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Abstract

The addition of liquid-filled urea-formaldehyde (UF) microcapsules to an epoxy matrix

leads to significant reduction in fatigue crack growth rate and corresponding increase in

fatigue life.  Mode-I fatigue crack propagation is measured using a tapered double-

cantilever beam (TDCB) specimen for a range of microcapsule concentrations and sizes:

0, 5, 10, and 20% by weight and 50, 180, and 460�µm diameter.  Cyclic crack growth in

both the neat epoxy and epoxy filled with microcapsules obeys the Paris power law.

Above a transition value of the applied stress intensity factor ∆KT, which corresponds to

loading conditions where the size of the plastic zone approaches the size of the embedded

microcapsules, the Paris law exponent decreases with increasing content of

microcapsules, ranging from 9.7 for neat epoxy to approximately 4.5 for concentrations

above 10�wt% microcapsules.  Improved resistance to fatigue crack propagation,

indicated by both the decreased crack growth rates and increased cyclic stress intensity

for the onset of unstable fatigue-crack growth, is attributed to toughening mechanisms

induced by the embedded microcapsules as well as crack shielding due to the release of

fluid as the capsules are ruptured.  In addition to increasing the inherent fatigue life of

epoxy, embedded microcapsules filled with an appropriate healing agent provide a

potential mechanism for self-healing of fatigue damage.

Keywords: fatigue-crack propagation, microcapsule toughening, tapered double-

cantilevered beam, brittle fracture of epoxy
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1. Introduction
Highly crosslinked epoxy resins have low strain-to-failure and exhibit poor resistance to

crack propagation.  Fatigue loading is particularly problematic, causing small cracks to

initiate and grow rapidly.  These cracks often lead to catastrophic failure. An extensive

body of work exists for the general area of fatigue of polymers [1–3], which focuses on

understanding the mechanisms of fatigue and predicting the rates of fatigue-crack growth.

Fatigue crack propagation studies are performed with the cyclic-crack-tip stress

state varying over a range defined by ∆KI�≡�(Kmax�−�Kmin).  Dependence of the

fatigue-crack-growth rate da/dN on the applied range of stress intensity factors ∆KI is

generally described by the empirical Paris law equation [4]

da

dN
= C0∆K I

n , (1)

where C0 and n are material constants that depend on the ratio of applied stress intensity

R�≡�Kmin/Kmax, the loading frequency f, and the testing environment.  The typical crack

growth behavior described by Eq. (1) yields a linear log–log plot that is bounded by a

threshold stress intensity range ∆Kth below which a crack ceases to propagate, and the

critical stress intensity KIC above which crack growth in unstable.

Several researchers [5–7] have successfully measured fatigue-crack propagation

in epoxy resins and obtained values of the Paris law exponent n on the order of 10.

Incorporation of either a rubbery second phase [8–11] or solid particles [7,12–13]

significantly improves the resistance to fatigue-crack propagation.  Several of these

studies [5,8–9,11,13–14] suggest that improvements in the resistance to fatigue crack

propagation behavior are also associated with increased toughness in monotonic fracture

[1–2,14–15].

Previously, we investigated the effect of embedded urea-formaldehyde (UF)

microcapsules on the monotonic fracture properties of a self-healing epoxy [15].  In

addition to providing an efficient mechanism for self-healing [16–18], the presence of

liquid-filled microcapsules increased the virgin monotonic-fracture toughness of epoxy

by up to 127% [15,17].  The increased toughening was correlated with a change in the

fracture plane morphology from mirror-like to hackle markings with subsurface

microcracking.  The inherent fracture toughness as well as the healing efficiency both

depended strongly on the size and concentration of microcapsules.  In the current work,

we extend this investigation to examine the influence of microcapsules on the fatigue

crack propagation behavior of epoxy, with the effects of self-healing precluded.

Consistent with the monotonic fracture studies, the addition of microcapsules to an epoxy

matrix significantly increased the resistance to crack growth under dynamic loading

conditions.

2. Experimental procedure

2.1. Materials and sample preparation
Urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) monomer were

manufactured with average diameters of 50, 180, and 460�µm using the emulsion in situ

polymerization microencapsulation method outlined by Brown et al. [19].  Shell wall

thickness was 190�±�30�nm for all batches. Tapered double-cantilever beam specimens
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were cast from EPON® 828 epoxy resin (DGEBA) and 12 pph Ancamine® DETA

(diethylenetriamine) curing agent with a prescribed concentration of microcapsules

mixed into the resin.  The epoxy mixture was degassed, poured into a closed silicone

rubber mold and cured for 24�hours at room temperature, followed by 24�hours at 30°�C.

Relevant physical and mechanical properties of the microcapsules and neat epoxy are

listed in Table 1.  The tensile modulus and mode I critical stress intensity factor, KIC, of

the microcapsule toughened epoxy were measured as a function of capsule concentration

by Brown et al. [15, 20] and Rzeszutko et al. [21] and summarized in Table 2.

TABLE 1 Properties of the constituent materials [15]

Properties Epoxy Urea-formaldehyde microcapsules

Density (kg/m3) 1160 ~1000

Diameter (µm) — 50±20

180±40

460±80

Wall thickness (nm) — 190±30

KIC (MPa m1/2) 0.55±0.04 —

Young’s modulus (GPa) 3.4±0.1 —

Ultimate stress (MPa) 39±4 —

TABLE 2 Mechanical properties of neat epoxy and epoxy with embedded

microcapsules [15]

Microcapsule

concentration

(wt%)

Diameter, d

(µm)

Young’s

modulus, E

(GPa)

Critical stress

intensity factor,

KIC (MPa m1/2)

Critical strain

energy release

rate, GC (J/m2)

0 — 3.4±0.1 0.55±0.04 88±14

5 50±20 3.2±0.1 1.1±0.1 350±70

10 50±20 — 1.2±0.2 —

20 50±20 — 1.1±0.1 —

5 180±40 3.2±0.1 0.78±0.16 190±90

10 180±40 2.8±0.1 1.2±0.2 430±170

20 180±40 2.7±0.1 1.0±0.2 400±130

10 460±80 — 0.92±0.07 —

20 460±80 — 1.2±0.1 —

2.2 Mechanical testing
The fatigue-crack propagation behavior of the microcapsule-modified epoxy was

investigated using the tapered double-cantilever beam (TDCB) specimen shown in Fig. 1.

Side grooves ensured controlled crack growth along the centerline of the brittle specimen.

The TDCB geometry, developed by Mostovoy et al. [22], provided a crack-length-

independent relationship between applied stress intensity factor KI and load�P,

K I = αP , (2)
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which only required knowledge of the coefficient α.  For the TDCB sample geometry in

Fig. 1, α  = 11.2x103 m-3/2 was determined experimentally [17].  A constant range of

Mode-I stress intensity factor ∆KI was achieved by applying a constant range of load ∆P,

independent of crack length.  The constant-K region of the TDCB specimen enables

crack-growth-rate measurements over a range of cycles, rather than requiring use of the

modified secant formulation commonly employed for changing ∆KI of a compact tension

specimen [14].  Moreover, the constant-K region is of great importance for observing the

time-dependent effects of self-healing during growth of a fatigue-crack [20].

Figure 1.  Tapered-double-cantilever-beam geometry [17].  All dimensions in mm.

Fatigue crack propagation studies were performed using an Instron DynoMight

8841 low-load frame with 250�N load-cell.  Samples were precracked with a razor blade

while ensuring the precrack tip was centered in the groove and then pin loaded.  A

triangular frequency of 5�Hz was applied with a load ratio (R�=�Kmin/Kmax) of 0.1.  Crack

lengths were determined by optical measurements at finite times and by

compliance-inferred measurements [23] acquired approximately every 256th cycle.

The optically measured crack-tip position and specimen compliance are plotted

against number of cycles in Fig. 2a.  The linear relationship between optically measured

crack length and specimen compliance (Fig. 2b) is used to calculate the crack-tip position

at all times during the experiment (Fig. 2c).  Crack-growth data are generated under

constant ∆P  (i.e. constant ∆KI), with a complete set of loading conditions measured on a

single specimen by incrementally increasing ∆P.  Crack-growth rates are obtained from

the number of cycles N required to grow a crack a distance ∆a of approximately 1�mm for

a given range of Mode-I stress intensity factor ∆KI.  Statistically equivalent values of

crack-growth rate are obtain from using either the optically measured crack length prior

to, ai= 0

opt , and following, ai= S

opt , the application of N cycles at a give ∆KI,

da

dN ∆K

=
∆a

∆N
=

ai= S

opt − ai= 0

opt

N i= S

, (3)

or from using a linear fit of the compliance-inferred measurements ai

comp ,
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where S is the total number of cycle samples acquired.
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Figure 2.  Plots illustrating method to calculate the continuous crack-tip position from

compliance data (–) and finite optical measurements (�) (a). (b) Linear fit of optically

measured crack vs. specimen compliance.  The squares (�) represent compliance values

corresponding to the optical data and the line (–) represents the linear best fit.  (c) Crack

length calculated from measured compliance using the relationship obtained from (b)

plotted vs. number of cycles.  The specimen is neat epoxy; the test parameters are

f�=�5�Hz, R�=�0.1, and ∆KI�=�0.472�MPa�m1/2.

Fracture surface morphologies of the fatigue samples were examined with an

environmental scanning electron microscope (Philips XL30 ESEM-FEG).  After failure,

specimens were mounted and sputtered with gold/palladium.  Micrographs were obtained

using 10kV secondary electrons in high vacuum mode.

3. Results
The effect of embedded microcapsule concentration on fatigue crack growth is shown in

Fig. 3 for 180�µm diameter microcapsules.  The relationship between the crack growth

rate da/dN of epoxy and the applied range of Mode-I stress intensity factor ∆KI clearly

follows the Paris power law (Eq. 1).  The measured Paris exponent is n�=�9.7 for crack

propagation in neat EPON®�828–Ancamine®�DETA (no microcapsules).  At applied

stress intensity factors greater than ∆K�~�0.35 to 0.4�MPa�m1/2, a distinct transition in

crack growth is observed for the microcapsule filled epoxy.  Above a transition value

∆KT, epoxy with microcapsules exhibits a higher resistance to fatigue crack growth than

neat epoxy, accompanied by a reduction of the Paris law exponent n.  At applied load

levels below the transition point, the microcapsules have little influence on the crack

growth rate.
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Figure 3.  Influence of microcapsule concentration on the fatigue crack growth behavior

for 180�µm diameter microcapsules.

Measured Paris law parameters for epoxy with embedded 50, 180, and 460�µm

diameter microcapsules are summarized in Table 3.  The Paris law exponent, n is plotted

as a function of microcapsule concentration in Fig. 4.  Above  ∆KT, the value of n

decreases significantly with increasing microcapsule concentration, independent of

capsule diameter.  For concentrations greater than 10�wt% microcapsules, n  has a

steady-state value of approximately 4.5. Others have observed similar behavior for

rubber-modified epoxies [14, 24].

TABLE 3 Constants of the Paris power law, ∆KI
max, ∆KT, and ry

Microcapsule

concentration (wt%)

Diameter

(µm)

Co

(above ∆KT)

n ∆KI
max

(MPa m1/2)

∆KT

(MPa m1/2)

0 — 8.2 × 10−2 9.7 0.60 —

10 50±20 1.5 × 10−3 4.9 0.82 0.41

20 50±20 1.6 × 10−3 4.6 0.81 0.44

5 180±40 4.2 × 10−3 6.1 0.64 0.46

10 180±40 5.4 × 10−4 4.4 0.82 0.40

20 180±40 3.8 × 10−4 4.3 0.80 0.36

10 460±80 7.8 × 10−4 4.4 0.64 0.40

20 460±80 8.6 × 10−4 4.7 0.82 0.39
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The effect of the microcapsules on life extension is shown more clearly in Fig.�5

by comparison of crack length as a function of loading cycles for neat epoxy and epoxy

with 20 wt% microcapsules above ∆KT.  The addition of microcapsules significantly

increases fatigue life; for the loading condition of ∆KI�=�0.586�MPa�m1/2 the fatigue life

increases from 86�×�103�cycles for neat epoxy to 239�×�103�for the microcapsule filled

system.
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wt% 180 microcapsules.  The test parameters are f�=�5�Hz, R �=�0.1, and

∆KI�=�0.586�MPa�m1/2.
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Examination of the fatigue-fracture surface for neat epoxy reveals a relatively

featureless morphology (Fig. 6a–c).  River markings [25] are observed on some fracture

surfaces, but are only initiated at locations corresponding to the crack-tip position when

∆KI is incrementally increased (Fig. 6d–f).  In contrast, the fatigue-fracture surface for

epoxy with embedded microcapsules is characterized by substantial out-of-plane

morphology at all length scales (Fig.�7).  At the largest length scale, the microcapsules

are ruptured at the fracture plane (similar to monotonic fracture), the

fatigue-crack-growth path has significant deviation in and out of the plane, and the crack

branches out of the plane at several locations (Fig.�7a).  At smaller length scales the

microcapsule walls have numerous secondary cracks (Fig. 7b,c) and the matrix has

additional contortion and river markings at decreasing length scales (Fig. 7d,e).

Figure 6.  Fatigue-fracture surfaces for neat epoxy.  (a–c)�The dominant surface

morphology is featureless at different length scales and (d–f)�has some local river

markings.  Note: The crack propagation is from left to right in all images.
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Figure 7.  Fatigue-fracture surfaces for epoxy with 20�wt% of 180�µm microcapsules.

(a)�At large length scales the fracture plane has a contorted crack-growth path and

ruptured microcapsules.  At smaller length scales (b,c)�the microcapsules exhibit cracking

and (d,e)�the matrix has complex morphology.  Note: The crack propagation is from left

to right in all�images.

4. Discussion
The addition of microcapsules significantly improves the fatigue response above a

transition value of the applied stress intensity factor, ∆KT.  Similar improvements

reported in the literature for rubber modified epoxies have been explained by effects of

plastic zone size [11,14] and increases of monotonic fracture toughness [5,8–9,11,13–14].

Azimi et al. [12,14] observed a transition point in the fatigue crack propagation behavior

of DGEBA epoxies modified with CTBN and silicon rubber.  Above a threshold value,

the rubber-modified epoxy exhibited improved resistance to fatigue crack growth.  Below

the threshold, both neat epoxy and the rubber-modified epoxy had similar resistance.  The

transition was attributed to interactions between the rubber particles and the plastic zone

present at the crack tip.  Moreover, Azimi showed that the transition phenomenon was

triggered when the size of the theoretical crack-tip plastic zone was of the order of the

size of the filler.

Applying Azimi’s hypothesis [12,14] to microcapsule-toughened epoxy, the

theoretical plastic zone size at a cyclically loaded crack tip is estimated based on

Irwin’s�[26] formula for the size of a plastic zone,
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ry ∆KT( ) =
1

2π

∆KT 1− R( )
σ YS

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

, (5)

where σYS is the yield stress of the epoxy with embedded microcapsules.  In previous

work, Irwin’s formula accurately captured the plastic zone size in EPON®

828–Ancamine® DETA under monotonic fracture conditions [15].  The plastic zone size

estimated by Eq. (5) for 5, 10, and 20 wt% of 180�µm diameter microcapsules is c.a. 70

µm (assuming σYS = 20 MPa [15]).  The calculated plastic zone size at the transition point

for samples with 180�µm is within an order of magnitude of the microcapsule diameter

consistent with Azimi’s findings for 2–3�µm diameter rubber particles.  When ∆KI is less

than ∆KT, the plastic zone is smaller than the embedded microcapsules.  In this regime the

plastic zone is unaffected by the microcapsules—other than the presence of

discontinuities along the crack front—resulting in little or no toughening and a fatigue

response similar to that of the neat epoxy.  When ∆KI is greater than ∆KT, the plastic zone

is sufficiently large to encompass the majority of microcapsules in its path, activating

toughening mechanisms similar to those observed for monotonic fracture.

The onset of fatigue crack growth instability is generally considered to be

equivalent to monotonic fracture.  Hence, the maximum stress intensity value during the

cycle when the fatigue crack propagation becomes unstable should correlate with the

monotonic fracture toughness,

Kmax ∆K I

max( ) ≡
∆K I

max

1− R
= K IC (6)

In Fig. 8, ∆KI
max values from Table 3 are plotted against the corresponding KIC values

from Table 2 for the range of microcapsule sizes and concentrations tested.  With the

exception of neat epoxy, the data for microcapsule filled epoxy falls close to a line with a

slope less than unity (KIC�>�Kmax(∆KI
max)), indicating a trend of increasing fatigue crack

growth resistance with increasing monotonic fracture toughness.  A similar trend has

been reported previously for rubber-modified epoxies [5,8–9,13], implying that the

failure mechanisms for static fracture and fatigue failure in modified epoxies are

comparable.

For neat epoxy the Kmax(∆KI
max) value at fatigue crack instability exceeds the static

fracture toughness values KIC.  This anomalous behavior has been reported previously for

other filled polymer systems [5,11–12,14].  The inconsistency between Kmax(∆KI
max) and

KIC is explained by differences in the crack-tip geometry [27] and to a lesser degree the

loading rate [5,28] between monotonic and fatigue testing.  Montonic fracture toughness

values are determined using precracks generated by a razor blade as prescribed in ASTM

Standard D�5045.  In contrast, the maximum stress intensity values Kmax are determined

for a crack tip generated in fatigue by progressively increasing ∆KI.  As described by

Xiao et al. [27], yielding and damage at the crack tip under cyclic loading can cause

apparent fracture toughness values for DGEBA epoxy with precracks generated by

fatigue to exceed fracture toughness values measured in samples with razor blade

generated precracks by as much as 31%.  Hence, the high value of ∆KI
max for neat epoxy

is an artifact of the specimen loading history introducing progressive blunting at
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the crack tip.  This effect was only observed in the neat epoxy and is not present in the

microcapsule modified systems.
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Figure 8.  Influence of KIC on ∆KI
max.  The dashed line corresponds to the maximum

applied stress intensity range ∆KI
max for fatigue crack instability when

Kmax(∆KI
max)�≡�∆KI

max/(1-R)�=�KIC .  The solid line is the best linear fit through the data

points and the origin.

In addition to the toughening mechanisms induced by the embedded

microcapsules, the flow of fluid released into the crack plane provides a crack tip

shielding mechanism that can improve resistance to fatigue crack propagation.  Several

authors have reported that hydrodynamic pressure due to viscous flow within a fatigue

crack reduces the effective range of Mode-I stress intensity and hence the fatigue crack

growth rate for metal submerged in oil [29–32].  During cyclic loading, the crack volume

changes significantly with time, requiring fluid flow into and out of the crack.  When the

crack contains a viscous fluid, the forces required to squeeze the fluid out of the crack

during unloading and draw fluid into the crack during loading can be sufficient to shield

the crack tip.  Reduced crack growth rates in epoxy due to crack tip shielding from

viscous fluid flow have been demonstrated for infiltration of both precatalyzed

dicyclopentadiene and mineral oil [20].

5. Conclusions
Fatigue crack propagation was investigated in epoxy toughened with liquid-filled

urea-formaldehyde (UF) microcapsules.  The addition of microcapsules significantly

decreased the fatigue crack growth rate and increased the fatigue life above a transition

value of the stress intensity factor ∆KT.  Below ∆KT the fatigue behavior was unaffected

by the embedded microcapsules.  The transition value between these two regimes

corresponded to loading conditions where the size of the plastic zone approached the size

of the embedded microcapsules.  The fatigue-crack growth rate dependence on applied

range of stress intensity ∆KI was accurately captured by the Paris power law in both neat

epoxy and epoxy with embedded microcapsules.  The Paris law exponent n
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was strongly dependent on the microcapsule concentration, varying from 9.7 for neat

epoxy to approximately 4.5 above 10�wt% microcapsules, but was independent of

microcapsule diameter.  The onset of unstable fatigue-crack growth ∆KI
max increased with

monotonic fracture toughness, and was independent of microcapsule diameter.  Improved

resistance to fatigue crack propagation, was attributed to toughening mechanisms induced

by the embedded microcapsules as evidenced by changes in the fatigue fracture plane

morphology.  In addition to increasing the inherent fatigue life of epoxy, embedded

microcapsules filled with an appropriate healing agent offer a potential mechanism to

further extend fatigue life through self-healing of fatigue damage.
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