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Abstract This paper is concerned with the dynamics of transcendental entire functions.
Let f(z) be a transcendental entire function. We shall study the boundedness of the
components of the Fatou sB{ f) under some restrictions on the growth of the function.
This relates to a problem due to Baker in 1981.

1. Introduction
The iteration theory of rational functions originated with the work of Julig pnd Fatou
[15] between 1918 and 1920. Some years later in 1926 Fat6usftudied the case
of transcendental entire functions. Transcendental entire functions share many of the
dynamical properties of rational functions, but there are some major differences. The main
reason for this is because of the essential singularities of transcendental entire functions
(cf. [13)]).

In this paperf (z) always stands for a transcendental entire function. The iteydtes
are defined by

FP@O=z f@=rU""@), n=l
A point z is called normal if the sequen¢g”} is normal in the sense of Montel in some
neighbourhood of. We define
F(f) ={z € C: zisanormal point
and
J(f) =C\F(f);

they are called the Fatou set and the Julia sgt tdspectively.
According to the definition, it is easy to verify thatis open (possibly empty) andis
closed.
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The components af (f) are simply called Fatou components (or stable domains): they
are maximal domains of normality. According to the classical Fatou—Julia theory (cf. Fatou
[15, 19 and Julia L.§)), J(f) and F(f) are completely invariant in the sense that

ze€J(f) < feJ(f)

and
€ F(f) < f(2) € F(f).

A further relation given in17] is

F(f) = fFFH)ULFH)H NPV,

wherePV (f) denotes the set of the Picard exceptional valueg.dfhus, if the Fatou set
F(f) contains a finite Picard exceptional value fafthen F(f) # f(F(f)). However,
for any nonlinear rational functioR(z), we always havé' (R) = R(F(R)).

Each componenb of F(f) is mapped byf into some componeri of F(f), and
U\ f (D) contains at most one point. Furthermore, thelggif (D) is contained in the
set of the asymptotic values g¢f[9]. If each /" (D) belongs to a different component of
F(f), the componenD is called wandering; if this is not the case, then there are integers
m > 0 andn > 1 such thatf” (D) c Dj, whereD; is a component of'( f) such that
f™(D1) C Di1. In this case, we calD a pre-periodic component and, in particulBrjs
called periodic (or invariant) ifn = 0 (orm = 0 andrn = 1). For periodic componer
of periodm, if f""(z) — oo forz € D asn — oo, thenD is called a Baker domain. One
can understand the Baker domain by means of the Hadamard-three-circle theorem:

If f is analytic on the annulug : 0 < r1 < |z] < r2 < o0}, then for
anyr :r1 < r < rp logM(r, f) is a convex function of log, where
M(r, f) = sup,—, | f ().

An example of the Baker domain is the functigiiz) = z + 1 + ¢~ (see [L5]). For this
function f, f"(z) — oo asn — oo for Rez > 0.

No nonlinear rational functions have wandering domains (see Sulligd}), [but
transcendental entire functions may (cf. Bakér §, Eremenko and Lyubichlf4], and
SO on).

If P(z) is a nonlinear polynomial, it is easy to see thatis a super-attractive fixed
point andF (f) contains a neighbourhood ob, thusJ(f) is bounded; however, if is
transcendental, the case is completely different. In fa¢f,) is unbounded. This can be
easily seen from the Picard theorem and the complete invarianbefof

Itis natural to ask whethef (/) is bounded or not for transcendental entire functfon

To this end, recall that the order= A(f), the lower orderp = p(f) and the type
o = o(f) of f are defined to be, respectively,

y = T ogloaMn /) oy, loglogM @ /)
r—00 logr logr

r—o0 rk
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A function f with A(f) = p(f) is said to be of regular growth. From the theory of
value distribution theory, we can see that most meromorphic functions are not of regular
growth, that is, their lower order is less than the order. Moreover, there are functions with
finite lower order but the order is infinite.

Baker p] proved the following result.

THEOREM A. If the maximum modulu&# (r, 1) of the transcendental entire functigh
satisfies

logM(r, f) = O{(logr)?} asr — oo, (1)
wherel < p < 3, then every component &f( /) is bounded.
In the same paper, he proposed the following open problem.
Question 1.(Baker’s Problem) Is the restriction on the growthfogharp or not?
Concerning this problem, Stallar@]] proved the following two results.

THEOREM B. If the maximum modulu® (r, f) of the transcendental entire functigh
satisfies

1/2
loglogM(r, f) < % O<e<l, (2)
then every component 6f( /) is bounded.
THEOREMC. If the ordera of the transcendental entire functighis less tharil/2 and
logM (2r, f)
log M(r, f)
asr — oo, then every component 6% ) is bounded.

—>c# 00 3)

In this paper, we shall give some further results on Baker’s problem.

Definition 1. Suppose thaf'; andC> are constants satisfying; > 1, C> > 1. A positive
numberr is said to be normalC1, C2) for f(z) if

logM(C1r, f) < C2logM(r, f). (4)
We denote by (C1, C2) the set of numberswhich are normalCi, C2) for f(z).

Remark.From (3) we see that, for any small> 0, there exists a positive numbegrsuch
that[rg, c0) C N(2, ¢ + ¢).

THEOREM 1. Suppose thaf (z) is a transcendental entire function of order< 1/2.
Assume that there exist consta@its> 1 andC; > C% such that, for sufficiently largey,
[ro, 00) C N(C1, C2). Then any component &f( /) is bounded.

The following result is a supplement of Theorem 1 in some sense.

THEOREM 2. Suppose thaf (z) is a transcendental entire function of lower order<
1/2. Assume that, for argt > 1,

logM (™, f) = m*logM(r, f) (5)

holds for all sufficiently large. Then any component &f( /) is bounded.
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Remark.By the Hadamard-three-circle theorem, for amy> 1 and any > 0, one has
logM (@™, f) = (m — &) logM (r, f). Therefore our condition (5) is not strong.

Remark.Based on this theorem, it is reasonable to guess that Theorem 1 still holds if we
replace the condition that the order is less thah ldy the condition that the lower order is
less than 12.

Example.Take f (z) = sin(z1/2)/zY/2+ z +a, a € C. Then the lower order of (z) is 1/2
and
log M (2r, f)/logM(r, f) — 212

asr — oo. This is stronger than our growth condition (5). Bakgghowed thatF (f)
has an unbounded component wlada sufficiently large and positive. Thus the restriction
on the lower order in the above theorems is the best possible.

Next we consider some special Fatou components. Supposgas of type 0 and
order less than /2. Bhattacharyyal[0] proved that any immediate attractive domairis
bounded; Bakerq] extended it to invariant components, which can be easily generalized
to non-wandering components (cf. Qig&f]). We shall prove the following resuilt.

THEOREM3. Suppose thalf (z) is a transcendental entire function with lower order
o = p(f) < 1/2. Then every pre-periodic component is bounded.

Example.Take f(z) = cosy/z + (r/2)2. ThenF(f) has an unbounded componédnt
which contains the origin (cf10]). Note thatf(0) = 0, thusU is invariant. Obviously,
p(f) = 1/2. Thus the restriction on the lower order is the best possible.

2. Some basic lemmas
The minimum modulus of is denoted by

me(r f) = min| £ Q).

The following result was proved by Bakes][

LEMMA 1. Suppose that there exist sequenkgst, — oo andc(n) > 1 such that:
() MR, f)= Rpy1;

(i) Ru<tn<R";

(i) m*t,, f) > Rfl(ffl) for all sufficiently largen.

Then all the components &f( /) are bounded.

LEMMA 2. The assumptions are the same as in Theorem 1. Then there exist sequences
R, t, — oo such that, for all sufficiently large:

(I) M(an f) = Rn+1;
iy RZHEHD 4 R
(iiiy log m*(ta. ) > (1 — 1/(2n + 1)) log M (RGP p),

2+1/n
n l

Proof. Since the order of (z) is less than one, by the Weierstrass theorem we may write
f(2) in the form

f(2)=cifgx) (c#0),
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where

g(z)—zl‘[ (1_ _>

Zn

andk is a nonnegative integer. We define

G(z) = 21_[ <1+ > s (= lzal).

n=1

It is easy to see that
A(G) = A(g) = A(f).

From Boas 11, p. 39, formula (3.1.4)] we have
m*(r,G) = |G(=r)| <m*(r,g) < M(r,g) < M(r, G) = G(r).
SinceC1 > C%, we can take a constamte (A, 1/2) such that
b:=a—logCz/logCy > 0. (6)

Let

(r > 0).

*®log|l—t| —co log(1+¢
w):/ 9111 —cosmalogd+n)

We denotek(a) = (1 — cogmra))/a. Then from Kjellberg 19 (cf. Denjoy [12]) we
have

log(1+r) log(1+r)

k(@) ———— < ¥(r) < 10— (7)
ra ra
Note that N
log|G(—r)| =Y log|1— =
n=1 Tn
and
x r
log|G(r)| =) log|1+ —
n=1 Tn

and)_ r, ¢ is convergent. We thus obtain

® logG(t) X [ log(l+t/ry)
/ t1+a dt = ’;/ t1+a dt
> log(1+ 1)
- Z . tl—l—a t’

(the interchange of limiting operations being justified because everything is positive) and

®log|G(—1)| o [ log|1—1/r,]
[ tl+a dt - Z\/r tl+a dt

X [*®log|l—1¢|
=Y [

/Tn
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because the integral is dominated by the convergent integral

© Jlog|G (-1l llog|1— ¢/l
/(; t1+a d - Z/ tl+a dt

o0 Ilogll—tll
_Z / tl+a

Therefore by (7), forany < R,

Rlog|G(—1)| — cogma)log G(t)
\/r\ t1+a

/OO 3 /00 log|G(—t)| — coSma) IogG(t)

tl+a

o0 B r R
=Y o (5)-v (7))
n=1 "n "n
> k@Y log(1 J; r/ra) 103 log(1 +aR/rn)
n=1 n=1 R
Iog G(r) Iog G(R)

= k(@) -

Thus, for any positive integer, we have

/R log|G(—1)| — [1—1/(2n + 1)3]log G (r) 5

fl+a

Rlog|G(—1)| — cosma) IogG(t)
_/; tl—l—a

R cogma)logG(t) — [1—1/(2n + 1)3]log G (r)
+/; t1+a d
logG(r) B 10IogG(R)

ra Ra

k(a) _ 1 1 log G(
+(_ “ +a<2n+1>3) (r_a R“) 96w
1 logG(r) B 10IogG(R)

>
T a2+ 1% @ R

> k(a)

(8)

Since f (z) is transcendental, we have

im 109M @ f) _
r—00 logr

Thus for anyk > 0, there exist$; > ro > 0 such thatV/(r, f) > rX forall r > rq. Let
sn = (10a(2n + 13" +D/P 9)

and take
R1 > max{r1,40logM (1, f), s1}.



Fatou components of entire functions 1287

We define
M(R,, f) =Ry11, n>=1

Note that l0g,+1/ l0gs, — 1 asn — oco. Thus wherk is large, we have
Ryy1=M(R,, ) = R,I,{ > Sp+1- (10)
Define

24+2/(2n+1)
n )

h(n) = R 8(n) = (11)

dn(n+1)
Note that, for any > r1, by the assumptions we know that

logM(Car, f) < C2logM(r, f).
This implies that
log M(h(m)*H®), £y < €3 19"/ 9 \0g p (h(n), f). (12)
Applying (8) forr = h(n) andR = h(n)1H™ we get

/h("“*‘“’” 091G (=] — [1-1/@n + 31logGh(m) | 10gGlh(m) | o
h(n) t1ta - h(n) ’
where

1 CS(n) logh(n)/logCy
J(n) = —10-2 . 14
") {a(Zn 13 h ()@ } a4

Now from (6) and (8)—(12) we deduce that
b8(n) logh(n) > log(10a(2n + 1)3).
From this we can easily check that

J(n) > 0. (15)
Since
logm™(z, f) = log|c| + klogt + logm™(z, g)
> log|c| + klogt + log|G(—1)],
and

logM(t, ) =log|c| + klogr + logM (t, g)
<log|c| + klogt + log G(z),
then fort > h(n), we have

logm™*(t, f) — [1 }IogM(h(n), )

S (2n+1)8
> log|G(—1)| - [l -
Combining this with (13)—(15) we have
h(n)1+6(n)

logm*(t, f) — [1— 1/(2n + 1)3]log M (h(n), f)
/h(n) Tra dt > 0.

Thus there exists, such that (ii) and (iii) hold. |
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The following result was proved by Barrg][

LEMMA 3. Let f(z) be a non-constant entire function with lower orget= p(f) < 1/2.
Then for anyp < a < 1/2, the lower logarithmic density of the set

E={r:0<r <oo,logm*(r, f) < coqma)logM(r, )}

satisfies
log densE < p/a.

Furthermore, if the ordei(f) < 1/2, then
log densE < A/a.

The following three lemmas are parallel to Bak#; vhere he considered the case that
the order is less thary 2.

LEMMA 4. Let f(z) be a non-constant entire function with lower orge= p(f) < ¢ <
1/2. Then there exists a numbeay > 0 such that, forr > rg, the interval(r, rlte/e)
contains a value satisfying

logm™(s, f) > coqmc) logM (s, f). (16)

In addition, for anyaz with ¢ < a < 1/2, the interval(r, r(1+r/¢)/ costay contains a value
such that

logm™(s, f) = logM (r, f). (17)

Proof. For any O< ¢ < 1/2 — ¢, we have
p<c<c+e<l/2

Note that the lower logarithmic density of the interyalr1+/¢) satisfies

log dengr, r1+0/0y =2 5 P
—_— c c+e¢

By Lemma 3, the intervalr, 11*/¢) contains a value such that
logm*(s, f) > cogm(c+ &) logM(s, f).

Sinces is independent of, by lettinge — 0 we obtain the first conclusion.
Next we prove the second part. For sufficiently largeby the proof of the first
conclusion, there exists

se (rl/ cosmz’ r(1+p/c)/cosna)

such that
logm™(s, f) > cognc)logM(s, f). (18)

Applying the Hadamard-three-circle theorem to the three cifieles: 1, r, r/ €057 e
get

IogM(rl/COSM, f) > col logM(r, f) — (

Sma

- 1) logM (1, f). (19)

COSra
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Obviously, whenr is sufficiently large, we have

logM(r, ) — < — 1) logM (1, f) > logM(r, f). (20)

CoSsra Cosma Ccosrc

Note that logM (s, ) > log M (r1/ €°S7@_ £) by the increasing of lod/ (r, f), the desired
result follows from this and (18)—(20). ad

LEMMA 5. Let f(z) be a non-constant entire function with lower orgee= p(f) < 1/2.
Then for everys and ¢ satisfyingp < ¢ < a, there exists arR, . > 0 such that, for
R > R, ., the inequalities

M_1(R, f) < r(R) < {M_1(R, f)}-©® (21)

hold, whereL(c,a) = (1+p/c)/ codma), r(R) = inf{r : m*(r, f) = R} andM_1(R, f)
is the inverse function a¥/ (R, f).

Proof. Letr = M_1(R, f). ThenM (¢, f) = R. On the other hand,
M (R), f) =z m*(r(R), f) =R,

and soy < r(R). This proves the first inequality.
Next we prove the second inequality. Take a numberith ¢ < a’ < a and define
8 = coqma’)/coqma) — 1. Applying Lemma 4 to the interval

I(t) — (tl-HS’ (t1+5)(1+,0/c‘)/COSZa/) — (t1+5, tL(c,a))’
we see that there exists a value I(r) such that
logm*(s, f) > logM (13, f). (22)

On the other hand, for sufficiently large from the Hadamard-three-circle theorem we
deduce that

logM (%, f) > (1 +8)logM(t, f) — slogM (L, f)
> logM(t, f) = logR.

This and (22) yield that:*(s, f) > R. Combining this with the definition of(R) we get
s > r(R). Note thats € I(¢) and the conclusion follows. O

LEMMA 6. Let f(z) be a non-constant entire function with lower orgee= p(f) < 1/2.
Then there is amRp > 0 such that, for allR > Rg, the annulus(z : M_1(R, f) <
|z| < r(R + 1)} contains a simple closed cur¥ewhich contains the origin and on which
|f(@)] =R.

Proof. (cf. Baker [l, Satz 2]) Let = M_1(R, f). ThenM(zt, f) = R, and so} f(z)| < R

in |z| < t. Meanwhile, fromm*(r(R + 1), f) = R + 1 we see thatf(z)| > R on
lz| = r(R + 1). Thus there exists a compondhtof the inversef ~1(jw| < R) such that
D containgz| < ¢t and D is contained ifjz| < r(R + 1). Therefore we can find a simple
closed curved” in the annulus < |z| < r(R + 1) such that f(z)| = RonT. Infact,I" is
the boundary oD, so that it contains the origin. The proof is complete. |
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LEMMA 7. Suppose thaff (z) is a non-constant entire function with lower order =
o(f) <1/2. Foranyp < c¢ <a < 1/2, let L(c, a) be the same as in Lemma 5. Then for
every positive integert, there exists a constang > 0 such that, for > rg, the ring

r<lzl<rf ™ k() = Lic,a)
contains a simple closed cur¥ewhich contains the origin and on which
" @) = M, f).
Proof. We shall use the method due to Bak2rllemma 1]. For sufficiently smad > 0,
we takea’ € (c, a) such that
(1+¢)L(c,a’) < L(c,a).

By the Hadamard-three-circle theorem, for any entire funaiign and anyd > 1, there
is anRg such that, for allR > Rg, we have

M_1(R?, h) < (14 e){M_1(R, )}’ < {M_1(R, h)}**. (23)
Thus for small O< § < ¢, by Lemma 5,
r(R+1) < {M_y(R +1, )yt
< {M_1(RM, )t
< {M_1(R, f)y+oLea
< {M_1(R, )},

Hence, by takingg = M_1(Ro, f) andR = M(r, f), the conclusion for = 1 follows
from Lemma 6.

Suppose that the statement is true for a positive integéie shall prove the truth of
the statement for + 1, and then by induction, the conclusion follows.

Let X(c) = 1+ p/c = L(c,a) coqma). By the first part of Lemma 4, there exists an
Ro > 0 such that, for anR > Rp, there is a value such that

R <s < RX©
and
m*(s, f) = M(s, )%, (24)
Now by (23), there exists aR; > Rg such that, forR > R1,
M_y(RX), f™) < {M_1(R, f™)* .
Thus for all sufficiently large with
PL/C087a) — pr (R FMY

we have
M(,,L(a,a)’ fm) - RX(C).
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It follows that there exists
‘e (rl/cos(na)’ rL(a,a))

such that
M, f) =s.

Now by the induction hypothesis there is a simple closed curnyein the annulus
t < |z| < t*™ which contains the origin and on which

L f™ ()] = M(t, f") =s.
Therefore forz € Ty, from (24) we get
L") = m* s, f)

> M(s, /)07 = (M(M(t, f™), f)}0%)

> {M(t, frTH)O0ST) > pp(eosTa) | pty

> M(l", fm+l)- (25)
Let W(r) = {w : |w| < M(r, f"™1)}. Note that| f"+1(z)| < M(r, f"Y)in|z| < r.
Thus there exists a componedtof f~+D (W (r)) such thatD contains|z| < r and D
is contained in the interior df,,. LetT be the boundary ob which is a simple closed

curve and is contained in the annulus bounde¢tby= » andTI",,. Obviously,I" contains
the origin and f”*1(z)| = M (r, f"*1) onT'. The proof is complete. O

LEMMA 8. (Baker [7]) If a transcendental entire functiofi has a Baker domai®, then

log|f" ()] = O(n) (z€ D,n— 00).

3. Proof of Theorem 1
Define

n>1

c(n) =2+

n+1’
For the sequenck, andz, in Lemma 2 we know that

R, <t, < Rfl(").

Sincef is transcendental, we may suppose that

4n+D2n +3)(2n+1)°
>

8n3+8n2—2n—3
In fact, this holds for all sufficiently large. It follows from the Hadamard-three-circle
theorem that
lOg Ru+1= lOgM(Rm f)
2+42/(2n+1)

1
S'OgM(l’f)‘f‘m'OgM(Rn » )
_l-Y@+1®

cn+1

The conclusion follows from Lemma 1.

log M (R5T/ @D | 1)

logM(1, f).

log M (R5 /@Y 1y,
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4. Proof of Theorem 2
Take anyR1 > 0 and define

Rn+l:M(Rnaf) n>1
For anya, cwithc < a < 1/2, let
L(c,a) = (1+ p/c)/ codna), c(n)= L(c,a)?

By Lemma 4, the interval
(er(c,a), chl(n))

contains a value, such that
logm*(t,, f) > log M(RE©ED | £y,
Combining this with the hypothesis we get
m*(tn, f) = MRy, ).

The conclusion follows from Lemma 1.

5. Proof of Theorem 3

Suppose on the contrary that there exists an unbounded pre-periodic comfgoridren
there are two non-negative integetsandn such thatf” (D) c D, whereD = f™(U).

By Lemma 7 we see thdd is unbounded and the only possible constant limit function of
{(f":j=1,2,...}in Disoo,sothatf(z) — oo in D asj — oo. ThusD is a Baker
domain of the functiory”. From Lemma 8 and Lemma 7 we get a contradiction.
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