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ABSTRACT Magnetostrictive thin-film coated Surface Acoustic Wave (SAW) devices were promising for

sensing magnetic field owing to their superior features as micro-size, fast response, and high sensitivity

originated from the magnetostrictive effect. However, the magnetostriction nature in magnetostrictive thin-

film causes significantly mechanical fatigue in service, deteriorating the sensor performances. In this work,

the fatigue phenomenon in magnetostrictive coating was underlined by characterizing the prepared FeCo

thin-film coated magnetic device cyclically. Obvious shedding was observed in FeCo coating after cyclic

testing and the magnetic-sensitivity decreases significantly. One of the reasons is the weak adhesion of

FeCo thin-film towards the substrate. As an available way allowing enhancement of adhesion, a Cr thin-

film was employed as the transition-layer to weaken the mechanical fatigue. However, it accompanied by the

issue of the reducedmagnetostrictive coefficient and the obstruction in magnetostrain-tranfer to piezoelectric

substrate. As a result, the slump in sensitivity was observed. To address such issues, a design of dotted-pattern

with Cr transition layer was employed to build the SAW based magnetic-device. High magnetic-sensitivity

and excellent long-term stability were achieved because of the release of coercive force in FeCo dots and

enhancement of the FeCo adhesion to the substrate.

INDEX TERMS Dotted-pattern, mechanical fatigue, magnetostrictive effect, SAWmagnetic sensor, Cr tran-

sition layer.

I. INTRODUCTION

The magnetostrictive materials attracted much attention for

sensing magnetic field owing to their high magnetic sen-

sitivity, fast response, high preparation efficiency, and low

cost [1]–[5]. Excellent sensor performances were achieved

from the sensor prototypes employing some magnetostric-

tive materials as FeGa, Ni, FeCo [6]–[9]. Interestingly,

a new configuration of magnetic sensor was built by deposit-

ing a magnetostrictive thin-film on top of surface acoustic

wave (SAW) device [10], [11]. The magnetostrain behav-

ior originated from the magnetostrictive effect modulates
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the SAW propagation velocity, and corresponding frequency

shift was collected to evaluate the magnetic field to be

detected. Some interesting results were constantly emerging.

A magnetic-sensitivity of 31.5 ppm/mT was achieved from

the sensing device with layered structure of Ni/Al2O3/IDT/

LN-Y128◦ when device operating at 815 MHz [12]. Larger

shift of 0.64% in SAW velocity was predicted from a

500 nm Galfenol thin-film coated SAW device operating

at 158 MHz [13]. Analogously, a maximum SAW velocity

shift close to 20% was obtained from a multilayered sensing

structure of TbCo2/FeCo/LiNbO3 for the shear horizontal

wave mode as a ratio close to 1 between magneto-elastic film

thickness and wavelength [14]. Recently, high frequency sen-

sitivities of 8.3 kHz/mT, 17.72 kHz/mT and 21.17 kHz/mT
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TABLE 1. The sputtering process parameters for FeCo thin-film
deposition.

were achieved from the patterned FeCo thin-film coated SAW

devices operating at 150 MHz [15]–[17].

However, the mechanical nature of in magnetostriction

makes the magnetostrictive thin-film suffering from signifi-

cantly mechanical fatigue, which was overlooked in previous

studies. To address the fatigue phenomenon of magnetostric-

tive thin-film in service, some specific experiments were

conducted in this work by characterizing proposed FeCo thin-

film coated SAWdevices, and corresponding coping way was

advised, that is, a design of dotted-pattern with Cr transi-

tion layer was proposed to build the SAW based magnetic-

device, the magnetic-sensitivity and fatigue were improved

effectively.

II. SENSING DEVICE PREPARATION

A SAW based sensing device with a delay line pattern

was developed on 128◦YX LiNbO3 piezoelectric wafer by

using the standard photo-lithographic technique. High veloc-

ity of 3492 m/s and larger piezoelectric coefficient of ∼5%

were exhibited in LiNbO3 wafer. The operation frequency of

the sensing device was set to 150MHz. Single phase unidirec-

tional transducers (SPUDTs) were used to structure the two

300nmAl-transducers to feature low insertion loss [18]–[20].

Corresponding electrode widths in SPUDTs were designed

to ∼3 µm and 6 µm. After the Al electrodes preparation,

a SiO2 thin-film (50 nm) was coated onto the device surface

by utilizing the PECVD to protect the electrode in process of

FeCo thin-film deposition.

Then, a 500 nm FeCo thin-film was sputtered on top of

the cleaned SAWdevices [21], [22]. The Correspondingmag-

netron sputtering parameters are listed in Table. 1. For com-

parison, four different sensing devices were prepared, that

is, FeCo thin-film coated device, FeCo/Cr thin-film device,

FeCo dot-array coated device, and FeCo/Cr dot-array coated

device. The dotted-pattern was conducted by employing the

overlay process, and corresponding array interval was set

to 3λ×4λ (λ defines the wavelength). 50 nm Cr thin-film

was deposited as the transition layer prior to FeCo thin-film

deposition.

Fig. 1 (a) and (b) showed their photographs and schematic

drawings of the prepared sensing devices, respectively.

FIGURE 1. (a) Photographs and (b) schematic drawings of prepared
sensing devices coated with FeCo thin-film and FeCo dot-array.

FIGURE 2. The cross-sectional morphology of (a) FeCo thin-film and
(b) FeCo/Cr thin-film.

Clear FeCo thin-film and dot-array were observed between

the transducers of the delay line configurations. Fig. 2 denotes

the cross-sectional morphology of FeCo and Cr transi-

tion layer, and corresponding thicknesses are measured as

∼500 nm and ∼50 nm, respectively.

Also, the 2D and 3D atomic force microscope (AFM) char-

acterization was conducted to the FeCo thin-film as depicted
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FIGURE 3. The (a) 2D and (b) 3D AFM characterization of the FeCo
thin-film surface, and (c) the height distribution curves.

in Fig. 3, and the three height distribution curves of sections

marked in the 2D AFM are shown in Fig. 3 (c). The surface

height distribution of the line marked by the two red ’+’

in Fig. 3 (b) corresponds to the red curve in 3 (c), which

are the same for green and blue markers. The film surface

is relatively flat and smooth, and the corresponding surface

average roughness Rq is evaluated as ∼1.3 nm.

III. EXPERIMENTS AND DISCUSSIONS

A. EXPERIMENTAL SETUP

The proposed sensing device was packaged and connected

into the differential oscillation loop depicted in Fig. 4.

FIGURE 4. The sensing circuit with packaged sensing devices.

TABLE 2. Average magnetic-sensitivity and hysteresis error of four type
sensing devices.

The mixed frequency signal differenced by the naked device

(reference device) was collected as sensing signal to fea-

ture excellent temperature compensation. Then, using the

Helmholtz coil system [23], the proposed sensing devices

were characterized, and the fatigue phenomenon was demon-

strated experimentally.

B. SENSITIVITY EVALUATION

The typical sensor responses of proposed sensing devices in

the first few cyclic tests were pictured in Fig. 5. The x-axis

denotes the test time and variedmagnetic field intensity (from

0 to 20 mT and 20 mT to 0) with interval of 2 mT. The

corresponding average magnetic-sensitivity and hysteresis

error in the first 5 tests were concluded in Table 2. Each

applied magnetic field intensity was kept for ∼30 seconds,

and corresponding mean value was collected and denoted by

the circles ‘o’ in Fig. 5 to describe the frequency response.

Obviously, the FeCo dot-array coated device features higher

magnetic-sensitivity and lower hysteresis error. The reason

lies in the release of coercive force and enhancement of the

magnetostrain in FeCo thin-film by the patterned design.

However, the existence of Cr transition layer weakens the

magnetostrain transfer, and lowered the magnetic-sensitivity.

To explore the reasons, the hysteresis loops and magne-

tostrictive curves of the four prepared sensing devices were

measured by using the alternating gradient magnetometer

(model AGM2900-04C), as shown in Fig. 6. It indicates

that the coercive (Hc) and magnetostrictive coefficient (β)

of thin-film and dot-array was reduced after adopting the

Cr transition layer, that is, Hc−FeCothin−film(126.2 Oe) >

Hc−FeCo/Crthin−film(101.5 Oe) > Hc−FeCodot−array (97 Oe) >

Hc−FeCo/Crdot−array (85.7 Oe), βFeCodot−array(119.3 ppm) >
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FIGURE 5. The measured sensor responses from the proposed SAW
devices coated with (a) FeCo thin-film and FeCo dot array, (b) FeCo/Cr
thin-film and FeCo/Cr dot array.

βFeCothin−film(102.6 ppm) > βFeCo/Crdot−array (92.1 ppm) >

βFeCo/Crthin−film (80.2 ppm), thereby explaining the decrease

in hysteresis error and magnetic-sensitivity of the sensors

with Cr transition layer. Additionally, the FeCo dot-array

enhances significantly the magnetic-sensitivity and reduces

the hysteresis error over the FeCo thin-film, which is the

result of enlarged magnetostrictive properties and reduced

coercivity in the FeCo dots.

C. FATIGUE ANALYSIS OF FECO THIN-FILM

COATED DEVICES

There may be significantly invalidation in magnetostrictive

thin-film because of the fatigue phenomenon arisen by the

magnetostriction behaviors. To demonstrate the fatigue phe-

nomenon, 100 cyclic testing runs were conducted on three

sets of devices deposited FeCo thin-film and FeCo/Cr thin-

film (marked with #1, #2, #3) with a 10-minute interval.

FIGURE 6. (a) The measured hysteresis loops and (b) magnetostrictive
curves of FeCo thin-film, FeCo/Cr thin-film, FeCo dots and FeCo/Cr dots.

FIGURE 7. The measured relationship of magneto-sensitivity and cyclic
testing runs from the FeCo thin-film coated sensing devices.

Figure 7 denotes the relationship between their magneto-

sensitivity and cyclic testing runs. With increases in cyclic

testing runs, a marked decline was observed in the magneo-

sensitivity of FeCo thin-film coated devices. Interestingly

enough, the alleviation in decays of magneto-sensitivity was

observed when Cr thin-film was employed. It is obvious

that the Cr thin-film contributes well to adhesion of FeCo
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FIGURE 8. The surface morphologies of the 1# FeCo thin-film in cyclic
testing runs, (a) 0, (b) 30, (c)60 and (d) 100 runs.

thin-film to the substrate, and suppresses the fatigue in FeCo

thin-film.

Corresponding evidences are given by the SEM pictures of

FeCo thin-film in cyclic testing. The unloaded 1# FeCo thin-

film was pictured in Fig. 8 (a), and the surface morpholo-

gies after 30, 60, and 100 cyclic testing runs are depicted

in Fig. 8 (b-d). As the cyclic testing runs increases, the obvi-

ous destruction in FeCo thin-film indicated by the black areas

in the picture gradually increased. The reason lies in the mag-

netostrictive strain in FeCo film interacts mechanically with

the substrate continuously, resulting FeCo thin-film shedding

from the substrate in service.

The more credible evidence was produced by the AFM

pictures of the FeCo thin-film, as shown in Fig. 9. Compared

with the AFM picture of the unloaded 1# FeCo thin-film

in Fig. 3(a), several distinct irregularities of ‘‘pits’’ with

height equivalent to 1# FeCo film thickness were observed

after 15 cyclic testing runs (Fig. 9(a)), that is caused by

the uneven force in the film arisen from multiple mag-

netostriction, leading to a slump in magnetic-sensitivity.

Fig. 9(b) denotes clear ridge shapes with height of 555.1 nm

originated from the stretching strain in FeCo thin-film after

multi-testing, and this leads to fall off and cracks of the

thin-film [24], [25].

FIGURE 9. The surface morphologies of the 1# FeCo thin-film after
15 cyclic testing runs: (a) pits and (b) cracks.

The Cr thin-film has altered thing somewhat. As we can

see, the SEM pictures of the FeCo surface after 30, 60,

and 100 cyclic testing runs from the 1# FeCo/Cr thin-film

coated devices were offered in Fig. 10. The thin-film surface

keeps perfect uniform, and there are almost no any cracks or

protrusions observed in the FeCo film. Obviously, the Cr thin-

film enhances effectively the adhesion of the FeCo film on the

substrate, and weakens the mechanical fatigue in the mag-

netostrictive thin-film. But, it is at the expense of sensitivity

because of the weakened magnetostriction behavior.

D. FATIGUE ANALYSIS OF FECO/CR DOT-ARRAY

COATED DEVICES

As mentioned in Fig. 11, 100 cyclic testing runs were

performed on three sets of devices deposited (marked

with #1, #2, #3) FeCo dot array and FeCo/Cr dot array.

The dotted-pattern on magneostrictive thin-film improves

well the magneto-sensitivity, and larger sensitivity value of

∼12 kHz/mT was achieved from the FeCo dot-array coated

device in the first few tests. However, it also suffers from the

mechanical fatigue, with the increase of testing runs, a sharp

drop in sensitivity was observed. This illustrates more serious

shedding arisen from stretching strain in FeCo dots. More-

over, the measured results from the FeCo/Cr dot-array coated
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FIGURE 10. The surface morphologies the 1# FeCo/Cr thin-film in cyclic
testing runs, (a) 30, (b) 60, and (c) 100 runs.

FIGURE 11. The measured relationship of magneto-sensitivity and cyclic
testing runs from the FeCo dot-array coated sensing devices.

devices were in marked contrast to that from the devices with

FeCo dot-array. The magneto-sensitivity was very steady in

the testing runs (∼6 kHz/mT).

Moreover, Fig. 12 shows the SEM pictures of the 1# FeCo

dot-array and 1# FeCo/Cr dot-array in cyclic testing runs,

respectively. Obvious destruction in the FeCo dot-array was

observed, and instead, the FeCo/Cr dot-array surface keeps

perfect uniform. It means the mechanical fatigue was alle-

viated significantly because of the adhesion improvement by

employing the Cr-transition layer. The average sensitivities in

100 cyclic testing runs of the prepared sensing devices were

also concluded in Table 2. Larger average sensitivity was

FIGURE 12. The surface morphologies of the 1# FeCo dot-array and 1#
FeCo/Cr dot-array in cyclic testing runs, (a), (c) 0 and (b), (d) 60 runs.

achieved from the FeCo/Cr dot-array coated devices. Hence,

patterned design and transition layer were advised to build the

SAWmagnetic sensing devices to achieve high sensitivity and

excellent stability.

IV. CONCLUSION

In this paper, the mechanical fatigue of FeCo thin-film

coated SAW devices for sensing magnetic field was inves-

tigated. Experimental results indicate that obvious shedding

are observed from the FeCo thin-film after cyclic testing,

as the result, a slump occurs at the magneto-sensitivity

after cyclic testing runs. Interestingly, it can be improved

by employing the Cr transition layer. There are almost no

shedding in the optical observation, and only slightly shift

in magnetic-sensitivity in cyclic testing. It means the Cr

transition layer improves well the adhesion of the FeCo thin-

film. But a downside is at expense of magneto-sensitivity.

The reason lies in the reduced magnetostrictive coefficient

and the limitation of the magnetostrain-transfer in FeCo thin-

film to substrate, and corresponding interactionwith the SAW

propagation was weakened. To address such issues, a dotted-

pattern and Cr transition layer was proposed for building

SAW based magnetic-device, high magnetic-sensitivity and

good fatigue were achieved in the experiments.
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