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Abstract: The orthotropic steel deck is sensitive to fatigue, and a number of cracks have been found
in existing bridges. Based on the long-span Guangzhou Mingzhu Bay steel arched bridge, this
paper focus on the cracking process, fatigue mechanism, and fatigue performance evaluation of an
orthotropic steel bridge deck under traffic load. A finite element model of a three-U-rib and three-
span bridge deck was first established to investigate the stress state and the most unfavorable wheel
loading position under the longitudinal wheel load. Then, four full-scale single-U-rib specimens were
fabricated with high-strength lower alloy structural steel Q370qD in compliance with construction
standards. High-cycle loading was subsequently implemented according to the Specification for
Design of Highway steel bridge (JTG D64-2015), and the crack initiation, propagation process, and
fatigue failure modes were studied. The results showed the stress at structural concern points is
larger than in other locations, which was located around 35 mm from the welding seam of the U-rib
and the lower end of the diaphragm plate. The Mingzhu Bay steel bridge deck meets the fatigue
design requirements. However, the bottom of the welding seam between the U-rib and diaphragm
plate is a dangerous fatigue position, and attention should be paid to the welding quality at this
position during construction.

Keywords: orthotropic steel deck; crack propagation; fatigue performance; finite element

1. Introduction

Orthotropic steel decks (OSD) are composed of orthotopically deck plates stiffened
by longitudinal ribs and transverse diaphragms, which are widely used in various types
of large- and medium-sized long-span steel bridges due to the benefits of a high bearing
capacity, light weight, and short construction period [1–6]. In the past decades, this type of
steel deck has been improved in terms of design, fabrication, and maintenance, and the
structural behavior has been enhanced. However, as the orthotropic steel decks withstand
high-level cycles of traffic load, fatigue cracks may occur at the weld connection or other
points of stress concentration points, which will seriously affect traffic safety [7–10].

In a literature review, it was found that many studies have been conducted on fatigue
performance assessment and prediction models [11–16]. These models were generally
based on fracture mechanics and cumulative damage theories. For example, Wu et al. [17]
considered the influence of the crack closure effect on metals’ mechanical properties and
established a mathematical model for fatigue life prediction based on the law of metal
fatigue characteristics. Macek et al. [18] proposed a mixed-mechanics measurement method
to determine the three-dimensional port damage of specimens with fatigue bending load-
ing history. Furthermore, the fatigue performance evaluation methods of a steel bridge
deck mainly include the nominal stress method, hot spot stress method, and notch stress
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method [19–23]. The nominal stress method is convenient for calculation and engineering
applications, which are widely adopted in bridge specifications [24–27].

Since the design, fabrication, and construction details of orthotropic steel decks are
varied from the bridge, the fatigue performance analysis of bridges is generally based on
the specific bridge [28]. Many efforts have been made to investigate the fatigue performance
of orthotropic steel decks. Zeng et al. [29] conducted 1:2 scale fatigue experiments on the
orthotropic steel bridge panel; the design life cycle loading was applied. It was concluded
that the bridge met the design requirements and had a certain safety reserve during the
service. Huang et al. [30] carried out fatigue tests and theoretical studies on the steel bridge
deck of the Yangtze River Bridge under heavy traffic loads to evaluate the fatigue life. The
results showed that the initial crack depth was sensitive to fatigue life evaluation. Deck
plates, U-ribs, and transverse diaphragms are the load-bearing components and are the
main sources of bridge deck stiffness and stability. However, the joints of longitudinal
ribs, the deck plate, the transverse diaphragm, and the structural details of the transverse
diaphragm are prone to fatigue cracking [31]. Cao et al. [32] analyzed the fatigue perfor-
mance of the Jiangyin Yangtze River Bridge, the finite element model was established, and
the influence of residual welding stress and vehicle load stress on the fatigue performance
of the bridge deck was studied. The results showed that the steel deck thickness is relevant
to the fatigue life of orthotropic steel decks. At the same time, Zhong et al. [33] analyzed
the fatigue life of the Jiangyin Yangtze River Bridge. A coupling stress analysis FE model
was established that considered the residual welding stress and vehicle load. The results
showed that the residual tensile stress at the weld position was superimposed on the cyclic
tensile stress of the main vehicle load, and the longitudinal stress relaxation exceeded the
peak vehicle load stress. Ji et al. [34] employed traffic monitoring data to establish a load
model to evaluate the root-deck fatigue durability of the Taizhou Bridge. Cheng et al. [35]
analyzed the FE model of the Balinghe Bridge under traffic load, and the results showed
that fatigue cracks initiated at the arc opening and extended to the welded seam of the
diaphragm plate. A health detection plan was proposed. Yang et al. [36] established the
finite element model of the Taizhou Yangtze River Bridge. The stress amplitude and fatigue
damage of the steel bridge deck were studied. The stress state of the diaphragm under the
lateral distribution of wheel load was obtained. It was shown that the stress amplitude
of the diaphragm increased with the increase in the diaphragm spacing. Zeng et al. [37]
established a 1:2 scale experiment of an orthotropic steel bridge deck under fatigue loading;
it was found that with good welding quality and standard maintenance, the orthotropic
steel bridge deck would not develop fatigue cracks during its life service.

Although scholars have completed a lot of studies on the fatigue properties of metal
materials and orthotropic steel bridge decks, due to the differences in materials, designs,
and construction details, it is still necessary to conduct numerical and experimental studies
on the fatigue performance of specific long-span steel bridge decks in order to ensure safety
during their service. Therefore, this study is based on the Mingzhu Bay steel truss arched
bridge. A finite element model of a bridge deck was first established to investigate the stress
state and the most unfavorable loading position. Four single U-rib specimens were used
to investigate the crack initiation, propagation process, and fatigue failure modes. Finally,
the fatigue performance of the steel deck was evaluated according to the specifications.
Figure 1 shows the flow chart of this paper.
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Figure 1. Flow chart.

2. Project Summary

The Mingzhu Bay Bridge main bridge adopts (96 + 164 + 436 + 164 + 96 + 60) m = 1016 m
span continuous steel truss bridge [38]. The main span of the main bridge is three arched
truss structures; the truss spacing is 18.1 m, the side truss height is 10.369 m, the middle
truss height is 10.685 m, and the side span and the second side span are flat truss structures.
The side span and the main arch rib are “N”-type trusses. The layout of the Mingzhu Bay
Bridge is shown in Figure 2.
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Figure 2. General layout of Guangzhou Mingzhu Bay Bridge.

The steel deck of the Mingzhu bay Bridge adopts a double-deck arrangement, as
illustrated in Figure 3. The upper deck is a two-way, eight-lane highway with sidewalks on
both sides. The total width of the main bridge deck is 43.2 m. An orthotropic steel deck
with a thickness of 16 mm and a u-shaped closed rib with a spacing of 600 mm are adopted.
A diaphragm is provided every 3 m longitudinally and bolted with the upper chord.
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3. Finite Element Model
3.1. Materials

A finite element model of the 3 spans and 3 U-ribs was established using Abaqus
software (2016, Dassault SIMULIA, Paris, France). The FE model was 9 m long from the
longitudinal direction and 1.5 m wide from the transverse direction. Solid element C3D8
was employed. The elastic modulus of the plate was 206 GPa, and the Poisson’s ratio was
0.3. The fixed constraint was applied at the bottom of the diaphragm plate. The steel deck
of Mingzhu Bay Bridge is made of Q370qD. The chemical composition and mechanical
properties are shown in Tables 1 and 2.

Table 1. The chemical composition of Q370qD (%) [39].

C Si Mn P S Als Nb V Ti N

≤0.14 ≤0.55 1.00–1.60 ≤0.020 ≤0.010 0.010–0.045 0.10–0.090 0.010–0.080 0.006–0.030 ≤0.0080

Table 2. The mechanical properties of Q370qD.

Thickness (mm) Yield Strength (MPa) Tensile Strength (MPa) Elongation after Fracture (%) T (◦C)

≤50
50–100

≥370
≥360 ≥510 20 −20

−40

3.2. Loading

To investigate the stress state and the most unfavorable wheel loading position, three
loading conditions were considered, and the stress state of the bridge deck was analyzed.
The details were as follows: (1) from the transverse direction, three wheel-loading positions
were across the U-ribs, on the U-ribs, and between the U-ribs; (2) from the longitudinal
direction, two loading positions were on middle span and OSD diaphragm. The details are
shown in Figure 4.

The vehicle load index was obtained from specification (JTG D64-2015) [25]. The
pavement layer was 55 mm, and taking the projected area from angle of 45◦, the wheel
loading area is (7.1 × 3.1) m2, and the single wheel load is 120 kN. Hence, a single wheel’s
loading pressure on the bridge deck is 0.2726 GPa.

3.3. FE Analysis

The results of FE model under mid-span and diaphragm wheel loading are shown
in Figure 5. It was observed that the maximum stress points were always located at the
welding joint of the U-ribs and transverse diaphragm. Since this area is prone to fatigue
cracks under cyclic load, this location is taken as the area of concern.



Metals 2022, 12, 1117 5 of 11

Metals 2022, 12, x FOR PEER REVIEW 4 of 11 
 

 

3. Finite Element Model 
3.1. Materials 

A finite element model of the 3 spans and 3 U-ribs was established using Abaqus 
software (2016, Dassault SIMULIA, Paris, France). The FE model was 9 m long from the 
longitudinal direction and 1.5 m wide from the transverse direction. Solid element C3D8 
was employed. The elastic modulus of the plate was 206 GPa, and the Poisson’s ratio was 
0.3. The fixed constraint was applied at the bottom of the diaphragm plate. The steel deck 
of Mingzhu Bay Bridge is made of Q370qD. The chemical composition and mechanical 
properties are shown in Tables 1 and 2. 

Table 1. The chemical composition of Q370qD (%) [39]. 

C Si Mn P S Als Nb V Ti N 
≤0.14 ≤0.55 1.00–1.60 ≤0.020 ≤0.010 0.010–0.045 0.10–0.090 0.010–0.080 0.006–0.030 ≤0.0080 

Table 2. The mechanical properties of Q370qD. 

Thickness (mm) Yield Strength (MPa) Tensile Strength (MPa) Elongation after Fracture (%) T (°C) 
≤50 

50–100 
≥370 
≥360 ≥510 20 

−20 
−40 

3.2. Loading 
To investigate the stress state and the most unfavorable wheel loading position, three 

loading conditions were considered, and the stress state of the bridge deck was analyzed. 
The details were as follows: (1) from the transverse direction, three wheel-loading posi-
tions were across the U-ribs, on the U-ribs, and between the U-ribs; (2) from the longitu-
dinal direction, two loading positions were on middle span and OSD diaphragm. The de-
tails are shown in Figure 4. 

 
(1) 

  

Metals 2022, 12, x FOR PEER REVIEW 5 of 11 
 

 

 
(2) 

Figure 4. Wheel loading positions. (1) Wheel load in the transverse direction (unit: mm); (2) wheel 
load in the longitudinal direction (unit: mm). 

The vehicle load index was obtained from specification (JTG D64-2015) [25]. The 
pavement layer was 55 mm, and taking the projected area from angle of 45°, the wheel 
loading area is (7.1 × 3.1) m2, and the single wheel load is 120 kN. Hence, a single wheel’s 
loading pressure on the bridge deck is 0.2726 GPa. 

3.3. FE Analysis 
The results of FE model under mid-span and diaphragm wheel loading are shown in 

Figure 5. It was observed that the maximum stress points were always located at the weld-
ing joint of the U-ribs and transverse diaphragm. Since this area is prone to fatigue cracks 
under cyclic load, this location is taken as the area of concern. 

  
(1) (2) 

Figure 5. Stress state of the bridge deck (unit: MPa). (1) Mid-span loading; (2) diaphragm loading. 

The stress state results of FE model are listed in Table 3. 

Table 3. Stress results of FE model. 

Transverse 
Loading Posi-

tions 

Longitudinal 
Loading 
Positions 

Stress Out-
put  Sx (MPa) Sz (Mpa) Mises (Mpa) 

Across the 
U−ribs 

Mid−span Min −32.28 −24.03 2.132 
Max 35.84 44.41 86.96 

Diaphragm Min −17.17 −13.73 1.90 
Max 30.06 10.28 103.9 

On the U−ribs Mid−span Min −27.93 −29.38 1.902 
Max 48.57 39.87 104.6 

Figure 4. Wheel loading positions. (1) Wheel load in the transverse direction (unit: mm); (2) wheel
load in the longitudinal direction (unit: mm).

Metals 2022, 12, x FOR PEER REVIEW 5 of 11 
 

 

 
(2) 

Figure 4. Wheel loading positions. (1) Wheel load in the transverse direction (unit: mm); (2) wheel 
load in the longitudinal direction (unit: mm). 

The vehicle load index was obtained from specification (JTG D64-2015) [25]. The 
pavement layer was 55 mm, and taking the projected area from angle of 45°, the wheel 
loading area is (7.1 × 3.1) m2, and the single wheel load is 120 kN. Hence, a single wheel’s 
loading pressure on the bridge deck is 0.2726 GPa. 

3.3. FE Analysis 
The results of FE model under mid-span and diaphragm wheel loading are shown in 

Figure 5. It was observed that the maximum stress points were always located at the weld-
ing joint of the U-ribs and transverse diaphragm. Since this area is prone to fatigue cracks 
under cyclic load, this location is taken as the area of concern. 

  
(1) (2) 

Figure 5. Stress state of the bridge deck (unit: MPa). (1) Mid-span loading; (2) diaphragm loading. 

The stress state results of FE model are listed in Table 3. 

Table 3. Stress results of FE model. 

Transverse 
Loading Posi-

tions 

Longitudinal 
Loading 
Positions 

Stress Out-
put  Sx (MPa) Sz (Mpa) Mises (Mpa) 

Across the 
U−ribs 

Mid−span Min −32.28 −24.03 2.132 
Max 35.84 44.41 86.96 

Diaphragm Min −17.17 −13.73 1.90 
Max 30.06 10.28 103.9 

On the U−ribs Mid−span Min −27.93 −29.38 1.902 
Max 48.57 39.87 104.6 

Figure 5. Stress state of the bridge deck (unit: MPa). (1) Mid-span loading; (2) diaphragm loading.

The stress state results of FE model are listed in Table 3.
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Table 3. Stress results of FE model.

Transverse Loading Positions
Longitudinal

Loading
Positions

Stress Output Sx (MPa) Sz (Mpa) Mises (Mpa)

Across the U−ribs
Mid−span Min −32.28 −24.03 2.132

Max 35.84 44.41 86.96

Diaphragm Min −17.17 −13.73 1.90
Max 30.06 10.28 103.9

On the U−ribs
Mid−span Min −27.93 −29.38 1.902

Max 48.57 39.87 104.6

Diaphragm Min −27.62 −17.76 6.73
Max 41.23 14.67 101.4

Between the U−ribs
Mid−span Min −31.10 −24.46 2.049

Max 37.45 46.31 92.29

Diaphragm Min −28.58 −16.09 5.201
Max 36.87 11.22 101.1

Using stress-state data in the Table 3, we can see that the maximum stress is 104.6 MPa,
while the most unfavorable wheel loading position was on the U-ribs of mid-span loading.

4. Fatigue Tests
4.1. Specimen Design

Based on the FE analysis, a single U-rib was selected for the fatigue specimen, and
the loading was on the U-rib. The fatigue specimen design was fabricated according to
the design of the Mingzhu Bay bridge; the height and length were 560 mm and 600 mm,
respectively. The thickness of the bridge deck was 16 mm; the welded seam was 8 mm in
width. An extra steel pad and stiffener were welded to the bottom to maintain the stability
of the loading. The steel grade was Q370qD, and the welding wire and process were the
same as the Mingzhu Bay Bridge. The dimension details are shown in Figure 6.
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4.2. Static Loading

The objective of static loading was to validate the FE model, which was a three-span,
three-U-rib OSD structure. Since the fatigue wheel load was in the elastic range, the static
loading and unloading procedure involved 50 kN increments to 350 kN and decreases
to 50 kN. The strain gauges were distributed at the concerning points. The strain gauge
arrangement is shown in Figure 7.
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Figure 7. Strain gauge arrangement.

The strain was converted, and the comparisons between tests and the FE model are
shown in Figure 8.
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Figure 8. Stress comparison between test and FE model. (1) Strain gauge 1; (2) strain gauge 2;
(3) strain gauge 3; (4) strain gauge 4.

It can be seen from the Figure 8 that the stress state and distribution between the FE
model show great agreement with the test data.
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4.3. Fatigue Loading

An MTS hydraulic fatigue test machine (Mechanical Testing & Simulation, Eden, MN,
USA) was used for the fatigue test loading, as shown in Figure 9. The cyclic load was
120 kN with an amplitude of 80 kN and 100 kN, and the cyclic frequency was 5 Hz.
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It can be seen from Table 4 and Figure 10 that the cracks initialed at the concerned area
of welded toe 1 and extended to both sides of the weld seam at three million cycles. The
crack was about 2 mm wide and 20 mm long.

5. Fatigue Performance and Discussion

The fatigue performance of OSD is dependent on a variety of different parameters,
such as the steel grade, welding quality, traffic load conditions, and design. It has been
generally accepted that stress amplitudes under certain values, and the fatigue life could
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be treated as infinite. A high stress state or concentration increases the potential of fatigue
cracks. Hence, the fatigue cracks were usually found at a higher stress state position around
welding seams in the real construction. In other words, a higher stress state under the most
unfavorable wheel load condition should receive more attention. For the FE model of the
steel deck, the stress was extracted from A to B, as shown in Figure 11a. Stress values at
toe 1, toe 2, and the welding root are shown in Figure 11b.
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Figure 11. Area of concern and welded seam stress. (a) Schematic diagram of welded seams;
(b) seam stress.

From A to B, the stress of the welding seam decreased gradually, and the stress at
toe 1 and toe 2 was 180 MPa and 130 MPa, which was located 35 mm and 55 mm at the
lower end of the U-rib and diaphragm. The stress of the welding root was around 80 MPa
and was distributed evenly from A to B, which indicates that the potential fatigue crack
area was at weld toe 1 35–55 mm from the arc cut-out location.

As seen in the experiment’s phenomena, fatigue cracks also occurred at the weld-
ing seam between the U-rib and diaphragm, which were around the arc cut-out area of
OSD. The fatigue cycles of all specimens were over two million in number and met the
specification requirement.

6. Conclusions

In this paper, based on the Mingzhu Bay steel arch bridge, the fatigue performance of
an orthotropic steel deck was studied through numerical and experimental analysis. The
following conclusions were obtained: the fatigue crack was initialed at the point of concern,
which was located 35–55 mm from the welding position at the lower end of the U-rib and
diaphragm and then expanded along the weld to both sides. The crack was about 2 mm
wide and 20 mm long at three million load cycles. The fatigue cycles of the specimens
exceeded two million in number and satisfied the Specification for Design of Highway
Steel Bridge (JTG D64-2015). The bridge deck of the Mingzhu Bay Bridge meets the fatigue
requirements, but the welding seam of the U-rib and diaphragm is in a dangerous location
of fatigue, so attention should be paid to the welding quality. The limitations of this paper
are that the number of tests was inadequate, and the conclusions were based on the most
unfavorable scenario.
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