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Abstract: Strong cosmic censorship conjecture has been one of the most important leap

of faith in the context of general relativity, providing assurance in the deterministic nature

of the associated field equations. Though it holds well for asymptotically flat spacetimes,

a potential failure of the strong cosmic censorship conjecture might arise for spacetimes

inheriting Cauchy horizon along with a positive cosmological constant. We have explicitly

demonstrated that violation of the censorship conjecture holds true in the presence of a

Maxwell field even when higher spacetime dimensions are invoked. In particular, for a

higher dimensional Reissner-Nordström-de Sitter black hole the violation of cosmic cen-

sorship conjecture is at a larger scale compared to the four dimensional one, for certain

choices of the cosmological constant. On the other hand, for a brane world black hole, the

effect of extra dimension is to make the violation of cosmic censorship conjecture weaker.

For rotating black holes, intriguingly, the cosmic censorship conjecture is always respected

even in presence of higher dimensions. A similar scenario is also observed for a rotating

black hole on the brane.
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1 Introduction and motivation

The strong cosmic censorship conjecture, in its simplest form, can be stated as follows: for

a generic initial data, all the physically reasonable solutions of Einstein’s Field equations

are globally hyperbolic and apart from a possible initial singularity, no other space-time

singularity will ever be visible to any observer [1–3]. This conjecture was originally for-

mulated in order to ensure the deterministic nature of general relativity, governing the

dynamics of gravity. For a given initial data, it is possible to construct a maximal global

hyperbolic extension of the Lorentzian manifold governed by the Einstein’s field equa-

tions [4, 5]. In several situations, such a maximal global hyperbolic extension forms a

subset of a larger manifold, whose boundary is referred to as the Cauchy horizon. Hence

the existence of the Cauchy horizon indicates a possible breakdown of determinism (or,

equivalently predictability) of general relativity. As evident, the strong cosmic censorship

conjecture exactly restricts this possibility. The Einstein’s field equations being of second

order, a mathematically precise formulation of the censorship conjecture demands that for
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a generic initial data, it is not possible to extend the spacetime across the Cauchy horizon,

such that the spacetime metric is still twice differentiable [5]. A challenge is posed to the

cosmic censorship conjecture by certain parameter space of several exact solutions to the

Einstein’s Field equations, known to possess Cauchy horizon inside the black hole region,

e.g., Reissner-Nordström or Kerr black holes [6, 7]. In these black hole spacetimes, the

metric itself is perfectly regular at the Cauchy horizon and hence an observer can safely

cross the Cauchy horizon in a finite proper time [7]. This situation is troublesome, since

after crossing the Cauchy horizon, the future of the observer is no longer determined by

the initial data and Einstein’s Field equations, pointing towards a possible violation of the

censorship conjecture. A possible resolution to this problem, as advocated by Penrose has

to do with fact that the Cauchy horizon is unstable under external perturbations, i.e., even

a small perturbation can turn it into a curvature singularity [8]. Later on the reason for

such instability, leading to divergence of curvature at the Cauchy horizon was attributed

to the blow up of the mass function at the Cauchy horizon. This phenomenon, known as

mass inflation is applicable for asymptotically flat black holes alone [9–11].

Recently, several interesting alternative views have been proposed to understand the

phenomenon of mass inflation in a better way. These results possibly stem from the fact

that an infinite tidal force due to the mass inflation singularity at the Cauchy horizon, does

not necessarily spell doom on an observer who attempt to cross it [12]. In fact, there exist

several possible solutions to the Einstein’s field equations with regularity lower than C2, i.e.,

the metric need not be twice differentiable [13]. This urges one to take a more modern look

into the cosmic censorship conjecture, which essentially demands the Christoffel symbols

Γµαβ , constructed out of the first derivatives of the metric to belong to L2
loc space, i.e., they

are locally square integrable functions [14]. Using this one can construct a more refined

version of the strong cosmic censorship conjecture as formulated by Christodoulou, which

reads: it is impossible to extend the spacetime across the Cauchy horizon with Christoffel

symbols being square integrable locally, i.e., with Γµαβ ∈ L
2
loc [11, 15].

It turns out that this version of the strong cosmic censorship conjecture holds true for

asymptotically flat black holes [11]. But it is very important to understand the fate of the

same in the presence of a positive cosmological constant. In particular, it was demonstrated

that one may not be able to conclude the same in presence of a positive cosmological

constant [16]. The fate of Cauchy horizon, essential in understanding the strong cosmic

censorship conjecture, under a small perturbation (may be due to an external scalar field

Φ) depends on two factors — (a) its growth at the Cauchy horizon and (b) the rate of

its decay along the event horizon [9]. In the case of asymptotically flat black holes, the

power law decay of the perturbation along the event horizon [17–19] is overwhelmed by its

exponential growth at the Cauchy horizon [12, 20–22]. The growth at the Cauchy horizon,

governed by the surface gravity κ− of the Cauchy horizon, subsequently turns the Cauchy

horizon into a curvature singularity. But in presence of a positive cosmological constant,

massless scalar field perturbations decay exponentially along the event horizon, rather than

power law as in the case of asymptotically flat spacetime [23]. Such an exponential decay

of the perturbing scalar field Φ in presence of a positive cosmological constant takes the
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following form [14, 24–26]

|Φ− Φ0| ≤ Ce−αt , (1.1)

where C and α are both positive constants along with Φ0. In particular, the constant α is

called the spectral gap, corresponding to the longest-lived quasi-normal modes of the black

hole, which is simply given by −{Im(ω)}min [14]. Thus this exponential decay can nullify

the effect of the exponential growth of perturbation at the Cauchy horizon and hence may

lead to a possible violation of strong cosmic censorship conjecture [15, 27, 28]. In fact, it

has been explicitly demonstrated that in presence of a positive cosmological constant, an

Einstein-Maxwell-scalar field system will violate the strong cosmic censorship conjecture

for a finite parameter space of the model under consideration [14]. In particular, it turns

out that if a dimensionless quantity β, constructed out of α and κ−, such that,

β ≡ α

κ−
= −{Im(ω)}min

κ−
>

1

2
, (1.2)

then cosmic censorship conjecture would be violated [11, 14, 29, 30]. The computation for

the spectral gap α in the eikonal limit is straightforward and is performed by computing the

Lyapunov exponent associated with the stability of the photon circular orbit. Besides, there

are two additional quasi-normal modes, which are also of importance, namely the de Sitter

modes and the near extremal modes. Using these three modes, as well as numerical meth-

ods, e.g., continued fraction method, the violation of strong cosmic censorship conjecture

for Reissner-Nordström-de Sitter black holes has been demonstrated in [14]. Subsequently

these results have been generalized for Kerr-de Sitter black holes in [31]. Surprisingly, it

turned out that the condition β > (1/2) is never satisfied in the context of rotating black

holes and further the numerical analysis of the quasi-normal modes shows that the error

in using only the photon sphere modes is negligible. Thus one need not worry about the

de Sitter or near extremal modes in the context of rotating black hole spacetime. This

suggests that for astrophysical scenarios there will be no violation of cosmic censorship

conjecture. However, all these analysis are in the context of four dimensional spacetime

and thus it seems legitimate to understand the validity of strong cosmic censorship conjec-

ture in presence of higher dimensions. For this purpose we will mainly use two possibilities

— (a) The black hole itself could live in a higher dimensional spacetime (for a incomplete

set of references, see [32–40]) or, (b) The black hole is living on the four dimensional space-

time (which we will call brane), while the spacetime itself is higher dimensional [41–49].

In the first context the gravitational field equations will remain the same, but the effect

of higher dimension will change the metric elements from the four dimensional one. While

in the second, presence of higher dimensions will modify the field equations non-trivially

leading to departure from four dimensional solution. Both of these result into non-trivial

departures from general relativistic solution [50–53] and it will be important to understand

the consequences as far as cosmic censorship conjecture is concerned. This is what we will

explore in this work.

The paper is organized as follows: in section 3, we start by introducing the Lyapunov

exponent for photon circular orbit, its relation to the effective potential for radial motion

on the equatorial plane and finally how the quantity β is related to it. Then in section 4 we
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have computed this quantity β for a general static and spherically symmetric spacetime,

which was applied in section 5 for static and spherically symmetric black holes in higher

dimensions or in four dimensions inheriting effects from higher dimensions. Subsequently,

we have demonstrated a computation of β for an arbitrary rotating black hole in section 6,

which was applied in section 7 for a rotating black hole in higher dimension as well as on

the four dimensional brane. Finally we conclude with discussions on the results obtained.

2 Violation of strong cosmic censorship conjecture in higher dimensions

In this paper we will be working with spacetimes inheriting extra spatial dimensions and

hence it is legitimate to ask whether the above condition on β, namely eq. (1.2), still

results into violation of strong cosmic censorship conjecture, even for higher dimensional

black holes. To see the same one may consider a perturbing scalar field living on a higher

dimensional static and spherically symmetric spacetime, satisfying the equation �Φ = 0

(this can be trivially generalized to a conformally coupled scalar field as well). Due to

existence of angular and timelike Killing vectors in the spacetime, the scalar field can

be decomposed as Φ(t, r,Ω) = e−iωtR(r)h(Ω), where h(Ω) corresponds to the spherical

harmonics associated with the (d − 2) dimensional sphere and R(r) satisfies a second

order differential equation, which resembles time independent Schrödinger equation with

a potential (see e.g., [65, 66]). Near the Cauchy horizon (assuming it exists), the second

order differential equation for R(r) has two linearly independent solutions, namely,

Φ(1) = e−iωuR(1)(r)Y`m(θ, φ) (2.1)

Φ(2) = e−iωuR(2)(r)Y`m(θ, φ) (r − r−)iω/κ− (2.2)

where u is the retarded time coordinate and r− is the location of the Cauchy horizon. Note

that R(1)(r) and R(2)(r) are two linearly independent radial functions, having smooth

limit to the Cauchy surface. Given the above solutions, one can determine the integral of

(∂µΦ∂µΦ) over the Cauchy surface, which boils down to the integral of (r− r−)2(iω/κ−−1).

Thus if the quantity β, defined in eq. (1.2), is greater than (1/2), the perturbing scalar

field Φ(t, r,Ω) is regular at the Cauchy horizon and can be extended beyond. This is

sufficient to ensure the violation of strong cosmic censorship conjecture. Thus even for

higher dimensional black holes, if the relation β > (1/2) holds true, one can safely argue

about violation of strong cosmic censorship conjecture.

The above argument continues to hold true for rotating black holes in higher dimensions

as well, with minimal modifications. To see this explicitly, one can again consider a scalar

field living on a rotating black hole spacetime in higher dimension (see, e.g., [67, 68]).

Following the same analogy as the spherically symmetric spacetime, for rotating higher

dimensional black hole spacetime as well, the scalar field can be decomposed into individual

parts depending on time and the angular coordinates, while the radial part satisfies a

Schrödinger-like second order differential equation with certain potential [67, 68]. In this

case as well the differential equation for the radial part can be solved in the near Cauchy

horizon limit, yielding two independent solutions as in eq. (2.1). One of which is certainly
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regular at the Cauchy horizon, while the other has non-smooth radial dependance at the

Cauchy horizon, such that, Φnon−smooth ∼ (r− r−)p, where p = i(ω−
∑

imiΩ
i
−)/κ−. Here

Ωi
− corresponds to the angular velocity of the Cauchy horizon along the ith direction.

Thus the problematic part in the integral of ∂µΦ∂µΦ corresponds to (r − r−)2(β−1) in

the integrand, where β is defined as in eq. (1.2). Thus for β > (1/2), the perturbation

can be continued across the Cauchy horizon leading to possible violation of strong cosmic

censorship conjecture. Thus even in presence of higher dimensions, for both spherically

symmetric and rotating black hole spacetimes, β > (1/2) signals possible violation of

strong cosmic censorship conjecture. We will use this input in our subsequent sections.

Finally, note that the existence of the Cauchy horizon is absolutely essential for the above

argument to work and thus we need to work with higher dimensional black hole solutions

inheriting Cauchy horizon. Based on the above discussion, in the next section we provide an

estimation of the parameter β in the eikonal approximation, using the Lyapunov exponent

associated with circular null geodesics.

3 Lyapunov exponent for a black hole and cosmic censorship conjecture

Computation of black hole quasi-normal modes is of utmost importance since it enables one

to understand and possibly differentiate between various black holes in gravity theories be-

yond general relativity. Apart from few simple scenarios, the computation of quasi-normal

modes associated with perturbation of black holes, in general involves numerical techniques.

However, under certain circumstances it is indeed possible to determine analytical meth-

ods to compute the quasi-normal modes. One such method was developed in [54], where

the computation of the quasi-normal modes follow from geometrical-optics approximation,

where the null geodesics trapped at the unstable photon orbit plays an important role.

In particular, the real part of the quasi-normal mode frequency is given by the angular

frequency of rotation of a photon in the photon circular orbit, while the imaginary part is

related to the largest Lyapunov exponent measuring the growth of the perturbation around

photon circular orbit [54–58] (see also [59]). Later on, this approach has received further

attention since one could demonstrate that the results derived using the above analytical

technique are in accord with numerical methods in the eikonal limit [60]. To see, how the

derivation of the Lyapunov exponent associated with the growth of perturbation around

photon circular orbit on the equatorial plane goes, we write down the equation for radial

null geodesics in the equatorial plane θ = π/2 as

ṙ2 = Veff(r) . (3.1)

Here, ‘dot’ denotes derivative with respect to the affine parameter associated with the null

geodesics and Veff is the effective potential associated with the radial null geodesics. On

the other hand, the circular photon orbit is a solution of the following equation

Veff(rph) = V ′eff(rph) = 0 , (3.2)

where rph stands for the radius of the circular photon orbit. The above photon orbit is

unstable, since it appears at the maxima of the effective potential. Therefore the Lya-

punov exponent λ is associated with infinitesimal fluctuations around the photon circular
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orbit, i.e., we will consider r = rph + δr, where δr is assumed to be a small perturbation.

Substituting this expression and then expanding the right hand side of eq. (3.1) around

the photon circular orbit, we obtain the following expression for the time evolution of the

perturbed quantity δr, (
δ̇r
)2

=
1

2
V ′′eff(rph)δr2 . (3.3)

In the above expression we have kept terms upto quadratic order in the expansion of the

right hand side of eq. (3.1) and have used eq. (3.2). As evident, there will be two solutions

of the above differential equation, one will be growing in nature while the other will be

decaying. To present the solutions without any reference to the affine parameter, we divide

both sides of eq. (3.3) with ṫ2 and hence we obtain,

δr = A exp(±λt) , (3.4)

where A is a constant of integration and λ presents the Lyapunov exponent yielding the

decay (growing) rate of the photon circular orbit. This is given by the following analytical

expression [56],

λ =

√
V ′′eff

2ṫ2

∣∣∣∣
r=rph

. (3.5)

This enables one, following [56], to relate the imaginary part of the quasi-normal mode

frequencies with the Lyapunov exponent in the eikonal limit as

Im(ω) = −
(
ν +

1

2

)
λ , (3.6)

where ν = 0, 1, 2 . . . is the overtone number. Since the frequencies of the quasi-normal

modes appear as exp(−iωt), it follows that larger the value of ν, the faster that corre-

sponding quasi-normal mode will decay. The longest lived mode corresponds to the one

having smallest imaginary part, which must be the mode with ν = 0. Thus from eq. (3.6),

we can conclude that {Im(ω)}min = −λ/2. Furthermore, if the spacetime admits a Cauchy

horizon, we can certainly compute the surface gravity κ− associated with it and hence the

parameter β, defined in eq. (1.2), in the eikonal limit becomes

βph =
λ

2κ−
. (3.7)

The suffix ‘ph’ to β is to remind us that this expression holds true in the eikonal approx-

imation, namely for the photon sphere modes. As emphasized earlier, this parameter is

a deterministic factor in understanding the validity (or, possible violation) of the strong

cosmic censorship conjecture in various black hole spacetimes. In particular, in four space-

time dimensions, if the parameter β becomes larger than half, we can conclude that strong

cosmic censorship conjecture is violated, see e.g., [11, 14, 61–64]. In the subesquent sections

we will compute the Lyapunov exponent and hence β in the eikonal approximation for both

static and spherically symmetric spacetime as well as for a rotating black hole spacetime as

well. The results so derived can be used to understand the violation of cosmic censorship

conjecture in the presence of higher dimensions.
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4 Lyapunov exponent and strong cosmic censorship conjecture for a gen-

eral static and spherically symmetric spacetime

In this section, we would like to present the computation of the Lyapunov exponent in the

context of a general static and spherically symmetric spacetime, so that the result derived

here can further be used in various other contexts as well, whenever a static and spher-

ically symmetric solution becomes available. Any such static and spherically symmetric

spacetime in d spacetime dimensions can be expressed through the following line element,

ds2 = −f(r)dt2 + g(r)−1dr2 + r2dΩ2
d−2 , (4.1)

where the functions f(r) and g(r) are as of now arbitrary. These functions can be deter-

mined by solving the associated gravitational field equations, which could be the Einstein’s

field equations or field equations associated with gravity theories beyond general relativity.

Further, dΩ2
d−2 denotes the line element of the (d−2)-sphere. Since we are interested in the

geodesic motion in four dimensional spacetime alone and the spacetime inhibits spherical

symmetry we will set all the angular coordinates, except one, to π/2. This ensures that

the Lagrangian associated with the motion of a particle on the equatorial plane takes the

following form,

L =
1

2

{
− f(r)ṫ2 + g(r)−1ṙ2 + r2φ̇2

}
. (4.2)

Here ‘dot’ denotes derivative with respect to proper time or proper length in the context

of timelike or spacelike trajectories, while it is the derivative with respect to the affine

parameter in the context of null geodesics. Since the metric is independent of the co-

ordinates t and φ, the Lagrangian L is cyclic with respect to these co-ordinates. Hence

the corresponding conjugate momentums are constants of motion which we identify as the

Energy pt = −E and angular momentum pφ = L of the trajectory. Then the geodesic

equation for φ and t are trivial to solve for, while the geodesic equation for the radial

coordinate becomes [56],

ṙ2 =
g(r)

f(r)

[
E2 − f(r)

(
−ε+

L2

r2

)]
, (4.3)

where, ε = gµνu
µuν = (1, 0,−1) for spacelike, null and timelike geodesics respectively.

Since the determination of Lyapunov exponent depends explicitly on the photon circular

orbit in this spacetime, we are interested in the null geodesics corresponding to ε = 0. Thus

from eq. (4.3), the radial null geodesics satisfy the following equation,

ṙ2 =
g(r)

f(r)

[
E2 − f(r)

L2

r2

]
≡ Veff(r) , (4.4)

where ‘dot’ denotes derivative with respect to the affine parameter along the null geodesic.

Given the above potential one can immediately determine the circular photon orbit rph

starting from eq. (3.2), by setting both Veff(r) and V ′eff(r) to zero. This result into the

following equations
E2

L2
=
f(r)

r2
;

2f(r) = rf ′(r) ,

(4.5)
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where “prime” denotes derivative with respect to r. Further, given the potential in eq. (4.4),

one can immediately compute V ′′eff(r) necessary to determine the Lyapunov exponent. Sim-

ilarly from the fact that pt = −E, it follows that ṫ = {E/f(r)}. Thus using eq. (3.5) and

eq. (4.5) along with the expression for V ′′eff(r) on the photon circular orbit, we can deter-

mine the Lyapunov exponent for any general static and spherically symmetric spacetime

to be,

λ =

√√√√g(rph)

2

(
2f(rph)

r2
ph

− f ′′(rph)

)
, (4.6)

where all the quantities have been evaluated at r = rph and the subscript ‘S’ stands for

Static spacetime. The above provides the expression for the Lyapunov exponent in a

general static and spherically symmetric spacetime with arbitrary choices of the functions

f(r) and g(r) respectively. In order to have any possibility of violation of cosmic censorship

conjecture, it is necessary that the solution presented in eq. (4.1) inherits a Cauchy horizon,

which is a null surface and is the smallest root r− of the equation g(r) = 0, the larger root

r+ presents the event horizon. The surface gravity associated with the Cauchy horizon

corresponds to κ− = (1/2)g′(r−). Hence the parameter βph, associated with quasi-normal

modes in the large `-limit, defined in eq. (3.7), takes the following form,

βph =

√√√√ g(rph)

2g′(r−)2

(
2f(rph)

r2
ph

− f ′′(rph)

)
, (4.7)

Thus given any static and spherically symmetric spacetime in the presence of a positive

cosmological constant, inheriting Cauchy horizon, one can explicitly compute the parameter

βph. If for any choices of the parameters in the spherically symmetric solution, which allows

for a non-trivial Cauchy as well as event horizon, if βph turns out to be larger than half,

then it will lead to a violation of the cosmic censorship conjecture. This provides a robust

and quantitative way to understand the violation of the cosmic censorship conjecture in

terms of the photon sphere modes.

So far the above discussion is purely based on the quasi-normal modes in the large `

limit and originates from the perturbation of the photon sphere. The modes so obtained are

referred to as the photon sphere modes and they are well described by the WKB approxi-

mation. The imaginary parts of the photon sphere modes are given by eq. (3.6) and hence

the lowest lying mode corresponds to the following choice, {Im(ω)/λ} = −(1/2). However

in the context of asymptotically de Sitter black holes with electromagnetic charge, there

are two additional modes which are also of importance. These are the de Sitter modes and

the near extremal modes. The frequencies associated with the de Sitter modes essentially

depend on the asymptotic structure of the spacetime itself and is mostly independent of

the other hairs inherited by the spacetime. The pure de Sitter modes have been studied

in the presence of higher dimensions in [65, 69, 70] and the frequencies of the lowest lying

quasi-normal modes, for spacetime dimensions d > 4 correspond to,

ω0,dS

κc
= −i`;

ωn 6=0,dS

κc
= −i (`+ 2n) . (4.8)
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Here κc =
√

2Λ/(d− 1)(d− 2) is the surface gravity associated with the cosmological

horizon for a d-dimensional asymptotically de Sitter black hole. Thus the dominant, lowest

lying mode corresponds to ` = 1 and n = 0, while the other modes are also present.

Note that the imaginary part of the lowest lying de Sitter mode (` = 1, n = 0) in a d-

dimensional spacetime has a structure identical to the de Sitter mode in a four dimensional

spacetime [14] albeit with a modified surface gravity. However, the higher order quasi-

normal modes differ in a higher dimensional spacetime from the four-dimensional result,

see [69]. Thus one must take into account of these modes before making any conclusive

statement regarding the strong cosmic censorship conjecture.

Finally, there is another mode of interest, these are the near extremal modes and

comes into the picture as event and Cauchy horizon come closer to each other. In four

dimensions, such near extremal modes for perturbing scalar field have been derived in [71,

72]. However, they are not known for higher dimensional black holes. Thus we have

presented the computation of these near extremal modes in appendix A and they become,

ωNE = −i (n+ σ + 1)κ+ = −i (n+ σ + 1)κ− , (4.9)

where, n is an integer and σ is related to the angular momentum quantum number ` through

the following relation, σ(σ + 1) = `(` + d − 3). Note that for four dimensional spacetime

σ = ` and thus eq. (4.9) matches with the result presented in [14, 71]. Moreover, even in

presence of extra dimensions, the lowest lying near extremal mode correspond to σ = 0 (or,

equivalently ` = 0), which structurally coincide with the four dimensional result modulo the

expression for surface gravity. However, near extremal modes with ` > 0 for higher dimen-

sional black hole are distinct from the four dimensional counterpart, since integer values of

` do not imply integer σ, see appendix A for details. As we are concerned about the lowest

lying modes alone, the above difference for higher ` modes will not bother us in the subse-

quent discussion. Thus most of the considerations presented in [14] remains unaffected even

with the introduction of higher dimensions. Detailed behaviour of these modes will certainly

depend on the exact nature of the solutions, which we will discuss on a case by case basis.

At this point we should emphasize that all these analytical calculations must be backed

up by appropriate numerical analysis as well. The fact that Lyapunov exponent yields the

quasi-normal modes in an appropriate manner must be verified using appropriate numerical

techniques, e.g., the continued fraction method. In particular, it must be ascertained that

the errors in the determination of the quasi-normal modes using analytical techniques are

small. Keeping this in mind, we have supplemented the analytical computations presented

above by appropriate numerical techniques.

In the next section, we will apply the formalism devised above in the context of a

higher dimensional Reissner-Nordström-de Sitter black hole, as well as an effective four

dimensional black hole in the presence of higher dimensions. This will be the first step to

investigate how the presence of higher dimensions can affect the fate of cosmic censorship

conjecture.
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5 Application: charged black hole in higher dimensions

In this section, we will apply the formalism presented in the previous section in the context

of higher dimensional static and spherically symmetric black hole. There exist two paths

that one may follow — (a) one may consider a black hole on the four dimensional brane,

inheriting some higher dimensional properties, or, (b) it is possible to consider a truly higher

dimensional black hole. In what follows, we will discuss both these scenarios, starting with

the charged black hole solution on the brane.

5.1 Charged black hole on the brane

Even a four dimensional black hole can encode signatures of higher dimensions, if the four

dimensional hypersurface the black hole is living on (referred to as brane), is properly em-

bedded into a higher dimensional spacetime manifold. In such a scenario the gravitational

field equations on the brane inherits additional corrections due to presence of extra di-

mensions. These corrections can be broadly classified into two pieces, one originating from

bulk Weyl tensor and another from orbifold symmetry and Israel junction condition on the

brane. To keep the discussion along similar lines as in the previous section, we consider

the Maxwell field on the brane. This in turn would require a non-zero bulk Weyl tensor as

well, since the effective gravitational field equations on the brane involves quadratic terms

involving brane energy momentum tensor [41, 42]. With both the effect of bulk Weyl tensor

and quadratic terms of brane energy momentum tensor included, the following solution to

the effective gravitational field equation is obtained [73],

f(r) = g(r) = 1− 2M

r
+
Q2 − q
r2

+
αQ4

r6
− Λ

3
r2 . (5.1)

Here, Q is the electric charge of the Maxwell field on the brane, q is the charge inheriting

from bulk Weyl tensor and Λ is the brane cosmological constant. Further the constant α

is also being inherited from higher dimensions, which can be written as, α = (3/80π)λ−1
b ,

where λb is the brane tension. Note that in the general relativistic limit, we have λ−1
b → 0

and q → 0, such that eq. (5.1) leads to four dimensional Reissner-Nordström-de Sitter

black hole spacetime.

Given this black hole solution to the effective four dimensional gravitational field equa-

tions inheriting Maxwell field on the brane, one can try to see whether cosmic censorship

conjecture is violated in this case or not. The first and most important quantity associated

with the computation of βph is the Lyapunov exponent λRNbrane and hence the photon cir-

cular orbit rph. The location of the photon circular orbit can be easily determined following

eq. (4.5), leading to the following algebraic equation,

1 =
3M

r
−

2
(
Q2 − q

)
r2

− 4αQ4

r6
(5.2)

Thus having determined the algebraic equation for the photon circular orbit rph, one can

find out the expression for Lyapunov exponent, determining the stability of the photon

circular orbit and hence the imaginary part of the smallest quasi-normal mode frequency.

– 10 –



J
H
E
P
0
3
(
2
0
1
9
)
1
7
8

The determination of the Lyapunov exponent follows directly from eq. (4.6), by substituting

the metric elements written down in eq. (5.1), which can be presented as follows,

λRNbrane =

√√√√f(rph)

rph2

[
1− 2

Q2 − q
r2

ph

− 20
αQ4

r6
ph

]
. (5.3)

Note that in the general relativity limit with α and q tending to vanish, the above relation

reduces to eq. (5.12), as it should. The above completes one part of the journey in our

quest to determine the parameter βph and hence possibility of violation of cosmic censorship

conjecture.

The other ingredient necessary for the computation of βph requires determination of the

location of the Cauchy horizon r−. This can be achieved by solving for the lowest root of the

algebraic equation f(r) = 0. Larger roots of the above equation determines the location of

the event horizon and the cosmological horizon respectively. Having determined the Cauchy

horizon one needs to know the surface gravity at the Cauchy horizon as well, which reads,

κ
(−)
RNbrane =

1

2
f ′(r−) =

1

2

[
2M

r2
−
−

2
(
Q2 − q

)
r3
−

− 6αQ4

r7
−
− 2Λ

3
r−

]
. (5.4)

Thus having determined the Lyapunov exponent and the surface gravity of the Cauchy

horizon, it is straightforward to determine the quantity βph. As evident from eq. (5.3) and

eq. (5.4), presence of higher dimension leads to significant changes to the expressions of

both these quantities and hence to the expression for βph, which reads,

βRNbrane
ph =

√
f(rph)
rph2

[
1− 2Q

2−q
r2ph
− 20αQ

4

r6ph

]
[

2M
r2−
− 2(Q2−q2)

r3−
− 6αQ4

r7−
− 2Λ

3 r−

] . (5.5)

It is clear from the above expression that the quantity βRNbrane
ph depends explicitly on the

Maxwell charge Q, brane tension λb, bulk Weyl tensor through q and finally the brane

cosmological constant Λ.

In the context of charged asymptotically de Sitter brane world black hole as well,

besides photon sphere modes, we will have both de Sitter and near extremal modes. The

photon sphere modes have already been discussed, we will now briefly comment on the de

Sitter and the near extremal modes as well. Since we are interested in the perturbative

modes associated with a test scalar field, both the de Sitter and near extremal modes will

parallel the result presented in [14]. In particular, the lowest lying pure de Sitter mode has

the following frequencies,
ω0,dS

κc
= −i` . (5.6)

Here κc =
√

Λ/3, where Λ is the brane cosmological constant, is the surface gravity as-

sociated with the cosmological horizon for a d-dimensional asymptotically de Sitter black

hole. Thus the dominant, lowest lying mode corresponds to ` = 1 and n = 0, while the
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Figure 1. The variation of β constructed out of the imaginary part of the quasi-normal mode with

(Q/Qmax) has been presented for different values of the cosmological constant and tidal charge

parameter q inherited from higher dimensions (for a fixed α = 10−5). The photon sphere modes

(drawn for ` = 10) are presented by blue dashed line, while the de Sitter (drawn for ` = 1)

and the near extremal modes (drawn for ` = 0) are depicted by green dashed and red dashed

line respectively. The plots for β ≡ −(Im ω/κ−) explicitly demonstrate that as the tidal charge

parameter q increases, for a fixed Λ, the violation of strong cosmic censorship conjecture happens at

higher and higher values of Q/Qmax. On the other hand, for a fixed q, the de Sitter modes dominate

for small values of the cosmological constant, while the photon sphere modes dominate as value

of cosmological constant increases. In each of these plots, the first black vertical line corresponds

to the value of (Q/Qmax) where strong cosmic censorship conjecture is violated and the second

vertical line presents the location of (Q/Qmax), where near extremal modes starts to dominate over

and above the de Sitter/photon sphere modes. Note that always the near extremal modes starts to

dominate before β reaches unity.

other modes will decay down quickly. Finally for the near extremal modes in the context

of four dimensional brane world black hole they become,

ωNE = −i (n+ `+ 1)κ− , (5.7)

where, n is an integer and ` is the angular momentum quantum number. Thus most of

the considerations presented in [14] remains unaffected on the brane as long as we consider

scalar perturbations. In what follows we have taken into account all of these modes before

making any conclusive statement regarding the strong cosmic censorship conjecture for a

brane world black hole.
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Figure 2. Percentage error in the analytical expression of the parameter βph against the numerical

estimates as a function of (Q/Qmax) has been depicted for a fixed value of the cosmological constant

(Λ = 0.06) for three different choices of the tidal charge q. As evident, the error decreases with

increase of q and on the average the error stays at ∼ 0.1%. However with increase of (Q/Qmax) the

error decreases and reaches a value ∼ 0.08% in the extremal limit.

To understand the effect of extra dimensions on the cosmic censorship conjecture, we

have plotted the quantity β against the Maxwell charge Q, normalized to its extremal value

Qmax for different choices of q and brane cosmological constant Λ in figure 1. The figures in

each row of figure 1 clearly demonstrates the effect of extra dimension on cosmic censorship

conjecture for a fixed brane cosmological constant. As evident from figure 1 as the “charge”

q induced from bulk Weyl tensor is increased, the censorship conjecture is still violated, but

the violation happens at larger and larger values of the Maxwell charge. This implies that

as the effect from extra dimension is increased, the parameter space leading to violation

of censorship conjecture becomes smaller. Hence the effect of extra dimension on a brane

world black hole is to protect it from violation of cosmic censorship conjecture. This should

also be evident from the fact that the influence of extra dimension is to change the charge

term to Q2 − q, thereby reducing the effective charge. In particular, it should be empha-

sized that for large enough q, it is entirely possible to completely change the nature of the

spacetime as Cauchy horizon may cease to exist. Further, for small values of brane cosmo-

logical constant, the de Sitter modes dominate the decay of perturbations, while for larger

values of Λ, the photon sphere modes dominate as evident from figure 1. The above figure

also demonstrates that the near extremal modes dominate over either de Sitter or photon

sphere modes as β approaches unity, which is another desired property of any spacetime.

The analysis presented above computes the quasi-normal modes numerically, not only

for photon sphere modes but also for de Sitter and near extremal modes as well. To

provide confidence over our numerical estimation, the error/discrepancy between analytical

expectation and numerical estimate of β has been presented in figure 2. It is clear from the

figure that the percentage error decreases with increasing q while remaining at an average
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level of ∼ 0.1%. While in the extremal limit the error decreases and reaches a consistent

value of ∼ 0.08%. This is because the near extremal behaviour is governed by the near

extremal modes and they are independent of the tidal charge q. Thus in the context of

a four dimensional black hole, embedded in a higher dimensional spacetime, the cosmic

censorship conjecture is only weakly violated or, not violated at all, depending on the

“charge” q inherited from the bulk Weyl tensor.

5.2 The case of higher dimensional Reissner-Nordström-de Sitter black hole

As another application of the general formalism derived in the previous section to asses the

validity of the cosmic censorship conjecture, we consider a higher dimensional Reissner-

Nordström-de Sitter black hole in this section. This will provide another avenue to under-

stand how the presence of higher dimensions influence the validity of the cosmic censorship

conjecture. The metric element of a d-dimensional Reissner-Nordström-de Sitter black hole

is given by the line element as in eq. (4.1) with the metric coefficients f(r) and g(r) taking

the following form [74, 75],

f(r) = g(r) = 1− $d−2M

rd−3
+

(d− 2)$2
d−2

8(d− 3)

Q2

r2d−6
− 2Λ

(d− 1)(d− 2)
r2 . (5.8)

Here M denotes the mass of the black hole, Q represents the electric charge of the Maxwell

field in the spacetime and Λ is the cosmological constant. Further the constant $d−2

appearing in eq. (5.8) is a purely dimension dependent factor and is given by

$d−2 =
Γ(d−1

2 )

(d− 2)π
d−3
2

. (5.9)

The positions of the horizon can be found by solving the equation f(r) = 0 for any general

M , Q and Λ. It turns out that the corresponding equation has three real and positive

roots, denoted by r−, r+ and rc respectively. Since these roots follow the inequality,

namely r− ≤ r+ ≤ rc, they in turn define the position of the Cauchy horizon, the Event

horizon and the Cosmological horizon, respectively. Given the above metric elements, one

can immediately determine the surface gravity at the Cauchy horizon, which becomes

κ
(−)
RNdS =

f ′(r−)

2
=

1

2

[
(d− 3)$d−2M

rd−2
−

−
(d− 2)$2

d−2

4

Q2

r2d−5
−

− 4Λ

(d− 1)(d− 2)
r−

]
, (5.10)

where r− is the location of the Cauchy horizon. This provides the first step in the com-

putation of the parameter β introduced in eq. (4.7). The second ingredient corresponds to

the Lyapunov exponent λ, which in the context of Reissner-Nordström-de Sitter black hole

can be determined using eq. (4.6) and eq. (5.8), yielding

λRNdS =

√√√√f(rph)

r2
ph

[
1+

$d−2M

rd−3
ph

{
(d−1)(d−4)

2

}
−

(d−2)$2
d−2

8(d−3)

Q2

r2d−6
ph

{(d−3)(2d−5)−1}

]
.

(5.11)
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Figure 3. The variation of β, related to the imaginary part of the quasi-normal mode frequency,

with (Q/Qmax) has been presented for different spacetime dimension d and different choices of the

cosmological constant Λ. The plots for β ≡ −(Im ω/κ−) explicitly demonstrate that as the space-

time dimension increases, the value of (Q/Qmax), where the quasi-normal modes cross β = (1/2),

becomes smaller. Thus the parameter space associated with violation of strong cosmic censorship

conjecture becomes larger. Note that ultimately, the near extremal modes (red dashed line) starts

dominating over the photon sphere modes (blue dashed line) or the de Sitter modes (green dashed

line) before reaching β = 1. Each rows of these plots are for a fixed spacetime dimension but

for different choices of the cosmological constant. The first black vertical line corresponds to the

value of (Q/Qmax) where strong cosmic censorship conjecture is violated and the second vertical

line presents the location of (Q/Qmax), where near extremal modes (drawn for ` = 0) starts to

dominate over and above the photon sphere modes (drawn for ` = 10).

Here rph stands for the photon circular orbit, which is to be determined by the condition

2f(r) = rf ′(r) written down in eq. (4.5) by using the expression for f(r) presented in

eq. (5.8). For curiosity we also write down the expression for the Lyapunov exponent in

four spacetime dimensions, which takes the following form

λ
(d=4)
RNdS =

√√√√f(rph)

r2
ph

(
1− 2Q2

r2
ph

)
. (5.12)

Note that in four dimensions the Lyapunov exponent does not depend on the Mass parame-

ter of the black hole, while in higher dimension it does. This has to do with the fact that the

mass parameter in the higher dimensional Lyapunov exponent presented in eq. (5.11) ap-
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pears with a pre-factor of (d−4). This gives us a hint that in presence of higher dimensions

the Lyapunov exponent behaves differently. Proceeding further, since we have both the

surface gravity and the Lyapunov exponent at our hand, we can immediately compute the

parameter βph for static and spherically symmetric situation using eq. (4.7), which becomes

βRNdS
ph =

√
f(rph)

r2ph

[
1 +

$d−2M

rd−3
ph

(
(d−1)(d−4)

2

)
− (d−2)$2

d−2

8(d−3)
Q2

r2d−6
ph

((d− 3)(2d− 5)− 1)

]
(d−3)$d−2M

rd−2
−

− (d−2)$2
d−2

4
Q2

r2d−5
−
− 4Λ

(d−1)(d−2)r−

.

(5.13)

Here as well, rph stands for the photon circular orbit and r− represents the location of the

Cauchy horizon. Thus the parameter βRNdS
ph is dependent on the Mass M , Charge Q and the

Cosmological constant Λ through both explicit presence of these terms in eq. (5.13), as well

as through implicit dependence of these parameters on the photon circular orbit rph and

the Cauchy horizon r−. Thus if for any range of the above parameters, before the black hole

turns extremal, the value of βRNdS
ph becomes larger than half it follows that violation of cos-

mic censorship conjecture will take place, as far as the photon sphere modes are considered.

As pointed out in [14], in four dimensions there indeed exists a certain region of param-

eter space where β ≡ −{Im(ω)}min/κ− is larger than half and hence the four dimensional

Reissner-Nordström-de Sitter black holes indeed violates cosmic censorship conjecture. To

see the effect of higher spatial dimensions on violation of cosmic censorship conjecture, we

have plotted β as a function of (Q/Qmax) and it is clear from figure 3 that strong cosmic

censorship conjecture gets violated near the extremal limit. This result is independent

of the number of spacetime dimensions. Thus the presence of higher dimensions do not

save the doomsday. Rather, as evident from figure 3, violation of strong cosmic censorship

conjecture can be more severe for higher dimensional charged black holes, depending upon

the value of the cosmological constant Λ. This is because the value of Q/Qmax, where

β becomes greater than (1/2), is smaller for higher dimensional black holes, implying a

larger parameter space where deterministic nature of general relativity breaks down (see,

e.g., the middle column of figure 3). In other words, for certain choices of the cosmological

constant, the deterministic nature of higher dimensional Einstein’s equations are more of

a concern than the usual four dimensional ones.

Using numerical techniques, besides the photon sphere modes, we have also presented

the near extremal modes as well. Alike the case of brane world black hole, for higher

dimensional Reissner-Nordström-de Sitter black hole as well the near extremal modes start

to dominate over and above the photon sphere or de Sitter modes as the black hole reaches

near extremality and keeps β less than unity. Further, as evident from figure 3, for small

values of the cosmological constant the de Sitter modes govern the decay rate of scalar

perturbation, while for higher values of the cosmological constant the photon sphere modes

start to dominate. This behaviour appears to be generic and holds true for both five and

six dimensional charged de Sitter black hole. Further figure 3 also demonstrates that for

higher dimensions the lowest lying quasi-normal modes crosses the β ≡ −Im ω/κ− = (1/2)

line, leading to violation of strong cosmic censorship conjecture, for smaller values of the
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charge parameter (Q/Qmax) in higher dimensions (for certain choices of the cosmological

constant). This is in exact agreement with our analytical estimations as well. This further

shows that the analytical results derived earlier in this section are in consonance with our

numerical estimations. This helps one to conclude that violation of strong cosmic censorship

conjecture is a generic feature of Reissner-Nordström-de Sitter black holes irrespective of

spacetime dimensions.

6 Strong cosmic censorship conjecture for rotating black holes: general

analysis

In the previous two sections we have been discussing the cosmic censorship conjecture for

static and spherically symmetric black holes. However in astrophysical scenarios all the

black holes are rotating and hence they must be represented by Kerr-like solutions. Inter-

estingly, in the context of cosmic censorship conjecture it has been found that even though

the Reissner-Nordström-de Sitter black hole indeed violates the censorship conjecture, the

Kerr-de Sitter black holes do not [31]. Since in the previous section, we have shown that

presence of higher dimensions lead to a stronger violation of the cosmic censorship conjec-

ture for charged black holes, it is legitimate to ask what happens for a higher dimensional

rotating black holes. In particular, whether presence of higher dimensions can lead to a

violation of cosmic censorship conjecture even for rotating black holes is the question we

would like to answer in this section.

For generality and wider applicability, we will first determine the Lyapunov exponent

in a general rotating spacetime and hence the quantity β. This will enable us to apply the

formalism to any rotating metric that becomes available in the future. Since the trajectory

we are interested in lies in the four-dimensional spacetime, specifically on the equatorial

plane, we can write down the metric elements using the following metric ansatz

ds2 = −(e2ν − ω2e2ψ)dt2 − 2ωe2ψdtdφ+ e2µ2dr2 + e2ψdφ2 , (6.1)

where, ν, ψ, ω and µ2 are arbitrary functions of the radial coordinate alone, since we are

working in the equatorial plane. For static and spherically symmetric spacetime discussed

earlier, one has the following correspondence: ω = 0, e2ψ = r2 along with e2ν = f(r)

and e−2µ2 = g(r). Hence whether we can reproduce the result for Lyapunov exponent

presented in eq. (4.6) starting from the result in the context of rotating black hole will

show the correctness of the derived result.

In order to determine the Lyapunov exponent for the general rotating black hole space-

time, we need to determine the potential associated with the radial null geodesics and hence

obtain the equatorial photon circular orbits in this rotating black hole spacetime. Since the

metric is independent of both time and azimuthal coordinate φ, it follows that there exists

conserved quantities, e.g., the energy E and the angular momentum L. These conserved

quantities can be expressed in terms of the metric elements as,

E = (e2ν − ω2e2ψ)ṫ+ ωe2ψφ̇ ;

L = e2ψφ̇− ωe2ψ ṫ .
(6.2)
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Since we are working on the equatorial plane characterized by θ = π/2, the radial equation

of motion of a particle can be easily determined with the help of the relation: pαpα = m2δ1.

For spacelike or timelike trajectory δ1 = ±1, while for null trajectory δ1 = 0. Even though

we have kept m in the above relation, it is beneficial to work with particles having unit

mass. This leads to the following radial equation of motion [78]

ṙ2 = e−2µ2
[
δ1 + e−2νE2 − 2ωe−2νEL− (e−2ψ − ω2e−2ν)L2

]
. (6.3)

Since the determination of the Lyapunov exponent depends on the photon circular orbit, in

this work we will exclusively consider null geodesics corresponding to δ1 = 0. Thus for such

null trajectories, the radial geodesic equation presented above in eq. (6.3), can be casted as

ṙ2 ≡ Veff(r) = e−2µ2e−2νE2e−2ψ
[
e2ψ − 2ωe2ψ`+

(
ω2e2ψ − e2ν

)
`2
]
, (6.4)

where ` = L/E is the specific angular momentum associated with the motion along null

geodesic depicted above, which sometimes is also refereed to as the impact parameter.

However, in this work, we will refer it to the specific angular momentum. As an imme-

diate verification of this result one can explicitly check that in the context of static and

spherically symmetric spacetime (with ω = 0, e2ν = f(r), e−2µ2 = g(r) and e2ψ = r2) this

equation reduces to the one presented in eq. (4.4).

As evident from eq. (6.4) it immediately follows that it would be advantageous to

introduce the following definitions, instead of working with e2ν , e2ψ and other metric

components explicitly,

A(r) ≡ −e2ν + ω2e2ψ ; B(r) ≡ ωe2ψ; C(r) ≡ e2ψ . (6.5)

Thus, given the above definitions, one can compute the following quantity, namely B2 −
AC = e2νe2ψ. Hence the radial null geodesic equation presented in eq. (6.4) takes the

following form,

ṙ2 = Veff(r) = e−2µ2E2

{
C − 2B`+A`2

B2 −AC

}
. (6.6)

This facilitates the computation of the photon sphere, which requires setting both the

potential and its derivative to zero. As immediate from eq. (6.6), setting the potential to

zero results into a quadratic expression for the specific angular momentum `, which can be

immediately solved resulting into,

` =
B
A
±

√(
B
A

)2

− C
A
. (6.7)

On the other hand, the other condition necessary for having a photon circular orbit corre-

sponds to setting the derivative of the potential to zero, i.e., we must set V ′eff(r) = 0. Using

the fact that Veff(r) also vanishes at that location, the above condition provides yet another

quadratic equation for the specific angular momentum `, such that C′ − 2B′` + A′`2 = 0.

Here, as mentioned earlier, ‘prime’ denotes derivative with respect to the radial coordinate.

This can also be solved for an expression of the specific angular momentum `. Equating it
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to the expression derived in eq. (6.7), we get the following condition for determination of

the photon circular orbit,

B
A
±

√(
B
A

)2

− C
A

=
B′

A′
±

√(
B′
A′

)2

− C
′

A′
. (6.8)

The above relation can be simplified further along the following lines, first of all one mul-

tiplies both the sides by AA′ and subsequently taking square of them. Finally manipu-

lating the resulting expression appropriately, we are left with a single square root term,

which subsequently is again squared to get rid of the same. This results into the following

equation among the metric components determining the photon sphere on the equatorial

plane [78, 79], (
AC′ −A′C

)2
= 4

(
AB′ −A′B

) (
BC′ − B′C

)
. (6.9)

Note that in the context of static and spherically symmetric spacetime we have B = 0

along with A(r) = f(r), and C(r) = r2. Thus the above expression in eq. (6.9) reduces to

the following expression, 2f = rf ′, the equation determining the photon sphere in static,

spherically symmetric spacetime. Thus our expression presented in eq. (6.9) indeed reduces

to the respective expression in static and spherically symmetric spacetime, as it should.

Having determined the necessary and sufficient condition for determination of the

photon circular orbit, we now concentrate on the calculation of the Lyapunov exponent

λR, which is intimately tied with the infinitesimal fluctuations around the photon orbit

and given by eq. (3.5). For this purpose, we need to determine the second derivative of the

potential presented in eq. (6.6) on the photon circular orbit, which yields,

V ′′eff(rph) = e−2µ2E2

{
C′′ − 2B′′`+A′′`2

B2 −AC

}
, (6.10)

where we have used the fact that on the photon circular orbit both the potential and its

first derivative identically vanishes. In order to find the Lyapunov exponent, we need to

determine the temporal component of the four velocity as well. Thus using eq. (6.2) yields,

ṫ = {CE − BL}(B2 − AC)−1. Further, we can substitute for `2 = (1/A){2B` − C} in

eq. (6.10) and then use the above expression for ṫ, yielding the Lyapunov exponent to be

λR =

[
e−2µ2E2

{
(AC′′ −A′′C) + 2` (A′′B −AB′′)

2A (B2 −AC) ṫ2

}] 1
2

=

[
e−2µ2

(
B2 −AC

){(AC′′ −A′′C) + 2` (A′′B −AB′′)
2A (C − B`)2

}] 1
2

,

(6.11)

where in the last line we have used the expression for ṫ introduced earlier. Here as well

the subscript ‘R’ stands for rotating black hole. Besides the Lyapunov exponent, one also

requires to determine the Cauchy horizon, which corresponds to the smallest root of the

equation e−2µ2 = 0. Hence one can also find out the surface gravity of the Cauchy horizon

by computing the acceleration associated with the Killing vector field determining the

Killing horizon. This enables one to determine the parameter βR for a rotating black hole

using eq. (3.7).
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7 Application: rotating black hole in higher dimensions

In this section, we will apply the formalism presented above in the context of rotating black

holes in presence of higher dimensions. There can be two possibilities, firstly the black hole

itself could be higher dimensional, otherwise one may consider black hole solution originat-

ing from effective gravitational field equations on the four dimensional brane. In what fol-

lows, we will discuss both these scenarios. In the context of higher dimensional black holes,

we will try to understand the status of cosmic censorship conjecture for Kerr-de Sitter black

holes. On the other hand, for effective gravitational theory, we will analyze a black hole in

four dimensional spacetime inheriting rotation, cosmological constant as well as tidal charge

due to presence of higher dimensions. We elaborate on them in the subsequent sections.

7.1 Cosmic censorship conjecture for higher dimensional Kerr-de Sitter black

hole

As we have witnessed in the context of higher dimensional Reissner-Nordström-de Sitter

black hole, the presence of higher dimension leads to a stronger violation of the cosmic

censorship conjecture. This leads to the natural question, what happens for higher dimen-

sional Kerr-de Sitter black holes? Since in four dimensions the cosmic censorship conjecture

is respected for Kerr-de Sitter black holes, it is important to understand whether presence

of higher dimensions can lead to a possible violation of the same. The general formalism

necessary for this purpose has already been laid down in the previous section, here we apply

the same demonstrating validity/violation of cosmic censorship conjecture in the context

of Kerr-de Sitter black hole. For this purpose, we write down the Kerr-de Sitter black

hole solution in d-spacetime dimensions in the Boyer-Lindquist co-ordinate, which takes

the following form [80, 81]

ds2 =−W
(

1− Λ

(d−1)
r2

)
dt2+

Udr2

F−2M
+

2M

U

(
dt−

N∑
i=1

aiµ
2
i dφi

1+ Λ
(d−1)a

2
i

)2

+

N+ε∑
i=1

r2+a2
i

1+ Λ
(d−1)a

2
i

dµ2
i

+
N∑
i=1

r2+a2
i

1+ Λ
(d−1)a

2
i

µ2
i

(
dφi−

Λ

(d−1)
aidt

)2

+

Λ
(d−1)

W
(

1− Λ
(d−1)r

2
)(N+ε∑

i=1

r2+a2
i

1+ Λ
(d−1)a

2
i

µidµi

)2

. (7.1)

In order to simplify the line element for the rotating black hole spacetime in presence of

higher dimensions, we have introduced several short hand definitions in eq. (7.1), these

quantities can be expressed as,

F =

(
1− Λ

(d−1)r
2
)

r2−ε

N∏
i=1

(r2 + a2
i ) ; W =

N+ε∑
i=1

µ2
i

1 + Λ
(d−1)a

2
i

;

U = rε
N+ε∑
i=1

µ2
i

r2 + a2
i

N∏
j=1

(r2 + a2
j ) ;

N+ε∑
i=1

µ2
i = 1 . (7.2)

In the above expressions N stands for the number of azimuthal co-ordinates and hence the

number of independent orthogonal planes, ai represents the rotation parameter in each of
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these planes and ε is 0 for odd dimensional black holes (d = 2n + 1) whereas it is unity

for even dimensional black holes (d = 2n). The parameter n associated with spacetime

dimensions is related to N and ε by the relation n = N + ε. Further the quantities µi are

the direction cosines associated with each of these planes. The location of the horizons in

this black hole spacetime can be found by solving the equation

F (r∗) = 2M , (7.3)

where r∗ = r−, r+ and rc corresponds to the Cauchy, Event and Cosmological horizons

respectively. Since the Kerr-de Sitter spacetime depicts a stationary black hole, it has a

Killing horizon, defined by the following Killing vector field

ξα = tα +

N∑
i=1

Ωiφ
α
i . (7.4)

As one can explicitly check, the location of the Killing horizon coincides with the location

of the event horizon. This is essentially due to the Killing vector field ξµ becoming null at

the event horizon. Further, tα = (∂/∂t)α appearing in the expression for ξα is the Killing

vector associated with the time translation and the quantities Ωi appearing in eq. (7.4) are

the angular velocities of the black hole horizon with respect to the various planes introduced

earlier [80],

Ωi(r∗) =
ai

(
1− Λ

d−1r
2
∗

)
r2
∗ + a2

i

. (7.5)

Note that for ai = 0, the angular velocities also vanish as it should. Finally, given the

Killing field, we would like to find out the expression for surface gravity as well, which is

essentially the non-affinity parameter κ appearing in the geodesic equation ξα∇αξβ = κξβ .

The surface gravity κ associated with the Killing horizon at r = r∗ can be determined

using derivatives of the metric elements appearing in eq. (7.1), which can be given by the

following expression [80]

κ∗ = r∗

(
1− Λ

(d− 1)
r2
∗

)( N∑
i=1

1

r2
∗ + a2

i

+
ε

2r2
∗

)
− 1

r∗
. (7.6)

This expression is absolutely essential in determining the quantity β governing the validity

of the censorship conjecture. However it is difficult to handle the most general rotating

metric depicted in eq. (7.1) and hence for simplicity and for our purpose, it will suffice to

consider a situation in which all the rotation parameters are identical, i.e., ai = a. Further

we will consider motion in a plane, such that only one direction cosine among all the µi’s

is 1 (say µ1 = µ = 1), while rest of them are identically vanishing. Thus eq. (7.1) becomes

ds2 = −W
(

1− Λ

(d− 1)
r2

)
dt2 +

Udr2

F − 2M
+

2M

U

(
dt− adφ

1 + Λ
(d−1)a

2

)

+
r2 + a2

1 + Λ
(d−1)a

2

(
dφ− Λ

d− 1
adt

)2

. (7.7)
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Figure 4. The variation of the parameter β with a/amax (with amax denoting the value of the

maximal rotation parameter) for different values of Λ in a d dimensional Kerr-de Sitter black

hole has been presented. The plots associated with four and five dimensional Kerr-de Sitter black

hole have been presented at the upper-left and upper-right corners respectively, while that for six

dimensional Kerr-de Sitter black hole is presented at the bottom. In each of these plot of the

parameter β, the black dashed line is associated with the curve corresponding to β = 1/2. As

evident these plots indicate that cosmic censorship conjecture is respected in any d-dimensional

Kerr-de Sitter black holes. See text for more discussions.

Here the metric coefficients, namely W , U and F appearing in eq. (7.7) takes the following

simplified form,

F =

(
1− Λ

(d−1)r
2
)

r2−ε
(
r2 + a2

)N
; W =

1

1 + Λ
(d−1)a

2
; U =

rε

r2 + a2

(
r2 + a2

)N
. (7.8)

Since ε behaves differently for even and odd spacetime dimensions, it follows that one needs

to compute the coefficients A, B and C separately for even and odd spacetime dimensions

respectively. This is what we work out explicitly below.

Metric coefficients in even spacetime dimensions. For an even dimensional Kerr-

de Sitter black hole, we have d = 2n and ε = 1, such that the parameter N appearing

in eq. (7.1) is N − 1. Thus one can determine, the metric coefficients necessary for our

computation, i.e., the quantities A, B and C respectively for an even dimensional Kerr-de
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Figure 5. A comparative study of the behaviour of the parameter β with spacetime dimensions

has been presented. For this purpose we have drawn β as a function of (a/amax) at a fixed value

of the cosmological constant (Λ = 0.1) in four (green dot-dashed line), five (blue solid line) and six

(red dashed line) dimensional spacetimes for Kerr-de Sitter black holes. As the plots clearly depict,

none of them really crosses the black dashed line corresponds to β = 1/2. Thus cosmic censorship

conjecture is being uphold for Kerr-de Sitter black holes even in presence of higher dimensions.

Sitter black hole as,

A(r) = −1 +
2M

r (r2 + a2)
d−4
2

+
Λ

d− 1

(
r2 + a2

)
;

B(r) =
a

1 + Λ
d−1a

2

[
2M

r (r2 + a2)
d−4
2

+
Λ

d− 1

(
r2 + a2

)]
;

C(r) =
r2 + a2

1 + Λ
d−1a

2
+

2a2M(
1 + Λ

d−1a
2
)2
r (r2 + a2)

d−4
2

.

(7.9)

Note that for d = 4, the above metric components coincides with the metric of four di-

mensional Kerr-de Sitter black hole. Finally in order to determine the horizon location,

we need to know the zeros of the grr component, which in the present context reads,

grr = ∆(r)r−2(r2 + a2)
4−d
2 . Thus locations of the horizon can be determined by solving

the algebraic equation, ∆(r) = 0, where, ∆(r) = [1−{Λ/(d−1)}r2](r2 +a2)(d−2)/2−2Mr.

The smallest root corresponds to the Cauchy horizon and the largest root corresponds to

the cosmological horizon. Thus the above provides all the relevant ingredients using which

one can immediately compute the parameter β.

Metric coefficient for odd spacetime dimensions. For odd dimensional Kerr-de

Sitter black hole, it follows that d = 2n + 1, with ε = 0 and hence N = n. Thus in this

case the relevant quantities, namely A, B and C, constructed out of the metric elements
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correspond to,

A(r) = −1 +
2M

(r2 + a2)
d−3
2

+
Λ

d− 1

(
r2 + a2

)
;

B(r) =
a

1 + Λ
d−1a

2

[
2M

(r2 + a2)
d−3
2

+
Λ

d− 1

(
r2 + a2

)]
;

C(r) =
r2 + a2

1 + Λ
d−1a

2
+

2a2M(
1 + Λ

d−1a
2
)2

(r2 + a2)
d−3
2

.

(7.10)

The only additional information necessary for our purpose correspond to the location of

the horizon. This can be determined by computing zeros of the grr component which reads,

∆(r)r−2(r2 + a2)(3−d)/2, where ∆(r) = [1 − {Λ/(d − 1)}r2](r2 + a2)(d−1)/2 − 2Mr2. Thus

the horizons are located at the zeros of the algebraic equation ∆(r) = 0. The lowest root

of the same being the Cauchy horizon, while the largest one depicts the cosmological event

horizon. Using these informations, we can easily compute the Lyapunov exponent and

hence the parameter β associated with the Kerr-de Sitter black hole.

Using all these results, we have plotted the parameter β as a function of a/amax for

various choices of the cosmological constant Λ and spacetime dimension d in figure 4 and

figure 5 respectively. In particular, as evident from figure 4, where the parameter β has

been plotted against the rotation parameter for various choices of the cosmological constant

Λ and spacetime dimension, the cosmic censorship conjecture is never violated. A similar

behaviour of β is more explicitly from figure 5 and hence one can safely conclude that for

rotating Kerr-de Sitter black holes, the parameter β never crosses (1/2) and hence strong

cosmic censorship conjecture is respected.

Further, we would like to emphasize that in the context of rotating black holes in higher

dimensions, the photon sphere modes are sufficiently accurate in providing the associated

quasi-normal modes. This can be ascertained from the fact that the relative error between

the numerical estimations and the analytical expressions using photon sphere modes is

O(10−4) even in the extremal limit. This is a direct generalization of the result presented

in [31] in presence of higher dimensions. This being the primary reason for not presenting

the de Sitter and near-extremal modes in the context of rotating black holes.

7.2 Cosmic censorship conjecture for rotating black hole on the brane

Another possibility to incorporate the effect of higher dimensions on the cosmic censorship

conjecture is to consider a black hole on the four dimensional brane. This can be derived by

solving the effective gravitational field equations involving bulk Weyl tensor projected on

the brane. The effective field equations can also involve the presence of a brane cosmological

constant inherited from the bulk spacetime. Thus in this case as well it is possible to

arrive at a rotating solution to the gravitational field equations on the brane which will

be asymptotically de-Sitter. Interestingly, besides the rotation parameter and the brane

cosmological constant it will also involve a tidal charge parameter inherited from the bulk

Weyl tensor [82–84]. This essentially correspond to the four dimensional Kerr-Newman-de
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Sitter spacetime, with the sign of the charge parameter reversed. Thus the associated line

element takes the following form,

ds2 = −∆r

ρ2

(
dt− a

Υ
sin2 θdφ

)2
+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 +

∆θ sin2 θ

ρ2

{
−
(
r2 + a2

)
Υ

dφ+ adt

}2

(7.11)

where, ∆r =
(
r2 + a2

) {
1− (Λ/3)r2

}
−2Mr−q, ∆θ = 1+(Λ/3)a2 cos2 θ, ρ2 = r2+a2 cos2 θ

and finally Υ = 1 + (Λ/3)a2. Here the quantity q is appearing from the presence of higher

dimensions through the bulk Weyl tensor. One can expand out the above expression for

the line element, thus obtaining the metric components, relevant for our computation. In

particular, we need to compute the quantities introduced in eq. (6.5). These are somewhat

simplified, since we need them on the equatorial plane in order to determine the coefficient

β. These quantities in the present context read,

A=−∆r−a2

r2
=

2M

r
+
q

r2
−1+

Λ

3

(
r2 +a2

)
(7.12)

B=−∆r

r2

a

Υ
+
a

r2

r2 +a2

Υ
=

a

r2Υ

{(
r2 +a2

)
−∆r

}
=
a

Υ

{
2M

r
+
q

r2
+

Λ

3

(
r2 +a2

)}
(7.13)

C=−∆r

r2

a2

Υ2
+

1

r2

(
r2 +a2

)2
Υ2

=
1

Υ2

{
a2

(
2M

r
+
q

r2

)
+
(
r2 +a2

)
r2Υ

}
(7.14)

Given the above, the location of the photon circular orbit as well as the double derivative

of the potential can be determined using eq. (6.9) and eq. (6.10) respectively. Subsequently

one can use the expression for ṫ along with the above results to determine the Lyapunov

exponent as in eq. (6.11). The other necessary ingredient corresponds to the location

of the Cauchy horizon, which can be determined by solving for the lowest root of the

algebraic relation, ∆r = 0. Thus one can compute the expression for the surface gravity

on the Cauchy horizon, which can be used along with the Lyapunov exponent in order to

determine the quantity β.

The consequence of such a computation has been presented in figure 6, where the

parameter β has been presented against the rotation parameter, normalized to extremal

values. This has been done for several different choices of the charge parameter inherited

from the extra dimensions and the cosmological constant. All of them depicts the parameter

β being less than (1/2). Thus we can safely conclude that in the context of brane world as

well, where the gravitational field equations receive corrections due to presence of higher

dimensions, for rotating black holes the cosmic censorship conjecture is respected. Thus

rotation acts as a key ingredient to uphold the cosmic censorship conjecture in different

higher dimensional scenarios, including brane world.

At this stage, it is also an interesting idea to compare the rotating brane world black

hole with the four dimensional Kerr-Newman-de Sitter black hole. In particular, for a

given value of the charge parameter q, one can compare the parameter β among these two

black holes, one in which the charge is providing a negative contribution (the brane world

black hole) and the Kerr-Newman-de Sitter black hole where the charge has a positive

impact on the metric. This situation has been depicted in figure 7. As evident from the
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Figure 6. The variation of the parameter β against the normalized rotation parameter (a/amax),

with amax denoting the maximal rotation, for rotating black hole in four dimensional brane for differ-

ent values of q (left corner) and Λ (right corner) have been presented. In each plot, the black dashed

line corresponds to the limiting case β = 1/2. As evident both of these plots indicate that cosmic

censorship conjecture is respected in a rotating black hole spacetime in the four dimensional brane.
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Figure 7. A comparison between four dimensional Kerr-Newman-de Sitter black hole and the

Kerr-de Sitter black hole in effective gravitational theory on the brane has been presented. On the

left panel, the variation of the parameter β against the “charge” in the respective contexts has been

plotted with a fixed cosmological constant Λ and normalized rotation parameter (a/amax). While

the plot on the right depicts variation of β with (a/amax) for a fixed “charge” and cosmological

constant. As evident both of these plots indicate that the parameter β is always smaller for the

rotating black hole spacetime in the four dimensional brane compared to the four dimensional

Kerr-Newman-de Sitter spacetime.

figures, the parameter β for a given value of the charge parameter is always less in the

brane world black hole when compared to the Kerr-Newman-de Sitter black hole. Note

that in the context of rotating black hole on the brane as well the photon sphere modes

are accurate enough to provide correct estimation of the black hole quasi-normal modes.

This holds true even when the black hole is in the near-extremal zone. Thus the analytical

estimation presented above suffices and it suggests that the cosmic censorship conjecture

is respected in the context of brane world black holes in a more stringent fashion than the

Kerr-Newman-de Sitter black hole.
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8 Concluding remarks

Strong cosmic censorship conjecture asserts that the dynamics of gravity can be formulated

in a deterministic manner. It basically predicts doom for an observer who is curious enough

to cross the Cauchy horizon, the end of the deterministic world for any gravity theory.

Intriguingly, in presence of a positive cosmological constant, it turns out, the metric can be

safely extended beyond the Cauchy horizon with locally square integrable connections, if

the decay rate of any perturbing scalar field living in the spacetime becomes comparable to

the blueshift at the Cauchy horizon. This implies possible breakdown of predictability and

hence violation of strong cosmic censorship conjecture. The above result can be presented

in a quantitative manner by considering the following quantity β = −{Im(ω)}/κ−. An

analytical estimation can be obtained in the context of photon sphere modes, which can

be derived using eikonal approximation. In the context of photon sphere modes the ratio

of the Lyapunov exponent associated with instability of the photon circular orbit and

the surface gravity at the Cauchy horizon, provides the desired expression for βph. The

violation of the strong cosmic censorship conjecture is arrived at whenever the parameter

β becomes larger than half. So far, validity of the strong cosmic censorship conjecture is

tested for four dimensional black holes either having electric charge or rotation or both.

In this paper, we have investigated the validity of strong cosmic censorship in presence

of higher spatial dimensions. In our study, we have discussed two possibilities which may

arise in the context of higher dimensions, namely — (a) The black hole itself exists in a

higher dimensional spacetime or, (b) The black hole is living on the four dimensional brane

hypersurface, while the spacetime is intrinsically higher dimensional.

By calculating the lowest lying quasinormal modes in both the geometrical optics limit,

as well as for de Sitter and near extremal modes we have explicitly demonstrated that the

violation of strong cosmic censorship is a generic feature in Reissner-Nordström-de Sitter

black holes irrespective of the spacetime dimension they live in. In fact, it is evident from

our study (see the middle column of figure 3) that violation of strong cosmic censorship

is more severe for higher dimensional black holes, for certain choices of the cosmolgical

constant as the value of properly normalized electric charge, where β becomes greater

than (1/2), is smaller. Thus for higher dimensional Reissner-Nordström-de Sitter black

holes, this implies a larger parameter space where deterministic nature of general relativity

breaks down. This result is further confirmed using numerical analysis through the method

of continued fraction as well. Even when we consider a charged black hole that lives on a

four dimensional brane, the cosmic censorship conjecture is still violated as long as effect

from extra dimension is subdominant compared to its Maxwell charge. However, in this

scenario, the parameter space that leads to the violation of the conjecture, becomes smaller.

As a result, violation happens at larger values of the Maxwell charge (see figure 1). Thus for

a brane world black hole, which may seem more relevant from a physical point of view, the

effect of extra dimension is to protect it from violation of cosmic censorship conjecture. This

is due to the fact that the effective charge of the black hole, denoted as Q2−q gets reduced

in the presence of extra dimensions. In particular, it should be emphasized that for large

enough q, it is entirely possible to completely change the nature of the spacetime as Cauchy
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horizon may cease to exist. Thus in the context of a four dimensional black hole, embedded

in a higher dimensional spacetime, the cosmic censorship conjecture is only weakly violated

or, not violated at all, depending on the “charge” q inherited from the bulk Weyl tensor.

The other arena, where violation of strong cosmic censorship conjecture may have

significant implications, corresponds to the rotating black holes. However, it was demon-

strated that for four dimensional rotating black holes the parameter β never becomes larger

than the critical value 1/2. It merely reaches the critical value, but in the extremal limit.

Taking a cue from our previous discussion regarding violation of cosmic censorship conjec-

ture for static and spherically symmetric black holes in presence of higher dimension, we

consider the same for rotating black holes. We have clearly depicted that, for a general

d-dimensional (d ≥ 4) rotating Kerr-de Sitter black hole, the parameter β never crosses

the value half, while for a given rotation parameter the value of β is higher for a higher

dimensional black hole (see figure 5). This, in turn implies, that in the higher dimensional

rotating black hole spacetimes, the decay rate of perturbation along the event horizon is

slow enough that it is overwhelmed by its exponential growth at Cauchy horizon. As a

result, strong cosmic censorship is respected. Moreover, our result is in accord with ref. [31]

for the four dimensional scenario. The same conclusion can also be drawn from the analysis

of a rotating black hole that lives on a four-dimensional brane. In this case, for a given

rotation parameter, the estimation of β is smaller for the brane world black hole compared

to its four dimensional counter part (see figure 7). Thus one can conclude that rotation acts

as a key ingredient to uphold the cosmic censorship conjecture even in presence of higher

dimensions. The cosmic censorship conjecture is respected for both higher dimensional as

well as brane world black holes.

We would like to emphasize that in this work we have derived expressions for the quan-

tity β in an arbitrary static and spherically symmetric spacetime as well in an axisymmetric

spacetime. Both these expressions can be used to assess the validity of cosmic censorship

conjecture in other black hole spacetimes as well. Further, it will be interesting to un-

derstand the fate of strong cosmic censorship if one chooses to trade off the smoothness

of the initial data [85, 86]. In particular, whether non-smooth, but physically motivated

initial data can rescue the strong cosmic censorship conjecture even in presence of higher

dimension will be another avenue to explore, which we leave for the future.
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A Near-extremal modes of higher dimensional black hole

The line element for a Reissner-Nordström black hole in d-dimension is given by eq. (4.1)

where the metric co-efficients f(r) and g(r) takes the form

f(r) = g(r) = 1− $d−2M

rd−3
+

(d− 2)$2
d−2

8(d− 3)

Q2

r2d−6
. (A.1)

The position of the horizons correspond to the real positive roots of the equation f(r) = 0.

It turns out that the corresponding equation has two real, positive roots, denoted by r+

and r−, which obeys the following inequality, r+ ≥ r−. This in turn allows us to identify

r+ and r− as the position of the Event horizon and Cauchy horizon respectively. In the

limit $d−2M → 2 Qd, these two horizons coincide with each other, which corresponds to

a extremal black hole. Here, for the sake of notational simplicity, we have taken Q2
d =

(d− 2)$2
d−2 Q

2/8(d− 3). Since we are interested in the near-extremal black hole scenario,

we take the following co-ordinate transformation

rd−3 → Qd + ερ , $d−2M → 2
√
Q2
d + ε2B2 , t→ τ

ε
. (A.2)

where, the parameter B denotes deviation from extremity. Under this transformation,

the line element for the Reissner-Nordström black hole in the near extremal limit can be

written as follows

ds2 = −f(ρ) dτ2 +
p1

f(ρ)
dρ2 + p2 dΩ2

d−2 (A.3)

where,

f(ρ) =
ρ2 −B2

Q2
d

, p2 = Q2
d p1 = Q

2
d−3

d . (A.4)

For the metric given in eq. (A.3), the surface gravity at the Cauchy horizon becomes

κ− ≈ κ+ =
1

2

1
√−gττgρρ

∣∣∣∣dgττdρ

∣∣∣∣
ρ=B

=
B

√
p2 Qd

(A.5)

Let us consider a situation where this black hole gets perturbed by a massless scalar

field which satisfies the Klein-Gordon equation, �Φ = 0. Since the spacetime admits

both time translational and spherical symmetry, the scalar field can be decomposed as

Φ(τ, ρ, θ, φ) = e−iωτ R(ρ) Ylm(θ, φ), where Ylm(θ, φ) are Spherical harmonics associated

with (d − 2) dimensional sphere and R(ρ) satisfies a second order differential equation

which can be written as

d

dρ

[
(ρ2 −B2)

dR(ρ)

dρ

]
+

[
ω2p2Q

2
d

ρ2 −B2
− l(l + d− 3)

]
R(ρ) = 0 (A.6)
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The solution of this equation can be expressed in terms of hyper-geometric functions

F1(a, b, c; z) as follows

R(x) = C1 (x2 − 1)
iµ
2 F1

(
1 + iµ+ σ, iµ− σ, iµ+ 1;

1− x
2

)
+ C2

(x+ 1)
iµ
2

(x− 1)
iµ
2

F1

(
−σ, σ + 1, 1− iµ;

1− x
2

) (A.7)

where, C1 and C2 are two arbitrary constants which can be fixed from the boundary

conditions, x = ρ/B , µ =
√
p2 ω Qd/B = ω/κ− and σ satisfies the equation, σ(σ + 1) =

l(l+ d− 3). Since we are interested in finding the quasi-normal modes of black hole under

perturbation, the boundary condition can be fixed as follows: there are only ingoing modes

at the event horizon and only outgoing modes on the boundary. Near the horizon where

x = 1, the solution takes the form

R(x) = C in
H

(x+ 1)
iµ
2

(x− 1)
iµ
2

+ Cout
H (x2 − 1)

iµ
2

≈ C in
H 2

iµ
2 (x− 1)−

iµ
2 + Cout

H 2
iµ
2 (x− 1)

iµ
2

(A.8)

where, C in
H = C2 and Cout

H = C1. Here we have used the property of hyper-geometric

function, F1(a, b, c; 0) = 1. Since quasi-normal mode demands the presence of only ingoing

modes at the horizon, the constant C1 vanishes. Using the property of hyper-geometric

function given by

F1(a, b, c; z) =
Γ(c) Γ(b− a)

Γ(b) Γ(c− a)
z−a F1

(
a, 1− c+ b, 1− b+ a ;

1

z

)
+

Γ(c) Γ(a− b)
Γ(b) Γ(c− b)

(−z)−b F1

(
b, 1− c+ b, 1− a+ b ;

1

z

) (A.9)

and putting F1(a, b, c; 0) = 1, we can easily obtain solution near the boundary (x→∞) as

R(x) = C in
B

(
x− 1

2

)σ
+ Cout

B

(
x− 1

2

)−σ−1

(A.10)

where

C in
B = C2

Γ(1− iµ) Γ(2σ + 1)

Γ(1− iµ+ σ) Γ(σ + 1)

Cout
B = C2

Γ(1− iµ) Γ(−2σ − 1)

Γ(−iµ− σ) Γ(σ + 1)

(A.11)

Demanding there will be only outgoing mode near the boundary, the only non-trivial choice

leads to the condition
1

Γ(1− iµ+ σ)
= 0 (A.12)

This in turn implies 1− iµ+ σ = −n, where n is a positive integer. After rearranging and

substituting µ = ω/κ− in this equation, we obtain the quasi-normal frequencies of a near

extremal black hole as

ωNE = −i(n+ σ + 1)κ+ ≈ −i(n+ σ + 1)κ− (A.13)
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As evident from the above equation these near extremal modes are purely imaginary. Note

that for four dimensional spacetime σ = ` and thus eq. (A.13) matches with the result

presented in [14, 71].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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