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Abstract

A digital image correlation method is proposed to detect and quan-

tify automatically microcracks on the surface of a specimen during a

fatigue test. The proposed procedure allows for a fast scanning of the

entire surface with all possible (pixel-wise) locations of microcrack

centers and the detection of cracks having a sub-pixel opening. An

experimental test case is presented as an illustration of the method

and a comparison with a replica technique is performed.

Keywords: Crack initiation; Digital image correlation; Mechanical fa-

tigue; Microcrack detection.
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1 Introduction

Many industrial structures are subjected to fatigue loadings. If the material

has no initial bulk or surface defects, a cyclic loading level greater than the

fatigue limit initiates microcracks [1]. The major part of damage growth con-

sists of random multi-initiations of short cracks on the surface called herein

microcracks, prior to the final growth of a main macrocrack. This random

multiple initiation phenomenon is now well described in the literature [2, 3, 4].

However, at initiation, microcracks are short and have a small opening, so

that their detection and quantification over a large area remain an experi-

mental challenge. This difficulty leads to statistical analyses of fatigue tests

based on failure (or at best large scale crack) statistics. Such approaches are

time consuming and fragile as only the final (or late) results are accessible

while initiations, competition, selection and growth of microcracks have to

be inferred. Any progress in the early detection of microcracks gives access

to a very rich information opening the way to a statistical analysis based on

a single specimen, and to the validation of a crack growth scenario. To make

the experimental challenge more concrete, in the present study based on a

304L stainless steel, the ultimate goal would be to detect microcracks whose

extension is of a few grain sizes, say about 150 µm (a smaller size would be

pointless), with an opening as small as 600 nm.

In this paper a dedicated digital image correlation technique is developed

to address this challenge. This technique allows for the detection of very

short cracks initiated during a fatigue test while only resorting to standard

optical pictures captured in situ with a classical Digital Single Lens Reflex
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(DSLR) camera during a fatigue test.

To monitor microcracking, the currently used procedures are often long

to set up. As an example the replication technique with a polymer film,

which provides a good resolution for crack detection and quantification [5],

is a work intensive protocol. It consists in:

• placing the swollen polymer film on the sample surface;

• drying of the film, and extraction;

• plating of the replica with a conductive (metal) coating;

• observing the replica with a scanning electron microscope (or an optical

microscope);

• identifying microcracks on images and performing geometrical measure-

ments based on image analysis techniques.

Consequently, at least several hours are needed for a full analysis, and in the

chain of elementary steps, different sources of error or uncertainty accumu-

late.

Alternative techniques exist based on an optical device (classical micro-

scope [6], long distance microscope [7, 8, 9], DSLR camera with a high mag-

nification lens [10], directly in front of the specimen. These experimental

approaches proved to be efficient but detection and quantification are to be

performed “manually.” Moreover, most of the time the observed area is quite

small (in order to have a good spatial resolution) although the use of the lat-

est digital camera allows for the observation of larger areas (i.e., several

square millimeters).
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In the present work, a Digital Image Correlation (DIC) method is pro-

posed combining large areas of observation with a good spatial resolution

and fast computation for crack detection and quantification. In the litera-

ture, DIC has already been used to detect and study cracks [11, 7, 12, 13, 14].

In most cases however, one (or a few) extended cracks are studied, with var-

ious opening levels. In the present case, the displacement field is analyzed in

the presence of many microcracks. Along cracks, displacement discontinuities

are expected. This signature is used for crack location and quantification.

Hence, from the registration of two images (one being of the undamaged

surface while the other one presents initiation of one or several microcracks)

the method allows for the extraction, at low computational price, of several

quantities such as the number of microcracks, their position and size. These

data are estimated from each picture taken during the fatigue test. Finally,

this technique leads to the description of fatigue damage evolution.

The paper is divided into five parts. In the first one, Section 2, the exper-

imental procedure that leads to the capture of the raw pictures is described.

The theoretical aspect of the method of crack detection is presented in Sec-

tion 3 for a very general framework of sensitivity analysis, and its practical

implementation for micro-crack detection in Section 4. The results are dis-

cussed and compared to more classical replication technique analyses and

global correlation studies in Section 5. Finally, Section 6 recalls the main

results.
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2 Experimental procedure

2.1 Experimental setup

The global geometry of the specimen (Figure 1) is similar to classical fatigue

samples. To monitor the damage steps with DIC, a gauge surface is obtained

by machining a planar zone. This type of notched geometry has already been

used successfully [8, 9] for observations of multiple crack initiations. The ge-

ometry was slightly modified to obtain a larger surface of observation. The

shallow notch creates a local stress heterogeneity on the surface in order to

localize initiation. The notched area is mechanically polished. A final elec-

tropolishing is performed resulting in a good quality of the surface finish

suitable for optical observations. Figure 2(a) shows a microscopic observa-

tion carried out after surface polishing. DIC is performed from direct images

of the polished surface without any further preparation or marking. It al-

lows for a very early detection of microcracks. However, DIC is based on

the assumption that the texture is simply advected by the local displace-

ment without any further alteration (gray level or contrast modification).

In the experimental study reported herein, this is not the case because of

surface roughening due to the progressive formation of Persistent Slip Band

(PSB) [15, 16, 17]. This induces a slight degradation of brightness conser-

vation with fatigue cycles. The use of a more classical texture composed of

droplets of black paint sprayed over a white background would prevent any

detection of a crack before it breaks through the paint.

The present fatigue tests have been performed on an AISI 304L stainless

steel. It is a polycrystalline austenitic steel (Figure 2(a)) containing residual
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ferrite (approximatively 4 wt%) in the form of elongated grains. The average

grain diameter is equal to 40 µm. Specimens are cycled by sine-wave load-

ing (5-Hz frequency) in a servohydraulic testing machine. Stress amplitude

∆σxx/2 is controlled for all the tested samples. Periodically, at maximum

load, a picture is captured with a DSLR camera (CANON EOS 5D) and

a macro lens (CANON MPE65) with a magnification of ×5. The camera

is triggered by the software used to control the testing machine. The data

are gray level raw images with a resolution of approximately 3 Mpixels for

a notch surface of 3 × 5 mm2. The final pixel size on the raw pictures is

3.2 µm. The raw pictures (Figure 2(b)) could be directly used for crack de-

tection but this requires that the crack opening reaches about a pixel size at

least. Therefore, the detection of microcracks with a good spatial resolution

is possible with the use of a DIC technique that enables for subpixel resolu-

tions [18, 19]. Moreover, the use of DIC gives access to the quantification, in

terms of size and opening, of the microcrack. The DIC technique presented

here is then far more powerful than simply an imaging method on the raw

pictures.

3 Full field crack detection technique

Even though all the images are captured at maximum load, the displacement

maps show a gradient related to the cyclic softening of the material. Such

a behavior is classically encountered with this kind of material (304L) and

for the studied domain of fatigue lifetime (i.e., more than 10,000 cycles).

The cyclic behavior is composed of three phases, namely, primary hardening,
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cyclic softening and finally secondary hardening [20, 21]. Since the behav-

ior is never stabilized, two types of treatment need to be performed. The

first one consists in the computation of a long wavelength displacement gra-

dient through the whole image. The second for microcrack quantification

is based on the detection of stress relaxation zones surrounding the micro-

cracks inducing a displacement gradient at the local scale. The presented

method is adapted to detect one single microcrack, and multiple parallel and

independent microcracks.

3.1 Global DIC

A global DIC analysis allows to measure the displacement field, U , through

its decomposition over the basis Φn

U (x) =
∑

n

a0nΦn(x) (1)

where a0n are the sought components, and x designates a current point of

2D spatial coordinates, namely, x = (x, y) in the Region of Interest (ROI).

Let f(x) represent the reference image as the value of the gray level at

each (discrete) point (pixel) of the image. The deformed image g(x) is as-

sumed to show the same texture as f(x) translated by the local displacement

field. Therefore, it is assumed that

f(x) = g(x+U (x)) (2)

with U (x) being the displacement field. This equation corresponds to the

gray level conservation during the motion.
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The deformed image g(x) can be corrected by any trial displacement field

V (x), defining the corrected deformed image ĥ(x) ≡ g(x + V (x)), so that

f and ĥ would coincide at convergence V = U . The DIC algorithm thus

consists in an iterative scheme leading to an estimate V of U , such that

f and ĥ match at best. This best match is to be understood in the least

squares sense, so that the global residual

R2
0 =

∫

ROI

[ĥ(x)− f(x)]2 dx (3)

is minimized with respect to the degrees of freedom a0n.

The image correction step being non-linear, an iterative procedure is de-

signed where the displacement field V (p) at step p is progressively adjusted

until convergence. The initial value of h(0) is equal to g itself (i.e., no initial

value is assumed for V in the present case). The corrected deformed image

at step p is denoted by ĥ(p)(x). Using a first order Taylor expansion for

ĥ(p−1)(x), and denoting by γ the image gradient, γ ≡ ∇f , the estimate ĥ(p)

reads

ĥ(p)(x) ≈ ĥ(p−1)(x) + δV (p)(x) · γ(x) (4)

where the displacement field δV (p) is the correction to apply to the current

estimate V (p−1). Since V (p−1) and δV (p) are decomposed over the basis Φn,

the residual minimization leads to a linear system [22]

M · δa(p) = b(p) (5)

with

Mij =

∫

[Φi(x) · γ(x)][Φj(x) · γ(x)] dx (6)
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and

b
(p)
i =

∫

[Φi(x) · γ(x)][f(x)− ĥ(p−1)(x)] dx (7)

Vector δa(p) represents the correction to the current estimate components

a(p−1) of the displacement U so that

a(p+1) = a(p) + δa(p) (8)

With this new determination of the displacement field, an updated (i.e.,

corrected) deformed image can be computed. This describes one iteration

loop of the algorithm. Convergence is reached when the correlation residual

R0 no longer decreases.

3.2 Strategy

The strategy followed herein is first to analyze the long wavelength displace-

ment field using a global DIC method [23, 24, 25, 22]. For this purpose a

displacement basis consisting of rigid body motions and uniform strains is

chosen, and the sought displacement field is decomposed over this basis. The

key point is that it is made of a few functions n = 1, ..., N of the order of 10

at most, so that the determination of the displacement field shows a very low

uncertainty and error provided the kinematics is relevant. However, because

of the regularity of the chosen fields, microcracks will not be revealed. They

are expected to induce only local perturbations of the displacement field in

their vicinity.

The second step of the procedure is a sensitivity analysis, namely, one

additional degree of freedom (typically, that associated with the presence of a

microcrack) is proposed, and its influence is evaluated. In terms of principle,
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it is close to procedures based upon topological derivatives [26]. As compared

to a global DIC computation this is a very modest problem with a single

degree of freedom. Moreover, a unique iteration is performed so that this

computation is extremely fast. However, a very large number of those degrees

of freedom will be considered. As the location and size of the microcrack are

unknown, it is proposed to scan all possible locations (at any pixel) of the

proposed microcrack center, and all lengths. This is the reason why the

resolution of the problem is not to be done accurately (including non-linear

corrections), but rather it consists in probing the initial (single iteration)

gain for a candidate field. Note that the first step is the direct application of

a global DIC procedure, but the second step is an original algorithm that has

never been proposed and hence the following sections provide details on this

sensitivity analysis. First, the most general sensitivity analysis is presented.

Then a simplification is proposed for local test functions. A fast scanning

procedure is finally described for probing all positions of the test function.

3.3 Details of the sensitivity analysis

The sensitivity analysis consists in enriching a kinematic basis Φn(x), 1 ≤

n ≤ N , with the additional test function ΦN+1(x) = Ψ(x). Moreover, it is

assumed that the deformed image g as been corrected to ĥ by the displace-

ment field as obtained from the initial N degrees of freedom.

Following the above global DIC procedure, the minimization of the en-
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riched system consists in solving
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where

Ni =

∫

[Φi(x) · γ(x)][Ψ(x) · γ(x)] dx

P =

∫

[Ψ(x) · γ(x)]2 dx

c =

∫

[Ψ(x) · γ(x)][f(x)− ĥ(x)] dx

(10)

Note that the first components of the second member are vanishing since the

deformed image is assumed to be corrected by the first N degrees of freedom,

so that if χ is forced to zero then a = 0. It is straightforward to solve the

linear system

a = −
cM−1N

P −N tM−1N

χ =
c

P −N tM−1N

(11)

The minimized residual (approximated through the usual linearity as-

sumption [25, 22]) reads

R2 =
c2

2[P −N tM−1N ]
(12)

Hence the quality gain is

G = R2 =
cχ

2
(13)

The above equations thus provide the amplitude of the enriched degree of

freedom, χ, the modification of the initial degrees of freedom induced by the

addition of the enrichment, a, and the residual gain, G. The latter quantity

is to be used to evaluate the relevance of the proposed enrichment.
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3.4 Simplified approach

In the following, the enriched degree of freedom is a displacement field due

to the presence of a small and localized crack. It has a small support as

compared to the previously introduced degrees of freedom (rigid body motion

and uniform strains). Hence the enrichment is expected to be decoupled from

the standard degrees of freedom. More generally, when the test function is

extended over a large domain, a similar decoupling is to be expected if Ψ is

orthogonal to the original basis, i.e.,
∫

Ψ(x) ·Φi(x) dx = 0. In such a case,

it is expected that

|P | ≫ |N tM−1N | (14)

This analysis motivates a simplified approach where the amplitude χ and

residual gain G are approximated by

χ =
c

P

G =
c2

2P

(15)

and hence, the two quantities c and P are the only (new) relevant quantities

to be computed.

3.5 Fast sensitivity analysis

In the following, not only is the enriched field local, but its shape is the same

for all possible locations of the microcrack center, ξ. Moreover, changing

the microcrack length L can be written as a simple rescaling of a reference

test function. From now on, Ψ function will refer to the enriched field cor-

responding to a microcrack centered at the origin of the coordinate system,
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and with a unit length. Therefore, the most general trial field is written as

Ψ((x− ξ)/L).

The two quantities P and c, are rewritten as

P (ξ, L) =

∫
[

Ψ

(

x− ξ

L

)

⊗Ψ

(

x− ξ

L

)]

: [γ(x)⊗ γ(x)] dx (16)

and

c(ξ, L) =

∫
[

Ψ

(

x− ξ

L

)

· γ(x)

]

[f(x)− ĥ(x)] dx (17)

Both P and c can be evaluated by resorting to Fourier transforms, which

will reveal efficient to scan over all positions ξ. Let us introduce the Fourier

transform f̃(k) = F [f ](k) =
∫

f(x) exp(−ikx) dx, and the following nota-

tions

λ(x) ≡ γ(x)[f(x)− ĥ(x)]

Ψs(x) ≡ Ψ(x)⊗Ψ(x)

γs(x) ≡ γ(x)⊗ γ(x)

(18)

In Fourier space, P and c are simple products

P̃ (k, L) = −L ˜Ψs(−kL) : γ̃s(k)

c̃(k, L) = −LΨ̃(−kL) · λ̃(k)

(19)

and finally

χ(ξ, L) = −L
F−1

[

TL[F [Ψ]]F [λ]
]

F−1
[

TL[F [Ψs]] : F [γs]
]

G(ξ, L) = −
L

2

(

F−1
[

TL[F [Ψ]] · F [λ]
])2

F−1
[

TL[F [Ψs]] : F [γs]
]

(20)

where F ,F−1, TL denote respectively the Fourier, inverse Fourier, and scale

operator. Finally, both sought fields χ and G are computed for all center
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positions ξ and scale factors L based on fast Fourier transforms. This pro-

cedure thus reveals extremely efficient and allows in particular to scan for ξ

at all individual pixel positions in a very affordable time (figures are given

in the following).

4 Practical approach

The present section now addresses the practical implementation of the above

algorithm for the specific goal of identifying microcracks.

4.1 Description of the crack field Ψ

It is recalled that Ψ is the displacement field for a microcrack centered at

the origin, and of unit extension. The choice of a unique trial displacement

field for crack detection is a “simplifying” assumption since the depths of

microcracks are broadly scattered. This hypothesis does not seem to prevent

a good detection of microcracks at their actual location. But it could be a

source of error for crack length and opening quantification. Another assump-

tion in the choice of test field is the crack orientation. Very short microcracks

are oriented along the direction of maximum shear stress (stage I propaga-

tion [27]). In the present case, it was chosen to focus only on mode I cracks

(stage II) that are longer and orthogonal to the load axis. Thus, a unique

crack test field Ψ is used and the displacement is restricted to its component

along the load direction. Oblique cracks could be addressed by following the

same strategy (i.e., using several suited crack fields). This extension was not

considered in the present study.
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An approximation of the latter field can be obtained through an elastic

finite element computation. The elastic computations can only provide an

approximation of the crack displacement field as the material considered in

the experiments reported herein presents a global plastic strain in fatigue

(even for low fatigue levels). Moreover, the in-depth geometry (or aspect

ratio) of the different initiated microcracks are unknown and presumably

randomly distributed. Therefore, several elastic computations with different

aspect ratios e (e = 2d/L where d is the crack depth) have been tested. The

length is constant (L = 400µm) and the depth d varies such that e ranges

from 0.25 to 2. Plane symmetry conditions are imposed on the horizontal

crack plane (0, y) (except on the crack surface), on the vertical plane (0, x)

normal to the crack length and that crosses the crack at its center O, and

finally on the vertical plane (0, z) normal to the crack depth and that is

located 4 mm under the crack in the z direction. Finally a 200 MPa normal

compressive stress is prescribed on the crack surface in order to directly reveal

the residual elastic displacement field that would superpose to the elastic

homogeneous field obtained in the simulation of a sound body submitted to

a 200 MPa uniaxial stress. All simulations for the different aspect ratios

are run with quadratic finite elements. The geometry, mesh and FE Ux

displacement results are illustrated in Figure 3 for e = 1.

The displacement fields obtained with the selected aspect ratios are in-

terpolated by

Ψ(x, y) = Ψ(x, y)ex = [H(x)− 1/2] max(α, 0) (21)

with x being the direction normal to the crack mouth and
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α =
√

a1 + a2y2 (a3 + a4x+ a5x
2) exp[−a6|x|] (A− y2) (B − x2) (22)

and where A = B = 1.5 and [a1, ...a6] are adjustable parameters. The

component of the displacement parallel to the crack length is neglected so

that vector λ and tensor Ψs reduce to a single component thus saving further

on the computation time. The different normalized displacement fields are

shown in Figure 4.

For larger aspect ratios e, the computed solution tends to the elastic case

of a crack in an infinite plate. This analytical displacement field surrounding

the crack is computed from Kolossov-Muskhelishvili potentials ϕ and ψ in

the complex plane ζ = x+ iy [28]

ϕ(ζ) =
σ

2
[
√

ζ2 − a2 − z] (23)

and

ψ(ζ) = −
σa2

2
√

ζ2 − a2
(24)

with

Ux + iUy =
1

2µ
[κϕ(ζ)− ζϕ′(ζ)− ψ(ζ)] (25)

with a = L/2 and under the plane stress assumption

κ =
3− ν

1 + ν
(26)

where ν denotes Poisson’s ratio.

The (computed) normalized field is interpolated by the function defined

in Equation (21) and shown in Figure 5. One trial field has finally been

chosen corresponding to a representative crack with a fixed aspect ratio of 2
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(Figure 4). This field is also very close to the one obtained analytically and

shown in Figure 5. This solution gives the best result for crack quantification

(see Section 5.2.1). The crack depth of the chosen aspect ratio should not

be seen as a realistic estimate as plasticity effects are neglected. Hence,

the crack depth results are not to be interpreted as a measurement in the

sequel. Simply, this aspect ratio allows us to obtain a good approximation

of the observed displacement field surrounding microcracks. This field can

be translated to the position of the assumed crack ξ =[xc yc] and scaled to

the lateral extension of the crack L.

4.2 Crack quantification

The residual gain field gives directly the position of the center of the detected

crack. The maximum opening is obtained on the opening field at the coor-

dinate of the center given by the gain map. Finally only the length of the

crack remains to be identified.

Let us assume that the image contains a unique well-known crack with

a length L0 in the center of the image such that U0(x) = 0, and ĥ = g =

f(x) +U (x, L0) · γ(x). Hence

f(x)− ĥ(x) = U (x, L0) · γ(x) (27)

Each trial field Ψ corresponds to one particular trial length L and

Ψ(x) = U (x, L) · γ(x) (28)

Then

P =

∫

[Ψ(x, L)]2 dx (29)
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and

c =

∫

Ψ(x, L)Ψ(x, L0) dx (30)

Defining the scalar product between two vector fields a and b as

a • b ≡

∫

(a⊗ b) : (γ ⊗ γ) dx (31)

its expected value over the local image texture reads

〈a • b〉 = 〈γ2〉

∫

a · b dx (32)

where the statistical independence of the local image gradient γ and trial

fields location a or b was exploited.

The expected value of c depends on

〈U (L) •U (L0)〉 = 〈γ2〉

∫

U
(x

L
, 1
)

·U

(

x

L0

, 1

)

dx (33)

Introduction of the scaled variable X,

X =
x

L
(34)

allows us to rewrite the above scalar product as

〈U (L) •U (L0)〉 = 〈γ2〉L

∫

U (X, 1) ·U

(

X
L

L0

, 1

)

dX (35)

where

C(L/L0) =

∫

U (X, 1) ·U

(

X
L

L0

, 1

)

dX (36)

finally

〈G〉 = 〈γ2〉L
C(L/L0)

2

2C(1)
(37)

Function C(L/L0) is the cross correlation product between the trial displace-

ment field (U (L)) and the crack displacement field (U (L0)). Consequently,
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C presents a maximum for L/L0 = 1 . The extra factor L in the right-hand

side of Equation (37) shows that there is a natural “bonus” on the gain G

due to the sole size of the test function, and hence directly looking for the

maximum gain tends to favor an overestimation of L. Rather, the variable

Gnorm =
G

L
(38)

will be maximum for L = L0. Therefore, in order to identify both the location

and the length of a microcrack, one should look for the maximum of Gnorm

over ξ and L. To get directly the position of the center and the length of the

crack, the computed gain field is replaced by Gnorm.

4.3 Numerical test with a single crack

In this section, the results are presented for a synthetic case in which one

microcrack is artificially introduced in the reference image (first image of the

test corresponding to 0 cycle or undamaged state). In that case, the param-

eters of the crack (size, opening and location) are known. The displacement

field applied to the reference picture is shown in Figure 6.

The numerically deformed image is then normally used as the damaged

image for the correlation code. The resulting fields are shown in Figure 7.

Both fields present a peak at the center of the crack for coordinates [750

750] pixels. The computed opening (see Figure 7(b)) at the center coordinates

is equal to 0.48 pixel (to be compared with the prescribed value of 0.5 pixel).

Finally, Figure 8 shows the change with respect to the trial length L of the

computed gain Gnorm at the center crack position. A peak is well defined for

L = 50 pixels.
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One of the objectives of the method was the low computation cost. In this

numerical test, the computation time on a basic laptop is 3 s for a region of

360× 360 pixels and for 20 trial lengths. (Note that this computation cost is

independent of the number of microcracks present in the examined images.)

4.4 Case of multiple crack detection and quantification

An algorithm is developed in order to detect multiple microcracks on real

images. This implies that multiple maxima of the normalized gain field are

to be looked for. However, the unavoidable presence of noise will always

produce a large number of local maxima in Gnorm, even if no microcracks

are present. Therefore, a thresholding procedure has to be designed to dis-

tinguish meaningful from spurious maxima. One additional difficulty is that

the image texture naturally induces spatial heterogeneities in the noise sen-

sitivity. Hence, the threshold level should be a heterogeneous field.

To evaluate this sensitivity, the above procedure is applied to compute

G and χ between the reference image, and a few ones taken at a very early

stage of the experiment where no microcracks are expected. These sets of

experimental image pairs are representative of the basic noise that is present

in the entire image series. It reveals useful to combine two thresholds, namely

one on the gain, Gnorm, and a second one on the opening, χ. Thus for the

first sets of image pairs, both fields, denoted by G0(ξ, L) and χ0(ξ, L), are

recorded.

An example is taken from a real test at ±190 MPa. The first image of

the test is the reference one, then the three following images are used to
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compute threshold data. The maps are shown for L = 120 pixels in Figure 9.

Once those fields are computed, the identification of microcracks from the

pair of fields Gnorm and χ makes use of a binary mask, Mmask, which is the

intersection of the thresholded gain and opening. Mmask(ξ, L) = 1 if and

only if Gnorm(ξ, L) > K1〈G
0(ξ, L)〉 and χ(ξ, L) > K2 max(χ0(ξ, L)) (where

the average 〈...〉 and “max” operator respectively denote the average and

maximum value over the three considered images), and Mmask(ξ, L) = 0

otherwise. In those expressions K1 and K2 are constants that are tuned to

adjust the sensitivity of the procedure. In the following, the chosen values

are K1 = 25 and K2 = 1. An example of the binary matrix Mmask will be

shown further down (Figure 12a). Microcracks are then identified as local

maxima within the domain where Mmask = 1.

Finally in order to avoid the multiple count of cracks, it is assumed that an

area of x = L/2 and y = L around an already detected crack cannot contain

another crack center. This implies another assumption in crack detection,

namely the cracks have to be far enough from one another to be considered

as genuine ones.

5 Practical application of the method

5.1 Single image computation

The observed noise level is first linked to the sensitivity of the sensor and

second, to the surface change during the first step of the test mainly due to

PSB initiations. Consequently, the level of noise should grow with damage
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growth.

For the computation, the central part of the 13th image is chosen (cor-

responding to 120,000 cycles while NF = 145, 000 cycles). First the long

wavelength displacement field computation is carried out with the global

DIC technique as above described using uniform strains and rotations. The

displacement field along the x axis (Figure 10(a)) and correlation residual

(Figure 10(b)) are the main outputs of this first step. The displacement

gradient is due to cyclic softening. The deformed image is then corrected

to provide the input ĥ image of the sensitivity analysis. No microcrack is

detected on the residual field map. Only boundaries of the ferritic grains are

observed.

Then, gain Gnorm and opening χ values are computed at each pixel and

for 11 trial lengths (ranging from 30 to 130 pixels with a 10-pixel step).

One result is presented for L = 120 pixels (Figure 11). The maps show a

high level of noise but multiple peaks appear. In order to isolate the cracks,

mask Mmask is computed and shown in Figure 12(a). To illustrate the final

result, the global displacement field is reconstructed adding the first order

long wavelength field to the local fields surrounding detected microcracks

(Figure 12(b)). In Figure 12(b) a white square defines the possible zone

of crack centers. A crack center cannot exist on the boundaries as the trial

displacement field used for detection would leave the computed area. Finally,

the selected zone seems to contain 6 cracks whose length varies from 50 pixels

(i.e., 150 µm) to 110 pixels (i.e., 350 µm) and with openings ranging from

0.25 pixel (i.e., 0.8 µm) to 0.5 pixel (i.e., 1.6 µm). The detection threshold

can be seen as the minimum resolvable crack opening. This threshold mainly
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depends on the texture quality (and on the choice of parameters K1 and K2).

The different tests performed showed that the level of noise prevent any

detection of cracks with an opening less than 0.2 pixel (i.e., 0.6 µm). The

main part of the computation time is for the first global evaluation that takes

about 30 s for a 600×600-pixel region. Crack detection itself is performed in

13 s with 20 trial lengths.

For comparison purposes, it is also possible to use Q4-DIC [25]. This

type of computation is not dedicated to crack detection. It computes the

displacement fields as a decomposition over a finite element basis of shape

functions (4-noded quadrilateral elements, or Q4, on a regular square mesh

with a bilinear variation of the shape functions over the elements). The same

couple of images as before is used and the displacement field along the x-axis

is shown in Figure 13(a). This result can directly be compared to the final

reconstructed field in Figure 12(b).

The same type of global displacement gradient is found and some discon-

tinuities interpreted as microcracks that are read from the displacement map.

A way to make them more visible is to perform a Q4-DIC analysis between

the 4th image and the same (13th) damaged image. The uniform strain is

then close to zero as the change of the cyclic behavior of the material is now

small between these two pictures. The result is shown in Figure 13(b). The

time for performing the Q4-DIC computation is around 4 min and it does not

directly give quantitative data concerning the number of cracks, their length

and opening. Although they can be guessed when their size and opening are

large, the level of noise remains high since the entire displacement range is

less than 1 pixel for the entire image. A small element size has to be used
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to detect the microcracks, here as small as 4-pixel wide. For larger elements

(such as 32×32 pixels) no cracks could be detected. Last, the positions of the

cracks between Q4-DIC and the automatic detection technique are compared

in Figure 14. A good agreement is observed.

5.2 Multiple image computation

5.2.1 Propagation curves

For very low fatigue loading close to the fatigue limit, few microcracks initiate

on the surface of the specimen. One test has been performed in this regime

(±180 MPa). Every 10,000 cycles the method is used with the first image

of the test corresponding to 0 cycle at maximum load. For this type of test,

replicas have been performed. It is thus possible to compare DIC estimates

of the length and opening of the cracks with the results obtained using the

latter technique. The result at 300,000 cycles for Q4-DIC is illustrated in

Figure 15(a). This number of cycles corresponds to the limit of detection

in Q4-DIC. One will notice (see Figure 17a) that the new presented crack

detection technique allows the detection of the crack 50,000 cycles before

Q4-DIC. The observation of the central microcrack over the replica is shown

in Figure 15(b). Last, the result obtained with the crack detection technique

is presented in Figure 16.

The comparison of several images is plotted in Figure 17. Figure 17a

shows the change of the crack length with the number of cycles. The repli-

cation technique is the most sensitive in terms of resolution. One evaluated

error bar (±5µm) is plotted for 400,000 cycles. The Q4-DIC points are ob-
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tained by “manual” evaluation of the length from the displacement maps (one

example is given in Figure 15(a)). As a consequence the error on crack quan-

tification has been evaluated to amount to ±20 pixels, which corresponds to

±64µm (see corresponding error bars in Figure 17(a)). The Q4-DIC eval-

uation (which requires about 10-minute computation time) for each image

tends to under-evaluate the real length of the crack. The results obtained

with the proposed method are also plotted. The error bars correspond to the

discretization on the length evaluation (here ±8 pixels or ±24µm). The re-

sults are very close to those of the replicas when the crack is very short. Then

the technique (consisting in a first and fast evaluation) tends to overestimate

the crack length. This analysis has only been performed over a unique crack

in one loading case. Moreover, one major simplifying assumption is the use

of an elastic crack field Ψ for crack detection while the material behavior

is known to be elasto-viscoplastic. In the presence of plasticity, a blunting

of crack tips is expected, which contributes to increase the crack opening

on all the crack length contrary to an elastic field for which this opening

vanishes at the crack tip. Therefore the actual displacement field around a

crack should be different from the one proposed by the elastic theory. As

a consequence, it is natural to overestimate the crack length initiated in a

plastic material if an elastic field is chosen as the perturbation displacement

field. But even with such a rough approximation of the displacement field,

it is possible to estimate the crack length. In order to obtain a more precise

length or opening value, other computations may be performed around the

detected crack.

Another interesting result is the detection of the number of cycles for
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crack initiation. Since the test was expected to last about one million cy-

cles, replicas were performed every 100,000 cycles. The first detection with

the replica technique is obtained for 300,000 cycles. Image capture can be

performed more frequently (here every 10,000 cycles) as its cost is negligi-

ble. Initiation detection with Q4-DIC is estimated around 300,000 cycles

(see Figure 15(a)). The best result is obtained by the automatic detection

technique which gives a crack initiation at 230,000 cycles.

The comparison of the crack opening history is shown in Figure 17(b).

The evaluation of the opening over the replicas is not as accurate as the

length evaluation. First, the replicas are made after the creep of the spec-

imen [29]. Second, the opening changes along the crack length in a very

chaotic fashion because of the underlying grain microstructure and possible

merging of smaller microcracks, or microcrack impregnation with the replica

coating. Hence, the opening has been evaluated at the center of the mi-

crocrack. Large error bars (no precise quantification have been performed)

should be present in Figure 17(b)). A rough evaluation of the uncertainty is

around ±1 µm. The quantification of the opening with the detection tech-

nique is also very difficult since the crack aspect ratio is very different from

the theoretical one. Yet the results are quite close (±1.5 µm). This confirms

that the technique proposed herein is able to give a first estimation of the

crack opening even for very short cracks with an estimated resolution of the

order of 0.2 pixel (i.e., 600 nm).
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5.2.2 Crack density

Images from the same test (±190 MPa) are used but contrary to Section 4.4,

the whole image is considered in the computation (1500×1100 pixels) that is

repeated for all images captured during the test. A first phase is the evalua-

tion of the level of noise in the whole image using the threshold computation.

The computation is then performed with K1 = 25 and K2 = 1.

An example of the reconstructed field is given after 120,000 cycles in

Figure 18(a) and compared with a Q4-DIC result in Figure 18(b). For each

image pair, the crack density is computed as the number of cracks divided

by the analyzed area. The crack density change with the number of cycles

obtained with the present automatic detection is plotted in Figure 19. This

result is compared to that obtained by “manual count” in displacement maps

obtained with Q4-DIC. The error that can be done by manual counting

remains small. It depends on the number of initiated cracks. The major

part of microcracks with L > 150 µm are detected. However the Q4-DIC

computations with an element size of 4 × 4 pixels are very long to perform

and require a powerful computer. The error with the automatic detection is

mainly due to the choice of the sensitivity parameters K1 and K2. Several

tests have been conducted with different values of K1 and K2 in the case of

numerous crack initiations. The automatic detection seems to overestimate

the crack density but some cracks are too long to be detected as a single one

and are then detected as two microcracks. This is due to the limit numerically

imposed on crack length evaluation (i.e., 130 pixels herein). Moreover, as the

noise level grows with damage, the method tends to detect “ghost” cracks
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that are only noise. Overall, the automatic detection allows for a reliable

quantification for crack density evolution at very small computational costs.

6 Summary

In this paper a novel global DIC-based method is proposed to detect and

quantify automatically microcracks initiating at the surface. This issue is

quite challenging as typical crack openings are in the range 0.1 to 0.5 pixel,

and extensions varying between 50 and 150 pixels. Moreover, as the trial

displacement field is assumed to be invariant up to a translation of the mi-

crocrack position, a Fast Fourier Transform is proposed for a very efficient

scanning of the position of the microcracks. Application of the technique

to an experimental case revealed a very good ability to detect and locate

microcracks. A crack detection threshold of 0.2 pixel (i.e., 0.6 µm) for crack

opening has been experimentally observed.

At the present stage, the estimate of crack length and opening remains

qualitative, which may be attributed to an approximate trial field based on

the assumption of a fixed aspect ratio for the unknown in-depth geometry

of the cracks and elastic behavior. This last point is known to be a rough

approximation for the material studied herein (304L stainless steel). Con-

versely, the estimate of the crack density was shown to be very reliable. This

quantity is one of the experimental inputs for models accounting for multiple

initiations [10], subsequent propagation and shielding [30].

Finally, it is to be stressed that the present methodology can be extended

to any local alteration of the surface whose signature in terms of displacement
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field can be described faithfully by a test function with a compact support.
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Appendix: list of notations

[a1, ...a6]: adjustable parameters used for additional test function interpo-

lation

a(p): estimated components of the displacement field U at step p of the it-

erative process

a0n: initial sought components of the displacement field U over the basis Φn

A: adjustable parameter used for additional test function interpolation

b(p): second member of the global linear system

B: adjustable parameter used for additional test function interpolation

c: additional second member of the linear system corresponding to the addi-

tional test function Ψ

C(L/L0): cross correlation product between the trial displacement fieldU (L)

and the crack displacement field U (L0)

d: crack depth

e: crack aspect ratio

f(x): reference image

f̃(k): Fourier transform of function f

F : Fourier transform

F−1: inverse Fourier transform

g(x): deformed image

G: detection quality gain field (corresponding to local residual R)

G0: initial quality gain field
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Gnorm: modified quality gain (normalized by the crack length)

ĥ(x): corrected deformed image

ĥ(p)(x): corrected deformed image adjusted at step p of the iterative process

H(x): Heaviside function

K1: crack detection sensitivity parameter for quality gain

K2: crack detection sensitivity parameter for opening

L: microcrack total surface length

L0: given crack length

M: matrix of the global linear system

Mmask: mask used to locate cracks

N : number of degrees of freedom used for the first global displacement field

evaluation

Nc: number of cycles

N: additional cross term of the linear system corresponding to additional

test function Ψ

NF : number of cycles to failure

P : additional first member of the linear system corresponding to additional

test function Ψ

R0: global correlation residual

TL: scale operator

U : in-plane displacement field

Ux: displacement field along x

Uy: displacement field along y

V : trial in-plane displacement field

V (p): trial in-plane displacement field adjusted at step p of the iterative pro-
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cess

x: in-plane spatial coordinates

x: first spatial coordinate

y: second spatial coordinate

z: third spatial coordinate

α: part of the interpolation function for additional crack displacement field

function Ψ

γ: reference image gradient

δa(p): correction to apply to the current estimate of components a(p−1) of

the displacement field

δV (p): correction to apply to the current estimate V (p−1) of the trial dis-

placement field

∆σxx: controlled stress variation along x axis

ζ: complex plane coordinate

ν: Poisson’s ratio

ξ: in-plane crack center coordinates

ϕ: first Kolossov-Muskhelishvili potential

Φn: n-function basis for displacement field decomposition

χ: crack opening field

χ0: initial crack opening field

ψ: second Kolossov-Muskhelishvili potential

Ψ: x-axis component of the additional test function Ψ

Ψ: additional test function corresponding to local displacement field for a

crack centered at the origin and of unit extension
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Figure 1: Geometry of the specimen with a flat part (0.4 mm in depth) in

the center of the gauge zone [9]. All dimensions are in mm.
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(a) (b)

Figure 2: (a) 304L microstructure made of austenitic grains (gray) with

ferritic residual grains (black). (b) Example of raw image captured by macro

photography over the notch. The ferrite appears in white in this picture.
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(a) (b)

Figure 3: (a) Geometry for displacement field computations (crack length:

200µm, crack depth: 200µm, total depth: 4 mm, total length: 2.5 mm, total

height: 2.5 mm). (b) Displacement field along the direction normal to the

crack mouth (normalized) obtained for e = 1 and focused around the crack

area, 73,600 finite elements are used.
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(a) (b)

(c) (d)

Figure 4: Adjusted displacement field (along direction x) for (a) e = 0.25,

(b) e = 0.5, (c) e = 1, (d) e = 2.
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Figure 5: Analytical displacement field Ψ.
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Figure 6: Displacement field in direction x corresponding to a microcrack

with the following parameters: L = 50 pixels, center=[750 750] pixels and

maximum opening = 0.5 pixel.
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(a) (b)

Figure 7: (a) Quality gain Gnorm map obtained for a trial length of 50 pixels.

(b) Half opening map obtained for a trial length of 50 pixels.
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Figure 8: Change of the quality gain Gnorm for the different trial lengths (for

x = y = 750 pixels).
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(a) (b)

Figure 9: (a) Threshold gain map computed for a trial length of 120 pix-

els. (b) Threshold opening map computed for a trial length of 120 pixels

(1 pixel ↔ 3.2 µm).
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(a) (b)

Figure 10: (a) Measured displacement field (expressed in pixel) along the

x-axis by the first global approach (1 pixel ↔ 3.2 µm). (b) Residual (in

gray levels) map obtained after a first global computation.
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(a) (b)

Figure 11: (a) Gain map for a trial length of 120 pixels. (b) Opening field

map for a trial length of 120 pixels (1 pixel ↔ 3.2 µm).
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(a) (b)

Figure 12: (a) Binary matrix (Mmask) for L = 120 pixels. White zones

correspond to possible crack locations. (b) Reconstructed displacement

field (expressed in pixel) along the x-axis for all analyzed crack lengths

(1 pixel ↔ 3.2 µm).
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(a) (b)

Figure 13: Ux field obtained with Q4-DIC with 4 × 4-pixel elements

(1 pixel ↔ 3.2 µm). Deformed image = 120,000 cycles, reference image

= 0 cycle (a), and 30,000 cycles (b).
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Figure 14: Comparison of the crack positions determined by Q4-DIC (“man-

ual” detection) and the automatic detection technique.
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(a) (b)

Figure 15: (a) Displacement field expressed in pixel measured by using Q4-

DIC (element size: 4×4 pixels) for Nc = 300, 000 cycles (1 pixel ↔ 3.2 µm).

(b) Replica observation performed after Nc = 300, 000 cycles.
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Figure 16: Reconstructed displacement field at Nc = 300, 000 cycles with the

technique developed herein.

54



(a) (b)

Figure 17: (a) Crack length and (b) crack opening history of a single mi-

crocrack as revealed by three methods: replica (×), Q4-DIC (�), and the

proposed method (△).
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(a) (b)

Figure 18: (a) Reconstructed displacement field Ux (in pixel) after 120,000

cycles. (b) Q4-DIC displacement field Ux (in pixel) at 120,000 cycles

(1 pixel ↔ 3.2 µm).
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Figure 19: Crack density vs. number of cycles for Q4-DIC “manual” de-

tection (the error bar correspond to an estimation of the number of cracks

roughly detected) and automatic detection (the error bar corresponds to the

results obtained with different values of 20 < K1 < 35 and 0.8 < K2 < 1.4).
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