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Abstract 

Metal matrix syntactic foams, consisting of two grades of aluminium alloys and a set of oxide ceramic 

hollow spheres, were investigated in the aspect of cyclic loading. The results of the compressive – 

compressive cyclic loading with the load asymmetry factor of R=0.1 ensured full reliability design 

data for the investigated material in the lifetime region, while the fatigue limits were determined by 

staircase method. Based on the measurements the Wöhler curves of the foams were constructed, 

including the median curves, their confidence boundaries and the fatigue strength. Regarding the 

matrix material, the softer matrix ensured higher load levels for the fatigue strength than the more 

rigid matrix. Considering the size of the reinforcing ceramic hollow spheres, larger spheres performed 

better than the more vulnerable smaller ones. One common failure mode was isolated for the 

investigated foams: the samples were broken along a shear band, similar to the case of quasi-static 

loading. 
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1 Introduction 

Metal matrix syntactic foams (MMSFs) consist of a set of hollow spheres (ceramic, metallic or mixed) 

in metal matrix. The hollow spheres are commercially available in various grades from different 

suppliers [1-3]. As matrix, usually some kind of lightweight metal is used. MMSFs can be sorted into 

two subgroups of materials. On one hand they can be mentioned as particle reinforced metal matrix 

composites (composite metal foams – CMFs), because they contain particle like hollow spheres 

within the diameter range Ø0.1…10 mm. On the other hand, they can be sorted as cellular materials 

(foams), due to the hollow nature of the reinforcement. 

The basic mechanical properties of MMSFs have been widely studied. The publications focus mainly 

on the compressive behaviour of the foams (as most common loading mode). Due to its utmost 

importance the quasi-static compressive test of the metallic foams has been standardized [4, 5]. 

There are certain research groups, dealing with syntactic foams: for example Fiedler et al. [6-10] have 

been developed low cost syntactic foams filled by perlite particles. Gupta et al. [11-19] have been 

investigated various MMSFs, including extremely light, SiC hollow sphere reinforced systems. 

Lehmhus et al. [17, 20-25] developed high performance MMSFs, based on steels. Skolianos et al. [26] 

have been interested in powder metallurgy processed MMSFs. Rohatgi et al. [27-33] have been 

conducted extremely wide range experiments on MMSFs, aiming to characterise their properties in 

details and to highlight the MMSFs as potential solutions for many industrial applications. Moreover, 

the wear properties have been investigated and described in [34-41]. 



The behaviour of MMSFs in cyclic loading is also important, because many applications involve 

repeated loading. However, only a few publications are available in this field and most of them are 

focused on ‘conventional’ open and closed cell foams. In their comprehensive work Ashby et al. 

addressed the tension, compression and shearing mode fatigue tests of different aluminium foams 

and gave remarkable suggestions for the test samples geometry and conditions [42], later Degischer 

and Kriszt summarized some basic aspects based on the available literature [43]. Soubielle et al. 

investigated ~400 μm pore size replicated aluminium foams in tension-tension loading (R=0.1). The 

foams displayed cyclic creep coupled with a strong influence of relative density [44]. Amsterdam et 

al. performed monotonic and cyclic tension tests on closed cell foams produced by powder 

metallurgy. Tension–tension fatigue tests started with the constant ratchetting of the foam samples 

followed by an accelerated elongation that lead to failure. [45]. Harte et al. compared the fatigue 

failure of commercially available open and closed cell aluminium alloy foams in tension-tension and 

in compression-compression loading. The open cell foam had a relatively uniform microstructure, 

and underwent homogeneous straining. In contrast, the closed cell foam was more irregular in 

microstructure, and exhibited a single crush band formed and broadened with additional fatigue 

cycles [46]. McCullough and Fleck performed cyclic tension and compression tests on closed cell 

AlMgSi alloy based foams in the relative density range of 0.1-0.4. The fatigue strength of the foams 

increased with the relative density and the dominant cyclic deformation mode appeared to be 

material ratchetting [47]. Banhart and Brinkers investigated aluminium-silicon alloy (Al + 7 wt% Si) 

closed cell foams produced by powder metallurgy (0.5 wt% TiH2), with different relative densities. 

The cylindrical specimens were loaded in compression-compression mode. The authors highlighted 

that the compression strength and the failure criterion were not unambiguous in the case of metallic 

foams [48]. Pure Al foams with similar structure were tested in cyclic compression by Sugimura et al. 

A significant novelty in their work was the application of image analysis to record strain maps and to 

follow the formation and thickening of the deformation bands. The closed cell Al alloys had a 

relatively well defined fatigue life in cyclic compression, associated with the plastically buckled 

membranes of the cell walls resulted in a single cyclic deformation band [49]. Zhou and Soboyejo 

investigated AlMgSi based open cell foams under cyclic compression loading, that resulted in crack 

nucleation on the surface of the struts. The cracks grew until final failure occurred in the individual 

struts. In the vicinity of the cracked struts the loads were transferred to the adjacent struts. This led 

to the acceleration of fatigue damage by formation of macroscopic deformation band(s), resulted in 

the onset of abrupt strain jumps [50, 51]. Lehmhus et al. investigated powder metallurgy produced 

Al6061 alloy foams in as foamed and in precipitation hardened condition under cyclic compression-

compression loading. The positive effect of precipitation hardening (e. g. the increment in strength 

values under monotonic loading) was only partially experienced in cyclic loading [52]. The work of Lin 



et al. emphasized the application of porous TiNb alloys as bone replacements [50, 51]. The cracks 

that caused fatigue failure appeared on the surface of the struts in the vicinity of the largest pores 

[53]. Hakamada et al. focused their work on the cyclic compression tests of closed cell Al foams 

produced by spacer method using NaCl space holders and a spark plasma sintering equipment. Under 

cyclic compression the strain increased gradually with cycles and no distinct strain jump was 

observed for the specimen [54]. Zettl et al. investigated AlMgSi and AlSi alloy based, powder 

metallurgy produced closed cell foams by ultrasound fatigue testing method under fully reversed 

tension-compression loading. Preferential areas for crack initiation were initial defects like precracks 

or holes in the interior sections of cell walls. No strain localization or formation of deformation bands 

were found and the effect of frequency magnitude found to be negligible within three decades [55, 

56]. The effect of sample dimensions, especially of the aspect ratio was investigated by Kim and Kim 

on closed cell Al-Si-Ca foams. The cyclic compression-compression tests revealed that, the onset of 

cyclic shortening of foams with lower aspect ratio took place earlier and the fatigue strength was 

lower compared to the specimens with higher aspect ratio [57]. Kolluri et al. performed cyclic 

compression-compression tests at constant stress amplitude levels on closed-cell Al foam in laterally 

constrained and unconstrained condition. The results showed that while the early stages of strain 

accumulation due to fatigue loading were independent of constraint, the rapid strain accumulation 

stages behaviour were sensitive to the constraint [58]. One step further, sandwich beams (with Al 

alloy foam core) were also tested in cyclic four-point-bending by Harte et al. The combined 

experimental and theoretical study showed that a reduction in the strength of sandwich beams 

existed for cyclic loading compared to monotonic loading [59]. Moreover, Schultz et al. investigated 

foams in the aspect of potential helicopter components [60]. 

As it is presented above, the different research groups published results about versatile foam 

systems and different cyclic loadings. Most of the investigations apply R=0.1 stress asymmetry factor, 

but the test frequencies can differ significantly. On the other hand, MMSFs have been not mentioned 

yet. The only similar work on CMFs that contain steel hollow spheres in aluminium matrix (made by 

gravity casting) or in steel matrix (made by powder metallurgy method) was published by Vendra et 

al. Under cyclic compression loading, the CMFs showed high cyclic stability and the deformation of 

the composite foam samples could be divided into three stages – linear increase in strain with fatigue 

cycles (stage I), minimal strain accumulation in large number of cycles (stage II) and rapid strain 

accumulation within few cycles up to complete failure (stage III). The deformation of the MMSFs 

occurred to be uniform compared to regular metal foams, which deform by forming collapse bands 

at weaker sections [61].  



The aim of this paper is to widen the fatigue properties datasets available for the compression-

compression loading of MMSFs by the investigation of Al99.5 and AlSi12 matrix MMSFs with different 

filler materials. 

 

2 Materials and methods 

Al99.5 and AlSi12 alloys were applied as matrix materials, their chemical compositions are listed in 

Table 1. As filler, Globocer (GC) grade ceramic hollow spheres were applied, provided by Hollomet 

GmbH. [1]. The material of the hollow spheres consists of 38 wt% Al2O3, 43 wt% SiO2 and 19 wt% 

3Al2O3∙2SiO2. The hollow spheres follow a normal distribution regarding their diameter (1425±42 μm) 

and wall thickness (60±1.7 μm), while their density is 0.816 gcm-3. The amount of the filler material 

was maintained at ~65 vol%, ensured by gentle tapping and knocking during the filling process [62, 

63]. The MMSFs were produced by pressure infiltration. During the infiltration 400 kPa infiltration 

pressure was applied for the infiltration time of 30 s. The infiltration temperature was always set to 

50°C above the melting temperature of the matrix materials (660°C for Al99.5 and 575°C for AlSi12). 

The infiltration pressure was significantly larger than the threshold pressure of the hollow spheres, 

therefore the amount of un-infiltrated voids could be neglected (please refer to the micrographs in 

sections 3.1 and 3.2). However, due to the nature of the pressure infiltration and because of the 

uneven wall thickness of the hollow spheres, the infiltration pressure may have exceeded the crush 

strength of a few hollow spheres. In these cases, the spheres were infiltrated (less than 3 vol% of the 

spheres). The infiltration process is described in details elsewhere [64-66]. The produced foams were 

designated after their constituents, for example Al99.5-GC stands for an MMSF sample with Al99.5 

matrix and ~65 vol% of Globocer filler material. Cylindrical samples with diameter of Ø8.5 mm and 

height of 12.75 mm (1.5 aspect ratio) were machined from the produced blocks. 

 

Table 1. Chemical composition of the matrix materials (in wt%) 

Matrix Si Fe Mn Mg Cu Zn Al 

Al99.5 0.250 0.400 0.050 0.050 0.050 0.050 rem. 

AlSi12 12.830 0.127 0.005 0.010 0.002 0.007 rem. 

 

For classic fatigue tests, load levels (k) should be determined, that describe the maximum load (σmax) 

during each fatigue cycle in a relation to a limit strength. In the case of conventional metals, the load 

levels are usually related to the proof strength (Rp0.2) that is measured by simple tensile tests. In the 

case of MMSFs the proof strength can be substituted by the compressive strength (σc, the first local 

maximum in the engineering compressive stress – strain diagram, that causes irreversible failure, see 

Fig. 1). 



 

 

Fig. 1 Typical quasi-static compressive curve of MMSFs and the derivation of the cyclic loading 

parameters σmin and σmax (inset figure) 

 

The compressive strength (σc) of the foams, was measured for each material type on six samples 

(Table 2). On this basis, the load levels can be defined as the ratio of the maximal load and the 

compressive strength within the loading cycle (Eq. 1). The load level expresses similar load intensity, 

for the investigated materials that may have different compressive strength. k = σmaxσC 100 (%) Eq. 1 

In our case the load level was altered between 60-100%. Fatigue tests were performed on an Instron 

8872 type closed loop servo-hydraulic testing machine under force control and in compression-

compression mode (stress asymmetry factor of R=0.1). The frequency of the fatigue tests was set to 

f=10 Hz and the load form followed a sine curve (inset of Fig. 1). The cylindrical specimens were 

carefully lubricated and placed between hardened and polished plates in a four column upsetting 

tool. The overall deformation of the specimens was measured by a strain gage as a function of cycles. 

In order to get information about the reliability of the test sequences the percent replication (PR) 

has been calculated (Eq. 2). PR = (1 − NKNS) 100 Eq. 2 

Where NK is the number of load levels and NS is the overall number of the specimens. PR between 

17-33% corresponds to preliminary and exploratory tests, PR=34-50% is for research and 

development tests, PR=50-75% is for design allowable tests, while full reliability data tests requires 

PR=76% or higher [67]. The PR values are listed in Table 2, all test sequences satisfy the strictest 

reliability criterion. 

 

 



Table 2 Compressive strength, sample number and reliability data 

Foam 
Compressive strength, 

σc (MPa) 

Number of samples at load level Reliability, 

PR (%) 
SUM 

k=80% k=85% k=90% 

Al99.5-GC 19.7 3 9 9 85.7  

AlSi12-GC 40.0 9 9 9 88.9  

Overall number of samples 12 18 18  48 

Overall number of cycles 6966673 28377 3320  6998370 

Overall duration of tests (hours) 193.52 0.79 0.09  194.40 

 

3 Results and discussion 

3.1 Fatigue properties 

During the fatigue tests, the maximum values of the compressive engineering deformation were 

recorded in the function of cycles (Fig. 2). The curves can be divided into three parts [61] (see Fig. 3). 

In stage I, the strain increases sharply up to a small value after a small number of cycles. Next, the 

strain remains relatively constant over a large number of cycles (stage II). This stage is known as 

incubation period [49]. A higher load ratio increases the overall strain in stage II. Stage III is 

accompanied by densification of the material and a rapid strain accumulation after a critical number 

of cycles. Higher load ratios shift the onset of stage III towards lower numbers of cycles. 

 

 

Fig. 2 The measured compressive engineering deformation – number of cycles curves of (a) Al99.5-GC 

and (b) AlSi12-GC 

 

For further investigation of the deformation mechanism the (idealised) deformation rate is plotted in 

Fig. 3b in the function of the cycles. In the first section the initial plastic deformation in the weakest 

struts occurs, and due to the hardening of the material the deformation rate decreases. In the 

second, incubation part the deformation rate is almost constant and near to zero, finally in the last 

part rapid damage accumulation takes place and the deformation rate increases steeply. 

 



 

Fig. 3 The idealised compressive engineering deformation (a) and engineering deformation rate (b) in 

the function of cycles 

 

For the correct evaluation of the deformation – cycle curves a failure criterion needs to be defined, 

that always depends on the desired application. As there is no conventional criterion limit for the 

failure [48], the obtained deformation – number of cycle curves were evaluated at an arbitrarily 

chosen εcrit=2% (Fig. 2a) in order to get the failure cycles (NF). It should be emphasized that εcrit=2% 

engineering deformation corresponds to a macroscopically observable failure in the specimen. The 

obtained failure cycles showed large scatter, as it is usual in the case of fatigue tests, therefore 

mathematical statistics, namely the Weibull distribution function (Eq. 3) was used to determine the 

expected number of cycles up to failure at a survival level (or probability, PS) of 50%. PS = 1 − e−(N−N0α )β
 (Eq. 3) 

Where N is the independent variable, for which the equation should be evaluated to get the number 

of cycles up to the failure, N0 is the threshold parameter, α is the scale parameter while β is the 

shape parameter of the function. During the evaluation, the number of cycles up to the failure (NF) at 

the investigated load level should be sorted into ascending order. In the next step a Median Rank 

(MR) value should be assigned to each number of cycles up to the failure. The expression of the 

median rank is in Eq. 4. MR = i−0.3n+0.4 (Eq. 4) 

Where i is the number of the current point and n is the sample number on the given load level. For 

example in the case of a n=9 element sample set the MR value of the i=5th sample is MR=0.5. 

Subsequently, Eq. 3 should be fitted on the NF–MR points to obtain the parameters of Eq. 3 and 

finally the equation (Eq. 3.) should be solved for N. An example of the Weibull fitting is shown in Fig. 

4. 

 



 

Fig. 4 Weibull fitting example for Al99.5-GC foam at k=90% 

 

The next step is to construct the Wöhler-curve of the materials, that consists of two main parts. The 

first, endurance (or finite lifetime) part establish a relationship between the load level and the 

expected lifetime of the material. The second part represents the fatigue strength of the material. 

Considering the first part, the above derived results of the described mathematical statistic method 

are valid for the endurance range and the fitted line on them represents the endurance part of the 

Wöhler-curve. By using this curve in the case of a given part and a given loading, the expected 

lifetime of the part can be predicted at the 50% survival probability (PS). Regarding the second part, 

the load level corresponds to the fatigue strength can be determined by the staircase method [67]. 

First, the load level corresponds to the mean fatigue limit has to be estimated, and a fatigue life test 

has to be conducted at a little higher load level than the estimated mean. If the specimen fails prior 

to the life of interest (2∙106 cycles in our case), the next specimen has to be tested at a somewhat 

lower load level. If the specimen does not fail within this life of interest, a new test has to be 

conducted at a higher stress level. Therefore, each test depends on the previous test result, and the 

test series continues with a load level increased or decreased. The load level increments are usually 

taken to be less than about 5% of the initial estimate of the mean [68]. Tables 3 and 4 represent the 

data for the staircase method in the case of the investigated MMSFs, while Figs. 5a and 5b represent 

the results of the measurements for the Al99.5 and AlSi12 matrix MMSFs, respectively. 

 

Table 3 The data of the staircase method for the Al99.5-GC syntactic foams 

Foam 
Compressive strength, 

σc (MPa) 

Number of samples at load level 
SUM 

k=0.7625 k=0.775 k=0.7875 k=0.80 

Al99.5-GC 19,7 1 2 3 3 9 

Overall number of cycles 2000000 3292151 5142563 4395000 14829714 

Overall duration of tests (hours) 55.56 91.44 142.84 12.21 302.05 

 



Table 4 The data of the staircase method for the AlSi12-GC syntactic foams 

Foam 
Compressive strength, 

σc (MPa) 

Number of samples at load level 
SUM 

k=0.725 k=0.7375 k=0.75 

AlSi12-GC 40,0 2 4 3 9 

Overall number of cycles 4000000 5292984 3647600 12940584 

Overall duration of tests (hours) 111.11 147.03 101.32 359.46 

 

 

Fig. 5 Results of the staircase method for Al99.5-GC (a) and AlSi12-GC (b) MMSFs 

 

The staircase method resulted in the load levels of 78.44% and 73.75%, that corresponds to the 

fatigue strength of 15.45 MPa and 29.50 MPa for the Al99.5-GC and AlSi12-GC MMSFs, respectively. 

In the possession of the finite lifetime data and fatigue limit it is possible to construct the Wöhler-

curves of the MMSFs (Fig. 6). In Fig. 6 the measured points are shown by hollow squares, while the 

evaluated points are designated by black squares. The endurance part starts from k=100% as that 

corresponds to a single (1/4 cycle) uploading to the compressive strength. In the finite lifetime 

region, the black line was fitted on the evaluated points by the least square method (R2=0.976 and 

R2=0.978 for the Al99.5-GC and AlSi12-GC foams, respectively). The load levels corresponding to the 

fatigue limits and obtained by the staircase method are also plotted by black lines in the diagrams. 

The finite lifetime regions are supplemented by 90% reliability bands at 95% confidence level 

according to the ruling ASTM method (black dashed lines) [67]. Considering the identical scales and 

comparing Figs. 6a and 6b the technical purity Al99.5 matrix material ensured higher fatigue limit and 

higher lifetimes for a given load level. This phenomenon can be explained by the more or less 

pronounced rigidity of the high Si content eutectic Al matrix and by the presence of the Si lamellae in 

the matrix, resulting in a moderate stress concentrating effect. On the other hand, the more ductile 

and soft technical purity Al matrix could hinder the incidental crack propagations, resulting in a 

higher lifetime. These curves can be directly used to predict the expected lifetime of the MMSF parts 

based on their maximum permitted loading during operation, that could be determined by 

measurements on actual parts or can be estimated by finite element methods. 



 

 

Fig. 6 Wöhler-curve for Al99.5-GC (a) and AlSi12-GC (b) MMSFs 

 

For comparison and to investigate the size effect of the hollow spheres preliminary measurements 

on MMSFs reinforced by smaller hollow spheres with identical chemical composition were 

performed. The smaller hollow spheres are commercially available under the SL300 grade name 

(provided by Envirospheres Pty. Ltd. [2], designated by SL in the diagrams). The average diameter 

(150±4.1 μm) and wall thickness (6.75±0.2 μm) of the smaller, SL grade hollow spheres were about 

one tenth of the GC grade spheres, while their density was slightly lower (0.691 gcm-3). The 

preliminary tests were performed on fewer samples and the results were evaluated by simpler 

statistics (average and scatter). However, two important trends can be clearly observed: (i) in the 

case of the smaller hollow spheres similar relationship can be seen regarding the matrix material: the 

softer Al99.5 matrix ensured higher expected lifetimes at certain load levels and (ii) the lifetime 

region of the smaller spheres always run well below the curves of the GC spheres. This can be 

explained by the different failure mechanism of the hollow spheres. The smaller SL spheres have 

thinner walls in which any defect can easily be the starting point of a crack (Fig. 7). In Fig. 7 two 

cracks are highlighted by white ellipses. The first one has a horizontal direction that is perpendicular 

to the compressive loading and therefore moderately dangerous, because the compressive loading 

tends to close this crack. The second one is vertical and due to the additional radial forces awakened 

by the compressive loading and the resistance of the material against deformation, this crack is in 

opening mode and therefore can propagate into the matrix as it can be seen in Fig. 7b in magnified 

view. 

 



 

Fig. 7 SL grade hollow sphere in Al99.5 matrix (a) and magnified view of a crack (b) 

 

Moreover, the smaller hollow spheres are situated closer to each other, therefore the cracks have to 

run smaller distances in the relatively soft and ductile matrix material to reach the next rigid ceramic 

hollow sphere (Fig. 7b). Thus a shearing plane can be easily initiated (Fig. 8) and in this way, the crack 

propagation can be faster than in the case of larger, GC grade reinforcement. 

 

 

Fig. 8 Crack plane formed by the propagation of cracks between closely situated SL spheres in Al99.5-

SL foam 

 

3.2 Failure mechanism 

After the fatigue tests the failed specimens were investigated by optical microscopy to map the 

failure mechanism of the materials. All of the investigated materials failed very similar to their quasi-

static compressive fracture mechanism [69, 70]. During the cyclic loading the matrix suffered small 

amount of plastic deformation and subsequently a shear band formed, closing ~30-40° to the 

direction of the compressive load. The initiation of the cleavage band depends on the crush strength 

of the hollow spheres. The typical failure of the material is shown in Fig. 9. 



 

 

Fig. 9 Typical failure of GC grade hollow sphere reinforced foams (a) macrograph of the whole 

specimen, (b-e) micrographs about the vicinity of the shear band 

 

Fig. 9a shows the entire specimen, ground almost to its half in order to reveal the presence of the 

shear band, that is clearly observable across the whole section of the sample. Despite the presence 

of the sheared zone, the upper part of the sample is unharmed as it is shown in Fig. 9b. This fact 

emphasizes one of the most important properties of the MMSFs, namely its high damage tolerance. 

Far from the shear band the hollow spheres remained unharmed and ready to act against further 

loading. Figs. 9c-e present the vicinity of the shear band (the band appeared in the direction of the 

maximal shear loading). Within the shear band the hollow spheres are completely broken into halves 



and slid on each other. The neighbouring spheres are also broken, but one or two spheres farther 

they are intact and unharmed. These hollow spheres can also bear further loading. This failure 

mechanism has been also observed and confirmed by Luong et al. [71]. In Al – SiC hollow sphere 

systems Luong et al. highlighted the failure of weak hollow spheres at the peak stress. Some of the 

appeared cracks could propagate to the matrix material. Along the weakest hollow spheres, the 

shear band formation in the matrix lead to the major failure activity. Parts of the broken hollow 

spheres are compacted in their own cavity and the materials densified [71]. 

 

4 Conclusions 

From the above detailed investigations and analysis of the MMSFs, the following conclusions can be 

drawn: 

 The Wöhler-curve of the hollow sphere reinforced MMSFs were constructed according to the 

ruling ASTM standard for the case of compressive cyclic loading. The results include the 

median curves, their 95% confidence boundaries and the fatigue strength. 

 The softer, technical purity Al99.5 matrix ensured higher load levels for the fatigue strengths 

than the more rigid, eutectic AlSi12 matrix. 

 Regarding the size of the reinforcing ceramic hollow spheres, the larger, GC grade spheres 

performed better, because the smaller spheres are more vulnerable and the cracks have to 

propagate shorter distances within the ductile matrix to the next rigid ceramic sphere. 

 Considering the failure mechanism of the investigated MMSFs, one common failure mode 

was isolated: the samples were broken along a shear band, similar to the case of quasi-static 

loading. The hollow spheres within and near to the shear band were broken into halves and 

slid on each other along the shear plane, however the spheres far from the shear band 

remained unharmed and could withstand further loading. 
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