to 70% of 
total available nitrogen. These losses can be minimized up to 15–30% by adopting improved agronomic approaches 
such as optimal dosage of nitrogen, application of N by using canopy sensors, maintaining plant population, drip 
fertigation and legume based intercropping. A few transgenic studies have shown improvement in nitrogen uptake 
and even increase in biomass. Nitrate reductase, nitrite reductase, glutamine synthetase, glutamine oxoglutarate 
aminotransferase and asparagine synthetase enzyme have a great role in nitrogen metabolism. However, further 
studies on carbon–nitrogen metabolism and molecular changes at omic levels are required by using “whole genome 
sequencing technology” to improve nitrogen use efficiency. This review focus on nitrogen use efficiency that is the 
major concern of modern days to save economic resources without sacrificing farm yield as well as safety of global 
environment, i.e. greenhouse gas emissions, ammonium volatilization and nitrate leaching.
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Introduction
Nitrogen (N) plays an important role in crop plants. It is 

involved in various critical processes, such as growth, leaf 

area-expansion and biomass-yield production. Excess 

NUE can support good plant performance and better 

crop out-put. Various plant molecules such as amino 

acids, chlorophyll, nucleic acids, ATP and phyto-hor-

mones, that contains nitrogen as a structural part, are 

necessary to complete the biological processes, involving 

carbon and nitrogen metabolisms, photosynthesis and 
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protein production [1, 2]. Insufficient amount of N avail-

able to plants can hinder the growth and development. 

Nitrogen can also improve root growth, increase the vol-

ume, area, diameter, total and main root length, dry mass 

and subsequently increase nutrient uptake and enhance 

nutrient balance and dry mass production [3–6].

Application of nitrogen increases greenness of plants, 

 CO2 assimilation rate, crop quality-yield and improve 

resistance to environmental stresses such as limited 

water availability and saline soil conditions [7, 8]. Hou 

et al. [9] found that nitrogen application more important 

than the other major essential fertilizers/nutrient for suc-

cessful crop production. Consequently, N requirement is 

the most central feature for plant production [10]. Slow 

development of plant and early leaf senescence due to 

deficient N can cause decreased both crop production 

and quality [11]. Excessive N fertilizer application is com-

mon practice by farmers of cotton regions in the north-

west [12] which is not cost effective for crop production, 

and excess N prolongs the vegetative growth period, 

delays maturity [13], decrease sugar content, and also 

attracts insect pest and causes disease epidemics.

China has only 7% of global farm land with 20% world 

population that depends on it for feed [14–16]. It boosts 

up average yield of grain from 1.09 to 6.51 tonnes  ha−1 

in last 7 decades [17]. In China, chemical nitrogen (N) 

fertilizer input is the major element for the continuous 

increase of food production to mitigate the problem of 

food security [18]. �erefore, the low NUE all over the 

world especially in agriculture sector is not only wastage 

of resources (Fig.  1 a, b) and also problematic for envi-

ronmental pollution (Fig.  1c, d) and conflicting to sus-

tainable agricultural productivity [19–21].

NUE and its status
NUE is an exploiting issue for discussion and research 

which depends on the physiological and metabolic 

changes, such as soil nitrogen uptake, assimilation from 

roots to other parts (Fig. 2), source-sink tissues interac-

tion for transportation, signaling and regulatory path-

ways which are responsible for N status within plant and 

growth as well [22]. Normally, the ratio of yield and total 

N supplied is termed into NUE [23]. Several techniques 

have been adopted to observe NUE that can be separated 

into N uptake efficiency and N utilization efficiency. N 

uptake efficiency (NUpE) describes the nitrogen amount 

that a plant can take from sources of nitrogen while N 

utilization efficiency (NUtE) termed as the plant capabil-

ity to assimilate plus remobilize N within the plant [4, 22, 

24]. However, NUE is the resultant of NUpE and NUtE 

product. Numerous demarcations for NUE have been 

suggested over the years, which have showed a few differ-

ences in normal ways [4, 25, 26].

NUE, NUpE and NUtE can be measured by adopting 

the Eqs. 1, 2 and 3 [4, 24].

Nitrogen recovery and agronomic nitrogen effi-

ciency (NRE) are the other common approaches used 

to observe NUE. NRE is termed as the percentage of 

pragmatic nitrogen fertilizer taken up by crop. It is an 

indicator for a crop to use the N fertilizer that has been 

supplied [27]. �e yield increment per unit of N ferti-

lizer given to the crop is denoted as agronomic nitrogen 

use efficiency (aNUE). It is an important index to meas-

ure gain or loss for excess amount of fertilizer [28]. Best 

aNUE is the surety of highest benefit–cost–ratio, which 

is a key economic relationship between input and out-

put that relate both by linear curve [29].

�e Eqs. 4 and 5 can be used to measure agronomic 

and recovery efficiencies like aNUE and NRE:

Yfertilized and  Ynot fertilized are yields (kg ha−1) when quan-

tity of N fertilizer applied was F and zero;  Fapplied is the 

total N (kg ha−1) applied [28].

Total  NUfertilized and Total  NUnot fertilized showed N uptake 

for F and no fertilizer, respectively [30].

�e variation in NUE can be understood by nitrogen 

doses, application methods and other agronomic fac-

tors which help to manage nitrogen has crucial effect 

for both profitable crop production and environment 

[31]. According to field demonstrations, Lou et al., [32] 

measured NRE and aNUE for different nitrogen rates, 

application methods and plant population in northwest, 

China, and found that the 70% and 80% of nitrogen loss 

can be minimized when nitrogen applied through drip 

fertigation and high plant population, respectively. 

Drip fertigation and high plant density can increase 

nitrogen recover efficiency for comparable yield. In 

contrast conventional method of nitrogen application 

and low plant population, more nitrogen losses, which 

(1)NUpE = N contents in plant /N supplied

(2)NUtE = Yield/N contents in plant

(3)NUE = NUpE × NUtE

(4)aNUE = (Yfertilized− Ynot fertilized)/Fapplied

(5)NRE = (Total NUfertilized− Total NUnot fertilized)/N fertilizer dose
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leads to decrease yield in crops due to low amount of 

N available. �e midseason rice NUE is less than 30% 

in China, which indicates that 70% nitrogen is going 

into the ecosystem as loss [33]. As comparison of USA 

and China from 1980 to 2010 for NUE in case of maize 

crop, the NUE declined from 30.2 to 29.9 in China but 

up-graded from 39.4 to 53.2 in USA [34]. Hajari et  al. 

[35] demonstrated few varieties of sugarcane for nitrate 

and ammonium as a source of N fertilizer in their study 

and concluded that  NO3
−-N resulted in higher NUEs 

as compared to  NH4
+-N. Wheat and maize grown 

in a hydroponic culture containing  NH4
+-N showed 

that the photosynthetic and carbon assimilation rates 

decreased in the plants [35, 36].

Available sources and forms nitrogen

�e conversion of nitrogen from one form to others 

greatly influences the nitrogen use efficiency.In early 

growth stage  NO3
− form of nitrogen is important but 

it has not been commonly used as fertilizers alone, the 

other forms go the atmosphere by nitrification [37]. How-

ever, most widely used nitrogen fertilizer urea is abruptly 

Fig. 1 This diagram depicts country wise (a) and crop wise (b) NUE for 2010 and 2050 (proposed), while c, d shows nitrogen losses in teragram for 
2010 and 2050 (proposed)
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nitrified (Fig.  4) after conversion to ammonium [37]. 

Although urea after application in soil can convert into 

nitrate and ammonium form, it is not still clear about 

urea uptake process and metabolic changes in plants [38]. 

Urea is also preferred and predominant source of N due 

to more nitrogen contents and low cost to produce it in 

South Africa [39].

�e soil N (Fig. 3) is most important to observe the effi-

ciency of N in the agricultural field conditions [40–44]. 

�ere are a lot of evidence from various field trials using 
15N-labeled fertilizer, N uptake is principally derived 

from soil (Fig.  3) rather than fertilizer [45–53]. How-

ever, many studies have been conducted and found that 

unfertilized N responses often give more yield than that 

of N fertilized [43, 54–56], except those in which soil 

N availability is captured by accumulation of carbona-

ceous residues. Total soil nitrogen and organic carbon 

vary in soil profile, both decreases with the soil depth, 

however the ionic forms of N  (NH4
+,  NO2

−, and  NO3
−) 

shape the mineral nitrogen dynamics because discrepant 

increments of mineral nitrogen stock in each soil layer 

takes place [57, 58].

According to Neto et al. [60] when nitrogen concentra-

tion increases even though it is earlier applied, minerali-

zation of nitrogen in soil is boosted and a part of N shares 

from the mineralized nitrogen. Nitrogen within the 

plants at anthesis stage also enhanced due to the trans-

formation of nitrogenous compounds, which have stored 

nitrogen in earlier growth period [61, 62]. Crop growth, 

development, biomass and yield have directly linked to 

nitrogen assimilation [61, 63]. Mazzafera and Goncalves 

[64] analyzed xylem sap to study nitrogen transformation 

in coffee plants and found 52% of the total nitrogen is 

nitrate. But nitrate reductase reduces it into nitrite [65].

Sugarcane accumulates nitrogen 100–150  kg  ha−1 in 

leaves and stalks, only about 55% is removed from stalks 

up to maturity [66]. �e plant residues after harvesting 

are put into the field which gradually mineralized and 

release N in available forms [67]. Nitrogen consump-

tion by enhanced N fertilization to the crop may lead to 

high N uptake but it is not necessary to increase biomass 

production [68]. �us, over use of nitrogen fertilizer 

down-regulates the nitrogen use efficiency and increases 

production cost and environmental pollution.

Plants have the ability to acquire excessive  NO3
− nitro-

gen than the requirement for assimilation and store it in 

unassimilated pools like vacuoles of leaves [69], become 

available for utilization under low N [70, 71]. Hajari 

et  al. [35] and Robinson et  al. [37] found, the  NO3
−-N 

per gram was higher in dry roots than the shoot on all 

growing media. Hajari et  al. [35] claimed that the sug-

arcane plant is not able to translocate  NO3
−-N from 

root to shoot efficiently due to which limited N uptake 

and transport occur rather than assimilation which may 

affect the NUE in sugarcane. �e application of a nutri-

ent may increase (synergism) or decrease (antagonism) 

the contribution of the other nutrients in crop yield. �e 

concentration of phosphorus and nitrogen varies over the 

growing period in the soil and create interaction either 

synergistic or antagonistic. �e response of crop yield 

might be affected directly or indirectly [72, 73]. �ere-

fore, the supply of both N and P creat changes in chemi-

cal, physical, and biological properties of soil [74, 75]. �e 

nitrogen fertilizer has synergetic effect to phosphorus. 

�e results indicated, addition of nitrogen along with 

phosphorus fertilizer produced better positive interac-

tion than separately [76]. In the sugarcane field which has 

previously wild vegetation and low available phosphorus 

response nutrient limitations, it involves phosphorus as 

limiting source in high demand periods, and also micro-

bial biomass [77–85].

Fig. 2 The major plant pats which have their own role for NUE. a 
Grain: responsive to fertilizers and nutrient storage component, b 
Shoot: nutrient redistribution, assimilation and transportation (source 
and sink), c Roots: Efficient nutrients uptake by transporters and 
channels
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Losses of nitrogen in the ecosystem

Worldwide high nitrogen fertilizer application results in 

economic loss and ecological hazardous due to extra con-

sumption of resources, water eutrophication, and high 

rate of greenhouse gas emissions along with potential 

leaching. �e inefficient N utilization with poor transfor-

mation of provided N results in unintentional fertilizer 

loss in soil, atmosphere and promoting contamination 

of groundwater, distort connecting biological communi-

ties and cause dangerous atmospheric deviation, through 

the emission of the poisonous ozone depleting substance 

nitrous oxide [82], eutrophication, air pollution, N leach-

ing, water pollution, soil acidification and soil degrada-

tion [14, 18, 82–89] which is not suitable for environment 

friendly crop production and human life (Fig. 4).

In agriculture, crop production requires plentiful N 

which is the most widely recognized limiting factor for 

crop growth, development and yield. A lot of synthetic 

N fertilizer is applied to arable land by growers to fulfill 

the demand for crop production. An abrupt increment 

in fertilizer applications in China was noted, and it con-

sumed 30% of total N fertilizers synthesized around 

the world in 2002, in spite of the facts, its arable land 

accounts only 10% of the world aggregate. However, the 

use of vast amounts of synthetic N fertilizer to expand 

crop yield are not financially sustainable and put a sub-

stantial burden on farmers, and furthermore result in 

environmental pollution. Every crop cannot use about 

50% nitrogen fertilizer during its growing season due 

to over fertilization [90].Moreover, plants grown under 

excessive nitrogen applications are more susceptible to 

lodging because of shoot overgrowth and tender, and 

pest damage and disease, and also degrade quality of the 

grains [91].

�e N losses thru lixiviation, direct escape to the air, 

denitrification and/or percolation is higher due to over 

use of N fertilizer [92]. �e synchronized application 

as the demand of plant at its critical stage can decrease 

losses of applied N fertilizer [93–95]. Over the last dec-

ade, crop response to N fertilization [96, 97] was detected 

Fig. 3 Sources of organic nitrogen available for mineralization in soil [59]
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in sugarcane fields all over the Brazil for green cane trash 

blanketing systems (GCTBS) and also in  situ quantify 

 NH3 volatilization [98],  NO3 leaching [99–101], and  N2O 

emissions [102, 103], N use efficiency [104, 105]. About 

60–80% synthetic N fertilizer is not taken up by sugar-

cane crop under GCTBS, and losses due to volatilization, 

denitrification and leaching has been observed, but most 

of the mineral N is not available for micro biota, while 

the remaining part available to the crop [96]. In spite of 

the fact that the mechanism of commercial fertilizers is 

relatively well familiar [106]. However, many research-

ers claim the impact of organic and organomineral is 

not understood on chemical and microbial properties 

of soil for successful crop cultivation in temperate areas 

[107–109].

Biotic factors like size and diversity of microbial com-

munity and abiotic factors temperature, soil moisture 

content, temperature have direct relation to regulate 

organic compounds mineralization in the soil (Fig.  3), 

however, seasonal climatic change during cropping sea-

son fluctuate the mineral N availability [110]. Rapid avail-

ability of mineral N in soil solution has been noted as a 

result of synthetic N fertilizer application [96, 111, 112], 

but there is a powerful race between crop plants and 

micro flora for existing mineral N (especially  NH4
+), and 

cause a large variations over time [77, 78].

Urea is the major N fertilizer that is applied to the field 

and also the main source of  NH3 gas emission (Fig.  4) 

from agronomic practices [113] contributing for about 

20% of the emissions in Germany [114] and is highly 

important in many other countries like China. Nitro-

gen loss as  NO3
− leaching (Fig.  4) from sugarcane field 

has significant contribution to pollute environment in 

Australia [115]. Many researchers in Brazil also find out 

leaching losses of nitrogen in planted sugarcane through-

out its growth [116]. However, during ratoon season, 

 NO3
− leaching is more important than the planted cane 

[100]. �e skips within ratoon sugarcane field increased 

across the growth period, and decreased the crop N 

response. �e unique response to applied N fertilizer can 

be attained by well-established ratoon crop similar to 

planted crop density.

Duan et al. [117] discuss their findings about N appli-

cation to long and short vines of sweet potato, the both 

long-vine and short-vine cultivars have the peak yield for 

nitrogen applied as 30 and 90  kg  ha−1 respectively. �e 

cultivars of same production potential have reduced their 

yields, and the root yield of long vine is significantly lower 

than that of short vine for nitrogen 120 kg ha−1. Wu et al. 

[118] also claim the cultivar Zijing No. 2 decrease in the 

root yield for N application (75  kg  ha−1) in fertile soil. 

�us, the genotypic differences in sweet potato have a 

great influence on the partitioning of dry matter as well 

as uptake of nitrogen [119]. Wilson [120] classified culti-

vars of sweet potato for N-responsiveness, nonresponsive 

and depressive natures. Nitrogen buildup and distribu-

tion for short stature tuber roots are greater, and simi-

larly exhibit more yield in response to high N conditions 

[121]. Besides, the cultivars that require higher N, give 

higher root yield in fertile soils [118].

Total nitrogen fertilizer can be reduced up to 

360  kg  ha−1 with respect to 430  kg  ha−1 for cropping 

system based on the wheat–maize rotations, along 

with improved agronomic practices. It was resulted in 

Fig. 4 Summary of nitrogen sources and, their conversion, availability to plants and losses within/outside of soil
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increase in maize yield by 7–14%, but reduction in wheat 

yield,  N2O and NO emissions by 1–2%, 7% and 29%, 

respectively [122]. In addition, best fertilization practices 

are an option to improve NUE and also seasonal collec-

tive  N2O emission decrease [123]. Leaching process can 

be minimized by adopting legume crops in cropping 

system up to 50% than the conservative systems [124]. 

Soybean reduces 50–60% of N demand by biological 

nitrogen fixation [125]. Graham et al. [126] and Resende 

et al. [127] observed that addition of synthetic fertilizers 

decreased soil N stocks, while Ladha et al. [108] reported 

an increase in soil C pool and N stocks for long–term 

organic fertilizer application.

Agronomic and physiological approaches

Application rates

Irrational application of nitrogen is a major problem of 

low nitrogen use efficiency [128–130]. �erefore, agro-

nomic principles and practices should utilized in mod-

ern techniques to enhance nitrogen use efficiency, so as 

the reduced application rate of fertilizer inputs without 

yield reduction is key factor [32]. Soil characteristics 

and agro-climatic conditions highly force the applica-

tion level of fertilizer [131]. Crops can use only up to 35% 

of the supplied N during its complete life cycle [39] and 

the remaining is escaped to the environment by various 

mechanisms and functions (Fig. 4) [132, 133].

Improvements in NUE by decreasing nitrogen dose 

may delay leaf senescence which results in no yield loss. 

Late-season leaf senescence due to low nitrogen applica-

tion rate provides relatively higher photosynthetic capac-

ity to crop and ultimately increase yield production. 

Mulvaney et al. [109] proposed N mineralization in soil is 

positively regulated by synthetic nitrogen fertilizer. �ese 

findings indicate that N may exceeds the demand of sug-

arcane crop (200 kg ha−1  year−1) and affect C:N ratio in 

soil for long time continuous applications.

Srivastava and Suarez [134] confirmed N recommen-

dation rate for sugarcane varies worldwide for 45 to 

300  kg  ha−1 but 60 to 140  kg  ha−1 is recommended for 

Brazil. Dametie and Fantaye [135] summarised the results 

of sugarcane N uptake studies by various researchers in 

the globe, and indicated that the usual need of ratoon 

crop for nitrogen is 1.5  kg  Mg−1 cane yield. N uptake 

varied from 0.88 to 1.47 kg Mg−1 in Hawaii, and stubble 

cane production required 1.3 kg Mg−1 [136, 137]. By the 

compilation of numerous results for nitrogen dosage and 

technically recommendations in Brazil, the usual rate is 

1.0–1.4 kg Mg−1 cane [138].

Nitrogen fertilizer application dose can be minimized 

by 20% without yield loss in Australia [139]. �e N fer-

tilizer in China has possibility to use moderately at low 

rate by integration management practices [140]. �e 

reports from different regions/countries suggest that N 

use efficiency can increased by decreasing N application 

rate [141–144]. However, it also depends on agronomic 

traits, fertility of soil, management and yield potential 

[141–144].

�e N application rate can also be determined by veg-

etative growth and productivity index, for example, cof-

fee plants showed high rates for it between 2400 and 

3600  kg  ha−1 per year [60, 145] and N as urea applied 

600 to 800 kg ha−1 to maintain this productivity in Bra-

zil. Official recommendations for nitrogen fertilizer are 

400  kg  ha−1  year−1 [61] and apply in tow or four splits. 

But the coffee growers applied urea between 600 and 

800 kg ha−1 in 26 splits during coffee cycle. In fact, they 

attempted this practice to stop N deficiency, but causing 

low nitrogen use efficiency [146]. Luo et al. [32] suggests 

that 20% N can be reduced, when plant density is high, 

without yield loss and also can reduce for drip fertigation.

Application methods

�e international plant nutrition institute is convincing 

the best agronomic practices, 4R nutrient application 

principles, i.e. source of fertilizer, rate, time and site/place 

[147]. Soil fertility varies with in the field abruptly which 

has strong impact on yield and nutrient uptake by culti-

vated crops, and this major problem can be handled by 

adopting site-specific nitrogen fertilization. Site-specific 

N fertilization provides significant impacts in terms of 

economy and ecology in heterogeneous fields [148–150] 

which results in enhanced yield, quality and ultimately 

high nitrogen use efficiency.

Spectral measurement is a suitable approach to know 

the nitrogen requirements of crops and site-specific 

application for precise farming [151]. �e principle 

behind laser-induced chlorophyll fluorescence (LICF) 

is used to the measure the N situation of the crop stand 

by close distance [152] as well as 3–4 m [153]. �e plant 

nitrogen is measured indirectly by chlorophyll content 

via fluorescence signals ratio at 690 and 730  nm [154, 

155]. It indicates that high amount of chlorophyll resulted 

in lower fluorescence radiation ratio F690/F730 because 

reabsorbed radiations have more strength at 690  nm. 

Rubisco acts as the sink of N and has close relation to 

chlorophyll content, thus the ratio F690/F730 describes 

the N content of the plant [156].

Crop canopy sensor calibration is too sensitive to field 

variability like the ramp calibration strip [157] or the 

calibration plot methods [158]. �e reference area for 

canopy sensor within a field should be given according 

to field and soil variability [159] that also relates to the 

sugarcane plant density variation. �e calibration should 

be done for every crop and season, separately [160]. Yong 
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et al. [161] applied nitrogen fertilizer at various concen-

trations among the rows of maize-soybean relay inter-

cropped field at three different distances (15 cm, 30 cm 

and 45 cm) and concluded that crop performed better for 

15  cm and 30  cm treatments. �e NUE and total grain 

yield of the maize-soybean relay intercropping system 

were significantly higher in 15 cm and 30 cm. So, lower N 

application at 15–30 cm from fertilizer application loca-

tion to the maize row was optimal.

Productivity of low land rice has a great dependence 

on the selection of varieties and their nutrient utiliza-

tion capacity. Under dose of N fertilizer may happen, 

especially when N is subject to immobilization follow-

ing ratoon crop fertilization for unburned sites [56]. 

Crop response to inputs is also influenced by climate, 

for example, high altitude of Andhra Pradesh is endowed 

with the special soil and climate where varietal responses 

to inputs vary relatively to coastal plains. Different nitro-

gen sources should be jointly applied to fulfill the require-

ment of nitrogen to improve crop productivity [162].

�e supply of N fertilizer to sugarcane is affected by soil 

profiles that are hard to measure inside the agricultural 

land [53]. Indeed, even the selection of reference regions, 

that get satisfactory measures for nitrogen, according to 

Raun et  al. [163], can be risky with regards to evaluat-

ing sugarcane N feedback; depending upon where refer-

ence zones were set up, the harvest N reaction can differ 

altogether. For instance, producers may realize that a 

yield did or did not respond to N application,and such 

conflicting results found in various experiments were 

demonstrated by Duan et  al. [117]. Hence, use of can-

opy sensors to quantify the N response is troublesome 

because of variable plant density inside the fields. In that 

capacity, different elements can veil the N impacts, like 

soil compaction, pest attack and diseases. Zillmann et al. 

[164] announced a comparative issue when they con-

ducted a test for N connected to maize. For all the experi-

mental area, the crop response for N was not similar as 

proposed.

�e canopy sensor has to be utilized when the sugar-

cane tallness is between 40 and 70 cm to get estimation 

affectability to sugarcane vigor fluctuation [165, 166]. At 

this stage, sugarcane has attained around 10–30% of total 

biomass with 27–68% N, which is dependent on geno-

type, soil fertility, climate and developmental stage [167]. 

N requirement of crop prior to treatment can achieved 

by various sources, i.e. mineralization of organic sources 

and endophytic nitrogen fixation by bacteria related to 

plant roots [53, 168–170], and also other inputs to the 

field like vinasse, poultry manure and farmyard manure 

etc.

Drip fertigation
Northwestern China has an arid climate, cotton produc-

tion in this region is not possible without irrigation and 

N fertilization [171]. Drip fertigation is a good option to 

supply water and fertilizers in precise quantities [172, 

173]. Drip fertigation with mulching is going to be exten-

sively used in recent years [174]. It is well documented 

that the nutrient and water use efficiency both can be 

enhanced through drip fertigation that improves crop 

production for each unit of nutrients and water [172, 

175]. It has more advantage of the soluble fertilizers that 

can be put in specific quantity alongside the good crop 

health and potential yield because of maintained fer-

tigation in the root zone [173]. Many studies pointed 

out fertigation can improve fertilizer use efficiency by 

decreasing application rates without losing crop yield 

[176, 177] and especially drip fertigation of cotton field 

with reduced nitrogen, improved its efficiency [175, 178]. 

It improved cotton yield, yield components, and leaf area 

index (LAI) by 20 to 30% as compared to furrow irriga-

tion [179]. However, maximum nitrogen recovery was 

obtained by sacrificing cotton yield at lower N level 

under drip fertigation [180]. So, an optimum N level for 

drip fertigation has important role to achieve highest cot-

ton yield.

Traditional high nitrogen application without consid-

ering method of application and plant population gives 

more seed cotton yield. Anyhow, N can be reduced up 

to 15–30% when drip fertigation is employed and 20% 

in case of high plant population without sacrificing seed 

cotton yield. �e findings of Luo et  al. [32] are that N 

reduction up to 30% has non-significant seedcotton yield 

reduction for drip fertigation. However, drip fertigation 

shows increase by 5 and 20.7% in seedcotton yield for 15 

and 30% nitrogen reduction.

In other words, drip fertigation with high plant popu-

lation is an important attribute to save nitrogen with 

sustainable yield for arid culture. Many experiments 

have conducted to find agronomic practices, high plant-

ing density, diversified planting geometry [181] organic 

fertilizers and improvement of application method of 

nutrients are helpful to regulate cotton yield for reduced 

nitrogen conditions in the Yellow River valley, China [11, 

12, 140].

N and plant density
�e plant density is an important tool to testify N rate 

without sacrifice of yield either by increase or decrease 

in number of plants per unit area [12, 140, 182]. It var-

ies active crop canopy reflectance on the base of ground 

for sensors [183]. �is idea has been proficiently utilized 

to control N application for rice [121], maize [184–188], 

cotton [189] and wheat [188, 190, 191]. �e application of 
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nitrogen based on canopy sensor depends on chlorophyll 

of crop canopy which describes nitrogen status [192], 

but it is not as valid for sugarcane. �e field-scale sensor 

observations at the leaf level poorly show a relationship 

with nitrogen and chlorophyll status [166]. It is due to 

irregular sugarcane canopy which may show ground soil 

to the sensor. Dynamic and manually monitored canopy 

reflectance sensors are available, which consider all the 

parameters for sugarcane biomass variation, principally 

effected by plant population, as described by Amaral 

et al. [138].

Amaral et  al. [138] conducted strip experiments for 

different nitrogen rates and validated that the uniform 

distribution of canopy has no trouble for canopy sensor. 

Variation in the canopy is mainly affected by plant popu-

lation and vigor rather than the nitrogen supply. Six trials 

with differing nitrogen supply were conducted at differ-

ent locations, five out of six trials has non-significant 

response to variable nitrogen supply and the sixth trial 

may have variation in soil characters, deeper root zone 

and more water holding capacity, therefore increases soil 

nutrient utilization and crop vigor.

Intercropping
Intercropped crops are significantly influenced by fer-

tilization methods and show better growth for diverse 

nitrogen supply for interspecific rows instead of intraspe-

cific [193]. Interspecific applications accelerate resource 

use efficiency, soil productivity and also have posi-

tive impacts on the environment [194–197]. �is sys-

tem involves more than one crop in a season, and can 

be observed in the Huang Huai Hai, China [198], and 

relay intercropping system is common in the Southwest 

China where one crop or three crops in 2 years are grown 

[199]. So, better nitrogen fertilization methods and relay 

or intercropping systems based on soybean (legume 

crop) greatly influenced on soybean yield with decreas-

ing environmental cost. But environmental features like 

rainfall, light intensity and heat can be limiting factors 

for cropping systems. Maize-soybean relay intercropping 

occupies largest planting area in Southwest China that is 

helpful to improve nitrogen, light use efficiencies and soil 

nutrient availability [20, 199–204].

�ere are many previous studies indicating that high 

N input has undesirable outcome for biological nitrogen 

fixation [205]. When nitrogen availability studied for leg-

ume-nonlegume mixtures, high content of mineral nitro-

gen in soil triggers the microbial nitrogen fixation and 

hence availability of nitrogen decrease for nonlegume 

crop [206]. However, low input of nitrogen increased 

significantly fixation and stimulated the translocation of 

fixed N to nonlegume [203, 207].

NUE regulating enzymes and genes
�e major sources of nitrogen, taken up by higher 

plants, are nitrate and ammonium as synthetic fertiliz-

ers, organic compounds and amino acids etc. It depends 

upon the availability of nitrogen, and within the plants 

it is controlled by many metabolic pathways and genes 

expression levels [208]. Nitrogen use efficiency is depend-

ent of soil nitrogen conditions, photo synthetically fixed 

carbon dioxide to provide precursor for biosynthesis of 

many amino acids and vice versa [209, 210]. It has been 

also claimed that all the inorganic nitrogenous fertiliz-

ers first converted to ammonium before uptake by higher 

plants [211]. Nitrate reduction occurs in roots as well as 

shoots but nitrate reduced directly in cytoplasm while in 

plastids/chloroplast via nitrite [208]. Reduction of nitrate 

to nitrite occurs in cytosol by nitrate reductase enzyme 

(Table  1) [212]. Nitrite is transported into chloroplasts 

in leaves where nitrite is converted to ammonium ions 

due to nitrite reductase (Table  1) [213]. �e products 

of ammonia, glutamine and glutamate, act as donor of 

the nitrogen during biosynthesis for nucleic acid, chlo-

rophyll and amino acids. �e isoenzymes of glutamine 

synthetase, glutamate synthase, and glutamate dehydro-

genase (Table  1) have been proposed for three major 

ammonium assimilation processes: primary nitrogen 

assimilation, reassimilation of photorespiratory ammo-

nia, and “recycled” nitrogen [213]. Organic nitrogen in 

Table 1 The basic information of enzymes involved in nitrogen metabolism of plants

Enzyme Abbreviation Encoding genes Function

Nitrate reductase NR 5 Reduce nitrate ion into nitrite ion

Nitrite reductase NiR 30 Further reduce nitrite into ammonium ion

Glutamine synthetase GS 49 Involve in GOGAT pathway

Glutamine oxoglutarate aminotransferase GOGAT 15 Involve in GOGAT pathway

Glutamate dehydrogenase GDH 3 Dehydrogenate α-ketoglutarate

Aspartate aminotransferase AST 13 Catabolise glutamate into aspartate

Asparagine synthetase AS 4 Aspartate is converted into asparagine
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the form of amino acids transferred from source organs 

to sink (Fig.  2), for example, glutamine and glutamate 

can be used to form aspartate and asparagine [211, 214]. 

�e ammonium nitrogen is transferred into amino acids 

by the enzymes e.g. glutamine synthetase, glutamate 

synthase, asparagine synthetase and aspartate amino 

transferase (Table  1). �e coherent situation existed for 

glutamate dehydrogenase either it is involved in assimila-

tion of ammonium nitrogen or carbon cycling [215, 216].

�e ammonium assimilating enzymes are important 

during grain filling stage due to its remobilization. �e 

biosynthesis of amino acids from ammonia is occurred 

by the GS and GOGAT pathways (Fig.  5) [217]. Nitro-

gen reutilization is an important phenomenon involving 

NADH-GOGAT enzyme, rice grain weight increased 

up to 80% due to over production of NADH-GOGAT 

[218]. Glutamine dehydrogenase involves for senescing of 

leaves and also controversy as deaminating (Fig. 5) [219, 

220] and aminating directions [23]. Young leaves recycle 

nitrogen from chloroplast by GS2 and Fd-GOGAT. In 

GOGAT catalyzed proteolysis, GS2 and de facto NiR are 

responsible for breakdown of chloroplast during senes-

cence. Production of glutamine during leaf senescence is 

basically dependent on GS1 isoform. Substrates for GDH 

are produced from chloroplast proteins proteolysis, and 

deaminating activity provides 2-oxoglutarate and ammo-

nia. Glutamine for new sink organ is produced by GS1 

reassimilation of ammonia [221].

Each monomer of homodimer nitrate reductase asso-

ciated with three prosthetic groups: flavin adenine 

dinucleotide (FAD), a molybdenum cofactor (MoCo) 

and a haem. NR reduces chlorate into toxic chlorite, 

responsible gene for that in mutant has been identi-

fied, the Nia genes encoding the NR apoenzyme and 

the Cnx genes encoding the MoCo cofactor. [208, 222]. 

�e Nii genes have one to two copies encoding the NiR 

enzyme [208]. GS having decameric structure is con-

trolled by two classes of genes, GLN1 and GLN2, [223]. 

GLN2 (single nuclear gene) encodes chloroplastic GS2, 

involved in ammonium assimilation or re-assimilation 

either from nitrate reduction in  C3 and  C4 plants or 

photorespiratory product of  C3 plants [224]. On the 

other hand, GS1 isoform is encoded by GLN1 gene 

family which recycles ammonium during leaf senesc-

ing and transport in the phloem sap [225]. Vanoni 

et  al. [226] reported that GOGAT (mechanistic struc-

ture) has two forms Fd GOGAT (in leaf chloroplast) 

and NADH GOGAT (in plastids of non-photosynthetic 

tissues). �ree genes (ASN1, ASN2 and ASN3) encode 

asparagine synthase, and substrate ammonia is utilized 

by asparagine synthase to form asparagine [227]. Stor-

age compounds, long-range transporter and glutamine 

has lower N/C ratio than asparagine [228, 229]. In plas-

tids; bicarbonate, adenosine tri-phosphate and amide/

ammonium from glutamine act as substrate for car-

bamoylphosphate synthase (CPSase) to form precur-

sor (carbamoylphosphate) of citrulline and arginine. 

Fig. 5 Schematic diagram to show the fate of nitrogen within the plant Bolded NO3
− and NH4

+ are nitrogen uptake forms by roots through different 
transporters
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�e subunits (small and large) of carbamoylphosphate 

synthase (CPSase) encoded by car A and B genes, 

respectively [230]. Finally, glutamate is produced by 

mitochondrial NADH-glutamate dehydrogenase for 

higher levels of ammonium [23].

NUE responsive genes manipulation

Crop varieties that are highly N efficient, high yields 

with reduced N input is the main solution for improv-

ing NUE [231–233]. Recent studies documented that 

shoot-to-root signaling pathways, feedback mechanisms 

and amino acids transportation in roots and shoots 

influence the nitrogen uptake and its metabolism [234–

238]. With the aim of improving NUE, approaches have 

been adopted on the basis of genetic changes for nitro-

gen uptake [239–241], nitrate allocation [242], nitrogen 

metabolism [218, 243–249] and the regulation [250].

Many critical candidate genes also have been over-

expressed and knocked out in order to test for biomass 

and plant nitrogen status. Nitrate influx increased due 

to over-expression of HATS-like NRT2.1 but at the same 

time NUE and its utilization phenotypically remains 

unchanged [46]. Overexpression of genes encoding for 

NR/NiR in transgenic plants to improve NUE has no 

surety for its utility. Nitrate reductase related gene over-

expression in tobacco plants showed delayed NR-activity 

for drought conditions and quick recovery for re-water-

ing after short time drought [251]. It has been observed 

that nitrate level decreased in transgenic Arabidopsis, 

tobacco and potato plants without improving in biomass, 

number of tubers and seeds respectively. Regardless of 

the nitrogen available sources, Nia or Nii genes overex-

pression improved mRNA levels besides N uptake affect 

without any change in the yield and growth, indicat-

ing the composite post-transcriptional regulation of NR 

[252].

When we talk about GS1 and GS2 genes expression, 

the overexpressed GS2 has been testified along with 

Rubisco promoter in Nicotiana tabaccum and CaMV 35S 

promoter in Oryza sativa [4, 217]. It enhanced growth 

rate in Nicotiana tabaccum and photorespiration and 

drought tolerance in Oryza sativa. Overexpression of 

GS1 genes with promoters having different combina-

tions, RolD, CaMV 35S and Rubisco subunit (rbcS) have 

been reported with positive results for plant biomass 

and grain yield. For example, grain yield and roots are 

significantly higher with more N content in nitrogen 

efficient wheat lines under the control of the rbcS pro-

moter observed [248]. Similarly, biomass and leaf protein 

in Nicotiana tabacum (over expressed GS1) increased 

under the control of CaMV 35S promoter [253]. Another 

overexpression of GS1 gene depicted 30% increase in 

yield of maize due to more kernel number and size [231]. 

In conclusion, GS activity has direct relation with bio-

mass or yield in transgenic plants [254]. Over-expression 

of NADH-GOGAT increased in grain yield for transgenic 

rice plant [231]. So, it is important to know the alleles of 

genes and promoters to improve yield by overexpressing 

GS or GOGAT genes. Overexpressed ASN1 in Arabidop-

sis increased soluble protein content in seed, total pro-

tein and plants ability to grow for limited nitrogen supply 

[229]. �ese results suggested that NUE can be improved 

by manipulating downstream steps in N-remobilization. 

Further studies of carbon metabolism pathways also have 

potential to improve NUE [255–257].

Several external and endogenous factors influenced 

the expression of genes which are highly regulated at the 

transcriptional as well as post-translational levels [208]. 

Lea et al. [218] demonstrated that post-translational reg-

ulation affects the amino acids, ammonium, and nitrate 

levels, whereas transcriptional regulation has only minor 

influence. Plants unregulated for NR accumulate high 

concentrations of asparagine and glutamine in leaves. 

�us further characterization can provide the useful 

properties for crops.

Asparagine synthetase (AS) encoded by a small gene 

family, catalyzes the formation of asparagine (Asn) 

(Fig.  5) and glutamate from glutamine (Gln) and aspar-

tate [258]. �e role of AS and GS interaction in primary 

N metabolism is very crucial [259, 260]. GS negatively 

correlates with the AS transcript levels and polypeptides 

in the transgenic plants suggesting that AS showed com-

pensation for GS ammonium assimilatory activity [260, 

261]. It is hypothized that AS might be important in reg-

ulation of the reduced N flux into plants due to decreased 

GS activity. However, the GS is essential to synthesize 

Gln for biosynthesis of Asp via NADH-GOGAT and 

AspAT [260]. Lam et al. [229] demonstrated the results of 

overexpressed the ASN1 gene in Arabidopsis as enhanced 

soluble seed protein content, total protein content with 

better growth on N-limiting medium. However, in case 

of ASN2 gene endogenous ammonium accumulation was 

less compared to wild-type plants as growing on 50-mM 

ammonium medium [22]. Signaling processes are attrac-

tive clues for metabolic engineering. Physiological activ-

ity of glutamate dehydrogenase (GDH) is still unclear as 

compared to GS/GOGAT enzymes [215]. Ameziane et al. 

[241] investigated GDH activity in transgenic tobacco 

plant, and the biomass production increased in gdhA 

transgenic plants without considering growing condi-

tions either controlled conditions or field.

Microarray and whole genome sequencing

It has been observed that N uptake remains constant 

throughout domestication of extraordinary maize vari-

eties but utilization of N enhanced, which support the 
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hypothesis of conventional breeding programs improv-

ing NRE capacity [262]. Interestingly, inconsistency of 

overexpressed key enzymes (NR, NiR, GS, and GOGAT) 

for an improvement of NUE or phenotypic change is also 

a challenge [218, 231, 254, 262]. Due to these reasons, 

new molecular techniques like microarray and transcrip-

tome (Fig. 6) are consider as emerging tools to study the 

response of plants whole genome.

�e arrangement of known and unknown DNA sam-

ples on a solid support is known as microarray. Every 

microarray contains thousands of spots, each has less 

than 200  µM diameter and called probe [263]. �ese 

arrays may be in different formats and also probes 

can be smaller as oligonucleotides, cDNA or genomic 

sequences. Different techniques (photolithographic, nib, 

pin or inkjet) are employed to format. �e probes are 

labelled radioactively or fluorescently and hybridization 

controlled electronically [264].

Whole genome sequencing is a modern approach to 

understand the changes at genomic level, expression level 

of genes and specific genes related to the desired traits. 

Good quality genome sequence information of ideotype 

rice and Arabidopsis plants are available for microar-

ray analysis, but the transcriptomic profiling (Fig.  6) 

for whole genome sequencing of RNA is an excellent 

emerging technology for all plants [265, 266]. Molecular 

and physiological techniques have been employed in last 

two decades to know the differentially expressed genes 

(DEGs) in Oryza sativa [267, 268], Sorghom bicolor [269], 

Glycin max [270] and Camilia sinensis [271] for low 

nitrogen levels. Past studies mostly relied on single geno-

type for genes expression all over the world for low and 

normal nitrogen conditions either for nitrate or ammo-

nium [267–271]. However, two genotypes of Camilia 

sinensis were studied and compared for both levels of 

nitrogen in ammonium form. Genotypic contrast for 

global genes expression and comparative analysis helped 

to compact the knowledge of candidate genes for NUE. 

A lot of information in literature regarding quantita-

tive trait loci (QTLs) responding NUE are also available 

[272–274]. �e combination of DEGs and QTLs datasets 

has great importance to develop new nitrogen use effi-

cient genotypes in future [275].

Recent next generation sequencing technologies for 

transcriptomic profiling are helpful to understand the 

genes transcription and regulation of transcripts at all 

levels [276]. Illumina’s RNA-sequencing platform was 

used for transcriptomic exploration of genes expres-

sion to investigate the response of nitrogen nutritional 

stress in plants. It has been reported that the amino 

Fig. 6 Work flow chart for transcriptomic profiling for crops
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acid transporters in wheat plants play important role to 

transport nitrogen for development and a biotic stress 

conditions [277]. Based on the transcriptomic profiling 

Dai et  al. studied the regulatory mechanism for storage 

protein in wheat grain in response to nitrogen supply 

during grain development [278]. Asparagine has crucial 

importance for nitrogen uptake in roots and considered 

as ideal nitrogen transporting molecule [258, 279, 280]. 

According to Curci et  al. genes encoding asparagine 

were down regulated in leaves and roots of durum wheat 

under limited nitrogen [276]. It has been clearly observed 

that genes were down regulated in roots and leaves which 

were involved in carbon, nitrogen, amino acid metabo-

lisms, and photosynthetic activity for plants grown under 

nitrogen free conditions [268].

Conclusion
�e agronomic and molecular approaches altogether 

have potential to improve nitrogen use efficiency. Nitro-

gen losses can be minimized by precision agriculture, 

cut off nitrogen dose, intercropping of legume and non-

legume crops, improving plant populations and introduc-

ing nitrogen efficient genotypes. Although the studies 

have been conducted to improve nitrogen use efficiency 

of many crops by manipulating single or more genes 

but now the advanced technologies like whole genome 

sequencing are more important for future studies. 

Molecular breeding instead of conventional breeding is 

going to be more popular as of advancement in technolo-

gies. Wild genotypes are another option to improve NUE 

due to their more resistance against diseases, insect pest 

and have yield potential.
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