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Recently, the exciting reentrant localization transition phenomenon was found in a one-dimensional
dimerized lattice with staggered quasiperiodic potentials. Usually, long-range hopping is typically
important in actual physical systems. In this work, we study the effect of next-nearest neighbor
hopping (NNNH) on the reentrant localization phenomenon. Due to the presence of NNNH, the
broken chiral symmetry is further enhanced and the localization properties of electron states in
the upper and lower bands become quite different. It is found that the reentrant localization can
still persist within a range of NNNH both in Hermitian and non-Hermitian cases. Eventually,
the reentrant localization disappears as the strength of NNNH increases to some extent, since the
increasing NNNH weakens the dimerization of the system and destroys its competition with the
quasiperiodic disorder. Our work thus reveals the effect of long-range hopping in the reentrant
localization phenomenon and deepens its physical understanding.

I. INTRODUCTION

As an important research topic in condensed matter
physics, Anderson localization has been extensively stud-
ied since the pioneering work of Anderson [1, 2]. In recent
years, the phenomenon of quantum particle localization
which is directly related to their transport properties has
attracted extensive attention. Anderson localization de-
scribes the absence of electron diffusion of electronic waves
aroused by disorder and predicts the metal-insulator tran-
sition due to quantum interference of scattered electron
wave functions[3–5], which sparked widespread research
interest in many systems, such as cold atomic gases [4, 6–
12], quantum optics [13–17], acoustic waves systems [18],
etc. According to the scaling theory [19] of Anderson
localization, all the single-particle states will be spatially
exponentially localized by arbitrarily small random (un-
correlated) disorders in one- and two-dimensional systems.
While in the three-dimension, both extended and local-
ized states can coexist in the system with disorders and
an energy-dependent mobility edge distinguishing the lo-
calized region from the delocalized region that appears
at the phase boundary. Compared to randomly disor-
dered lattices, quasiperiodic systems are located at the
interface between long-range ordered and disordered sys-
tems, which provides a unique opportunity to explore
localization transitions. The most typical example is
the Aubry-André –Harper (AAH) model [20, 21], which
hosts an energy-independent localization transition and
has been widely investigated in optical and atomic sys-
tems [4, 5, 22, 23]. In this model, all eigenstates change
from extended to localized over a critical quasiperiodic
amplitude because of its self-dual symmetry [20, 24, 25].
However, many generalized AAH models [26–31] exhibit
accurate energy-dependent mobility edges [27, 28, 32–38]

when long-range hopping terms [30, 38–44] or modified
quasiperiodic potentials are introduced. These accurate
mobility edges are helpful for a better understanding of
Anderson localization in one-dimensional quasicrystals.

Lately, the interplay of non-Hermiticity and disorder
has received a lot of research attention. For a non-
Hermitian system, the non-Hermiticity can be generally
obtained by introducing nonreciprocal hopping terms or
gain and loss potentials, which are found in open systems
exchanging energy or particles with the environment. Con-
sequently, lots of exotic phenomena have been found that
not exist in the traditional Hermitian systems, such as
non-Hermitian skin effect [45–53], exceptional points [54–
57], and exotic transport features [58–64]. On the spectral
side, if the system is in the PT symmetry phase [65–67],
the energy spectrum can still be purely real. However,
when the non-Hermitian parameter exceeds the excep-
tional points, the PT symmetry is broken, resulting a
real-to-complex transition in the energy spectrum. Which
have attracted widespread research attention in the fields
of topolectrical (TE) circuits [68–74], acoustics [75–77], ul-
tracold atoms [34–38, 78, 79], disordered systems [80–82],
etc.

More recently, a interesting reentrant localization phe-
nomenon in one-dimensional quasiperiodic disordered sys-
tems has been found and studied in both Hermitian and
non-Hermitian cases [83–85]. This non-trivial reentrant
feature and corresponding single-particle mobility edge
(SPME) can be attributed to the competition between the
hopping dimerization and the staggered disorder. Dur-
ing this process, some already localized states become
extended again as the strength of staggered quasi-periodic
potential increases. This result in two localization transi-
tions until all the states are finally completely localized.
Usually, long-range hopping plays a significant role in the
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FIG. 1. Schematic plot of the modulated AAH model with
next-nearest neighbor hopping terms, each unit cell consists of
two sublattices A and B. t1, t2 and t3 represent intra-cell, inter-
cell and next-nearest neighbor hopping strengths, respectively.
Parameter α denotes the asymmetric hopping strength.

actual physical systems[86–88]. For example, long-range
hopping is important to generate the mobility edge and
Anderson localization[39, 89]. Then the natural ques-
tion arises: what is the fate of the reentrant localization
transition in a 1D quasiperiodic system with long-range
hopping? To simplify the model and facilitate research,
the next-nearest neighbor hopping(NNNH) is introduced
in three kinds of generalized AAH chains with staggered
quasiperiodic potential. In this work, we showed that
increasing NNNH impairs the dimerization of the SSH
chain and destroys its competition with the quasi-periodic

disorder. When the strength of NNNH reaches some value,
the reentrant phenomenon disappears. To confirm our
findings, we investigated the eigenenergy spectrum, and
participation ratios in this work, and showed that the
introduction of long-range interactions has a great impact
on the reentrant localization transitions.

This paper is organized as follows. In Sec. II, we intro-
duced the model based on a generalized AAH quasiperi-
odic chain and calculated the corresponding significant
physical quantities that can be used to unveil the spectral,
localization, topological transitions, and mobility edges
in the quasiperiodic systems. The numerical results and
discussions are presented in Sec. III, in which we calculate
the eigenenergy spectrum, participation ratios, for three
different cases to confirm our findings. Finally, a brief
summary is given in Sec. IV.

II. MODEL AND APPROACH

We study the following one-dimensional tight-binding
model with on-site quasiperiodic potential as shown in
Fig. 1,

Ĥ = t1

N∑
n=1

(
eαĉ†n,B ĉn,A + e−αĉ†n,Aĉn,B

)
+ t2

N−1∑
n=1

(
eαĉ†n+1,Aĉn,B + e−αĉ†n,B ĉn+1,A

)
+t3

N−2∑
n=1

(
eαĉ†n+1,Aĉn,A + e−αĉ†n,Aĉn+1,A + eαĉ†n+1,B ĉn,B + e−αĉ†n,B ĉn+1,B

)
+
∑
n

VAn̂n,Acos [2πβ(2n− 1) + i∆] +
∑
n

VBn̂n,Bcos [2πβ(2n) + i∆]

(1)

where n represents the unit cell index and the length

of chain is L = 2N , ĉ†n,A/B (ĉn,A/B) are creation (anni-

hilation) operators corresponding to A or B sublattice
denoted by (n,A) and (n,B). The particle number op-
erators on related sites are n̂n,A and n̂n,B. Here, intra-
and intercell hopping strengths are represented by t1,
t2, and t3 represents the next-nearest neighbor hopping
strength. Parameters VA and VB are the strength of the
on-site quasiperiodic potentials at sublattices A and B.
β determines the period of quasiperiodic potential. Here
we introduce the staggered potential in the sublattice
by assuming VA = −VB = V . It should be noted that
the nonreciprocal strength α and the complex phase fac-
tor i∆ contribute the non-Hermiticity in this model. In
the quasiperiodic potential term, we take the irrational

number defined as β = limm→∞(Fm−1

Fm
) , where {Fm} are

the Fibonacci numbers [90, 91]. In our work, we chose

β = (
√
5−1)/2 as a Diophantine number [92]. Specifically,

for most case we set L = 610, t1 = 1 and the periodic
boundary condition (PBC) unless otherwise mentioned.
In the following, the reentrant localization phenomenon

TABLE I. The different nonreciprocal and complex phase
factors on reentrant localization transitions is discussed for
three Hamiltonian cases, i.e., M1, M2, and M3. α is the non-
reciprocal strength for asymmetric hopping terms. i∆ donates
the complex phase factor in the quasiperiodic potential.

Model nonreciprocal strength complex phase factor
M1 α = 0 ∆ = 0
M2 α ̸= 0 ∆ = 0
M3 α = 0 ∆ ̸= 0

in three different cases are studied, which are listed in
Table I. In subsection IIIA, a Hermitian system with
α = 0,∆ = 0 is studied. In subsections III B and IIIC,
the numerical results and discussion of non-Hermitian
systems with nonzero asymmetric hopping strength α or
complex on-site potential i∆ are presented, respectively.

In most cases, the inverse participation ratio (IPR) and
normalized participation ratio (NPR) [38, 93] are used
to identify localized and extended states in the system,
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TABLE II. A convenient operational definition to distinguish
three different localization phases in a 1D single-particle Hamil-
tonian. Here L is the size of the system.

Localized phase ⟨IPR⟩ ∼ O(1) and ⟨NPR⟩ ∼ L−1

Extended phase ⟨IPR⟩ ∼ L−1 and ⟨NPR⟩ ∼ O(1)
Intermediate phase ⟨IPR⟩ ∼ O(1) and ⟨NPR⟩ ∼ O(1)

which are defined as

IPRi =

∑L
n=1

∣∣ψi
n

∣∣4[∑L
n=1 |ψi

n|
2
]2 , (2)

NPRi =

[
L

L∑
n=1

∣∣ψi
n

∣∣4]−1

, (3)

where ψi
n is the eigenstate with the superscript i denoting

ith eigenstate, and n denotes the lattice .
Furthermore, by taking summation over all eigenstates,

we can obtain the IPR and NPR of the system

⟨IPR⟩ = 1

L

L∑
i=1

IPRi, (4)

⟨NPR⟩ = 1

L

L∑
i=1

NPRi, (5)

and η[93]

η = log10 [⟨IPR⟩ ⟨NPR⟩], (6)

to figure out whether the system is in the intermediate,
fully extended or localized phases. For extended states,
the ⟨IPR⟩ tends to be zero (finite) and the ⟨NPR⟩ tends
to be finite (zero) in the large L limit (localized states).
Based on these, the localization transitions can be iden-
tified. For convenience, the typical orders of ⟨IPR⟩ and
⟨NPR⟩ in different regions have been listed in Table II.

In order to more clearly exhibit the SPME, the fractal
dimension Γi of the wave function is introduced as the
probe of the ith wavefunction’s localization character[2,
38, 94],

Γi = −
ln
(∑L

n=1

∣∣ψi
n

∣∣4)
lnL

. (7)

Contrary to the IPRi mentioned above, the Γi tends to
be zero for localized states and finite for extended states.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. M1: Hermitian Hamiltonian

First of all, we study the system described by hermitian
Hamiltonian M1 without considering the effect of nonre-
ciprocal strength and complex phase factor as shown in

FIG. 2. The energy spectrum versus quasiperiodic modulation
amplitude V for the system with t1 = 1, t2 = 2.4. (a) t3 = 0,
(b) t3 = 0.5, (c) t3 = 0.62, (d) t3 = 1 . The colormap shows
Γi associated with ith eigenstate.

Table I. After diagonalization, the energy spectrums with
corresponding Γi are calculated and presented in Fig. 2.
When there is no next-nearest neighbor hopping (NNNH),
the energy spectrum given in Fig. 2(a). Since Γi changes
from 1 to 0 as the quasiperiodic potential V increases
from 0 around 2.5, we can know that all extended states
are gradually localized. There exists a critically interme-
diate region with the coexistence of both extended and
localized states separated by the SPME. As V further
continues to increase, the upper bands and lower bands
touch and some localized states become extended again
with V ≃ 2.5. Thus another critical region with SPME
emerges, which is dubbed as the reentrant phenomenon
discovered recently[83]. However, by introducing the next-
nearest neighbor hopping shown in Fig. 1, the broken
chiral symmetry is further enhanced, making the eigenen-
ergy spectrum asymmetric up and down. From Fig. 2(b),
we can know that the extended states of lower bands tend
to be easier localized than that of the upper bands as V
increases for t3 = 0.5. More importantly, the states of
the lowest branch in upper bands persist to be extended
until V reaches the second critical region as the strength
of NNNH increases. Thus, there is only one critical re-
gion with SPME left, which implies the disappearance
of the reentrant phenomenon with the introduction of
long-range hopping. Interestingly, it is found that the
reentrant phenomenon reappears when V ≃ 2.8 and t3
increases up to 0.62 in Fig.2 (c). Clearly, as t3 further
increases up to 1, there is no signature of the reentrant
phenomenon in Fig.2 (d). From the above, we know that
the reentrant phenomena can be eliminated by introduc-
ing next-nearest hopping. However, this is not always the
case, and further investigations are needed.

The quantity η is usually used to distinguish the crit-
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FIG. 3. Phase diagrams of the Hermitian system in V and t2
plane for (a) t3 = 0, (b) t3 = 0.2, (c) t3 = 0.5. Phase diagrams
of the Hermitian system for in V and t3 plane for (d) t2 = 2.4.
Colorbar represents the value of η. Note that the extended
and localized phases are represented by dark blue regions, and
the brilliant yellow region shows the intermediate phase with
SPME.

ically intermediated region from fully extended and lo-
calized regions. From it, one can easily know how many
times the system enters the intermediated regions to con-
firm the reentrant phenomena that are found with energy
spectrum calculations. Therefore, we present the η in
form of a phase diagram as shown in Fig. 3. First of
all, we can find that all eigenstates are extended when
the quasiperiodic potential is small. As the staggered
potential V increases, some originally extended states
are localized, forming a critical region where extended
and local states coexist in the phase diagram in V and
t2 plane without considering NNNH in Fig. 3(a). One
can encounter the critical regime twice for a range of
t2 = [2.2, 3], which is indeed a reentrant phenomenon.
From Fig. 3(b,c), we can know that the range of t2 pre-
senting reentrant phenomenon shrinks as the increase
of NNNH. In particular, the reentrant phenomenon with
t2 = 2.4 disappear when t3 ≥ 0.2, which is consistent with
energy spectrum analysis. To clarify the effect of NNNH,
we plot the phase diagram in the V -t3 plane in Fig. 3(d).
As the NNNH increases, it can be seen that two critical
regions merge beyond a critical point δc2 ≈ 0.23. This
confirm what we find in the energy spectrum calculations.
In the meanwhile, the additional lobe of the intermedi-
ate phase appears again and soon fades away in some
narrow parameter intervals for t3 ∈ (0.56, 0.66), which
is also shown in the energy spectrum calculations. As
can be seen, the reentrant feature vanished eventually in
the one-dimensional staggered quasiperiodic generalized
AAH lattice with the introduction of long-range hopping.

To further verify the effect of NNNH on the disap-
pearance of reentrant localization, we perform finite size

FIG. 4. η versus V for different system sizes L =
1974, 2584, 3194, 5158, 8362, 13530 with t1 = 1, t2 = 2.4, t3 = 1.

FIG. 5. The real and imaginary parts of energy spectrum
versus the strength of quasiperiodic potential V for the system
with t1 = 1, t2 = 4, α = 0.25. Here (a,c) t3 = 0.25 and (b,d)
t3 = 0.65, respectively. The colormap shows Γi associated
with ith eigenstate.

calculations for different system sizes when NNNH is fixed.
It is found that η decreases as the system size increases in
both extend and localized regions in Fig. 4. Instead, the
only one intermediate region is more notable. This clearly
indicates that the stability of NNNH effect on reentrant
phenomenon.

B. M2: non-Hermitian Hamiltonian with
asymmetric couplings

The reentrant localization transition could also exist
in the non-Hermitian system by adjusting the strength
of asymmetric hopping between different lattices. In
this section, we investigate a non-Hermitian Hamiltonian
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FIG. 6. Phase diagram of the system in V and t2 plane
with non-Hermitian staggered quasiperiodic disorder for (a)
t3 = 0, (b) t3 = 0.4, (c) t3 = 0.6. (d) Phase diagrams of the
non-Hermitian system in V and t3 plane for t2 = 4. Colorbar
indicates different value of η, the extended and localized phases
are represented by dark blue regions, and the brilliant yellow
region shows the intermediate phase with mobility edges. Here
α = 0.25, t1 = 1.

M2 corresponding to a one-dimensional generalized AAH
quasiperiodic lattice with asymmetric coupling as shown
in Table I.

To identify the effect of long-range hopping on the reen-
trant localization transition, we first calculate the real and
imaginary parts of the eigenenergies and their associated
Γi as functions of V . As shown in Fig. 5(a), there exist
two separate intermediate regions with mobility edges
where the extended states and localized states coexist.
Similar to the Hermitian case, some already localized
states become extended again and then localized finally, a
phenomenon known as reentrant localization. Combined
with the imaginary part of the energy spectrum in Fig.
5(c), it is found that the complex to real, real to complex,
and complex to real transitions in the spectrum all coin-
cide with the localization transitions [84]. In addition, the
imaginary parts of the eigenenergies vanish completely
within each localized phase. Moreover, the introduction
of t3 will also affect the chiral symmetry and modified
the eigenenergy spectrum as shown in Fig. 5(b). By
analyzing the energy spectrum with the encoded η, more
extended states tend to be distributed in the upper band
and two non-adjacent red extended regions in the upper
band merge together. As a consequence, the reentrant
feature vanishes, and only one intermediate phase with
the mobility edge is preserved in Fig. 5(b). From the
imaginary part of the energy spectrum in Fig. 5(d), we
can know that there are no real to complex and complex
to real transitions anymore.

To investigate the localization behavior of the system,

FIG. 7. Phase diagrams in V − t2 plane for different strength
of NNNH. Here (a) t3 = 0.8, (b) t3 = 1, (c) t3 = 2, (d)
t3 = 3, respectively. The colorbar indicate values of η, other
parameters are the same as those in Fig. 6(a).

we further investigate the quantity η as a phase diagram
in Fig. 6. With the presence of asymmetric hopping, the
region of SPME is expanded. Similar to the Hermitian
case, there are also two critical regions when t2 is between
3.56 and 5.4, which exactly indicates the existence of
the reentrant localization. More importantly, when the
system is subjected to appropriate NNNH strength (as
shown in Fig. 6(b, c)), this reentrant feature is absent
with t2 = 4 while t3 ≥ 0.4. To verify the role of NNNH
in non-Hermitian systems, we study the phase diagram
of η versus V and t3 by fixing t2 = 4. In Fig. 6(d),
two intermediate regions merged together when t3 exceed
a critical point δc3 ≈ 0.4, this is consistent with the
energy spectrum calculations presented in Fig. 5. In
analogy to the Hermitian system, the introduction of
long-range hopping would drive the reentrant localization
to disappear when asymmetric hopping is present.

As illustrated in Fig. 6(a), as compared to the phase
diagram presented in Fig. 3(a) in Hermitian system, the
parameter interval of t2 for which two critical regions
coexist is enlarged due to the introduction of asymmetric
hopping. However, phase diagram in Fig. 6(b, c) only
shows the disappearance of the second critical region in
a fixed t3, but if the strength of t3 continues to increase,
this phenomenon will reappear. For this reason, to find
out whether this phenomenon is completely disappeared
or not in the V − t2 plane when the NNNH is present,
we plot the phase diagram for different NNNH strengths
in Fig. 7. From Fig. 7(a, b), we find for t3 = 0.8 and
t3 = 1, even though the second critical region is gradually
shrinking, but it still exists in the presence of NNNH.
However, if the strength of NNNH is large enough such
as t3 = 2 and t3 = 3, the reentrant localization eventually
disappears as shown in Fig. 7(c, d).
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FIG. 8. The real parts of the eigenvalue spectra versus V for
the system with (a)t3 = 0, (b)t3 = 0.5. Here other model
parameters are ∆ = 0.05 and t = 2.2. The colorbar indicate
values of Γi.

C. M3: non-Hermitian Hamiltonian with complex
phase factor

In general, the non-Hermiticity can also be achieved by
introducing the complex on-site potential or asymmetric
coupling in a non-Hermitian system. In this section, the
non-Hermiticity of the Hamiltonian is generated by a
complex on-site potential and satisfies Vn = V ∗

−n [85] and
possesses the PT symmetry, which shown in M3 of the
Table I.

The localization feature can be encoded in the energy
spectrum with the corresponding Γi. In Fig. 8, we present
the real parts of the eigenvalue spectrum while the quasi-
periodic potential has a complex phase factor. Similar
to the two cases mentioned above, in Fig. 8 (a), the sys-
tem will undergo a series of reentrant localization transi-
tions without NNNH. However, by introducing the NNNH
shown in Fig. 8 (b), the band structure and corresponding
localized(extended) states distribution will be modified,
and the dimerization of the system will be weakened, re-
sulting in the disappearance of the reentrant feature with
the participation of NNNH.

In order to reveal the localization behavior of the sys-
tem more obviously. As illustrated in Fig. 9(a), we
present the phase diagram in the V −∆ plane using the
numerical calculation of η. At first, when ∆ ≤ 0.036
and without NNNH, there are two critical regions that
represent the reentrant localization. But if complex phase
factor ∆ continues to increase, there exist the multiple
intermediate phases for ∆ = [0.036, 0.18] and the sys-
tem undergoes multiple localization transitions. However,
while the strength of ∆ is large enough, the top branch
eventually decays. Finally, only one intermediate phase
will remain, and the reentrant property will be lost. In
summary, the introduction of long-range hopping can
eliminate the reentrant phenomenon in above cases. To
investigate whether the introduction of NNNH would also
kill this feature with the complex phase factor. In Fig.
9(b,c), we present the phase diagram in the V −∆ plane
for different NNNH strength. We observe that two critical
regions merged and the reentrant localization transition
vanishes as the increase of NNNH strength. Similar to the

FIG. 9. Phase diagram of the non-Hermitian system in V and
∆ plane for (a) t3 = 0, (b) t3 = 0.1, (c) t3 = 0.3, respectively.
(d) Phase diagram in V and t3 plane for ∆ = 0.05. The
colorbar indicates different values of η. Here t1 = 1, t2 = 2.2.

FIG. 10. The η plot as a function of V for L =
1974, 2584, 3194, 5158, 8362, 13530 from top to bottom for (a)
t3 = 0, (b)t3 = 0.5, respectively. Here other model parameters
are ∆ = 0.05 and t = 2.2.

above result in Fig. 3(d) and Fig. 6(d), after a critical
point δc4 ≃ 0.1, the reentrant feature at an exact com-
plex phase factor will also vanish by the increase of t3,
as shown in Fig. 9(d). As a matter of fact, due to the
introduction of the NNNH, the reentrant property will
also fade away while the Hamiltonian is hosting a complex
on-site potential. From what we have mentioned above,
we can conclude that no matter what kind of case the
system is in the Table I, the introduction of long-range
hopping will finally eliminate reentrant localization in the
different phase diagrams.

To confirm the multiple reentrant localization and rule
out the finite size effects in Fig. 8 and Fig. 9(a). We
compute the η for different system sizes with fixed ∆.
As the system grows larger, four intermediate regions
become particularly distinct, as shown in Fig 10(a), which
definitely establishes the stability of this behavior in the
absence of NNNH. To eliminate the multiple reentrant
behaviors, we set t3 = 0.5 in Fig 10(b), which is identical
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to the prior approach. As expected, with the presence of
NNNH, four intermediate phases merged together, and
finally, only one intermediate phase survives. Moreover,
computations under different system sizes support the
stability of this elimination behavior.

IV. DISCUSSION AND CONCLUSION

The reentrant physics of the non-Hermitian AAH model
in Eq. (1) can be simulated by electric circuits[69], which
are proven to be a powerful platform for investigating
non-Hermitian and/or topological phases[70]. Moreover,
negative impedance converters with current inversion
(INIC)[72, 74] can realize the asymmetrical hopping am-
plitudes, and complex on-site potentials can be simulated
by grounding nodes with proper resistors[71, 73]. By mea-
suring two-node impedances, the energy spectrum could
be obtained[68].
In conclusion, we have studied the localization transi-

tion in a dimerized lattice with the staggered quasiperiodic
disorder for three different Hamiltonian cases, which is
illustrated in Table I. We discovered that no matter what
kind of case the system is, the introduction of long-range
hopping will finally eliminate reentrant localization in
different phase diagrams, beyond the critical values of t3,
two separate intermediate regions tend to merge together,
and the result is shown as M1-M3 cases in the main
text. This can be attributed to the fact that the increase
of NNNH weakens the dimerization of the SSH chain,

thus destroying the competition between dimerization
and quasi-periodic disorder, which results in the disap-
pearance of reentrant localization transition and confirms
the irreplaceable importance of dimerization to generate
the reentrant phenomenon. On the other hand, while
the non-Hermiticity is introduced by the complex on-site
potential illustrated in M3, the increasing non-Hermitian
parameter ∆ will also significantly remove the reentrant
localization transition in a fixed hopping dimerization.
All in all, the reentrant phenomenon would be eliminated
not only due to the introduction of long-range hopping
but also owing to the increasing complex phase factor.
We confirm this finding by examining the participation
ratios, eigenspectra, and different phase diagrams in the
system.
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[11] C. Hainaut, A. Rançon, J.-F. Clément, I. Manai, P. Szrift-
giser, D. Delande, J. C. Garreau, and R. Chicireanu, New
J. Phys. 21, 035008 (2019).

[12] J. Richard, L.-K. Lim, V. Denechaud, V. V. Volchkov,
B. Lecoutre, M. Mukhtar, F. Jendrzejewski, A. Aspect,
A. Signoles, L. Sanchez-Palencia, and V. Josse, Phys.
Rev. Lett. 122, 100403 (2019).

[13] T. Sperling, W. Buehrer, C. M. Aegerter, and G. Maret,
Nat. Photonics 7, 48 (2013).

[14] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini,
Nature 390, 671 (1997).

[15] M. Störzer, P. Gross, C. M. Aegerter, and G. Maret,
Phys. Rev. Lett. 96, 063904 (2006).

[16] T. Schwartz, G. Bartal, S. Fishman, and M. Segev,
Nature 446, 52 (2007).

[17] Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti,
D. N. Christodoulides, and Y. Silberberg, Phys. Rev.
Lett. 100, 013906 (2008).

[18] H. Hu, A. Strybulevych, J. Page, S. E. Skipetrov, and
B. A. van Tiggelen, Nat. Phys. 4, 945 (2008).

[19] E. Abrahams, P. W. Anderson, D. C. Licciardello, and
T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
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