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Fatigue constrained topology optimization

Erik Holmberg · Bo Torstenfelt · Anders Klarbring

Abstract We present a contribution to a relatively un-

explored application of topology optimization: struc-

tural topology optimization with fatigue constraints.
A probability based high-cycle fatigue analysis is com-

bined with principal stress calculations in order to find

the topology with minimum mass that can withstand

prescribed variable-amplitude loading conditions for a
specific life time. This allows us to generate optimal

conceptual designs of structural components where fa-

tigue life is the dimensioning factor.

We describe the fatigue analysis and present ideas
that make it possible to separate the fatigue analysis

from the topology optimization. The number of con-

straints is kept low as they are applied to stress clus-

ters, which are created such that they give adequate
representations of the local stresses. Optimized designs

constrained by fatigue and static stresses are shown and

a comparison is also made between stress constraints
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E-mail: erik.holmberg@liu.se
Present address:

Saab AB,
SE 581 88 Linköping, Sweden
E-mail: erik.holmberg@saabgroup.com

B. Torstenfelt
Division of Solid Mechanics, Department of Management and
Engineering, Institute of Technology, Linköping University,
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based on the von Mises criterion and the highest ten-

sile principal stresses.

The paper is written with focus on structural parts
in the avionic industry, but the method applies to any

load carrying structure, made of linear elastic isotropic

material, subjected to repeated loading conditions.

Keywords Topology optimization · Fatigue con-

straints · Stress constraints · Principal stress ·

Eigenvalues · Clusters

1 Introduction

In this paper we introduce high-cycle fatigue constraints
in topology optimization of load carrying structures.

Our aim is to achieve a design with minimum mass

where both the fatigue life due to repeated loading con-

ditions as well as static stresses are considered. The in-

tended use is in a conceptual design phase, where the
general shape of a structural part is sought. Thus, the

fatigue and static stress constraints used in this paper

are not intended to replace the final dimensioning or to

validate the design, but are intended to generate a con-
ceptual design with minimum mass that will not require

major modifications in later design phases.

The traditional formulation in topology optimiza-

tion, where the stiffness is maximized for a prescribed

mass, has some advantages, such as computational ef-
ficiency and as a tool to find optimal load paths with

respect to stiffness. However, the solutions often con-

tain large stress concentrations and will require major

design changes in order to fulfil requirements on stress

and fatigue. The final design might therefore be far from
an optimal minimum mass design.

In topology optimization the finite element method

is used to discretize the problem and a design variable
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is connected to each finite element that belongs to the

design domain, see e.g. [7]. We want to have a so-called

black-and-white final design where the design variables

represent holes (white) or solid material (black). There-

fore, intermediate design variable values are penalized
in order to make them unfavorable in terms of stiff-

ness and stress. We use SIMP (Solid Isotropic Mate-

rial with Penalization), as suggested by Bendsøe [3],

to decrease the stiffness for intermediate design vari-
able values and a similar penalization that increases

the stress. The stress penalization was discussed in the

qp-approach by Bruggi [4], but it is here used in the

form presented by Le et al. [19] and further discussed

by Holmberg et al. [15].

A frequently occurring discussion in the literature

regarding stress constraints is the singularity phenomenon,

i.e. increasing stresses when the design variables ap-

proach zero, which prevents holes from being created,
see for example Kirsch [18], Rozvany and Birker [29],

Guo et al. [13] and Cheng and Guo [6] among others.

This problem is avoided with the stress penalization

used in this paper, which was shown in Holmberg et al.

[15].

Fatigue is a local phenomenon, which implies that

fatigue constraints need to be considered in each point.

However, local constraints are very expensive in terms

of computational time and using a constraint in each
stress evaluation point is not an option except for very

small problems, see Duysinx and Bendsøe [10]. There-

fore, we use a clustered approach as presented in Holm-

berg et al. [15], which is somewhat similar to the ap-

proaches by Le et al. [19] and Paris et al. [26]. In the
clustered approach, the stress evaluation points are grouped

into a relatively low number of clusters and one con-

straint is then applied to each cluster, instead of each

stress evaluation point.

We use a modified P-norm for creating a clustered
stress measure for each cluster. The modification is such

that the clustered stress measure approaches the max-

imum local stress when the clusters are updated based

on the current stress level. This stress measure has been
used successfully in Holmberg et al. [15] and [16], where

non-differentiability due to the cluster update is dis-

cussed. A main difference regarding the clustered stress

measure in this paper is that we, for reasons discussed

in Section 5, use the highest principal stresses instead of
von Mises stresses. The choice of clustered stress mea-

sure is not crucial for the method developed in this

paper, several other techniques for creating a global or

clustered stress measure are presented in the literature:
Paŕıs et al. [26] and Wang and Luo [35] use stress mea-

sures based on the Kreisselmeier-Steinhauser function,

Le et al. [19] use a normalization function which scales

a P-norm measure such that it better represents the

maximum local stress. Stress based problems are also

solved in a level-set framework by Allaire and Jouve [1]

and Zhang et al. [36] among others.

Fatigue has been a well known phenomenon for a

very long time and scientific reports have been pub-

lished since the first half of the nineteenth century.

However, fatigue constraints have not been used that
extensively in structural optimization problems. Some

authors that have used structural optimization in order

to find designs that fulfil fatigue life aspects are for ex-

ample Kaya et al. [17], where a failed clutch fork was in-
vestigated and compliance based topology optimization

followed by shape optimization by the response surface

method was used to achieve a design with a lower von

Mises stress. The fatigue analysis was made using the

software MSC Fatigue [23] and a constant amplitude
load curve. Mrzyglod and Zielinski [21] made a shape

optimization of a suspension arm with multiaxial high-

cycle fatigue constraints, using Dang Van’s criterion.

The authors evaluated different criteria in [22] and dis-
cussed the implementation in [20]. A fatigue analysis

using the software FEMFAT was integrated into the

optimization software TOSCA in [12], where shape and

topology optimization was made with fatigue consid-

erations. Desmorat and Desmorat maximized the fa-
tigue life, considering elasto-plastic low-cycle fatigue,

in a 3D topology optimization problem in [9]. Fatigue

constraints are also available for topology optimization

in Optistruct [24].

The motivation for this paper is that topology op-

timization in conceptual design phases allows for much

greater mass reductions than shape and size optimiza-
tion in later design phases. Introducing fatigue con-

straints and stress constraints, i.e. requirements that

later will be used when the structural part is dimen-

sioned, in the topology optimization, allows for more
mature designs that do not have to undergo severe mod-

ifications in order to become a final design. This paper

will not focus on mechanisms behind the fatigue phe-

nomenon, such as material aspects, the influence of dif-

ferent load ratios etc. We use a fatigue analysis as a
tool to find a structure that can endure repeated load-

ing conditions without failure.

The paper is organized as follows: an overview of
the considered fatigue methodology is presented in Sec-

tion 2 and in Section 3 we explain how the fatigue anal-

ysis is used in the optimization. The optimization prob-

lem is formulated in Section 4 and the clustered stress
measure is discussed in Section 5. Derivation of the sen-

sitivity analysis, including a discussion on eigenvalue

derivatives, is presented in Section 6. Finally, examples
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Fig. 1: Haigh diagram which is represented by the op-

erators Hl in (3). The curves correspond to different

allowable number of cycles, N

are shown in Section 7 and conclusions are drawn in

Section 8.

2 Fatigue analysis

We use a traditional high-cycle fatigue methodology,

see for example Suresh [31] or Dahlberg and Ekberg [8],

where the damage for different loads are accumulated
using Palmgren-Miner’s rule and no distinction is made

between crack initiation, crack propagation and fatigue

failure. The loads are given by a variable-amplitude

load spectrum, as discussed in Section 2.1, and mate-

rial data is given by Wöhler and Haigh diagrams, which
are based on fatigue tests. A Wöhler diagram specifies

the number of cycles to fatigue failure as a function of

the stress amplitude, i.e. the diagram represents a con-

stant load ratio, R = Fmin/Fmax. A Haigh diagram, see
Figure 1, describes the relationship between the mean

stress and the stress amplitude for specific number of

cycles; thus, it represents a series of Wöhler diagrams

for different load ratios.

2.1 Load spectrum

When an aircraft is designed, all missions it is intended
to fulfil are estimated. For a fighter aircraft, a mission

can be for example training, combat or show and all

missions are usually flown a large number of times. The

log (n)

f
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Fig. 2: Load spectrum representing the load factor f on

the ordinate and the logarithm of the number of cycles
n on the abscissa. It represents the operators Sl in (2)

and also provides nl

loads on the aircraft during each mission and for its en-

tire life are determined. Local load spectra can then be

created, so that all loads for the part that is consid-
ered for optimization can be estimated. How the loads

are determined is beyond the scope of this paper, we as-

sume that the loads are known and that load pairs have

been identified from peak and trough values. An exam-
ple of a load spectrum is shown in Figure 2. The load

spectrum specifies the load factor f , the corresponding

load at each load level is then mgf , where m is the

mass and g is the acceleration of gravity. We apply a

unit load in the finite element analysis (FE-analysis)
and the actual loads for the fatigue analysis are then

given by the load spectrum. The same unit load is used

for the static stress analysis; the allowable static stress

limit is therefore divided by the magnitude of the static
load in order to get the corresponding stress limit for a

unit load.

2.2 Damage accumulation at a point

The fatigue damage at a point of the structure is de-

termined as follows: the stress response for a unit load

is determined by an FE-analysis, this can be seen as an
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operator FE that maps a unit load Funit in the current

design x to a corresponding stress σunit (x), as

σunit (x) = FE (Funit,x) . (1)

We only consider linear elastic materials, so σunit (x)

is linearly scaled by the load levels in the spectrum.
The load levels in each load pair l are characterized by

the corresponding mean stress σmean
l (x) and amplitude

stress σamp
l (x). This is expressed by operators Sl, one

for each load pair, written as

(σmean
l (x) , σamp

l (x)) = Sl (σunit (x)) . (2)

The load spectrum also gives the number of cycles nl

for each load pair, see Figure 2. The allowable number

of cycles Nl are then determined from a Haigh diagram,

by the operators Hl, such that

Nl = Hl (σ
mean
l (x) , σamp

l (x)) = Hl (Sl (σunit (x))) ,

(3)

where (2) has been used in the second step.
Palmgren-Miner’s rule, [31], [8], is then used to cal-

culate the accumulated damage D by comparing the

actual number of cycles to the allowable number of cy-

cles for all L load pairs in the spectrum. Thus,

D (σunit (x)) =

L
∑

l=1

nl

Nl

=

L
∑

l=1

nl

Hl (Sl (σunit (x)))
. (4)

Fatigue failure is expected to occur if D = 1, but gen-

erally a lower value is used for safety, i.e. D ≤ D ≤ 1,

where D is the allowable cumulative damage.

2.3 Fatigue data

In addition to the load and stress levels, the fatigue

life depends on several factors: the surface roughness,
the surface treatment and the environment affect the

surface of the part and thus the risk of a crack initia-

tion. Further, stress concentration factors, Kt, have a

prominent effect on the fatigue life and the size of the
influenced volume, compared to the volume of the test

specimen, also has an effect on the expected life.

The allowable number of cycles for different load

pairs are determined from (3) using a Haigh diagram,

which is based on numerous tests performed on polished
test specimens and constructed so that the probability

of failure should be below a certain percentage. The di-

agram is then reduced with respect to the risk of scat-

ter in the material and due to the factors mentioned
above, in order to obtain a diagram that corresponds

to the state in the actual point of interest. In the topol-

ogy optimization, we do not want to treat these factors

as variables and some simplifications are therefore in

order: the surface roughness depends on what type of

machining that has been used, and it is assumed to

be constant for the whole structure, the surface treat-

ment and the environment it will be subjected to is
also likely to be the same for the entire structure and

the size influence factor is neglected. For treating stress

concentrations, different diagrams are constructed for

different Kt-factors, using notched test specimens. Due
to the importance of the Kt-factor it seems reason-

able to try to give at least a rough estimation of it in

each stress evaluation point, for example by comparing

the lengthwise gradient with the gradient in different

notches. However, in this paper we will not put any ef-
fort into estimating Kt-factors. Instead a conservative

approach (in the sense that fatigue is less likely to oc-

cur) is used; in most relevant structures a fatigue failure

occurs at a stress concentration, if we therefore treat all
stresses as if they belong to a point where Kt = 1, we

know that we are underestimating the fatigue life. This

is conservative because for a stress concentration, the

volume affected by the higher stress is small, it is there-

fore a low probability that a material defect exists in
that volume. For the same stress level and without a

stress concentration, the affected volume is greater and

the probability of failure becomes higher. Thus, using

the stress from the FE-analysis, that might have been
in a stress concentration, together with data for Kt = 1

will be conservative, which is preferable in the concep-

tual design phase. However, to assume that no stress

concentration exists might be too conservative and re-

sult in unnecessarily heavy designs. Therefore, instead
of Kt = 1, we use material data for Kt = 1.5 in this

paper.

With these approaches, the design dependence can

be removed from the fatigue analysis, which is then only
dependent on the stress. This implies that the fatigue

data can be specified prior to the optimization and then

considered as constant.

3 Optimization with respect to fatigue

We focus our attention on structural parts on a mil-

itary aircraft, where the loads have been determined

and compiled into a load spectrum. The loads are due

to masses which are accelerated by manoeuvres, land-
ings, vibrations etc. and the load spectrum contains all

loads for the entire life of the aircraft. In the aircraft

industry, fatigue life is often expressed in terms of flight

hours and an aircraft is designed for a specific number
of flight hours. Thus, there is no need to design parts

for infinite life. Instead, structural optimization can be

used to design the part such that fatigue will not occur
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Fig. 3: Flow scheme for fatigue constraints

during the specific finite life, or before predetermined
service intervals, i.e. a so-called Safe-Life approach is

used.

We note that optimization with respect to infinite

life can be made if the allowable fatigue stress is con-

strained below the endurance limit.

In topology optimization, a relatively coarse mesh

and elements with linear shape functions are often used

due to computational cost considerations. The stress
field calculated from such a mesh is therefore not that

accurate and may not be adequate for fatigue analysis.

However, as we are designing a structure in the concep-

tual design stage, the importance lies in avoiding stress

concentrations and to size the structural members with
respect to the critical fatigue stress. As mentioned in

the introduction, the fatigue analysis in the optimiza-

tion is not intended to replace a final fatigue analysis.

3.1 Fatigue constraints

In order to use fatigue life as a constraint in structural
optimization, the fact that the part is designed for a

specific life time can be used to determine a criterion

for fatigue failure.

We perform the fatigue analysis and the topology

optimization in two separate steps, which is possible if

the fatigue factors are fixed, as discussed in Section 2.3.

First, we seek the highest stress value that gives an al-

lowable cumulative damage in (4). This stress, which is
not a function of the design, is denoted the critical fa-

tigue stress, σf and it is then used as constraint limit in

the topology optimization, where we seek the design x.

That is, we convert the fatigue constraint into a stress
constraint. The flow scheme is shown in Figure 3.

The critical fatigue stress for a unit load is found

by solving a problem where σf is the variable and the

objective is to maximize it subjected to a constraint on

the cumulative damage in (4). The problem reads

(Pcrit)



















max
σf

σf

s.t.

{

L
∑

l=1

nl

Hl

(

Sl

(

σf
)) ≤ D.

The problem can be solved as an optimization problem

or, as (Pcrit) only needs to be solved once, σf can be

obtained manually by running the fatigue analysis, (2)-

(4), for different stress values.

For completeness we note that if fatigue factors, e.g.

Kt-factors, are to be variable in the optimization prob-
lem, we may use (4) as constraint function and per-

form the fatigue analysis in every iteration, between

the FE-analysis and the topology optimization in the

flow scheme in Figure 3.

4 Problem formulation

Our main goal is to find a light weight structure. The

objective function is therefore to minimize the total
mass, i.e. the sum of the element masses me scaled by

the corresponding filtered variable value ρe (x), which

is connected to the design variables through a design

variable filter [5]. Using the design variable filter we
avoid checkerboard phenomena and mesh dependency

of the solution. In the design variable filter, the filtered

variable ρe (x) is created by weighting design variable

xe with neighbouring design variables, as

ρe (x) =

∑

k∈Ωe

wkxk

∑

k∈Ωe

wk

=

ne
∑

k=1

Wekxk, (5)

where ne is the number of design variables and the set

Ωe contains all the design variables within a given filter
radius r0, measured from xe. The number of nonzero

coefficients in Wek for a particular e will be the same

as the number of members in Ωe. The weight factor
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wk is linearly decreased with rk, which is the distance

between the centroid of design variable xk and xe, thus

wk =
r0 − rk

r0
.

The filtered variables ρ (x) are considered to be phys-

ical variables in the sense that they define the mass

and the stiffness, where the latter is penalized using
SIMP [3]. That is, we have a penalization function,

ηK (ρe (x)) = (ρe (x))
q
, that scales the solid material

expanded element stiffness matrices Ke. The penaliza-

tion factor q > 1 is usually, and in this paper, set to
q = 3. The global stiffness matrix K (ρ (x)) then be-

comes

K (ρ (x)) =

ne
∑

e=1

ηK (ρe (x))Ke. (6)

The equilibrium equation needs to be satisfied in each

optimization iteration. It reads

K (ρ (x))u = F , (7)

where u is the vector of nodal displacements and F

is a vector of prescribed external unit loads. We use

a nested formulation where the displacement vector is

solved for in the FE-analysis and thus is considered a

known function of the design variables, i.e.

u = u (x) = K−1 (ρ (x))F .

In addition to the fatigue constraint, a static stress

constraint based on the von Mises criterion is used, as
described by Holmberg et al. in [15]. The problem for-

mulation reads

(P)







































min
x

ne
∑

e=1

meρe (x)

s.t.



















σf
j (x) ≤ σf , j = 1, .., nfc

σs
i (x) ≤ σs, i = 1, .., nsc

ǫ ≤ xe ≤ 1, e = 1, .., ne,

where nfc is the number of fatigue constraints and nsc is
the number of static stress constraints. A small number

ǫ > 0 is used as lower bound on the design variables in

order to keep the stiffness matrix positive definite in (6).

The allowable static stress is σs and the corresponding
static stress measure for constraint i is denoted σs

i (x).

The fatigue stress measure σf
j (x) is defined in Section 5

and the critical fatigue stress σf is obtained by solving

(Pcrit).

5 Clustered fatigue stress measure

In this section we derive and discuss the fatigue stress
measure σf

j (x) that is used in this paper. We use the

same clustered approach that is used for static stress

constraints in Holmberg et al. [15], where a modified P-

norm is used to cluster the stresses from several stress

evaluation points to one value, which is then constrained.
Fatigue cracks are mainly initiated by shear stresses

and propagated by normal stresses. Crack initiation is

a phenomenon that usually occurs at the surface since

the highest stresses usually occur at the surface and as

it is subjected to environmental wear and might have a
rough finish. In this paper we consider 2D structures in

plane stress, which have a uniaxial stress state at the

boundaries. However, in a topology optimization prob-

lem, the boundaries are not well defined as the struc-
ture is obtained iteratively and as the boundaries are

blurred due to the filter. Therefore, all stress evaluation

points contribute to the clustered fatigue stress mea-

sures and we use the highest principal stress in each

point as stress measure. Further, as fatigue generally
does not occur for compressive stresses, only the ten-

sile stresses contribute to the clustered fatigue stress

measures.

The stress in each stress evaluation point is penal-

ized based on the value of the corresponding filtered
design variable, where the stress is increased for inter-

mediate design variable values. The penalization func-

tion

ηS (ρe (x)) = (ρe (x))
1

2 ,

was suggested in [19] and used also in [15], where it

proved to work well. The same stress penalization func-

tion is used in this paper and it is scaling the stress
vector which is calculated in the FE-analysis. The ex-

pression for the penalized stress vector reads

σa (x) = (ρe (x))
1

2 EBau (x) , (8)

whereE is the constitutive matrix andBa is the strain-
displacement matrix corresponding to stress evaluation

point a. The stress penalization is a function of ρe (x),

which is the filtered variable corresponding to the el-

ement to which stress evaluation point a belongs. An

element can have several stress evaluation points but
only one design variable.

We denote the highest tensile principal stress at a

point a by σ1
a (x) ≥ 0 and the clustered fatigue stress

measure for constraint j is then

σf
j (x) =





1

Nj

∑

a∈Ωj

(

σ1
a (x)

)p





1

p

, (9)
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where p is the P-norm factor, Ωj is the set of stress

evaluation points that belong to cluster j and Nj is the

number of such points.

It was shown in [15] that it is of great importance

how the distribution of stress evaluation points into the
clusters is made. Two approaches for the distribution:

the Stress level approach and the Distributed stress ap-

proach were evaluated, as well as the influence of reclus-

tering frequency. Based on the experience from [15] we
use the Stress level approach, where each stress evalu-

ation point is clustered together with other points that

have a similar stress level, and we update the clusters

at every iteration.

6 Sensitivity analysis

We use the method of moving asymptotes (MMA), de-
veloped by Svanberg [32], to solve the optimization prob-

lem. MMA is a gradient based solver, so we need to

calculate the gradient of the objective function and the

constraints. The gradient of the objective function and

the von Mises based stress constraints were derived by
Holmberg et al. [15] and the gradient of the critical fa-

tigue stress constraint in (P) is derived in this section.

We start from the first order derivative of the cumu-

lative damage (4), based on the fatigue stress measure
(9), with respect to design variable xb. It reads

∂D
(

σf
j

)

∂xb

=
∂D

(

σf
j

)

∂σf
j

∂σf
j (x)

∂xb

, (10)

where we can identify the first factor as the gradient

required when solving (Pcrit) and the second factor as

the gradient required when solving (P), which is derived
in the following. The derivation is therefore applicable

both for constraints based directly on (4), as well as

clustered (fatigue-based) stress constraints based on the

highest tensile principal stress.

6.1 Derivative of the clustered fatigue stress measure

The gradient of (9) with respect to design variable xb

reads

∂σf
j (x)

∂xb

=
∑

a∈Ωj

∂σf
j (x)

∂σ1
a

∂σ1
a (x)

∂xb

=
∑

a∈Ωj

∂σf
j (x)

∂σ1
a

ne
∑

j=1

∂σ1
a (x)

∂ρj

∂ρj (x)

∂xb

. (11)

In (11), the ∂σf
j (x) /∂σ1

a derivative is calculated as

∂σf
j (x)

∂σ1
a

=





1

Nj

∑

a∈Ωj

(

σ1
a (x)

)p





( 1

p
−1)

1

Nj

(

σ1
a (x)

)p−1
,

(12)

and the ∂σ1
a (x) /∂xb-part indicates that we need to cal-

culate the sensitivity of an eigenvalue.

6.2 Eigenvalue derivative

In Section 6.2 - 6.3 we use Einstein’s summation con-

vention and we neglect writing the design dependence

as well as the index corresponding to the stress evalua-

tion point.

The principal stresses are the eigenvalues of the stress
tensor:

S =





S11 S12 S13

S12 S22 S23

S13 S23 S33



 .

The stress tensor is symmetric, which implies that its

eigenvalues are real. The eigenvalue problem in one

stress evaluation point is formulated as

(Sij − λαIij)φ
α
j = 0, (13)

where λα are the eigenvalues and φα
j the components

of the corresponding eigenvector. Note that α is not a

summation index, but an index to separate the three
solutions of the eigenvalue problem.

Derivatives of eigenvalues are discussed in the liter-

ature for optimization with respect to eigenfrequencies,

see Haftka et al. [14], Seyranian et al. [30], Pedersen

[27] and Pedersen and Nielsen [28] among others. It is

noted that multiple eigenvalues might occur and that
the eigenvectors are not unique for that case, as any

linear combination of the two corresponding eigenvec-

tors will satisfy (13). The sensitivity analysis of multi-

ple eigenvalues in structural optimization is discussed
by e.g. Seyranian et al. [30] and Pedersen and Nielsen

[28]. We also note that, as the design changes, the eigen-

vectors change and the eigenvalues might then switch

position. Thus, the highest eigenvalue in the current it-

eration might correspond to a different vibration mode,
or in our case, a different stress direction, than in the

previous iteration. However, eigenfrequency constraints

are global in the sense that they are related to the entire

structure, while the highest principal stress is calculated
in each stress evaluation point and then gives a contri-

bution to the clustered stress measure. In the case of

principal stresses, we therefore expect the influence of
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occasional switches and multiple eigenvalues to be neg-

ligible. No attempt will therefore be made to handle the

fact that a switch in the principal values might occur,

nor the fact that two eigenvalues might be identical. In

fact, we also note that no multiple eigenvalues actually
occurred in the examples in this paper.

Differentiating (13) with respect to design variable
xb gives (see Appendix)

∂λα

∂xb

= φα
i

∂Sij

∂xb

φα
j . (14)

6.3 Derivative of the highest tensile principal stress

In (11), we are only interested in the highest tensile

principal stress. Thus, σ1 = max
(

λ1, 0
)

, where λ1 >

λ2 > λ3 and the corresponding eigenvector components

φ
(1)
j are from here on denoted φj . We can then write

(14) for the highest tensile principal stress as

∂σ1

∂xb

= φi

∂Sij

∂xb

φj . (15)

However, Voigt notation is used in order to calculate
the stresses, meaning that the symmetric stress tensor

is replaced by a vector with six components. Equation

(15) is therefore rewritten so that the stresses are ex-

pressed in Voigt notation. This is done by the use of a

transformation vector Λ and the Voigt stress vector in
(8) as,

φi

∂Sij

∂xb

φj = Λt

∂σt

∂xb

. (16)

Evaluating the left hand side of (16) and using symme-

try of Sij we find that Λ can be identified as

Λ =
(

φ2
1, φ

2
2, φ

2
3, 2φ1φ2, 2φ2φ3, 2φ1φ3

)T
. (17)

The transformation vector (17) and equation (16) can

now be used to write (15) in matrix form for stress
evaluation point a as

∂σ1
a (x)

∂xb

= ΛT
a

∂σa (x)

∂xb

. (18)

In (18) and through the rest of the paper, no summation

indices are used.

6.4 Stress vector and its derivative

The stress vector σa (x) is defined as the stress vec-

tor in solid material penalized by a stress penalization

function ηS (ρe (x)) as described by (8). The derivative

of (8) with respect to design variable xb can now be de-

termined as required in (18). The chain rule is applied

since the design variables are filtered in (5):

∂σa (x)

∂xb

=
∂ηS (ρe)

∂ρe

∂ρe (x)

∂xb

EBau (x)

+ ηS (ρe (x))EBa

ne
∑

r=1

(

∂u (x)

∂ρr

∂ρr (x)

∂xb

)

, (19)

where the derivative of the filtered variable with respect

to a design variable is the filter weight, ∂ρe (x) /∂xb =

Web and ∂ρr (x) /∂xb = Wrb, as defined in (5).

6.5 Aggregation into (11)

If (19) is inserted into (18), which is then inserted into
(11) together with (12) we get

∂σf
j (x)

∂xb

=
∑

a∈Ωj

∂σf
j (x)

∂σ1
a

∂σ1
a (x)

∂xb

=
∑

a∈Ωj

{





1

Nj

∑

a∈Ωj

(

σ1
a (x)

)p





( 1

p
−1)

1

Nj

(

σ1
a (x)

)p−1

×ΛT
a

(

∂ηS (ρe)

∂ρe

∂ρe (x)

∂xb

EBau (x)

+ ηS (ρe (x))EBa

ne
∑

r=1

(

∂u (x)

∂ρr

∂ρr (x)

∂xb

)

)}

. (20)

6.6 Adjoint method

Due to the clustering, the number of constraints will be

less than the number of design variables. Therefore, the

adjoint method is preferable for solving (20).

The derivative of the displacements with respect to

the design variables is calculated by taking the deriva-

tive of the global state equation (7) at a design ρ (x):

∂K (ρ (x))

∂xb

u (x) +K (ρ (x))
∂u (x)

∂xb

=
∂F

∂xb

.

Applying the chain rule, using ∂F
∂x

= 0 and rearranging

gives

ne
∑

r=1

(

∂u (x)

∂ρr

∂ρr (x)

∂xb

)

= −K−1 (ρ (x))

[

ne
∑

r=1

∂K (ρ (x))

∂ρr

∂ρr (x)

∂xb

u (x)

]

. (21)
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Inserting (21) into (20), the final expression reads

∂σf
j (x)

∂xb

=

∑

a∈Ωj





1

Nj

∑

a∈Ωj

(

σ1
a (x)

)p





( 1

p
−1)

1

Nj

(

σ1
a (x)

)p−1

×ΛT
a

∂ηS (ρe)

∂ρe

∂ρe (x)

∂xb

EBau (x)

− λT
j

[

ne
∑

r=1

∂K (ρ (x))

∂ρr

∂ρr (x)

∂xb

u (x)

]

,

where the adjoint variable λj is obtained by solving

K (ρ (x))λj =
∑

a∈Ωj

BT
aE

TΛaηS (ρe (x))
∂σf

j (x)

∂σ1
a

.

7 Examples

In this section we show some designs obtained using

static stress and fatigue life constraints and we also

show and discuss the difference between stress constraints
based on von Mises stresses and stress constraints based

on the highest tensile principal stresses. An in-house

fatigue code from Saab AB [2] is used for the fatigue

analysis, i.e. in order to handle (2), (3) and (4). The fa-

tigue constraints presented in this paper and the static
stress constraints in [15] are implemented into the FE-

program TRINITAS [34], in which all analyses, except

the fatigue analysis, are done and from which the pic-

tures of the final designs are taken. The Stress level

clustering technique, described in [15], is used and the

clusters are updated every iteration. The P-norm expo-

nent in (9) is chosen as p = 12 in all examples and the

move limits in MMA have been modified to be more

conservative compared to the suggested values in [33].
All designs are initiated from an equal distribution of

ρe (x) = 0.5. The figures show the filtered variables

ρ (x), where black represents solid material, ρe (x) = 1,

and white represents voids, ρe (x) = ǫ. The stress plots
represent the penalized von Mises stresses and should

be viewed in colour.

A typical aircraft aluminium is used as design ma-

terial. The material data is Young’s modulus 71000

MPa, density 2.8×10−9 ton/mm
3
, Poisson’s ratio 0.33

and yield limit 350 MPa. The yield limit is used to de-

termine the static stress constraint limit.

Two test examples are shown, the first is the L-

shaped beam which is a popular test example for stress
constrained problems, as used by e.g. Le et al. [19],

Duysinx and Bendsøe [10], Duysinx and Sigmund [11],

Paris et al. [25] and Holmberg et al. [15]. The design

2L
5

2L
5

3L
5

L
F

Fig. 4: The L-beam problem

domain, boundary conditions and dimensions of the L-

shaped beam are seen in Figure 4, where L = 200 mm

and the thickness is 1 mm. We use 6400, equal sized,

four-node bilinear elements and evaluate the stress in

the centroid of each element. A design variable filter is
used with the radius r0 = 1.5×element length. In indus-

trial applications, the design domain should be simple

to set up and to mesh, the internal corner, which might

be due to clearance, is therefore kept in the design do-
main. This is challenging as an initial stress singularity

exists, which cause the optimization to start from a de-

sign that is far from feasible and as the singularity needs

to be removed in the final design.

The second example is the MBB-beam, which is

meshed with 4800 elements. Symmetry is used and the
right half of the beam is modelled, as shown in Fig-

ure 5, where L = 100 mm and the thickness is 1 mm. A

design variable filter with the radius r0 = 2.0×element

length is used for the MBB-beam. For both examples,
the elements in the vicinity of the applied load are solid

and not part of the design domain.

L

3L

F

Fig. 5: The MBB problem
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7.1 Applied loads and constraint limits

The load F is due to acceleration of a piece of equip-

ment that is attached to the structure which is to be

optimized. The mass of the equipment is 4 kg and we

assume that one load direction is dominating, thus only

one load direction is used in the examples. The load fac-
tor f is given by the load spectrum shown in Figure 2.

The load spectrum is fictitious in the sense that it is

made up for this paper, but it is an adequate represen-

tation of accelerations in a certain direction and at a
certain position of a fighter aircraft.

The material data for the fatigue analysis is taken

from the material library at Saab AB and the Haigh

diagram used for the examples is shown in Figure 1.

As the material data is confidential, the values of the
constant life curves and the reduction factors are not

displayed. For the same reason, the cumulative damage

limit D is not specified. However, in this paper the data

is used only to determine the critical fatigue stress σf ,
which is presented in the paper.

By solving (Pcrit) we find that the highest stress,

such that D ≤ D, is σmax ≈ 0.129 MPa, when material

data for Kt = 1.5 is used. The critical fatigue stress σf ,

then becomes

σf = Ktσmax, (22)

which is approximately σf = 0.194 MPa.
For the static stress constraint, a maximum static

load, F s
max = 1500 N, is assumed. As a unit load is used

in the FE-analysis, the allowable stress to avoid yield

is scaled according to

σs =
σyield

F s
max

, (23)

which is approximately σs = 0.233 MPa.

7.2 Constraints on fatigue life and static stress

This section presents the L-shaped beam and the MBB-

beam, optimized using (P) with fatigue constraints based
on the highest tensile principal stresses and static stress

constraints based on the von Mises stress criterion. The

loads as well as the stress and fatigue limits were de-

scribed in Section 7.1. The number of clusters that are

used influence the computational time and the accu-
racy of local stresses, more clusters will make the clus-

tered stress measures better approximations of the local

stresses, but increase the computational time. The L-

beam is here optimized with seven fatigue constraints
and seven static stress constraints.

The topology of the optimized L-beam is seen in

Figure 6a. A radius is created in order to avoid a large

stress concentration in the internal corner. The opti-

mization also tries to maximize the distance between

the two vertical structural components, as the force cou-

ple in these parts is then smaller, thus allowing the two

components to be thinner, i.e. lighter. The radius in
the design in Figure 6a cuts the corner such that the

right vertical component is as far to the right as possi-

ble and the stresses in the radius, with this discretiza-

tion, are sufficiently low to satisfy the constraints. We
note that different combinations of the P-norm expo-

nent p in (9) and the number of clusters may result in

slightly different designs, where the right vertical com-

ponent sometimes is moved away from the boundary

in order to allow for a smoother radius. The left verti-
cal component is loaded in compression and thus sized

with respect to the static stress limit σs, the right is

loaded in tension and thus sized with respect to σf , as

σf < σs. A stress plot of the internal corner and parts
of the vertical components is given in Figure 6b.

For the MBB-beam we use five fatigue constraints

and five static stress constraints, the optimized design is

seen in Figure 7a and the stress plot is seen in Figure 7b.
Again, a simple design is obtained, where the structural

parts are sized with respect to σf and σs and stress

concentrations are avoided.

(a) Optimized design

(b) Stress plot with the same color scale as in Figure 6b

Fig. 7: MBB-beam optimized for minimum mass, with

respect to fatigue life and static stress
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(a) Optimized design (b) Stress plot, close-up

Fig. 6: L-shaped beam optimized for minimum mass, with respect to fatigue life and static stress

7.3 Comparison between stress constraints based on

von Mises or highest tensile principal stress

In this section we compare static stress constraints based

on two different stress formulations: the von Mises for-
mulation which is described by Holmberg et al. [15] and

the highest tensile principal stresses, derived as a part

of the fatigue constraint in this paper. As only the ten-

sile stresses are considered in the principal stress con-
straints, the stress evaluation points that in the cur-

rent iteration only have compressive stresses do not

contribute to the clustered stress measures. Figure 8

shows the L-shaped beam optimized using formulation

(P) without the fatigue constraint. The clustered stress
measure has in Figure 8a been created based on the

highest tensile principal stresses, in Figure 8b it is based

on the von Mises stresses and Figure 8c is obtained

using both stress measures simultaneously. The stress
limit is σs = 350MPa and the applied load is F s = 1500

N. Seven clusters are used for the von Mises based con-

straint as well as for the principal stress constraint, the

number of constraints for a) and b) is thus seven, while

it is fourteen for c).

For the optimized designs, the structural parts loaded

only by compressive forces in Figure 8a are very thin

and the compressive stresses become very high. This is
because the mass is minimized and these parts are used

only to balance the structure. Additional constraints

such as a buckling constraint, a constraint on compres-

sive stresses or alternatively von Mises stresses would
be necessary in order to generate a reasonable design.

However, this solution is shown here for comparison

purposes and as it clearly shows the characteristics of

constraints which are based on tensile stresses. Obvi-

ously, a problem where the entire structure is loaded

by compressive forces cannot be solved with this for-

mulation. The stresses for the designs in Figure 8b and
8c are close to the stress limit in major parts of the

structures, and only a number of local spots have too

high stresses which will require additional work in later

design phases.

8 Conclusions

We have combined fatigue software with clustered prin-

cipal stress constraints in order to generate an opti-

mized design with minimum mass that can withstand

prescribed loading conditions during the service life. We

have given an overview of the considered high-cycle fa-
tigue analysis and we have presented ideas that make it

possible to separate the fatigue analysis and the topol-

ogy optimization. We have discussed the clustered ap-

proach to reduce the number of constraints and we
have presented a sensitivity analysis of the fatigue con-

straints, which include the sensitivity analysis of prin-

cipal stresses. Some simple examples involving only one

load direction are shown, in which different stress crite-

ria are compared and final designs including fatigue and
static stress constraints are shown. The final designs

are free from large stress concentrations and are dimen-

sioned with respect to the static and fatigue stress lim-

its. Due to the clustered stress measure, local stresses
can still be above the constraint limits σs and σf as dis-

cussed in [15] and [16], but the overall topology of the

design is such that local and relatively simple changes,
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(a) Highest tensile principal stress constraint

(b) von Mises stress constraint

(c) Both highest tensile principal and von Mises stress constraints simultaneously

Fig. 8: Comparison of static stress constraints based on different stress criteria
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such as local size and radii changes, should be sufficient

in order to decrease the local stresses.

The paper presents a further step towards more

advanced conceptual design optimizations, where con-

straints are added to simplify the further design work.
This gives a more mature design which will save both

structural mass and time in the product development

process.

Appendix

Differentiating (13) with respect to design variable xb

gives

∂Sij

∂xb

φα
j +Sij

∂φα
j

∂xb

=
∂λα

∂xb

Iijφ
α
j +λα ∂Iij

∂xb

φα
j +λαIij

∂φα
j

∂xb

.

Using
∂Iij
∂xb

= 0 and rearranging gives

∂Sij

∂xb

φα
j + (Sij − λαIij)

∂φα
j

∂xb

=
∂λα

∂xb

Iijφ
α
j . (24)

The eigenvector φα
j is a unit vector, i.e.

φα
i Iijφ

α
j = φα

j φ
α
j = 1,

therefore, if we premultiply (24) by φα
i , we get

φα
i

∂Sij

∂xb

φα
j +φα

i (Sij − λαIij)
∂φα

j

∂xb

= φα
i

∂λα

∂xb

Iijφ
α
j , (25)

and rearranging the right hand side of (25) gives

φα
i

∂λα

∂xb

Iijφ
α
j =

∂λα

∂xb

φα
i Iijφ

α
j =

∂λα

∂xb

. (26)

As both Sij and Iij are symmetric, we can rewrite as

φα
i (Sij − λαIij) = (Sji − λαIji)φ

α
i = 0, (27)

where the zero comes from (13). Combining (25), (26)

and (27), we now find that the derivative of the eigen-
values with respect to the design variable reads

∂λα

∂xb

= φα
i

∂Sij

∂xb

φα
j . (28)
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