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Abstract. This paper is concerned with the dynamics of transcendental entire functions.
Let f (z) be a transcendental entire function. We shall study the boundedness of the
components of the Fatou setF(f ) under some restrictions on the growth of the function.
This relates to a problem due to Baker in 1981.

1. Introduction
The iteration theory of rational functions originated with the work of Julia [18] and Fatou
[15] between 1918 and 1920. Some years later in 1926 Fatou [16] studied the case
of transcendental entire functions. Transcendental entire functions share many of the
dynamical properties of rational functions, but there are some major differences. The main
reason for this is because of the essential singularities of transcendental entire functions
(cf. [13]).

In this paperf (z) always stands for a transcendental entire function. The iteratesf n

are defined by
f 0(z) = z, f n(z) = f (f n−1(z)), n ≥ 1.

A point z is called normal if the sequence{f n} is normal in the sense of Montel in some
neighbourhood ofz. We define

F(f ) = {z ∈ C : z is a normal point}
and

J (f ) = C\F(f );
they are called the Fatou set and the Julia set off respectively.

According to the definition, it is easy to verify thatF is open (possibly empty) andJ is
closed.
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The components ofF(f ) are simply called Fatou components (or stable domains): they
are maximal domains of normality. According to the classical Fatou–Julia theory (cf. Fatou
[15, 16] and Julia [18]), J (f ) andF(f ) are completely invariant in the sense that

z ∈ J (f ) ⇐⇒ f (z) ∈ J (f )

and
z ∈ F(f ) ⇐⇒ f (z) ∈ F(f ).

A further relation given in [17] is

F(f ) = f (F (f )) ∪ {F(f ) ∩ PV (f )},
wherePV (f ) denotes the set of the Picard exceptional values off . Thus, if the Fatou set
F(f ) contains a finite Picard exceptional value off , thenF(f ) 6= f (F (f )). However,
for any nonlinear rational functionR(z), we always haveF(R) = R(F(R)).

Each componentD of F(f ) is mapped byf into some componentU of F(f ), and
U\f (D) contains at most one point. Furthermore, the setU\f (D) is contained in the
set of the asymptotic values off [9]. If eachf n(D) belongs to a different component of
F(f ), the componentD is called wandering; if this is not the case, then there are integers
m ≥ 0 andn ≥ 1 such thatf m(D) ⊂ D1, whereD1 is a component ofF(f ) such that
f n(D1) ⊂ D1. In this case, we callD a pre-periodic component and, in particular,D is
called periodic (or invariant) ifm = 0 (or m = 0 andn = 1). For periodic componentD
of periodm, if f nm(z)→∞ for z ∈ D asn→∞, thenD is called a Baker domain. One
can understand the Baker domain by means of the Hadamard-three-circle theorem:

If f is analytic on the annulus{z : 0 ≤ r1 ≤ |z| ≤ r2 ≤ ∞}, then for
any r : r1 ≤ r ≤ r2, logM(r, f ) is a convex function of logr, where
M(r, f ) = sup|z|=r |f (z)|.

An example of the Baker domain is the functionf (z) = z + 1+ e−z (see [15]). For this
functionf , f n(z)→∞ asn→∞ for Rez > 0.

No nonlinear rational functions have wandering domains (see Sullivan [22]), but
transcendental entire functions may (cf. Baker [4, 6], Eremenko and Lyubich [14], and
so on).

If P(z) is a nonlinear polynomial, it is easy to see that∞ is a super-attractive fixed
point andF(f ) contains a neighbourhood of∞, thusJ (f ) is bounded; however, iff is
transcendental, the case is completely different. In fact,J (f ) is unbounded. This can be
easily seen from the Picard theorem and the complete invariance ofJ (f ).

It is natural to ask whetherF(f ) is bounded or not for transcendental entire functionf .
To this end, recall that the orderλ = λ(f ), the lower orderρ = ρ(f ) and the type

σ = σ(f ) of f are defined to be, respectively,

λ = lim
r→∞

log logM(r, f )

logr
, ρ = limr→∞

log logM(r, f )

logr
,

σ = lim
r→∞

logM(r, f )

rλ
.
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A function f with λ(f ) = ρ(f ) is said to be of regular growth. From the theory of
value distribution theory, we can see that most meromorphic functions are not of regular
growth, that is, their lower order is less than the order. Moreover, there are functions with
finite lower order but the order is infinite.

Baker [5] proved the following result.

THEOREM A. If the maximum modulusM(r, f ) of the transcendental entire functionf
satisfies

logM(r, f ) = O{(logr)p} asr →∞, (1)

where1 < p < 3, then every component ofF(f ) is bounded.

In the same paper, he proposed the following open problem.

Question 1.(Baker’s Problem) Is the restriction on the growth off sharp or not?

Concerning this problem, Stallard [21] proved the following two results.

THEOREM B. If the maximum modulusM(r, f ) of the transcendental entire functionf
satisfies

log logM(r, f ) <
(logr)1/2

(log logr)ε
(0 < ε < 1), (2)

then every component ofF(f ) is bounded.

THEOREM C. If the orderλ of the transcendental entire functionf is less than1/2 and

logM(2r, f )

logM(r, f )
→ c 6= ∞ (3)

asr →∞, then every component ofF(f ) is bounded.

In this paper, we shall give some further results on Baker’s problem.

Definition 1. Suppose thatC1 andC2 are constants satisfyingC1 > 1, C2 > 1. A positive
numberr is said to be normal(C1, C2) for f (z) if

logM(C1r, f ) < C2 logM(r, f ). (4)

We denote byN(C1, C2) the set of numbersr which are normal(C1, C2) for f (z).

Remark.From (3) we see that, for any smallε > 0, there exists a positive numberr0 such
that[r0,∞) ⊂ N(2, c + ε).

THEOREM 1. Suppose thatf (z) is a transcendental entire function of orderλ < 1/2.
Assume that there exist constantsC2 > 1 andC1 > C2

2 such that, for sufficiently larger0,
[r0,∞) ⊂ N(C1, C2). Then any component ofF(f ) is bounded.

The following result is a supplement of Theorem 1 in some sense.

THEOREM 2. Suppose thatf (z) is a transcendental entire function of lower orderρ <

1/2. Assume that, for anym > 1,

logM(rm, f ) ≥ m2 logM(r, f ) (5)

holds for all sufficiently larger. Then any component ofF(f ) is bounded.
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Remark.By the Hadamard-three-circle theorem, for anym > 1 and anyε > 0, one has
logM(rm, f ) ≥ (m− ε) logM(r, f ). Therefore our condition (5) is not strong.

Remark.Based on this theorem, it is reasonable to guess that Theorem 1 still holds if we
replace the condition that the order is less than 1/2 by the condition that the lower order is
less than 1/2.

Example.Takef (z) = sin(z1/2)/z1/2+ z+ a, a ∈ C. Then the lower order off (z) is 1/2
and

logM(2r, f )/ logM(r, f )→ 21/2

asr → ∞. This is stronger than our growth condition (5). Baker [5] showed thatF(f )

has an unbounded component whena is sufficiently large and positive. Thus the restriction
on the lower order in the above theorems is the best possible.

Next we consider some special Fatou components. Suppose thatf (z) is of type 0 and
order less than 1/2. Bhattacharyya [10] proved that any immediate attractive domainD is
bounded; Baker [5] extended it to invariant components, which can be easily generalized
to non-wandering components (cf. Qiao [20]). We shall prove the following result.

THEOREM 3. Suppose thatf (z) is a transcendental entire function with lower order
ρ = ρ(f ) < 1/2. Then every pre-periodic component is bounded.

Example.Takef (z) = cos
√

z+ (π/2)2. ThenF(f ) has an unbounded componentU

which contains the origin (cf. [10]). Note thatf (0) = 0, thusU is invariant. Obviously,
ρ(f ) = 1/2. Thus the restriction on the lower order is the best possible.

2. Some basic lemmas
The minimum modulus off is denoted by

m∗(r, f ) = min|z|=r
|f (z)|.

The following result was proved by Baker [5].

LEMMA 1. Suppose that there exist sequencesRn, tn →∞ andc(n) > 1 such that:
(i) M(Rn, f ) = Rn+1;
(ii) Rn ≤ tn ≤ R

c(n)
n ;

(iii) m∗(tn, f ) > R
c(n+1)
n+1 for all sufficiently largen.

Then all the components ofF(f ) are bounded.

LEMMA 2. The assumptions are the same as in Theorem 1. Then there exist sequences
Rn, tn→∞ such that, for all sufficiently largen:
(i) M(Rn, f ) = Rn+1;
(ii) R

2+2/(2n+1)
n < tn < R

2+1/n
n ,

(iii) log m∗(tn, f ) > (1− 1/(2n+ 1)3) logM(R
2+2/(2n+1)
n , f ).

Proof. Since the order off (z) is less than one, by the Weierstrass theorem we may write
f (z) in the form

f (z) = czkg(z) (c 6= 0),
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where

g(z) = 2
∞∏

n=1

(
1− z

zn

)
andk is a nonnegative integer. We define

G(z) = 2
∞∏

n=1

(
1+ z

rn

)
, (rn = |zn|).

It is easy to see that
λ(G) = λ(g) = λ(f ).

From Boas [11, p. 39, formula (3.1.4)] we have

m∗(r,G) = |G(−r)| ≤ m∗(r, g) ≤M(r, g) ≤M(r,G) = G(r).

SinceC1 > C2
2, we can take a constanta ∈ (λ, 1/2) such that

b := a − logC2/ logC1 > 0. (6)

Let

9(r) =
∫ ∞

r

log |1− t| − cos(πa) log(1+ t)

t1+a
dt, (r ≥ 0).

We denotek(a) = (1− cos(πa))/a. Then from Kjellberg [19] (cf. Denjoy [12]) we
have

k(a)
log(1+ r)

ra
≤ 9(r) ≤ 10

log(1+ r)

ra
. (7)

Note that

log |G(−r)| =
∞∑

n=1

log

∣∣∣∣1− r

rn

∣∣∣∣
and

log |G(r)| =
∞∑

n=1

log

∣∣∣∣1+ r

rn

∣∣∣∣
and

∑
r−a
n is convergent. We thus obtain∫ ∞

r

logG(t)

t1+a
dt =

∞∑
n=1

∫ ∞
r

log(1+ t/rn)

t1+a
dt

=
∞∑

n=1

r−a
n

∫ ∞
r/rn

log(1+ t)

t1+a
dt,

(the interchange of limiting operations being justified because everything is positive) and∫ ∞
r

log |G(−t)|
t1+a

dt =
∞∑

n=1

∫ ∞
r

log |1− t/rn|
t1+a

dt

=
∞∑

n=1

r−a
n

∫ ∞
r/rn

log |1− t|
t1+a

dt,
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because the integral is dominated by the convergent integral∫ ∞
0

|log |G(−t)||
t1+a

dt =
∞∑

n=1

∫ ∞
0

|log |1− t/tn||
t1+a

dt

=
∞∑

n=1

r−a
n

∫ ∞
0

|log |1− t||
t1+a

dt.

Therefore by (7), for anyr < R,∫ R

r

log |G(−t)| − cos(πa) logG(t)

t1+a
dt

=
∫ ∞

r

−
∫ ∞

R

log |G(−t)| − cos(πa) logG(t)

t1+a
dt

=
∞∑

n=1

(rn)
−a

{
9

(
r

rn

)
−9

(
R

rn

)}

≥ k(a)

∞∑
n=1

log(1+ r/rn)

ra
− 10

∞∑
n=1

log(1+ R/rn)

Ra

= k(a)
logG(r)

ra
− 10

logG(R)

Ra
.

Thus, for any positive integern, we have∫ R

r

log |G(−t)| − [1− 1/(2n+ 1)3] logG(r)

t1+a
dt

=
∫ R

r

log |G(−t)| − cos(πa) logG(t)

t1+a
dt

+
∫ R

r

cos(πa) logG(t)− [1− 1/(2n+ 1)3] logG(r)

t1+a
dt

≥ k(a)
logG(r)

ra
− 10

logG(R)

Ra

+
(
−k(a)+ 1

a(2n+ 1)3

)(
1

ra
− 1

Ra

)
logG(r)

≥ 1

a(2n+ 1)3

logG(r)

ra
− 10

logG(R)

Ra
. (8)

Sincef (z) is transcendental, we have

lim
r→∞

logM(r, f )

logr
= ∞.

Thus for anyK > 0, there existsr1 > r0 > 0 such thatM(r, f ) > rK for all r > r1. Let

sn = (10a(2n+ 1)3)n(2n+1)/b (9)

and take
R1 ≥ max{r1, 40 logM(1, f ), s1}.
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We define
M(Rn, f ) = Rn+1, n ≥ 1.

Note that logsn+1/ logsn→ 1 asn→∞. Thus whenK is large, we have

Rn+1 = M(Rn, f ) ≥ RK
n ≥ sn+1. (10)

Define

h(n) = R
2+2/(2n+1)
n , δ(n) = 1

4n(n+ 1)
. (11)

Note that, for anyr ≥ r1, by the assumptions we know that

logM(C1r, f ) ≤ C2 logM(r, f ).

This implies that

logM(h(n)1+δ(n), f ) ≤ C
δ(n) logh(n)/ logC1
2 logM(h(n), f ). (12)

Applying (8) forr = h(n) andR = h(n)1+δ(n) we get∫ h(n)1+δ(n)

h(n)

log |G(−t)| − [1− 1/(2n+ 1)3] logG(h(n))

t1+a
dt ≥ logG(h(n))

h(n)a
J (n), (13)

where

J (n) =
{

1

a(2n+ 1)3 − 10
C

δ(n) logh(n)/ logC1
2

h(n)aδ(n)

}
. (14)

Now from (6) and (8)–(12) we deduce that

bδ(n) logh(n) ≥ log(10a(2n+ 1)3).

From this we can easily check that

J (n) ≥ 0. (15)

Since

logm∗(t, f ) = log |c| + k log t + logm∗(t, g)

≥ log |c| + k log t + log |G(−t)|,
and

logM(t, f ) = log |c| + k log t + logM(t, g)

≤ log |c| + k log t + logG(t),

then fort ≥ h(n), we have

logm∗(t, f )−
[
1− 1

(2n+ 1)3

]
logM(h(n), f )

≥ log |G(−t)| −
[
1− 1

(2n+ 1)3

]
logG(h(n)).

Combining this with (13)–(15) we have∫ h(n)1+δ(n)

h(n)

logm∗(t, f )− [1− 1/(2n+ 1)3] logM(h(n), f )

t1+a
dt ≥ 0.

Thus there existstn such that (ii) and (iii) hold. 2
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The following result was proved by Barry [8].

LEMMA 3. Letf (z) be a non-constant entire function with lower orderρ = ρ(f ) < 1/2.
Then for anyρ < a < 1/2, the lower logarithmic density of the set

E = {r : 0 < r <∞, logm∗(r, f ) ≤ cos(πa) logM(r, f )}
satisfies

log densE ≤ ρ/a.

Furthermore, if the orderλ(f ) < 1/2, then

log densE ≤ λ/a.

The following three lemmas are parallel to Baker [1], where he considered the case that
the order is less than 1/2.

LEMMA 4. Letf (z) be a non-constant entire function with lower orderρ = ρ(f ) < c <

1/2. Then there exists a numberr0 > 0 such that, forr ≥ r0, the interval(r, r1+ρ/c)

contains a values satisfying

logm∗(s, f ) ≥ cos(πc) logM(s, f ). (16)

In addition, for anya with c < a < 1/2, the interval(r, r(1+ρ/c)/ cosπa) contains a values
such that

logm∗(s, f ) ≥ logM(r, f ). (17)

Proof. For any 0< ε < 1/2− c, we have

ρ < c < c + ε < 1/2.

Note that the lower logarithmic density of the interval(r, r1+ρ/c) satisfies

log dens(r, r1+ρ/c) = ρ

c
>

ρ

c + ε
.

By Lemma 3, the interval(r, r1+ρ/c) contains a values such that

logm∗(s, f ) > cos(π(c+ ε)) logM(s, f ).

Sinces is independent ofε, by lettingε→ 0 we obtain the first conclusion.
Next we prove the second part. For sufficiently larger, by the proof of the first

conclusion, there exists
s ∈ (r1/ cosπa, r(1+ρ/c)/ cosπa)

such that

logm∗(s, f ) > cos(πc) logM(s, f ). (18)

Applying the Hadamard-three-circle theorem to the three circles|z| = 1, r, r1/ cosπa we
get

logM(r1/ cosπa, f ) ≥ 1

cosπa
logM(r, f )−

(
1

cosπa
− 1

)
logM(1, f ). (19)
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Obviously, whenr is sufficiently large, we have

1

cosπa
logM(r, f )−

(
1

cosπa
− 1

)
logM(1, f ) ≥ 1

cosπc
logM(r, f ). (20)

Note that logM(s, f ) ≥ logM(r1/ cosπa, f ) by the increasing of logM(r, f ), the desired
result follows from this and (18)–(20). 2

LEMMA 5. Letf (z) be a non-constant entire function with lower orderρ = ρ(f ) < 1/2.
Then for everya and c satisfyingρ < c < a, there exists anRa,c > 0 such that, for
R > Ra,c, the inequalities

M−1(R, f ) ≤ r(R) ≤ {M−1(R, f )}L(c,a) (21)

hold, whereL(c, a) = (1+ρ/c)/ cos(πa), r(R) = inf{r : m∗(r, f ) = R} andM−1(R, f )

is the inverse function ofM(R, f ).

Proof. Let t = M−1(R, f ). ThenM(t, f ) = R. On the other hand,

M(r(R), f ) ≥ m∗(r(R), f ) = R,

and so,t ≤ r(R). This proves the first inequality.
Next we prove the second inequality. Take a numbera′ with c < a′ < a and define

δ = cos(πa′)/ cos(πa)− 1. Applying Lemma 4 to the interval

I (t) = (t1+δ, (t1+δ)(1+ρ/c)/ cosπa′) = (t1+δ, tL(c,a)),

we see that there exists a values ∈ I (t) such that

logm∗(s, f ) ≥ logM(t1+δ, f ). (22)

On the other hand, for sufficiently larget , from the Hadamard-three-circle theorem we
deduce that

logM(t1+δ, f ) ≥ (1+ δ) logM(t, f )− δ logM(1, f )

≥ logM(t, f ) = logR.

This and (22) yield thatm∗(s, f ) ≥ R. Combining this with the definition ofr(R) we get
s ≥ r(R). Note thats ∈ I (t) and the conclusion follows. 2

LEMMA 6. Letf (z) be a non-constant entire function with lower orderρ = ρ(f ) < 1/2.
Then there is anR0 > 0 such that, for allR > R0, the annulus{z : M−1(R, f ) ≤
|z| < r(R + 1)} contains a simple closed curve0 which contains the origin and on which
|f (z)| = R.

Proof. (cf. Baker [1, Satz 2]) Lett =M−1(R, f ). ThenM(t, f ) = R, and so,|f (z)| < R

in |z| < t. Meanwhile, fromm∗(r(R + 1), f ) = R + 1 we see that|f (z)| > R on
|z| = r(R + 1). Thus there exists a componentD of the inversef−1(|w| < R) such that
D contains|z| < t andD is contained in|z| ≤ r(R + 1). Therefore we can find a simple
closed curve0 in the annulust ≤ |z| < r(R + 1) such that|f (z)| = R on0. In fact,0 is
the boundary ofD, so that it contains the origin. The proof is complete. 2
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LEMMA 7. Suppose thatf (z) is a non-constant entire function with lower orderρ =
ρ(f ) < 1/2. For anyρ < c < a < 1/2, let L(c, a) be the same as in Lemma 5. Then for
every positive integern, there exists a constantr0 > 0 such that, forr > r0, the ring

r ≤ |z| < rk(n) (k(n) = L(c, a)n)

contains a simple closed curve0 which contains the origin and on which

|f n(z)| =M(r, f n).

Proof. We shall use the method due to Baker [2, Lemma 1]. For sufficiently smallε > 0,
we takea′ ∈ (c, a) such that

(1+ ε)L(c, a′) ≤ L(c, a).

By the Hadamard-three-circle theorem, for any entire functionh(z) and anyd > 1, there
is anR0 such that, for allR > R0, we have

M−1(R
d, h) < (1+ ε){M−1(R, h)}d < {M−1(R, h)}d+ε. (23)

Thus for small 0< δ < ε, by Lemma 5,

r(R + 1) ≤ {M−1(R + 1, f )}L(c,a′)

≤ {M−1(R
1+δ, f )}L(c,a′)

≤ {M−1(R, f )}(1+ε)L(c,a′)

≤ {M−1(R, f )}L(c,a).

Hence, by takingr0 = M−1(R0, f ) andR = M(r, f ), the conclusion forn = 1 follows
from Lemma 6.

Suppose that the statement is true for a positive integerm. We shall prove the truth of
the statement form+ 1, and then by induction, the conclusion follows.

Let X(c) = 1+ ρ/c = L(c, a) cos(πa). By the first part of Lemma 4, there exists an
R0 > 0 such that, for anyR > R0, there is a values such that

R < s < RX(c)

and

m∗(s, f ) ≥ M(s, f )cos(πc). (24)

Now by (23), there exists anR1 ≥ R0 such that, forR > R1,

M−1(R
X(c), f m) < {M−1(R, f m)}X(a).

Thus for all sufficiently larger with

r1/ cos(πa) = M−1(R, f m)

we have
M(rL(a,a), f m) ≥ RX(c).
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It follows that there exists
t ∈ (r1/ cos(πa), rL(a,a))

such that
M(t, f m) = s.

Now by the induction hypothesis there is a simple closed curve0m in the annulus
t ≤ |z| < tk(m) which contains the origin and on which

|f m(z)| = M(t, f m) = s.

Therefore forz ∈ 0m, from (24) we get

|f m+1(z)| ≥ m∗(s, f )

≥ M(s, f )cos(πc) = {M(M(t, f m), f )}cos(πc)

≥ {M(t, f m+1)}cos(πc) ≥M(tcos(πa), f m+1)

≥ M(r, f m+1). (25)

Let W(r) = {w : |w| < M(r, f m+1)}. Note that|f m+1(z)| < M(r, f m+1) in |z| < r.
Thus there exists a componentD of f−(m+1)(W(r)) such thatD contains|z| < r andD

is contained in the interior of0m. Let 0 be the boundary ofD which is a simple closed
curve and is contained in the annulus bounded by|z| = r and0m. Obviously,0 contains
the origin and|f m+1(z)| = M(r, f m+1) on0. The proof is complete. 2

LEMMA 8. (Baker [7]) If a transcendental entire functionf has a Baker domainD, then

log |f n(z)| = O(n) (z ∈ D,n→∞).

3. Proof of Theorem 1
Define

c(n) = 2+ 1

n+ 1
, n ≥ 1.

For the sequenceRn andtn in Lemma 2 we know that

Rn < tn < Rc(n)
n .

Sincef is transcendental, we may suppose that

logM(R
2+2/(2n+1)
n , f ) >

4(n+ 1)(2n+ 3)(2n+ 1)3

8n3+ 8n2− 2n− 3
logM(1, f ).

In fact, this holds for all sufficiently largen. It follows from the Hadamard-three-circle
theorem that

logRn+1 = logM(Rn, f )

≤ logM(1, f )+ 1

2+ 2/(2n+ 1)
logM(R

2+2/(2n+1)
n , f )

≤ 1− 1/(2n+ 1)3

c(n+ 1)
logM(R

2+2/(2n+1)
n , f ).

The conclusion follows from Lemma 1.
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4. Proof of Theorem 2
Take anyR1 > 0 and define

Rn+1 =M(Rn, f ) n ≥ 1.

For anya, c with c < a < 1/2, let

L(c, a) = (1+ ρ/c)/ cos(πa), c(n) = L(c, a)2.

By Lemma 4, the interval
(RL(c,a)

n , Rc(n)
n )

contains a valuetn such that

logm∗(tn, f ) ≥ logM(RL(c,a)
n , f ).

Combining this with the hypothesis we get

m∗(tn, f ) ≥ M(Rn, f )c(n).

The conclusion follows from Lemma 1.

5. Proof of Theorem 3
Suppose on the contrary that there exists an unbounded pre-periodic componentU . Then
there are two non-negative integersm andn such thatf n(D) ⊂ D, whereD = f m(U).
By Lemma 7 we see thatD is unbounded and the only possible constant limit function of
{f nj : j = 1, 2, . . . } in D is∞, so thatf nj (z)→∞ in D asj →∞. ThusD is a Baker
domain of the functionf n. From Lemma 8 and Lemma 7 we get a contradiction.
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