
University of South Florida

Scholar Commons

Graduate Theses and Dissertations Graduate School

November 2018

Fatty Acid Amides and Their Biosynthetic Enzymes
Found in Insect Model Systems
Ryan L. Anderson
University of South Florida, rlander6@mail.usf.edu

Follow this and additional works at: https://scholarcommons.usf.edu/etd

Part of the Biochemistry Commons, and the Cell Biology Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in

Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact

scholarcommons@usf.edu.

Scholar Commons Citation
Anderson, Ryan L., "Fatty Acid Amides and Their Biosynthetic Enzymes Found in Insect Model Systems" (2018). Graduate Theses and

Dissertations.

https://scholarcommons.usf.edu/etd/7467

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F7467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F7467&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F7467&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F7467&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F7467&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F7467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=scholarcommons.usf.edu%2Fetd%2F7467&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=scholarcommons.usf.edu%2Fetd%2F7467&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


 
 
 
 
 

Fatty Acid Amides and Their Biosynthetic Enzymes 

Found in Insect Model Systems 

 

by 

 

Ryan L. Anderson 

 

 

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
Department of Chemistry 

College of Arts and Sciences 
University of South Florida 

 

 

Major Professor: David J. Merkler, Ph.D. 
Abdul Malik, Ph.D. 
James Leahy, Ph.D. 

Andreas Seyfang, Ph.D. 
 

 

Keywords: Arylalkylamine N-acyltransferase, N-acylarylalkylamides, Bombyx mori, Drosophila 

melanogaster, upstream activator sequence, Gal4, SiRNA, knockdown 

 

Copyright © 2018, Ryan L. Anderson 

  



 
 
 
 
 

DEDICATION 

This work is dedicated to my sister and father.  I carry them with me every day and I know they would be 

proud of my accomplishments. I also dedicate this work to the rest of my loving, supportive family and 

friends.  

  



 
 
 
 
 

ACKNOWLEDGEMENTS 

I have had the pleasure of experiencing so many meaningful interactions on my journey to 

becoming a Ph.D. and am so grateful for each and every one of them. My efforts would not be possible if 

Dr. Kristen Jeffries had not created the preliminary space for me to start doing research on a graduate 

level at one of my lowest points in life. She became part of my first lab family and meaningful mentors, 

along with Dr. David Merkler, Dr. Daniel Dempsey and Dr. Matthew Battistini. Their compassion and 

skills as good leaders will always be looked up to as I continue my career in hopes of spreading, not only 

knowledge, but also comradery to instill a sense of family and friendship in the lab. As I quickly became 

the senior student in the lab, I then had the pleasure of being a bridge between the old and new students in 

Dr. Merkler’s lab. It was also a great experience getting to know new colleagues such as Brian O’Flynn, 

Gabriela Suarez, John Dillashaw and Amanda Pierce, who quickly became my second lab family and 

were wonderful people with whom I could continue to learn and solve problems. To add to this, I became 

a mentor to a group of very bright undergraduates including Sydney Balgo, Carly Gunderson, Dean 

Holliday, Sydney Innes, Joseph Mira, Alexandria Musick, Alexander Aguirre, and Dylan Wallis. All 

these bright undergraduates became my friends as well as pupils. One of them even became my roommate 

and created a lifelong friendship. I would also like to thank my best friends in the area, Christine 

Bornberg, Miranda Betagglio and Francesca Kerns, for being supportive when I needed it the most. There 

were several other colleagues and friends who played a role in keeping me sane and productive 

throughout graduate school and I cannot thank them all enough. 



i 

 
 
 
 
 

TABLE OF CONTENTS 

List of Tables   iii 
 
List of Figures   v 
 
List of Abbreviations  vi 
 
Abstract   ix 
 
Chapter One: Introduction and literature overview  1 

1.1 Fatty acid amides are biologically significant 1 
 1.1.a Biosynthetic pathway of fatty acid amides 2 
 1.1b N-acylethanolamines 3 
 1.1c N-acylglycines 5 
 1.1d Primary fatty acid amides 5 

  1.1.e N-acylarylalkylamides 6 
 1.2 Insect model systems as candidates to study fatty acid amide metabolism 9 
  1.2.a Drosophila melanogaster 9 
  1.2.b Bombyx mori 10 
 1.3. Lipidomics  11 
 1.4 References  13 
 
Chapter Two: Knockdown of arylalkylamine N-acyltransferase-like 2 (AANATL2) in Drosophila  23
 melanogaster 
 2.1 Note to the reader  23 
 2.2 Significance statement  23 
 2.3 Abstract  23 
 2.4 Abbreviations  24 
 2.5 Introduction  24 
 2.6 Materials/Methods 27 
  2.6.a General care of fly stocks 27 
  2.6.b UAS/Gal4 crossing scheme to generate AANATL2 knockdown flies 28 
  2.6.c Detection of AANATL2 transcript via RT-qPCR 29 
  2.6.d Detection of AANATL2 protein via western blot analysis 30 

  2.6.e Lipid extraction and purification of fatty acid amides from Drosophila Thorax-
abdomen 32 

  2.6.f LC-QToF-MS/MS detection of fatty acid amides from Drosophila thorax  
   abdomen 33 
 2.7 Results and Discussion 34 
  2.7.a AANATL2 transcripts are reduced in AANATL2 knockdown offspring 34 
  2.7.b Drosophila AANATL2 protein abundance is reduced in knockdown offspring 36 

2.7.c Detection of PALDA reduced abundance in AANATL2 knockdown flies via subtraction  37 
 2.8 Acknowledgements 41 
 2.9 References  41 
 



ii 

Chapter Three: Bm-iAANAT and its potential role in fatty acid amide metabolism biosynthesis in 
 Bombyx mori  44 

3.1 Note to reader 44 
 

Chapter Four: Changes in expression of three insect arylalkylamine N-acyltransferases and fatty acid 
 amides detected in the different life stages of Bombyx mori 45 
  4.1 Note to the reader 45 
  4.2 Significance statement  45 
  4.3 Abstract   46 
  4.4 Abbreviations  46 
  4.5 Introduction  46 
  4.6 Materials   50 
  4.7 Methods   50 
   4.7.a Silkworm rearing and sample collection 50 
   4.7.b Extraction/isolation of mRNA and gDNA decontamination 51 
   4.7.c One-step RT-qPCR of Tua1, Bm-iAANAT, Bm-iAANAT2 and Bm-iAANAT3  51 
   4.7.d Extraction and purification of fatty acid amides from different B. mori life stage  53 
   4.7.e Injection of Bombyx mori purified, fatty acid amide extracts on LC-QToF-MS 53 
  4.8 Results and discussion  54 
   4.8.a Difference in expression of Bm-iAANAT, Bm-iAANAT2, Bm-iAANAT3  
    transcripts shown by RT-qPCR 54 
   4.8.b Novel panel of fatty acid amides quantified for Bombyx mori life stages 56  
  4.9 Acknowledgements 63 
  4.10 References  63 
 
Appendix A: N-Fatty Acylglycines: Underappreciated endocannabinoid-like fatty acid amides? 67 
  Reprint of article 68 
 
Appendix B: Bm-iAANAT and its potential role in fatty acid amide biosynthesis in Bombyx mori 84 
 Reprint of article  8



iii 

 

 

 

 

 

LIST OF TABLES 

Table 1.1:  Some N-acylethanolamines and their known receptors 4 

Table 1.2:   N-acylarylalkylamides characterized in various organisms 7-8 

Table 1.3:   Drosophila’s potential to study fatty acid amide systems involved in health and  
physiology 9 

 
Table 1.4:  Genetic engineering Bombyx mori 10 

Table 2.1:   Primer Design for Drosophila AANATL2 and Actin-42A 29 

Table 2.2:   qPCR Reactions on 96-Well Plate 30 

Table 2.3:   ΔCT Values calculated for ΔΔCT analysis 34 

Table 2.4:  Matching m/z and Retention Times of Fatty Acid Amides Detected in the  
Thorax-Abdomen 38 

 
Table 2.5:   Tandem mass spectrometry fragmentation of detected fatty acid amides 38 

Table 2.6:   Quantification of fatty acid amides in AANATL2 knockdown Drosophila  

melanogaster 39 
 
Table 4.1:   Decontamination of gDNA from mRNA isolations  51 

Table 4.2:   RT-qPCR primers for Tua1, Bm-iAANAT, Bm-iAANAT2, and Bm-iAANAT3 52 

Table 4.3:   CT values for Tua1, Bm-iAANAT, Bm-iAANAT2 and Bm-iAANAT3 in Bombyx 

 mori   54-55 
 

Table 4.4:   Comparison of retention times and m/z values of Bombyx mori first instar larvae 
(Bmi1) the pure standards used for detection. 58 

 
Table 4.5:   Comparison of retention times and m/z values of Bombyx mori second instar 

larvae (Bmi2) and the pure standards used for detection. 58 
 

Table 4.6:   Comparison of retention times and m/z values of Bombyx mori third instar larvae 
(Bmi3) and the pure standards used for detection. 59 

 
Table 4.7:   Comparison of retention times and m/z values of Bombyx mori fourth instar 

larvae (Bmi4) and the pure standards used for detection. 59 
 

Table 4.8:   Comparison of retention times and m/z values of Bombyx mori fifth instar 
larvae (Bmi5) and the pure standards used for detection. 60 



iv 

Table 4.9:   Comparison of retention times and m/z values of Bombyx mori pupae and the 
pure standards used for detection. 60 

 
Table 4.10:  Comparison of retention times and m/z values of Bombyx mori moth and the 

pure standards used for detection. 61 
 

Table 4.11:  Quantification of fatty acid amides from different life stages of Bombyx mori   61-62 



v 

 
 
 
 
 

LIST OF FIGURES 

Figure1.1:  Biosynthetic pathway of fatty acid amides 3 

Figure 1.2:  General structure of an N-acyldopamine 7 

Figure 1.3:  General structure of an N-acylserotonin 7 

Figure 2.1:  Depiction of Sb[1] phenotype in Drosophila melanogaster 28 

Figure 2.2:  Agarose Gel with cDNA products from RT-qPCR 36 

Figure 2.3:  AANATL2 knockdown western blot 37 

Figure 4.1:  Neighbor-joining tree showing likelihood of common ancestry of different 
insect AANAT 49 

 
Figure 4.2:  Relative transcript abundance of three Bm-iAANATs in different silkworm life stages 55 

Figure 4.3:  Identification of N-palmitoyldopamine in Bombyx mori first instar larvae by 
LC-QToF-MS 57 

 



vi 

 
 
 
 
 

LIST OF ABBREVIATIONS 

AANAT Arylalkylamine N-acyltransferase 

AracSer N-arachidonoylserotonin 

Bm-iAANAT Bombyx mori insect arylalkylamine N-acyltransferase 

Bmi1 Bombyx mori instar 1 

Bmi2 Bombyx mori instar 2 

Bmi3 Bombyx mori instar 3 

Bmi4 Bombyx mori instar 4 

Bmi5  Bombyx mori instar 5 

bp base pair 

CB cannabinoid receptor 

cDNA complimentary deoxyribonucleic acid  

CID collision induced dissociation 

CoA coenzyme A 

CT cycle threshold  

dsDNA double-stranded DNA 

FAA fatty acid amide 

FAAH fatty acid amide hydrolase 

GPR G-protein receptor 

GLYAT glycine N-acyltrasnferase 

HPLC high performance liquid chromatography 

LC-QToF-MS Liquid chromatography time-of-flight mass spectrometry 

LinGly N-linoleoylglycine 



vii 

Lino linoleamide 

mRNA messenger RNA 

MS/MS tandem mass spectrometry 

NADA N-acetyldopamine 

NAE N-acylethanolamine 

NAG N-acylglycine 

ND not detected 

pAb polyclonal antibody 

Palm palmitamide 

PalmDop N-palmitoyldopamine 

Palmle palmitoleamide 

PalmSer N-Palmitoylserotonin 

PALDA N-palmitoyldopamine  

Ole oleamide 

OleDop N-oleoyldopamine 

OleEth N-oleoylethanolamine 

OleSer N-oleoylserotonin 

OleTrp N-oleoyltryptamine 

PalmGly  N-palmitoylglycine 

PAM peptidylglycine-α-amidating monooxygenase 

PFAM primary fatty acid amide 

OleGly N-oleoylglycine 

RISC RNA induced silencing complex 

RNA ribonucleic acid 

RT reverse transcriptase 



viii 

RT-qPCR reverse transcriptase – quantitative polymerase chain reaction 

Sb[1] stubble gene 

SDS-PAGE sodium dodecyl sulfate – polyacrylamide gel electrophoresis 

siRNA small interfering RNA 

ssRNA single-stranded RNA 

SteSer  N-stearoylserotonin  

THC tetrahydrocannabinol  

TRPM8 transient receptor potential melastatin type 8 

TRPV1 transient receptor potential vanilloid type 1 

UAS upstream activator sequence 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

 

 

 

ABSTRACT 

A fatty acid amide is precisely as the name suggests: A fatty acid (CHn-COOH), in which the 

hydroxyl group of the carboxylic acid is displaced by an amine functional group from a biogenic amine 

(R-NH2), ultimately forming an amide bond.  Furthermore, these fatty acid amides can be composed of a 

variety of different acyl chain lengths donated by the fatty acid and a myriad of different biogenic amines. 

Thus, these molecules can be subdivided in a number of different ways including the separation of short 

chain (acetyl to heptanoyl) and long chain (palmitoyl to arachidonoyl) and also based off the biogenic 

amine type. The long chain fatty acid amides quickly gained the interest of the scientific community 

through the discovery of anandamide (N-arachidonoylethanolamide), which was found to be the 

endogenous ligand for the cannabinoid receptor-1 (CB1) found in the mammalian brain. This particular 

neural molecule is an N-acylethanolamide, which is one specific classification of long chain fatty acid 

amide. However, there exist other types of long chain fatty acid amides including the N-acylglycines, 

primary fatty acid amides (PFAMs) and N-acylarylalkylamides. Yet, despite the type of fatty acid amide, 

it has been shown many of these types of molecules are synthesized using a type of N-acyltransferase. 

These N-acyltransferases are believed to be members of the GCN5-related superfamily of N-

acyltransferases (GNAT), which share the feature of being able to accept acyl-CoA thioester substrates. 

This dissertation will discuss and demonstrate the extraction of all types of the aforementioned 

classifications of long chain fatty acid amides but will have a particular focus on the N-

acylarylalkylamides. Elucidating more about the biosynthetic pathways and metabolic routes of the long 

chain fatty acid amides could lead to the development of potential therapeutics and pest control agents. 

We have determined Drosophila melanogaster arylalkylamine N-acyltransferase like 2 is responsible for 

the in vivo biosynthesis of N-acyldopamines. We have also demonstrated Bombyx mori is another suitable 

model systems for the study of long chain fatty acid amides, as three insect arylalkylamine N-
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acyltrasnferase from Bombyx mori (Bm-iAANAT) were found to share some homology in primary 

sequence (25-29%) to AAANTL2 in Drosophila melanogaster. We show herein that one of these 

enzymes is able to catalyze the formation of long chain N-acylarylalkylamides in vivo. The change in the 

transcription of these enzymes was tracked to try and understand if these enzymes serve a focused 

purpose in the physiological development of the insect. If it is found one of these Bm-iAANAT are crucial 

for growth, it may elucidate a general function of the enzyme, which may be able to inhibit growth of 

specific insects that are known pests, while not targeting endangered insects like Apis melliferra (honey 

bee). Understanding this would help in the eventual creation of targeted insecticides on specific insect 

pests Furthermore, a novel panel of fatty acid amides was characterized and quantified in extracts from 

this organism via LC-QToF-MS, ultimately showing it is very possible the Bm-iAANATs are performing 

this catalysis in vivo.  
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CHAPTER ONE 

Introduction and literature review 

1.1 Fatty acid amide research stems from studies done on cannabis and are biologically significant  

Fatty acid amides are encompassed by the class of molecules known as endocannabinoids. These 

biomolecules have structural similarities to the most popular (and somewhat controversial) cannabinoid, 

Tetrahydrocannabinol (THC) and some have been found to be the endogenous ligands for the same 

receptors [1]. Cannabis has been widely used in the past as a medicine and for ritualistic practices and is 

known to have an array of physiological effects on mammals through the binding of molecules known as 

cannabinoids [2].  After an elucidation of the structure of THC by the Mechoulam group in 1964 [3], the 

avenue for THC binding studies was opened in order to understand how these molecules from a plant can 

have effects on mammals. The Howlett group took advantage of this opportunity and characterized the 

cannabinoid receptors (CB1) in rat brains and proposed there must be endogenous molecules giving these 

receptors a purpose in vivo [4]. This ultimately led to the discovery of N-Arachidonoylethanolamide 

(anandamide), which is an endogenous ligand for the cannabinoid receptors in mammalian brains [5]. All 

this, ultimately, unlocked a broad field of research involving these lipid-signaling molecules, which attain 

similar structural motifs and use related N-acyltransferases for biosynthesis.   

A fatty acid amide is precisely as the name implies: A fatty acid (CH3(CH2)nCOOH) where the 

hydroxyl at the head is replaced by an amine-containing compound (R-NH2) to create an amide group. 

This nitrogenous group has been found to be donated by a number of different possibilities, which has, in 

turn, created several subclasses when combined with various alkyl chain lengths [6-7].  The groups of 

particular importance to this research include N-acylethanolamines (NAE), N-acylglycines (NAG), 

primary fatty acid amides (PFAM), and the N-acylarylalkylamides (NAAs).  Due to its association with 

the cannabis field, the NAEs received the most amount of attention when considering research efforts. 
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However, this left a door open for the experimentation of other fatty acid amides. Although this research 

regards all proposed fatty acid amide subgroupings, the N-acylarylalkylamines will be of particular 

interest.  

1.1.a Biosynthetic pathway of fatty acid amides 

 The fatty acid amides are linked through a single biosynthetic pathway and through the fact they 

all require a N-acyltransferase in the catalysis of their formation.  This generally starts with a fatty acid of 

varying chain length, which is used as a substrate for the creation of an acyl-CoA using acyl-CoA 

synthase. This “activated” fatty acid now contains a good leaving group in the form of coenzyme A and 

can utilize a number of different acyltransferase enzymes capable of accepting fatty acid CoA thioester 

substrates and substituting the CoA leaving group for a biogenic amine [8-10].  If an arylalkylamine N-

acyltransferase (AANAT) is used, an arylalkylamine, like dopamine or serotonin, can be used to create an 

N-acylarylalkylamide (NAAA) [11].  Alternatively, a glycine N-acyltransferase (GLYAT) can attach a 

glycine molecule to make the N-acylglycine (NAG) [6, 12]. Peptidylglycine α-amidating monooxygenase 

can finally use the N-acylglycine to make a primary fatty acid amide (PFAM), which simply has a simple 

amide group attached the acyl chain [13]. An alternative route has also been noted, which uses an N-

acylethanolamide as a starting substrate and uses an N-acyglycinal intermediate for the creation of NAGs 

[14-15].  A putative pathway has been drafted for the biosynthetic pathway of fatty acid amides, starting 

from a fatty acid and going to a primary fatty acid amide (Figure 1.1) [16].  
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Figure 1.1 Biosynthetic pathway of fatty acid amides 

1.1.b N-acylethanolamines 

 Many long chain N-acylethanolamines have been extracted and characterized from the 

mammalian brain with the highest concentrations consisting of acyl chains such as N-palmitoyl (16:0)-, 

N-stearoy l (18:0)-and N-oleoyl- (18:1) [7, 17]. However, other, less concentrated, long chains have been 

recognized with an ethanolamine moiety within mammalian brains, including N-

linoleoyl(18:2)ethanolamine, N-linolenoyl(18:3)ethanolamine, N-docosatetraenoyl(22:4)ethanolamine [7]. 

The long chain N-acylethanolamines are probably the most well-known of the fatty acid amides due to the 

discovery of N-arachidonoylethanolamine. This was previously found to be the endogenous ligand to the 

cannabinoid receptors, CB1, and its existence is the reason THC has physiological effects on the 
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mammalian brain [18]. Anandamide binds to other non-cannabinoid receptors such as the peroxisome 

proliferator-activated receptors (PPARα) [19], the transient receptor potential vanilloid type 1 (TRPV1) 

channels [20] and the transient receptor potential melastatin type 8 (TRPM8) [21]. Yet, the precise 

physiological effect elicited by anandamide binding to the non-cannabinoid receptors remains somewhat 

elusive. It is known anandamide plays a role in the regulation of body temperature, feeding, nociception, 

anxiety, fear and locomotion [1, 22-23]. The physiological effect of other N-acylethanolamines have yet 

to be fully elucidated and most have not been found to bind directly to the CB1 and CB2 receptors, but 

their names, suggested effects and known receptors can be seen in Table 1.1. 

Table 1.1 Some N-acylethanolamines and their known receptors 

N-acylethanolamine Receptor Binding Reference 

N-dihomo-γ-linoleoylethanolamine CB1, CB2 [20], [24], [25] 

N-docosatetraenoylethanolamine  CB1, CB2 [20], [24], [25] 

N-Oleoylethanolamine  PPARα, PPARβ, TRPV1, GPR119 [19], [24], [26], [27] 

N-Stearoylethanolamine  CB1(non-specific), CB2 [28] 

N-palmitoylethanolamine PPARα, GPR55 [29], [30] 

 

The N-acylethanolamines (NAE) can use different routes for their biosynthesis. The most widely accepted 

route starts with the N-acylation of phosphatidylethanolamine via calcium activated transacylase. N-

acylphosphatidylethanolamine (NAPE) and uses the NAPE-specific phospholipase D (NAPE-PLD) to 

cleave the NAPE to make the corresponding NAE and phosphatidic acid [31-32]. Although this has been 

widely accepted to be a main route for NAE generation, there is evidence showing PLD-independent 

pathways also exist. One such pathway uses the cleavage of NAPE, mediated by phospholipase C, to 

create a phospho-NAE (pNAE) intermediate, which is ultimately cleaved by a phosphatase to yield the 

NAE [33]. The existence of multiple biosynthetic routes for the NAEs suggests their biological 
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importance, as different organisms may have backup systems for their generation in the case of metabolic 

emergencies [34].  

 General degradation of NAEs is believed to occur through a hydrolysis pathway to generate the 

fatty acid and the ethanolamine: R-CO-NH-CH2-OH + H2O          R-COOH + NH2-CH2-OH. There has 

been detection of three different enzymes capable of performing this chemistry: Two of them are isoforms 

of fatty acid amide hydrolase (FAAH-1 and FAAH-2), which attain different acyl group specificity [35].  

The third is an N-acylethanolamine-hydrolyzing acid amidase [36]. It should be noted that potential 

analgesic therapeutics are being based of the inhibition of FAAH [37]. 

1.1.c N-acylglycines  

 This section of the chapter has been previously published as the following review article: 

Anderson, R.L., Merkler, D. J., N-Fatty Acylglycines: Underappreciated endocannabinoid-like fatty acid 

amides? Journal of Biology and Nature 2017, 8 (4), 156-165. Ryan Anderson and David J. Merkler wrote 

the article. David J. Merkler is responsible for the idea to review this material. The article has been 

reproduced in Appendix A with the no extra permission required from Elsevier Limited.  

1.1.d Primary Fatty Acid Amides 

Structurally speaking, the primary fatty acid amides (PFAMs) can be viewed as the most 

simplistic due to the amide bond being formed by ammonia (NH3). Yet, despite their simple structure, 

these compounds have been found to play a number of different roles in the physiology of both 

vertebrates and invertebrates. The first recorded detection of primary fatty acid amides included the 

characterization of palmitamide, palmitoleamide, oleamide, elaidamide and linoleamide., which were 

extracted from luteal phase plasma in 1989 [13]. Another significant detection of the PFAMs occurred 

when Cravatt et al. isolated oleamide and erucamide from the cerebrospinal fluid (CSF) of cats, rats and 

humans. Yet, the function of the PFAMs remained elusive until it was found injecting rats with 

nanomolar quantities of oleamide induced sleep in rats, which was a very exciting finding for the field as 

one of the molecules of this long chain fatty acid amide subclass now had a known phenotype in the 

sleep/wake cycle of mammalian system [38]. Several other phenotypic relationships of oleamide were 
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quickly found after these initial discoveries. For instance, it has now been shown oleamide also plays 

significant roles in signaling pathways regarding gap junction communication in glial cells, memory 

regulation, body temperature, locomotor activity, Ca2+ release, depressant drug receptor transduction and 

allosteric activation of the gamma amino butyric acid A (GABAA) receptors [39-40]. Therefore, oleamide 

received a significant amount of attention at the forefront of PFAM discovery. However, other functions 

of different long chain PFAMs were recognized after these findings. For instance, linoleamide has been 

found to increase Ca2+ flux [41] and inhibits the erg current in pituitary cells [42]. Also, erucamide has 

been found to stimulate growth in blood vessels and regulates fluid imbalance, while elaidamide might 

function as an endogenous inhibitor of epoxide hydrolase. Ultimately the PFAMs are useful target of 

molecules to study within different model systems as many of their functions have yet to be generally 

defined. The Merkler lab previously characterized a novel panel of endogenous long chain fatty acid 

amides in the head and thorax-abdomen of Drosophila melanogaster, which included several PFAMs 

[16]. Much work remains to be done on elucidating the exact function of these molecules in both 

vertebrates and invertebrates, which may ultimately lead to the creation of targeted insecticides as well as 

information on general fatty acid amide biosynthesis in all organisms. As far as a degradative pathway is 

concerned, the PFAMs are believed to be degraded by FAAH to yield ammonia and a free fatty acid [26, 

43].  

1.1.e N-acylarylalkylamides are biologically significant and underappreciated  

 Out of the long chain fatty acid amides mentioned thus far, the N-acylethanolamides are the most 

widely studied due to their connection to anandamide and THC. However, many other long chain fatty 

acid amides of different chain length and biogenic amine have also been found to be biologically active. 

The biological function of some NAGs and PFAMs have been elucidated, as there is data showing N-

oleoylglycine (NAG) and oleamide (PFAM) both decrease locomotion and body temperature in mammals 

[44]. However, the long chain N-acylarylalkylamides are arguably the most understudied and 

underappreciated of the fatty acid amides. This could be due to the fact they are generally seen as lowly 

abundant in comparison to the classifications of long chain fatty acid amides and are, therefore, more 
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difficult to detect. N-Acylarylalkylamides include the compounds containing arylalkylamine functional 

groups as part of the chemical structure. Out of all N-acylarylalkylamides in possible existence, the most 

widely seen in the literature are the N-acyldopamines (Figure 1.2) [45] and N-acylserotonins (Figure 1.3) 

[46-47] and have been discovered in a myriad of different living systems with varying chain lengths 

(Table 1.2). 

 

 

Figure 1.2 General structure of an N-acyldopamine. R is an alkyl group.  

 

 

Figure 1.3 General structure of an N-acylserotonin. R is an alkyl group.  

 

Table 1.2 N-acylarylalkylamides characterized in various organisms 

N-acylarylalkylamide  Organism Localization Reference 

N-Myristoyldopamine (14:0) Rat Brain [48] 

N-Palmitoyldopamine (16:0) Rat 
Mouse  
Fruit Fly 

Striatum 
N18TG2 cells 
Head 
Thorax-abdomen 

[49] 
[50] 
[16] 
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Table 1.2 N-acylarylalkylamides characterized in various organisms 

N-Stearoyldopamine (18:0) Bovine 
Rat 
 

Brain 
Brain 

[48] 
[51] 

N-Oleoyldopamine (18:1) Rat 
Mouse  
Fruit Fly 

Striatum 
N18TG2 cells 
Head 
Thorax-abdomen 

[49] 
[50] 
[16] 

N-Arachidonoyldopamine (20:4) Rat 
Mouse  
Fruit Fly 

Striatum 
N18TG2 cells 
Head 
Thorax-abdomen 

[49] 
[50] 
[16] 

N-Palmitoylserotonin (16:0) Porcine 
Fruit fly 
 

Intestinal tract 
Thorax-abdomen 

[47] 
[52] 
 

N-Stearoylserotonin (18:0) Porcine 
Fruit fly 

Intestinal tract 
Thorax-abdomen 

[47] 
[52] 

N-Oleoylserotonin (18:1) Porcine 
Fruit fly 
 

Intestinal tract 
Thorax-abdomen 

[47] 
[52] 
 

N-Arachidonoylserotonin (20:4) Porcine 
Fruit fly 
Human 
Bovine 

Intestinal tract 
Thorax-abdomen 
Brain 
Brain 

[47] 
[16] 
[53] 
[53] 

 

Clearly these molecules play an important role to life, which is indicative by their ubiquitous presence 

throughout the animal kingdom. Yet, there is much to be understood in regard to the biological synthesis 

and functionality of the N-acylarylalkylamides. Also, there are other biogenic amines other than serotonin 

and dopamine capable of being present in a long chain fatty acid amide structure and these molecules 

have yet to be extracted from or studied. 

 The degradation of N-acylarylalkylamides may be diverse due to the different possibilities of 

biogenic arylalkylamide attachment. However, one recognized degradative pathway for the N-acyl 

dopamines includes FAAH hydrolysis. Another way in which the N-acyldopamines can be degraded is 

through the use of O-methylation via O-methyltransferase [54].  

1.2 Insect model systems as candidates to study fatty acid amide metabolism 

1.2.a Drosophila melanogaster 
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 Insects are quite pragmatic tools to use for the study of how biomolecules are generally 

metabolized and or synthesized. There have been many significant scientific discoveries made by using 

insects as the primary organisms of study. In the case of Drosophila melanogaster, or the common fruit 

fly, there have been six Nobel prizes, including the 2017 Nobel prize in Physiology and Medicine, won 

from its use as a scientific model [55].  Part of the reason these insects make such good candidates for 

biological and biochemical research is because their genome sequence has been elucidated, which has 

allowed them to be used in loss-of-function and gain-of-phenotype experiments.  Furthermore, several 

cases directly involving fatty acid amide-related areas of human health have been completed, can be seen 

in Table 1.3.  

Table 1.3 Drosophila’s potential to study fatty acid amide systems involved in health and physiology 

Type of Model 
System 

Fatty Acid Amide Correlation How Drosophila was/could be used 

Aging Aging decreases endogenous levels of 
anandamide and increases neuropathic pain 
[56] 

Mutated Indy and lifespan [57]; 
Overexpressing fatty acid-β-oxidation-related 
genes and dietary restriction [58].  Feeding 
curcumin [59] 

Alzheimer’s 
Disease 

N-palmitoylethanolamine is an anti-
inflammatory and neuroprotective 
therapeutic [60], might treat memory 
impairments [61] 

UAS controlling amyloid beta (Aβ) precursor 
proteins (stocks available at Bloomington 
Labs) 

Huntington’s 
Disease 

Therapeutics based on endocannabinoid  
signaling [62] and biomarkers [63] 

RNAi of Huntington or Huntington-

interaction protein 14 via UAS (Bloomington 
Lab) 

Obesity Ingested linoleate promotes weight gain via 
endocannabinoids and increases risk of 
obesity [64] 

Fed high fat diet or express human synphilin-1 
protein via UAS control [65] 

Pain Anandamide [66-68], N-oleoylethanolamine 
[69], N-palmitoylethanolamine [70], N-
arachidonoylglycine [71], N-
arachidonoylserine [72] are analgesics 

Exposure to UV radiation or heat [73] 

Parkinson’s 
Disease 

Interactions between dopaminergic and 
cannabinoid signaling [74], 
endocannabinoid signaling [75-76], 
endocannabinoid-based therapeutics [62] 

RNAi of pink1 or parkin via UAS [77] 
Loss of porin function in dopaminergic 
neurons via UAS/Gal4 [78] 

Schizophrenia  Interactions between dopaminergic and 
cannabinoid signaling [74] 

Use of Drosophila neuromuscular junction as 
model synapse [79] 

 

Therefore, due to its high use and the availability of commercial strains, the fruit fly was a prime 

candidate for the study of fatty acid amide biosynthesis and metabolism. Also, the Merkler lab already 

had preliminary data in their discovery of seven N-acyltransferases, of which, two confidently seemed to 
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have the characteristics of AANAT enzymes [80]. They had then further discovered arylalkylamine N-

acyltransferase-like 2 (AANATL2) in D. melanogaster indeed had the capability to catalyze the in vitro 

formation of long chain N-acylserotonins and N-acyldopamines [81]. Yet, there was still lacking evidence 

elucidating whether the chemistry was occurring in vivo.  

1.2.b Bombyx mori  

The domesticated silkworm, or Bombyx mori, has also been investigated as another insect model 

system for biochemical and biological research. This insect belonging to the Lepidoptera family has 

attained an economic value through its domestication over the last 5000 years, but is also considered a 

relatively new, scientific, insect model system since its genome was sequenced in 2009 [82-83]. Due its 

late arrival into the field of model systems, less mutant strains and genetic experiments have been done in 

comparison to Drosophila, zerba fish and C. elegans.  Nonetheless, transgenic lines using different 

technologies to manipulate the expression of endogenous or exogenous genes have been used for various 

studies and can be seen in Table 1.4. Due to the fact many genes have unknown functions in this insect, 

many of the experiments still being done are to elucidate phenotypes and functions within the actual 

insect, rather than using it as a disease model for higher vertebrates, such as seen in Drosophila.  

 

Table 1.4 Genetic engineering Bombyx mori 

Method of genetic 
manipulation 

Biochemical system(s) engineered 

UAS/Gal4 Enhanced expression of calcium indicator protein (GCaMP5G) for improved 
visualization of neural activity, expression of tetanus toxin light chain 
(TeTxLC) to block synaptic transmission in sex pheromone receptors [84]; 
Expression of dTrpA1 under UAS control [85] 

CRISPR/Cas9 Testing the heritability of edited genomes using four test loci Bm-ok, BmKMO, 
BmTH and Bmtan [86]  

Zinc-finger nucleases (ZFNs) Somatic and germline mutations are caused by ZFN mRNA injections 
affecting the epidermal color marker gene (BmLOS2) via NHEJ [87] 

 

However, this holds useful merit, as understanding more about general insect biochemistry yields the 

potential to uncover potential targets for insecticides to aid agriculture industries [88]. Furthermore, 

Bombyx mori is an ideal candidate for the study of fatty acid amides, particularly the N-
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acylarylalkylamides and AANAT (iAANAT) [89]. Several enzymes were detected through a BLAST 

search and found to have some sequence homology (~29%) with Drosophila AANATL2 [90]. 

Furthermore, work has been done on two of these Bombyx mori insect AANATs (Bm-iAANAT) to show 

they played a role in the pigmentation and cuticle morphology of the silkworm through production of 

fatty acid amides, like N-acetyldopamine (NADA) [91]. However, none of these enzymes had been 

investigated for their potential to produce longer chain fatty acid amides, more specifically the N-

acylarylalkylamides. Our goal is to investigate further these Bm-iAANATs to see if they catalyzed the 

formation of long chain fatty acid amides and how they might eventually be good candidates for targeted 

insecticides.  

 

1.3 Lipidomics 

 The lipidome refers to the different lipid molecules found from a biological source. However, 

unlike nucleic acids, proteins, and carbohydrates, lipids include a more diverse class of relatively low 

molecular weight compounds. They do not all share a structural motif, but rather are consumed by the 

term due to their lack of solubility in water. The main classes are the neutral lipids, which include long-

chain acylglycerols, fatty acids and their oxygenated derivatives. Then there are the more complex lipids, 

which include molecules like phospholipids, sphingolipids, glycolipids, and the various steroids and 

derivatives. Ultimately, lipids are a large and diverse group of biomolecules found ubiquitously in 

different innerworkings of cellular life and the entirety, and/or portions of this spectrum of compounds in 

a biological system are potentially useful areas of research.  

The mapping of this spectrum would then be called lipidomics, which is a rising field of 

experimentation done to elucidate the form and function of various, simple and complex lipids within a 

cellular context. Furthermore, lipidomics can be divided into three separate, analytical schemes: 

untargeted, focused, and targeted lipidomics. Untargeted lipidomics refers to the method development for 

comprehensive lipid profiling from biological sources.  Focused lipidomics investigates lipids of several 

different categories, usually with the employment of tandem mass spectrometry (MS-MS). Product-ion 
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scanning, precursor-ion scanning, and neutral-loss scanning can also be used to characterize lipids 

focused in limited categories. For example,Wang et al. completed a study first using untargeted 

lipidomics to identify 295 lipid species in the liver of mice. They then continued the study using focused 

lipidomics to find 39 out of the 295 hepatic lipids had significantly increased concentrations due to the 

knockout of the low density lipoprotein receptor (LDLR) [92]. Furhtermore, targeted lipidomics aims to 

determine target specific classifications of lipids and can be accomplished via selected reaction 

monitoring (SRM) or multiple reaction monitoring (MRM), as the fragmentation patterns of many lipids 

are known [93]. Ultimately, the field of lipidomics attains a spectrum in the quantity and classification of 

lipids being studied, in which the focus can be either very broad or very narrow, and the methodology can 

vary as well.  

 High performance liquid chromatography (HPLC) happens to be the most common technique 

used for lipidomic analysis. This is due to its good reproducibility and high resolution when compared to 

other methods [93]. Furthermore, the coupling of HPLC to electrospray ionization (ESI)-MS provides an 

even better platform for the analysis of many different lipid classes, or individual lipids, and is the most 

common separation technique and ionization source in lipidomics today. Both normal phase (NP) and 

reversed phase (RP) HPLC are applicable to the study of lipids depending on the structural features of the 

targeted molecule(s). NP-LC is used typically for the separation of classes of lipids containing different 

polar head groups, while RP-LC is often employed for the separation of species within the same lipid 

class, in which the difference in fatty-acyl chains are the main basis for separation [93]. Although ESI 

maintains a good reputation for the analysis of lipids, other ionization sources can be used with the 

HPLC-MS system. For instance, atmospheric pressure ionization (APCI) is also used frequently in 

lipidomics has been shown to be appropriate for the analysis of weak polar lipids, such as fatty acids, 

mono and diacyl-glycerols (MAG, DAG) [94], neutral sphingolipids, and cholesterol [95]. As for mass 

spec analyzers for the detection of lipids, Time of flight (ToF) tubes  coupled with LC-MS are the most 

common in lipidomics and the Merkler lab previously characterized a novel panel of fatty acid amides 
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from Drosophila melanogaster using LC-QToF-MS [16]. Therefore, this is an adequate method for the 

continuation in detecting fatty acid amides in the same model system and other insects as well.  
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CHAPTER TWO 

Knockdown of arylalkylamine N-acyltransferase-like 2 (AANATL2) in Drosophila melanogaster 

2.1 Note to reader 

This chapter will be submitted to Biochemistry for peer review. The authors are Ryan L. 

Anderson, Dylan J. Wallis, Alexander Aguirre, Dean Holliday, and David. J. Merkler. Ryan L. Anderson 

completed the RT-qPCR, western blot and lipidomics.  Dylan J. Wallis, Alexander Aguirre and Dean 

Holliday helped in the generation and collection of UAS/Gal4 AANATL2 knockdown flies. David J. 

merkler is responsible for the research design and is the corresponding author.  

 

2.2 Significance statement  

 Previous work done in the Merkler lab has shown recombinant arylalkyamine N-acyltransferase-

like 2 (AANATL2) from Drosophila melanogaster catalyzes the formation of long chain N-

acyldopamines and long chain N-acylserotonins in vitro. However, this was not enough evidence to 

support the claim these metabolites were being formed in vivo. Showing a reduction in any N-

acylarylalkylamides accompanying an in vivo siRNA knockdown of AANATL2 in D. melanogaster 

substantiates AANATL2 as major biosynthetic enzyme of at least some of these tertiary metabolites.  

 

2.3 Abstract  

 Our lab is currently using Drosophila melanogaster as a model system to unravel the biosynthetic 

pathway of certain fatty acid amides.  The work herein focuses on the biosynthesis of N-

acylarylalkylamides in fruit flies. We previously characterized an arylalkylamine N-acyltransferase, 

named AANATL2, in Drosophila shown to catalyze the in vitro formation of these long chain N-

acylserotonins and N-acyldopamines. Generating siRNA via the UAS/GAL4 bipartite approach for 
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targeted gene expression was shown, using RT-qPCR, to be an effective method for knocking down the 

endogenous levels of AANATL2 transcripts in D. melanogaster. Furthermore, the AANATL2 

knockdown, fly offspring protein expression was also shown to be significantly reduced in a Western blot 

using a primary, anti-AANATL2 antibody. Finally, reduced expression of AANATL2 resulted in 

reduction in the cellular levels of N-palmitoyldopamine. This result provides strong evidence AANATL2 

is responsible for the biosynthesis of N-palmitoyldopamine in vivo. This is the first time an AANAT has 

been knocked down in Drosophila melanogaster to confidently show it is a major biosynthetic enzyme 

for N-acylarylalkylamides. This supports in vitro data showing the enzyme has the capacity to catalyze 

the formation of these long chain fatty acid amides.   

 

2.4 Abbreviations  

 Aryalkylamine N-acyltransferase-like 2, AANATL2; Upstream activator sequence ,UAS; 

Cannabinoid receptor, CB; N-palmitoyldopamine, PALDA; RNA-induced silencing complex, RISC; 

Single-stranded RNA, ssRNA; Silencing RNA, siRNA; Liquid chromatography time-of-flight mass 

spectrometry, LC-QToF-MS; 

 

2.5 Introduction  

Endocannabinoids are a widely studied family of lipids stemming from the discovery of the 

cannabinoid receptors (CB1 and CB2) and anandamide (N-arachidonoylethanolamide), the endogenous 

ligand for CB1. Furthermore, endocannabinoids are also in the family of fatty acid amides, which can be 

subdivided into the N-acylethanolamides, N-acylamino acids, N-acylarylalkylamides and the primary fatty 

acid amides. These molecules are biologically significant as they are thought to serve a myriad of 

different functions throughout the animal kingdom, ranging from inducing sleep in mammals to the 

hardening of cuticles (sclerotization via N-acetyldopamine) in arthropods [1-2].  However, due to their 

diverse importance, there is much to be learned to further understand how these molecules are 

biosynthesized and able to serve such different purposes in different types of organisms. Our lab is 
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currently using Drosophila melanogaster as a model system to unravel the synthetic pathway of certain 

fatty acid amides.  The work herein has a particular focus on the N-acylarylalkylamides in fruit flies, as 

we previously characterized an arylalkylamine N-acyltransferase, named AANATL2, in Drosophila 

shown to catalyze the in vitro formation of long chain N-acylserotonins and N-acyldopamines [3]. The 

catalytic chemistry of AANATL2 is similar to that of serotonin N-acetyl transferase, which is the 

penultimate enzyme in the biosynthesis of melatonin [3-4]. However, N-acetylserotonin from 

melatonergic systems only contains a 2-carbon acyl group and much more is currently unknown about the 

N-acylarylalkylamides containing longer acyl chains (> 14 carbons). The study of these long chain lipids’ 

biosynthesis in a model system like D. melanogaster is valuable because only some of their functions 

have been fully elucidated in mammals but are seemingly significant. For instance, N-oleoyldopamine is  

a modulator of midbrain activity in dopaminergic neurons [5]. This involves the use of an activated acyl-

CoA and either serotonin or dopamine to make an N-acylserotonin or N-acyldopamine, respectively [6]. 

The AANATs in Drosophila are still widely understudied and underappreciated for their ability to 

provide insight into the formation of these N-acylarylalkylamides and what purpose they might serve in 

the fruit fly and vertebrates. Our studies up to this point have led to the belief endogenous AANATL2 is 

responsible for the biosynthesis of the long chain N-acyldopamines and or N-acylserotonins in vivo. A 

panel of endogenous, long chain N-acylarylalkylamides has been characterized and quantified in wild 

type D. melanogaster, which included N-acyldopamines and N-acylserotonins [7]. Yet, the question still 

remained: If AANATL2 is removed or its expression reduced, are the levels of endogenous fatty acid 

amides affected?  A strategy for achieving an in vivo knockdown of AANATL2 is through the use of 

silencing RNA to reduce the expression of the protein in living fruit flies.   

RNA silencing (siRNA) is a gene regulatory mechanism conserved in eukaryotes and is used 

endogenously to rid organisms of invading viral RNA or regulate mRNA abundance of certain 

endogenous genes [8-13]. The eukaryotic cells use small segments of RNA (21-26 nucleotides) able to 

target RNA for degradation using a series of proteins: First, RNA silencing is induced by the presence of 

double-stranded RNAs (dsRNAs) or structured single-stranded RNAs (ssRNAs), which are processed 
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into siRNA by RNase III-like enzymes, such as Dicer [14-15]. These siRNA are then used as a guide by 

the RNA induced silencing complex (RISC) to degrade RNA with complementary base pairs to the 

siRNAs [15]. In addition to the siRNA, other short regulatory RNA known as micro RNA (miRNA) are 

also incorporated into the RNA silencing machinery. These mRNA are the product of endogenous 

noncoding genes, which are also Dicer-derived from an inverted-repeat mRNA precursor containing short 

dsRNA stem-loops and aid in mRNA targeting [16-19]. Therefore, the siRNA system can be controlled 

and deliberately induced through the introduction of dsRNA or RNA hairpin that is recognized by the 

degradative proteins and has matching nucleotides to a gene of interest [20]. However, transfection of 

synthetic RNA and targeting of genes becomes a more challenging problem when faced with a living 

organism with a myriad of different cell types, such as an adult fruit fly.   

One method capable of knocking down the expression of AANATL2 in living fruit flies via 

siRNA is through use of the UAS/Gal4 bipartite approach for targeted gene expression [20-21]. This 

system uses two different parent mutants to create an offspring with targeted gene expression of either 

native or transposed genes [22]. One parent is a mutant containing a chosen responder gene with an 

activator sequence transposed upstream of transcription and attracts the protein, Gal4. This protein 

discovered in yeast is a known activator of gene transcription through binding of the upstream activator 

sequence (UAS), which can be transposed into D. melanogaster’s genome with no overtly deleterious, 

phenotypic effects [23]. The next parent contains the transposed, functional gene for Gal4 in a 

predetermined pattern of expression for targeting and is known as the driver. When the two mutants are 

mated together, the gene of interest in some offspring is rendered under the transcriptional control of the 

UAS/Gal4 combination in the same expression pattern delineated by the Gal4 driver. Furthermore, 

offspring with targeted gene expression can be differentiated based off the negative selection of a visible, 

inheritable phenotype from a balancer chromosome in the Gal4 driver [21].  

In order to use this system to successfully knockdown AANATL2, a mutant fly housing a 

transposed, synthetic gene for an inverted-repeat, hairpin mRNA precursor containing complementary 

nucleotides to the AANATL2 transcript, the UAS and short dsRNA stem-loops was obtained. Then a 
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Gal4 driver was chosen with a specific transcriptional pattern. Since the precise cellular location of N-

acylarylalkylamide biosynthesis is unknown in fruit flies, ubiquitous expression of Gal4 would increase 

the probability of higher degree of knockdown. The confirmation of AANATL2 knockdown was aptly 

shown in the chosen offspring before proposing any biosynthetic responsibility for N-

acylarylalkylamides. This was accomplished through quantitative reverse transcriptase polymerase chain 

reaction (RT-qPCR) and Western blot analysis. Indeed, the qPCR and Western blot showed a significant 

reduction in AANATL2 in both transcripts and translated protein due to siRNA via UAS/Gal4 

knockdown. The lipids were then extracted from the knockdown and the UAS parent, purified via silica 

column chromatography, and prepared for liquid chromatography quadrupole time-of-flight mass 

spectrometry (LC-QToF-MS) analysis. The mass spectra were targeted-screened for matching m/z and 

retention time of fatty acid amide standards and found significant differences in some fatty acid amide 

levels, including a disappearance of N-palmitoyldopamine (PALDA) in the knockdown flies. These data 

suggest AANATL2 is responsible for the in vivo biosynthesis of PALDA in Drosophila melanogaster. 

We have yet to fully elucidate a phenotype associated with the expression of AANATL2 in D. 

melanogaster. However, the hardening of many insect cuticles occurs through the cross-linking of 

acetylated quinones of monoamines, in which longer chain acyl groups may be used directly or indirectly 

[24]. Furthermore, N-palmitoyldopamine was found to repress the sonic hedgehog (Shh) pathway in 

ShhLIGHT2 cells, which is a pathway commonly studied for growth regulation and cell differentiation, 

which has direct ties to cancer research [25]. One last idea is the possibility of AANATL2 products 

interacting with TRPV receptors and other TRPs due to its structural similarities to capsaicin [26]. 

Therefore, a better understanding of AAANT-like enzyme product biosynthesis in fruit flies is significant 

due the importance of the long chain  N-acyldopamines in varying organisms.  

 

2.6 Materials and Methods 

2.6.a General care of fly stocks  
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Drosophila UAS stocks (CG9486) were purchased from Vienna Drosophila Resource Center 

(VDRC) and are homozygous for an AANTAL2 siRNA hairpin that has been transposed into the second 

chromosome. The Gal4 drivers were purchased from Bloomington Labs (5138), have ubiquitous 

expression of Gal4 and a balancer chromosome (inserted into the third chromosome) containing the 

stubble (Sb[1]) phenotype.  Both strains were cultured on Instant Drosophila Medium from Carolina 

Biological in Fisherbrand Drosophila vials capped with BuzzPlugs™ from Fisher Scientific.  

2.6.b UAS/Gal4 Crossing scheme to generate AANATL2 knockdown flies 

The Gal4 drivers were chosen to be all female in the crossing scheme to reduce the collection of 

false positive offspring.  The UAS flies would then provide the males for the cross.  The Gal4 adult flies 

were first split into new culturing tubes, then procreated and laid eggs for 7 days. After this period, all 

adults were removed from the culturing tubes, leaving only the larvae to remain.  The larvae could then 

enter pupation and were closely monitored.  Once the newly hatched flies began to emerge, virgin female, 

Gal4 drivers were swiftly collected in the morning and in the afternoon using Fly Nap and a low-powered 

magnification microscope.  Virgin females were collected based off the positive identification of proper 

size, banding pattern, and present meconium.  5 virgin females were placed into freshly prepared tubes, to 

which 5, anesthetized UAS males were added.  The UAS males and Gal4 females were left for 5 days 

before they were separated into new vials.  Once the offspring of the cross hatched, AANATL2 

knockdown flies were chosen based off the negative identification of the stubble (Sb[1]) gene using the 

same collection method as the virgin females. The depiction of the Sb[1] can be seen in figure 2.1 below 
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Figure 2.1 Depiction of Sb[1] phenotype in Drosophila melanogaster; A represents the dorsal thorax of 
D. melanogaster exhibiting the stubble (Sb[1]) phenotype from balancer chromosomes; B shows the 
dorsal thorax of a AANATL2 knockdown D. melanogaster. 

Collected flies were flash frozen in liquid nitrogen and stored at -80°C until needed for 

downstream experiments.  UAS flies were collected by putting the culturing tubes on ice, pouring the flies 

into a conical vial to separate the adults from larvae and media, then flash freezing and storing at -80°C.  

2.6.c Detection of AANATL2 transcripts via RT-qPCR 

AANATL2 qPCR primers were designed to amplify 75-150 base pair regions of the open reading 

frame of both the target AANATL2 and an endogenous control.  Actin-42A was chosen as an endogenous 

control for qPCR.  Primers were designed for the endogenous control in the same fashion as AANATL2 

and their sequences and projected product sizes can be seen in Table 2.1. 

 

Table 2.1 Primer Design for Drosophila AANATL2 and Actin-42A 

Target Forward Primer Reverse Primer Product 
Size 

AANATL2 CATACGCGCCATGACAATC GACACCTCGCTCTGCTTG 120 bp 
Actin-42A CACAGGTATCGTGTTGGACTC AGGTAGTCGGTTAAATCGCG 123 bp 

 

Above shows the forward and reverse primers for both the AANATL2 target and the actin-42A 

endogenous control.  Primer sequences were generated using Integrated DNA Technologies (IDT) and 

were checked to have low spontaneity in the formation of hairpins and a less likelihood to form primer 

dimers.  All primers were designed to have an annealing temperature of approximately 60°C. Primers 

were designed to target the 5’ end of the mRNA, as it was previously found primer designations closer to 

the 3’ end had the possibility of not showing mRNA degradation. This was due to the possibility of left 

over Dicer-degraded fragments long enough to be amplified in PCR [27].  

mRNA stocks were gathered in the same manner for both the UAS parent and knockdown 

offspring: Dempsey et. al previously discovered AANATL2 transcripts to be concentrated in the thorax-

abdomen of D. melanogaster [3]. For this reason, flies were collected and then flash frozen in liquid 

nitrogen to separate the heads from the thorax-abdomen.  A sieve was used to segregate the body 
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segments of the organism and then total RNA was extracted from 200 mg of thorax-abdomen using 

TRIzol and collected via Pure Link RNA Minikit by Invitrogen.  The mRNA was isolated using the 

PolyA-Tract from Promega and concentrated using a 10kD spin filte. Genomic DNA was removed 

through the use of DNase I by Invitrogen (modifications were made to the manufacturer’s protocol: 2 µL 

of Dnase I, MgCl2 buffer, and EDTA were used per 1 µg of mRNA). All purified mRNA stocks were 

made into 10 ng/µL aliquots and then stored at -20°C. The qPCR reactions were set up on a 96-well plate 

using mRNA from either the UAS parent or AANATL2 knockdown offspring and the parameters for 

each well can be seen in Table 2.2. 

 

Table 2.2 qPCR Reactions on 96-Well Plate 

Sample mRNA SYBR  Actin-F Actin-R AANATL2-F AANATL2-R RT Water 

UAS 30 ng 10 µL 200 nM 200nM 200 nM 100 nM 40U To 20 µL 

KD 30 ng 10 µL 200 nM 200nM 200 nM 100 nM 40U To 20 µL 

Power Up SYBR Green from Fisher Scientific was used for all reactions. UAS stands for the parent strain 
of flies, while KD refers to the AANATL2 knockdown offspring.  Actin-F and Actin-R respectively refer 
to the forward and reverse primers of the endogenous control.  Likewise, AANATL2-F and AANATL2-R 
refer to the forward and reverse primers of the target gene.  RT stands for reverse transcriptase, in which 
MMLV-RT from Promega was used.  All reactions were brought to a total of 20 µL using nuclease-free 
water. 
 

All qPCR experiments were setup for ΔΔCT analysis and carried out on an Applied Biosystems 

QuantStudio 3 by Thermo Fisher Scientific.  The first step of heating was a hold at 50°C for 45 minutes 

for the creation of cDNA by reverse transcriptase (RT).  The temperature was then held at 95°C for 10 

minutes to inactivate the RT.  Subsequent PCR thermal cycles are as follows: 95°C for 15 seconds and 

then a decrease of 1.6 °C/s to hold at 60°C for 1 minute.  This method was repeated for 40 cycles. Melting 

curves were completed using the same cycling temperatures, times and rates as the PCR cycling.  

2.6.d Detection of AANATL2 protein via SDS-PAGE/ western blot 

Proteins were collected from the UAS parent and knockdown offspring, separately, in the 

following way: 5 mL of a lysis buffer was made by combining 2500 µL 2x lysis solution (40 mM Tris-
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HCl pH 7.4, 4 mM MgCl2, 2 mM EDTA, 2 mM EGTA, 300 mM NaCl, 2.0% Triton-X-100), 300 µL PIC, 

25 µL PMSF (200 mM), 50 µL Na3VO4 (100 mM) and 2125 µL of DI water.  All protease inhibitors were 

prepared fresh before lysis. Approximately 20 flash-frozen, fruit fly thorax-abdomen were collected using 

the same method as the RNA extraction.  These were placed into the 5 mL of lysis buffer in a mortar and 

pestle and the solution was ground to lyse the cells.  The homogenate was pipetted into a scintillation vial, 

sonicated for 3 minutes on ice (30 second pulses with 30 seconds of rest at 50% amplitude) and then 

centrifuged at 13,400 rpm for 5 minutes.  The resulting supernatant containing the cellular proteins was 

collected and the pellet was discarded.  The supernatant was placed into a microcentrifuge tube on ice and 

then transferred to a 10 kD spin filter and centrifuged at max speed to concentrate the proteins larger than 

10 kD.  A Bradford assay was then done to assess the concentration of proteins in the solution and the 

volume containing 22 µg of protein was collected in a 1.5 mL microcentrifuge tube.  An equal volume of 

2x Laemmli Buffer containing BME was added to the solution and then placed into a water bath at 100°C 

for 3 minutes.  The tube was then briefly centrifuged to collect all of the sample at the bottom. 7 µL of the 

Biorad color marker from NEB, 5 µL of Magic Marker from NEB, 5ng of recombinant AANATL2 with a 

6X Histidine tag and linker region, and the decided volume of denatured proteins was loaded into 

respective wells of a 15% acrylamide gel immersed in 1X TGS buffer. Electrophoresis was started at 90V 

until the protein bands in the gel reached the bottom of the stacking layer, at which time the voltage was 

increased to 120V for approximately 2 hrs. The proteins on the acrylamide gel were transferred to a 

nitrocellulose membrane using the sandwich method. The assembled sandwich was placed into the proper 

cassette and then placed into an electrophoresis transfer apparatus holding transfer buffer (25 mM Tris-

base, 192 mM glycine, 10% methanol).  Electrophoresis was completed in a cold room at 4°C while 

stirring at 100V for approximately 1 hr. The nitrocellulose membrane was removed from all apparatus, 

washed in TBST (20 mM Tris, 500 mM NaCl, 20 µL of tween), placed into a solution containing 2.0 g of 

nonfat dry milk in 40 mL TBST and was allowed to rock for 2 hrs.  The membrane was washed in TBST 

and cut horizontally at the 40 kDa molecular weight marker.  The top half of the membrane was placed 

into a solution containing 25 µg/mL rabbit anti-α-tubulin pAb (Drosophila) primary antibody (from Santa 
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Cruz Biotech) in 40 mL TBST, while the bottom half was placed into a separate solution containing 0.5 

µg/mL rabbit anti-AANATL2 (Drosophila) pAb (custom synthesized by Genscript) in 40 mL TBST.  

Both solutions were rocked overnight at 4°C. Each half of the nitrocellulose was transferred into separate 

containers with identical solutions of 0.5 µg/mL goat anti-rabbit IgG, HRP, pAb, secondary antibody in 

40 mL TBST and rocked at room temperature for 2 hrs.  Each half was placed into separate solutions 

containing 10 mL HRP substrate (1:1 stable peroxide: enhancer solution) and was allowed to sit for 5 

minutes while lightly rocking. Membrane halves were removed and allowed to completely dry before 

piecing back together, exposure and X-Ray development.  The X-Ray film was exposed to the irradiating 

membrane for 10 minutes in a dark room and immediately developed. 

2.6.e Liquid extraction and purification of lipids from Drosophila thorax-abdomen 

Frozen thorax abdomen (0.4 grams) from both the UAS parent and AANATL2 knockdown 

offspring were collected separately in triplicate samples (1.2 g total for each variety of fly and 6 samples 

total) and all replicates were treated using the same techniques following Sultana and Johnson [39]. Each 

replicate was dissolved in 14 mL of HPLC grade methanol from Fisher and transferred to mortar and 

pestle. A solvent blank containing 14 mL of methanol was also prepared and treated in the exact same 

manner as all Drosophila samples. The thorax-abdomen were ground in methanol for 5 mins and 

transferred to a 25 mL scintillation vial placed on ice. The remaining, loosely broken up, fly bodies were 

sonicated for 15 minutes on ice to further lyse the cells and expose the lipids in solution. Homogenates 

were centrifuged for 10 minutes and the supernatants were collected into a large test tube and capped. 

Cell pellets were re-suspended in 14mL chloroform: methanol: water (1:1:0.1, v/v/v) and then sonicated 

for 10 minutes. Supernatants were collected and compiled onto the methanol extracts in the same test tube 

of the appropriate sample. Cell pellets were reconstituted in 14 mL chloroform: methanol (2:1, v/v) and 

2.4 mL 0.5 M KCl/ 0.08 M phosphoric acid (aq) was added to create an emulsion. Homogenates were 

sonicated for 2 minutes, briefly vortexed and centrifuged for 10 minutes. The organic layer containing 

chloroform (bottom) was consolidated into the same test tube as before, with all three solvent types now 
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containing biomaterial from the same type of thorax-abdomen.  All extracts were dried under inert 

nitrogen overnight on a sand bath at 40°C.  

Dried extracts were constituted in 1 mL HPLC-grade n-hexane from Fisher Scientific. The sides 

of the tube were thoroughly washed in hopes of dissolving all organic material and the resulting solution 

was transferred to a new, small test tube, ensuring to leave most insoluble material behind.  This process 

was repeated for another 1 mL of hexane and placed into the same, small test tube. The n-hexane crude 

extracts were dried under inert nitrogen at 40°C. 500 mg DSC-silica from Sigma Aldrich was placed into 

a 5 mL drip column and analytical grade sand was placed atop the silica in an approximately 0.3 cm layer. 

The dried extracts were suspended in 150 µL n-hexane, while the silica was equilibrating in 5 mL n-

hexane. Once the bottom of the meniscus of the equilibrant reached the top of the sand, the entire 

dissolved extract was injected onto the silica/sand bed and allowed to fully adsorb into the adsorbent. 

Hexane (4 mL) was added and dripped into a waste container. The solvent level got very low, without 

drying the column, before adding a new solvent, while the flow continued to be directed to the waste. 

This was continued for the following solvents after n-hexane: 1 mL hexane: acetic acid (99:1, v/v), 1 mL 

hexane: ethyl acetate (90:10, v/v), 1 mL hexane: ethyl acetate (80:20, v/v). After the 80:20 solvent has 

almost finished eluting, add 1 mL hexane: ethyl acetate (70:30, v/v) and begin collecting the eluent in a 

small test tube. Continue to collect the elution fractions in the same test tube for the remaining solvents: 

1.5 mL chloroform: 2-propanol (2:1, v/v) and 1 mL HPLC-grade methanol. The collected elution was 

capped and finally dried under inert nitrogen at 40°C.  

2.6.f LC-QToF-MS/MS detection of fatty acid amides from Drosophila thorax-abdomen 

Purified extracts were dissolved in 90 µL methanol: acetonitrile (1:1, v/v), to which 50 pmoles of 

N-arachidonoyldopamine and 50 pmoles of N-arachidonoylserotonin were added to make a total volume 

of 100 µL, which was transferred to the appropriate insert of a clear 12 x 32 mm vial. These two 

compounds were chosen as internal standards because they were not detected in an initial pilot 

experiment containing 0.4 g of fruit fly thorax-abdomen. A volume of 25 µL was chosen for injection 

onto an Agilent 6540 liquid chromatography/quadrupole time-of-flight mass spectrometer (LC/QToF-
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MS) in positive ion mode and a cutoff of 3200 m/z. A Kinetix 2.6 µm C18 100 Å (50 x 2.1 mm) reverse 

phase column was used for the separation of lipid extracts from both the UAS parent and AANATL2 

knockdown offspring. Mobile phase A was 0.1% formic acid in water while mobile phase B was 0.1% 

formic acid in acetonitrile and the flow rate was set to 0.6 mL/min. The elution profile is as follows: 

Linear increase from 10% to 100% B in 5 min and a hold for 3 min at 100% B. The column was then re-

equilibrate with 10% for 8 minutes after each run. In addition, a wash step was completed after each run, 

which is identical to the method just stated, except there is a 50 µL injection and the flow rate is 1.0 

mL/min until the equilibration step is reached. The retention time and m/z of fatty acid amides (FAAs) 

were found by matching them to pure standard solutions of the compound and the intensity recorded for 

each compound found to have a match. The instrument was then instructed to collect certain FAAs by 

their corresponding m/z and retention time and fragment each compound with a collision energy of 15-20 

mV. The resulting mass spectra were then analyzed to find the precursor ion and fragments indicative of 

that particular fatty acid amide.  

 

2.7 Results and Discussion 

2.7.a AANATL2 transcripts are reduced in AANATL2 knockdown offspring 

ΔΔCT analysis was used to determine the fold change of AANATL2 transcripts in the 

AANATL2 knockdown offspring of the UAS/Gal4 cross in D. melanogaster. Show in Table 2.3 are the 

CT values recorded for the AANATL2 target and actin-42A endogenous control for both the UAS parent 

and knockdown offspring.  

 

Table 2.3 ΔCT Values calculated for ΔΔCT analysis 

 CTActin CTAANATL2 ΔCT 
UAS 17.14 ± 0.02 25.82 ± 0.09 8.676 ± 0.09 
Knockdown 18.24 ± 0.09 29.45 ± 0.19  11.21 ± 0.21 
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The average CT values of three replicates for the actin-42A and AANATL2 amplicons in both the UAS 

parent and AANATL2 knockdown offspring are shown. CTs reflect the amplification of a single product, 

as there was no amplification detected in the “no-RT” and “no-template”, negative controls. Also, all 

sequencing results from Eurofins Genomics came back positive for the appropriate amplicon. The ΔΔCT 

is used to find the change in abundance of a particular target amplicon relative to an endogenous control 

in a control and treated sample. In this experiment, the control is the UAS parent, while the treated sample 

is the AANATL2 knockdown offspring. This value is calculated by subtracting the ΔCT of the UAS from 

that of the knockdown, which provides a value of 2.537 ± 0.23. In order to find the fold change, the 

ΔΔCT is then plugged into the equation 2-ΔΔCT, which provides a fold change of 0.15 - 0.19 in the 

knockdown compared to the UAS parent. In other words, the AANATL2 transcripts are 81-85% reduced 

in the offspring when compared to the UAS parent. These data ultimately convey the effectiveness of the 

UAS/Gal4 mating cross to produce a particular kind offspring having significantly less AANATL2 

mRNA via siRNA interference. In order to further conclude the amplicons attained the proper identity, 40 

µL of each amplicon were taken from the 96-well plate and combined with 10 µL of purple loading dye 

(NEB) and injected into respective wells of a 1.8% agarose gel with 127 nM ethidium bromide. 

Electrophoresis was run for 1.5 hr at 50 V, at which time the gel was irradiated with UV light and the 

bands were lined up with the ladder for approximate size matching and then cut out of the gel. The 

resulting gel can be seen in Figure 2.2. 
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Figure 2.2 Agarose Gel with cDNA products from RT-qPCR; depicts the cDNA products run on a 1.8% 
agarose gel. Lanes 1, 6, 7 and 12 each contain 11µL of 100bp ladder (NEB). Lanes 2-3 show the actin 
amplicons of the UAS parents, while lanes 4-5 show the actin amplicons for the AANATL2 knockdowns. 
Lanes 8-9 show the AANATL2 amplicons from the UAS parent, while lanes 10-11 show the AANATL2 
amplicons from the knockdown flies. All actin and AANATL2 amplicons are seen to be approximately 
the correct product sizes (actin = 123 bp ; AANATL2 = 120 bp). All excised bands were shown to have 
the correct matching sequences via sequencing by Eurofins Genomics.   
 

DNA was extracted from the agarose gel slices using the Wizard SV Gel and PCR Clean-up System from 

Promega. Extracted DNA bands were then shown to have the correct base pair sequence via luciferase 

analysis by Eurofins Genomics. However, the level of transcripts does not always directly correlate the 

level of translated protein in the cell. Therefore, a Western blot showing a qualitative reduction of 

AANATL2 would complement the reduction of transcripts and deduce the UAS/Gal4 mating cross is 

ultimately producing an effective protein knockdown via RNA silencing.  

2.7.b Drosophila AANATL2 protein abundance is reduced in knockdown offspring  

Shown in Figure 2.3is the knockdown of AANATL2 protein expression in the non-stubble 

(Sb[1]) offspring of the UAS/Gal4 cross in the outlined bands in the figure. These bands weigh about 25 

kD each, which likely correspond to endogenous AANATL2 that has a molecular weight of 

approximately 24.3 kD. These bands are also the only bands in the blot slightly lighter than the 

recombinant protein, which has six histidine molecules and a linker region attached, adding almost 2 kD 

of weight to the recombinant protein. Therefore, the endogenous protein in an extract would be expected 
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to be slightly lighter than the recombinant, which is seen here. Furthermore, the AANATL2 band seen in 

the knockdown looks fainter than the band seen in the lane corresponding to the UAS parent. This would 

suggest the AANATL2 expression in the thorax-abdomen of the knockdown offspring is not as abundant 

as the AANATL2 expression in the thorax-abdomen of the UAS parent. Ultimately, these data, in 

conjunction with the confirmed knockdown of AANATL2 transcripts, show the UAS/Gal4 bipartite 

approach is successful in generating a mutant Drosophila melanogaster strain with reduced AANATL2. 

 

Figure 2.3 AANATL2 knockdown western blot; contains representations of the proteins extracted from 
the thorax-abdomen of the knockdowns and UAS parents. Lane 1 shows the Magic Marker protein ladder. 
Lane 2 represents a positive control of recombinant AANATL2 from E.coli containing a 6X-Histidine 
tag.  Lane 3 shows 22 µg of total protein from the thorax-abdomen of the UAS parent and lane 4 shows 
22 µg of total protein from the thorax-abdomen of the AANATL2 knockdown offspring. The bands 
outlined are proposed to be AANATL2 at around 25 kD. 
 

2.7.c Detection of PALDA reduced abundance in AANATL2 knockdown flies via subtraction  

After triplicate LC-QToF-MS injections of the six collected samples (3 UAS and 3 knockdown), 

the resulting total ion chromatograms were scanned for m/z and retention time values matching that of 

pure, commercially available, fatty acid amide standards. These standards were placed into 1.5 mL of 

methanol: acetonitrile (1:1 v/v) at a concentration of 5 µM for each compound and injected using the 

same column, injection volume and gradient elution as all purified extracts. Once the retention time and 

m/z was confirmed for each identified fatty acid amide, targeted, tandem mass spectrometry was 
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completed on each molecule using a 5 µL injection volume and a collision energy (CID) of 15-20 mV. 

The list of detected fatty acid amides in both the UAS mutant and AANATL2 knockdown mutant can be 

seen in table 4 and the resulting list of fragments can be seen in table 2.5. 

 

Table 2.4: Matching m/z and Retention Times of Fatty Acid Amides Detected in the Thorax-Abdomen 

The panel of fatty acid amides detected in the thorax-abdomen of the UAS parent and/or AANATL2 
knockdown offspring. A m/z detected in a purified extract was considered to be a match to its 
corresponding standard if it was ± 0.05 m/z and ± 0.2 min from the standard m/z and retention time 
respectively. If a found m/z did not match these parameters, “ND” was placed for “not detected”. 
 
 
Table 2.5: Tandem mass spectrometry fragmentation of detected fatty acid amides 

  

m/z 

Precursor  Amine Acyl 

FAA Std UAS KD Std UAS KD Std UAS KD 

Ole 282.2785 282.2811 282.2858 100.0752 100.0756 100.0712 135.1136 135.116 135.1175 

OleEth 326.3076 326.3060 326.3055 62.059 62.0605 62.0600 135.1167 135.1164 135.1131 

Palm 256.2665 ND 256.2624 100.0742 ND 100.0772 57.0698 ND 57.0687 

Palmle 254.2456 254.2453 254.2522 100.0772 100.0752 100.0759 135.1155 135.1172 135.1166 

PalmGly 314.2690 314.2880 314.269 76.0397 76.0398 76.0395 57.0700 57.0694 57.0708 

PalmDop 392.3160 392.3223 ND 154.0835 154.0856 ND 57.0688 57.0708 nd 

 

Fatty Acid Amide m/z Retention Time (min) 

Standard UAS KD Standard UAS KD 

N-Palmitoyldopamine 392.3164 392.3183 ND 5.998 5.933 ND 

N-Palmitoylglycine 314.2694 314.2695 314.2690 5.832 5.908 5.830 

N-Palmitamide 256.2640 ND 256.2636 6.040 ND 6.048 

N-Palmitoleamide 254.2483 254.2456 254.2478 5.683 5.667 5.680 

N-Oleoylethanolamine 326.3064 326.3057 326.3056 5.907 5.909 5.915 

N-Oleamide 282.2797 282.2783 282.2799 6.115 6.116 6.134 
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Looking at Table 2.4, no m/z value was detected in the knockdown offspring for N-

palmitoyldopamine. The blank run for each extraction was also scanned for any matching lipids as well.  

Any quantifiable m/z found in the blank were subtracted from each sample replicate to reduce the 

likelihood of false positives. Once a compound was confirmed based off its matching m/z and retention 

time to the standard and blank subtraction, it was quantified using standard curves generated from 

concentrations of the standard compound ranging from 5-500 nM. The average intensity recorded by the 

mass spectrometer was converted into pmoles for each compound detected in each replicate. N-

arachidonoylserotonin (50 pmoles) and N-arachidonoyldopamine (50 pmoles) were spiked into each 

sample before LC-QToF-MS injection, which was used as an internal standard to normalize fatty acid 

amide quantification between replicates. Both internal standards had a recovery of greater than 80%. 

Finally, all resulting values were divided by 0.4 g to give the pmoles of fatty acid amides per gram of 

Drosophila melanogaster thorax-abdomen. The list of values can be seen in Table 2.5. 

 

Table 2.6 Quantification of fatty acid amides in AANATL2 knockdown Drosophila melanogaster 

Fatty Acid Amide UAS (pmole/g) AANATL2 KD 

(pmole/g) 

N-Palmitoyldopamine 3.49 ± 1.3 ND 

N-Palmitoylglycine 13.1 ± 1.7 21.1 ± 7.5 

N-Palmitamide ND  4.94 ± 1.2 

N-Palmitoleamide 19.0 ± 7.8 37.3 ± 10 

N-Oleoylethanolamine 37.3 ± 8.6 14.1 ± 3.9 

N-Oleamide 31.7 ± 1.3 374 ± 56.9 

The pmoles/g of fatty acids detected in the thorax-abdomen of the UAS parent and AANATL2 
knockdown mutant. Each average reflects triplacte LC-QToF-MS injections from three different 
replicates of thorax-abdomenl lipid extracts from each type of fly. “ND” refers to compounds not detected 
by either being to sparse for detection using the standard curves or being too similar in magnitude to the 
blank.  
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The difference in levels of fatty acid amides in the thorax-abdomen between the UAS mutant and 

AANATL2 knockdown mutant is shown in Table 2.6. The panel seen above shows significant differences 

in certain lipids, while others remain relatively similar. This leads to the belief that the greater differences 

are more significant. For instance, there is a clear reduction in the levels of N-palmitoyldopamine 

(PALDA), as it was not detected at all in the thorax-abdomen of the AANATL2 knockdown mutant, but 

was detected in the UAS mutant. It is important to note PALDA was also previously detected in wild type 

Drosophila by Jeffries et al., suggesting its absence is not due to natural differences of expression of 

different mutant strains [7]. Furthermore, PALDA is an N-acylarylalkylamide previously shown to be 

biosynthesized by AANATL2 in D. melanogaster in vitro. This reduction is a key finding, as it concludes 

reducing the expression of AANATL2 in Drosophila melanogaster causes a loss of detection of PALDA.  

These data suggest AANATL2 is responsible for the in vivo biosynthesis of PALDA in Drosophila 

melanogaster.  It is also quite possible there are other N-acylarylalkylamides being produced by this 

enzyme in vivo, but simply were not detected in the parental strains to constraints on sample size 

collection. It remains unclear what purpose the products of AANATL2 are serving in D. melanogaster. 

We are certain the knockdown in expression is not lethal to the insects, but any other phenotypes have yet 

to be discovered. It is known the hardening of many insect cuticles occurs through the cross-linking of 

acetylated quinones of monoamines, in which longer chain acyl groups may be used directly or indirectly, 

but that fact still remains to be tested [24]. Another possibility is that PALDA and other long chain N-

acylarylalkylamides interact with different transient receptor potential (TRP) proteins, like TRPV1, due to 

its structural similarity to capsaicin. Furthermore, N-palmitoyldopamine was found to repress the sonic 

hedgehog (Shh) pathway in ShhLIGHT2 cells, which is a pathway commonly studied for growth 

regulation and cell differentiation. It is possible the long chain N-acylarylalkylamides are participating in 

some or all of these metabolic pathways occurring in D. melanogaster. Further studies on the biosynthesis 

and may eventually provide insights to cancer research efforts in mammals [25]. Therefore, a better 

understanding of PALDA biosynthesis and the other possible products of AANATL2 in fruit flies is 

significant due the importance of the N-acyldopamines in varying organisms. 
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CHAPTER THREE 

Bm-iAANAT and its potential role in fatty acid amide biosynthesis in Bombyx mori 

 

3.1 Note to reader  

 This chapter was previously published in the following article: Anderson R.L., Battistini M.R., 

Wallis D.J., Shoji C., O’Flynn B.G., Dillashaw J.E., Merkler D.J. Bm-iAANAT and its potential role in 

fatty acid amide biosynthesis in Bombyx mori. Prostaglandins Leukotrienes and Essential Fatty Acids. 

2018. 135; 10-17. Ryan Anderson designed the experiments, performed experiments, and wrote a 

majority of the manuscript for publication. Matthew R.Battistini made significant contributions involving 

enzyme kinetic data and helped write the manuscript. Dylan J. Wallis and Christopher Shoji contributed 

to the care of insects and completed certain enzyme kinetic experiments. John E. Dillashaw helped make 
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CHAPTER FOUR 

Changes in expression of three insect arylalkylamine-N-acyltransferases and fatty acid amides detected in 

the different life stages of Bombyx mori. 

 

4.1 Note to reader 

 This chapter will be submitted to FEBS Letters for peer review. The authors are Ryan L. 

Anderson, Dylan J. Wallis, Alexandria C. Musick, Sydney Innes and David J. Merkler. Ryan L. Anderson 

did a majority of the RT-qCPR and LC-QToF-MS analysis of fatty acid amides. Dylan J. Wallis helped 

rear silkworms and performed some RT-qPCR experiments. Alexandria C. Musick and Sydney Innes 

helped rear silkworms and do fatty acid amide purifications. David J. Merkler designed the research and 

is the corresponding author.  

 

4.2. Significance statement  

 Insect model systems are a pragmatic tool to utilize for finding general synthesis patterns of fatty 

acid amides.  This has the potential of providing insight into the biosynthesis of other organisms, like 

higher vertebrates. Furthermore, fatty acid amides serve unique, biological functions in insects and may 

provide information on future target proteins for novel insecticides. One set of insect proteins being 

looked into specifically for the purpose of pest control are the insect arylalkylamine N-acyltransferases 

(iAANAT). The data herein conveys the change in expression of three of these Bombyx mori iAANAT 

(Bm-iAANAT) in different life stages of the silkworm. Furthermore, novel panels of fatty acid amides 

have also been characterized and quantified for each instar of the growing insect.  It has been shown the 

AANATs are important biosynthetic enzymes for insects in general, but remains unknown about the exact 
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function of the products of the iAANATs. This work gives potential to learn more about general long 

chain fatty acid amides for developing targeted insecticides and possibly future therapeutics.  

4.3 Abstract  

 The purpose of this research is to track the change in transcripts of three insect arylalkylamine-N-

acyltransferases (iAANATs) using RT-qPCR in the domesticated silkworm (Bombyx mori) as it 

transcends into each of its different life stages. The end goal being to note key differences in their 

expression at different times of the insect’s life. Furthermore, knowing these enzymes are capable of 

biosynthesizing certain fatty acid amides in vitro, we also wanted to characterize and quantify a panel of 

such lipids via liquid chromatography time-of-flight mass spectrometry (LC-QToF-MS) from purified 

lipid extracts of each B. mori life stage. This would ultimately provide insight on how these fatty acid 

amides are being synthesized in vivo. The results show differences in expression for these separate 

iAANATs as well as a unique, novel panel of fatty acid amides at different time points in the silkworm’s 

growth. 

 

4.4 Abbreviations  

Bm-iAANAT, Bombyx mori insect arylalkylamine N-acyltransferase; Bmi1, Bombyx mori instar 1; Bmi5, 

Bombyx mori instar 5; PalmGly, N-palmitoylglycine; PalmDop, N-palmitoyldopamine; PalmSer, N-

Palmitoylserotonin; Palmle, Palmitoleamide; Palm, Palmitamide; OleGly, N-oleoylglycine; OleEth, N-

oleoylethanolamine; OleDop, N-oleoyldopamine; OleSer, N-oleoylserotonin; OleTrp, N-

oleoyltryptamine; Ole, Oleamide; AracSer, N-arachidonoylserotonin; LinGly, N-linoleoylglycine; Lino, 

Linoleamide; SteSer, N-stearoylserotonin  

 

4.5 Introduction 

 The fatty acid amides encompass a family of biologically functional lipids known to play 

different roles in metabolic pathways unique to vertebrates and invertebrates [1-2].  The general form of 

these endocannabinoid-like molecules exists as R-CO-NH-R’, where R is an alkyl chain of a certain 
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length, derived from a fatty acid, and NH-R’ is representative of a biogenic amine [3-7].  This form gives 

rise to many subclasses capable of having different alkyl chain lengths and different amine groups.  

However, this research focuses on those fatty acid amides incorporating long chain acyl groups derived 

from fatty acids having 16 to 20 carbons.  These long chain fatty acids can be conjugated with an –NH2 to 

create the primary fatty acid amides (PFAM) [8], a glycine to make the N-fatty acylglycines [9-10], an 

ethanolamine to make the N-acylethanolamines [11], or an arylalkylamide, like serotonin, to make the N-

fatty acylarylalkylamides [12-13].  Each of these classifications have been found to be related in a 

common, biosynthetic pathway and each attains its own biological function [1].  

Long chain fatty acid amide bio-production has been shown to use a general scheme of a fatty 

acid first being activated to a long chain acyl-CoA thioester [14-15], in which the CoA group can be 

substituted by a number of different biogenic amines using different N-acyltransferases [16].  These N-

acyltransferases are believed to be members of the GCN5-related superfamily of N-acyltransferases 

(GNAT), which share the feature of being able to accept acyl-CoA thioester substrates [17-19].  Examples 

of such enzymes exhibiting this chemistry include N-myristoyl transferase, glycine N-acyltrasnferases 

(GLYATs), and aryalkylamine N-acyltransferases (AANATs) [10, 20-21].  Yet despite the wealth of data 

showing the varying fatty acid amides exist with these enzymes in several different organisms, much 

work remains on bridging the gap to delineate their precise metabolic functions and chemical mechanisms 

of biosynthesis.    

Insect model systems are a pragmatic tool to utilize for finding general synthesis patterns of fatty 

acid amides.  This has the potential of providing insight into the biosynthesis of other organisms, like 

higher vertebrates.  For example, our lab previously characterized a panel of fatty acid amides in 

Drosophila melanogaster, which was ultimately used to propose a general pathway of PFAM 

biosynthesis [14].  Furthermore, fatty acid amides serve unique, biological functions in insects and may 

provide information on future target proteins for novel insecticides [22-24].  One set of insect proteins 

being looked into specifically for the purpose of pest control are the insect arylalkylamine N-

acyltransferases (iAANAT) [23].  These would provide more precise targets partly due to their low 



48 

sequence homology (20-40%) from insect to insect [24]. A phylogenetic analysis demonstrates this 

homology shared between the AANAT enzymes of different insect organisms (Figure 4.1). Unlike 

humans and most other vertebrates, which have been found to express only one AANAT, which is 

utilized in the penultimate step in melatonin biosynthesis [25-26], it is not uncommon for insects to attain 

an arsenal of these enzymes [12]. Although insects are generally accepted to also use AANAT expression 

for the regulation of circadian rhythms and photoperiodism, like vertebrates, they also serve different 

functions within the insect. This includes cuticle morphology/coloring, neurotransmitter deactivation and 

regulation of amino acid metabolism [15, 27-30].  The use of these enzymes is mainly due to a lack of 

monamine oxidases (MAO) in insects and monoamine metabolism is compensated through the use of the 

iAANAT [28]. Therefore, the enzymes seen in the neighbor joining tree in Figure 4.1 may be providing at 

least one of these functions in insect metabolism and or morphology. The fact these enzymes may be 

playing similar roles, despite low/moderate homology in primary structure due to distance in a common 

ancestor is promising to the field of targeted insecticides.   
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Figure 4.1 Neighbor-joining tree showing likelihood of common ancestry of different insect AANAT; 
The percentage of replicate trees where the associated taxa clustered in the bootstrap test (5000 replicates) 
are enumerated are shown next to the branches [31]. The tree has been constructed to scale, with lengths 
of branches being proportionate to the units of the evolutionary distances used to infer the phylogenetic 
tree. These distances were computed using the Poisson correction method and are represented as the 
number of amino acids substituted per site [32]. All analyses were carried out using MEGA7 [33].  
 

 Bombyx mori, or the domesticated silkworm, is a likely candidate for studying fatty acid amide 

metabolism and biosynthesis.  This being especially true for those lipids stemming from iAANAT 

activity, as several iAANATs, as well as a panel of fatty acid amides, have already been identified in one 

instar of B. mori [34-35].  However, the literature currently available does not address how the expression 

of these proteins changes as the silkworm transcends each larval stage into its pupae and ultimate moth 

life stages.  We have identified three different AANAT-like proteins in Bombyx mori that have sequence 

homology (25-39%) with AANATL2 in Drosophila melanogaster: an enzyme shown to catalyze the 

formation of long chain N-acylarylalkylamides in vitro [13].  It is unclear if Bombyx mori attains a set of 
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cannabinoid receptors, but receptors with sequence homology to a known cannabinoid receptor have been 

found, such as an octopamine receptor (28% identity to CB in Xenopus laevis). The exact, in vivo function 

of these enzymes and their metabolic products remain unknown.  It is possible one of these proteins holds 

a particular importance to a specific life stage.  Tracking the change in transcriptional expression of these 

B. mori insect AANAT: Bm-iAANAT, Bm-iAANAT2 and Bm-iAANAT3, has the potential to provide 

data on the temporal importance of these iAANAT’s expression. It should be noted, we have used names 

consistent with previous literature about these enzymes, which can be confusing. Detection of the fatty 

acid amides in each life stage via LC-QToF-MS has the potential of determining if a change in 

transcriptional expression may be causing a change in fatty acid amide abundance. Characterizing a panel 

of fatty acid amides could also determine which life stages would be most efficient for future, genetic 

manipulation experiments on iAANAT, like CRISPR, in the silkworm.  

 

4.6 Materials 

 Unless otherwise stated, all reagents and instruments were purchased from reputable, commercial 

sources and attained high quality for the purpose of scientific experimentation. All deuterated, internal 

standards were purchased from Cayman Chemical and have certificates of analysis indicative of high 

levels of purity.  

 

4.7 Methods  

4.7.a Silkworm rearing and sample collection 

 Bombyx mori eggs were purchased from Carolina Biological, immediately placed into a petri dish 

upon arrival and fed Silkworm Artificial Dry Diet from Carolina Biological after hatching.  The different 

instars were identified based off the number of molts, such that the first instar (Bmi1) was collected 

before the first molt and the fifth instar (Bmi5) was collected after the fourth molt.  The pupae and moth 

life stages were also collected, respectively.  After collection, each sample type was immediately flash 
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frozen in liquid nitrogen and stored at -80°C before continuing any extraction of either nucleic acids or 

fatty acid amides. 

4.7.b Extraction/ isolation of mRNA and gDNA decontamination 

 Total RNA was extracted using TRIzol® reagent and collected using the PureLink RNA Mini 

Kit® from Thermo Fisher.  The mRNA was then sequestered via PolyATtract® mRNA Isolation Systems 

III from Promega.  After the elution of mRNA in nuclease-free water, a 10 kDa centrifugal filter was used 

to concentrate the transcripts (15 min at 12,000 × g).  A Nanodrop® from Thermo Fisher was used to 

determine the final concentration of the resulting mRNA isolations. DNase I from Thermo Fisher was 

employed for the removal of genomic DNA (gDNA) and modifications made to the manufacturer’s 

protocol for full gDNA decontamination can be seen in Table 4.1. 

Table 4.1 Decontamination of gDNA from mRNA isolations 

Reagent Recommended 
Protocola 

Modified 
Protocol 

mRNA 1 µg 1 µg 

DNase I 1 µL 2 µL 

DNase I Buffer with MgCl2 1 µL 2 µL 

Nuclease-Free Water to 10 µL to 18 µL 

aAs recommended by the manufacturer. 

 

The mRNA was incubated with DNase I, MgCl2 buffer and nuclease-free water at 37° for 45 

minutes, at which time 2 µL of EDTA was added while raising the temperature to 65°C for 10 minutes to 

inactivate the DNase I.  After the completion of gDNA decontamination, the mRNA solution was diluted 

with nuclease-free water to a final concentration of 10 ng/µL.   

4.7.c One-Step RT-qPCR of Tua1, Bm-iAANAT, Bm-iAANAT2 and Bm-iAANAT3 

 Separate, triplicate wells of a 96-well plate were initially loaded with 10 µL Power Up™ SYBR® 

Green Master Mix from Thermo Fisher, 30 ng mRNA from a specific B. mori life stage and 2 µL (20 

U/µL) MMLV-RT from Promega.  Next, the different primers were added to the wells, which essentially 

delineate the amplicon being replicated.  The forward and reverse primers for each amplicon type were 
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designed to create 75-150 bp products and the primer sequences can be seen in Table 4.2. Alpha tubulin 

(Tua1) was chosen as the positive, endogenous control for all RT-qPCR experiments, as it is expressed in 

abundance throughout every post-embryonic life stage of the organism [36]. 

 

Table 4.2 RT-qPCR primers for Tua1, Bm-iAANAT, Bm-iAANAT2, and Bm-iAANAT3 

Amplicon Forward Primer Reverse Primer 

Tua1 AGATGCCCACAGACAAGACC CAAGATCGACGAAGAGAGCA 

Bm-iAANAT CAAAATGTCCGTTCCAGCTT GATTGACGGCGAGATTCATT 

Bm-iAANAT2 GAACGAGGCAGTAGGGTTATATG CCTTTCAGTAGCGAATCCCTG 

Bm-iAANAT3 CCTTAGAACGTCTTTGCCTCG TCGGTGGACTGCTTTATCTTC 

 

200 nM Bombyx mori Tua1 forward primer and 200 nM Tua1 reverse primer were added to wells 

A1-A3; 200 nM Bm-iAANAT forward primer and 200 nM Bm-iAANAT reverse primer were added to 

wells B1-B3.  200 nM Bm-iAANAT2 forward primer and 200 nM Bm-iAANAT2 reverse primer were 

added to wells C1-C3.  50 nM Bm-iAANAT forward primer and 50 nM Bm-iAANAT reverse primer 

were added to wells D1-D3. Nuclease-free water was used to make each well have a final volume of 20 

µL.  A negative control substituting MMLV-RT for nuclease-free water was used to ensure total 

decontamination of gDNA.  Another negative control substituting the mRNA template for nuclease-free 

water was run to ensure fluorescence was not being detected from primer dimer formation.  This entire 

plate-loading process was repeated separately, using mRNA from a different life stage each time. Each 

prepared plate was capped and briefly centrifuged before placing into an Applied Biosystems 

QuantStudio3 qPCR thermal cycler.  The one-step RT-qPCR conditions were as follows: The reverse 

transcriptase phase was completed by holding the temperature at 50°C for 45 minutes and then raising the 

temperature to 95°C for 10 minutes to inactivate the MMLV-RT. The PCR cycles then immediately 

began with an initial temperature hold at 95°C for 15 seconds and then lowered to 60°C for 1 minute 
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before returning to 95°C and was repeated for a total of 40 cycles.  Melt curve analysis was employed 

after the completion of thermal cycling with holds at 95°C for 15 seconds, 60°C for 1 minute, and a final 

95°C for 1 second.  The cDNA products of the same amplicon were added together to make a final 

volume of 40 µL and mixed with 10 µL purple loading dye from New England Biolabs (NEB).  This was 

done for Tua1, Bm-iAANAT, Bm-iAANAT2 and Bm-iAANAT3 amplicons separately.  A 100 bp ladder 

from NEB and the resulting 50 µL mixtures of PCR products were injected, respectively, into the lanes of 

a 1.8% agarose gel containing ethidium bromide and electrophoresis was done at 50 V for 90 minutes.  

All bands denoting significant cDNA products were extracted using the Wizard® SV Gel and PCR Clean-

Up System from Promega and sequenced commercially by Eurofins Genomics.   

4.7.d Extraction and purification of fatty acid amides from different B. mori life stages 

0.5-1.0 g (depending on the life stage) of a Bombyx mori larval instar, pupae or moth was collected in 

triplicate (1.5-3.0 g total) using the sample collection method described above.  To extract the fatty acid 

amides, the insects were first placed into a mortar and pestle with 20.8 mL of methanol per gram of solid 

tissue used.  The remaining extraction solvents and steps, as well as the silica and Zip Tip purification, 

closely follow the work done by Anderson et al [35].    Blanks using the same proportionate volumes of 

solvents, but containing no tissue, were prepared and treated in the exact same manner as each different 

extraction done.  

4.7.e Injection of Bombyx mori Purified, Fatty Acid Amide Extracts on LC-QToF-MS 

Fatty acid amide extract (90 μL) was eluted from the Zip Tip in 5:95 (water: acetonitrile) into an 

LC vial with glass insert and 10 µL of internal standard solution, containing 1 pmole/µL each of N-

arachidonoylglycine d8, N-arachidonoylethanolamine d8, N-arachidonoyldopamine d8 and N-

oleoylserotonin d17, was added.  This was repeated for the extraction blanks as well. Each internal 

standard was quantified using standard curves generated from pure material ranging from 0.1 – 10 pmoles 

and having an R2 value of at least 0.990.  All deuterated internal standards were checked for, and found to 

be free of, any unlabeled compounds. Bombyx mori lipid extracts were injected on an Agilent 6540 liquid 

chromatography/quadrupole time-of-flight mass spectrometer (LC-QTOF-MS) in positive ion mode with 
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a Kinetex 2.6 µm C18 100 Å (50 × 2.1 mm) column and the following mobile phase gradient at a flow rate 

of 0.6 mL/min: mobile phase A was 0.1% (v/v) formic acid in water, while mobile phase B was 0.1% 

(v/v) formic acid in acetonitrile.  A linear gradient of 10% mobile phase B increased to 100% B over 5 

minutes, followed by a hold of 3 minutes at 100% B for the analysis of the product.  The column was then 

equilibrated with 10% mobile phase B for 10 minutes before subsequent injections.  The column was 

thoroughly washed between injections using the same solvent gradient, but at a flow rate of 1.0 mL/min.  

A solution containing pure, targeted compounds was also injected onto the same column for retention 

time and m/z value comparison to facilitate fatty acid amide characterization in the extracts.  

 

4.8 Results and Discussion  

4.8.a Difference in expression of Bm-iAANAT, Bm-iAANAT2, Bm-iAANAT3 transcripts shown by RT-
qPCR 

 

  CT values for all amplicons were compiled into Table 4.3.  The subsequent fold changes for each 

iAANAT were calculated using the formula, 2-ΔΔCT, and recorded in Figure 4.2.  These data convey the 

change in abundance of each transcript relative to the change in abundance of the alpha tubulin as the 

silkworm grows from the first instar. 

 

Table 4.3 CT values for Tua1, Bm-iAANAT, Bm-iAANAT2 and Bm-iAANAT3 in Bombyx mori  

 Tua1 (CT) Bm-iAANAT (CT) Bm-iAANAT2 (CT) Bm-iAANAT3 (CT) 

Instar 1 16.48 ± 0.06 19.23 ± 0.06 18.85 ± 0.04 21.73 ± 0.09 

Instar 2 14.25 ± 0.32 18.80 ± 0.16 19.48 ± 0.14 26.10 ± 0.12 

Instar 3 17.56 ± 0.43 20.10 ± 0.12 22.06 ± 0.03 30.40 ± 0.42 

Instar 4 14.80 ± 0.07 18.52 ± 0.09 19.98 ± 0.18 27.79 ± 0.22 

Instar 5 17.86 ± 0.15 19.56 ± 0.08 20.66 ± 0.16 30.65 ± 0.16 
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Table 4.3 CT values for Tua1, Bm-iAANAT, Bm-iAANAT2 and Bm-iAANAT3 in Bombyx mori  

Pupae  15.28 ± 0.22 18.82 ± 0.17 20.67 ± 0.12 25.47 ± 0.06 

Moth 14.31 ± 0.10 16.36 ± 0.22 19.29 ± 0.04 27.84 ± 0.14 

 

Figure 4.2 Relative transcript abundance of three Bm-iAANATs in different silkworm life stages 

 

Looking at the bar graphs above, Bm-iAANAT has slight changes in transcript expression as the 

silkworm grows into each different instar and can be deduced to having a more general purpose to the 

organism, requiring similar amounts of expression in all life stages.  In contrast, Bm-iAANAT2 and Bm-

iAANAT3 transcripts are much more abundant in Bmi1 when compared to any other instar with this 

effect being more prominent in Bm-iAANAT3. This may denote an importance of purpose within the first 

several days of the insect’s life. The explanation for such a higher level of Bm-iAANAT3 expression in 

the first instar may lie within the color of the insects. Silkworms erupt from their eggs a very dark, almost 

black, color and for this reason are called the “ant”. No molting occurs between the ant stage and the first 
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instar, but the silkworms do seemingly develop a lighter color more rapidly during this time than any 

other life stage transition. Previous results demonstrate expression of both Bm-iAANAT and Bm-

iAANAT2 are responsible for a lighter pigmentation in the cuticle of B. mori [34, 37]. These data infer 

this also may be the case for Bm-iAANAT, especially during the more rapid color transitioning of newly 

hatched silkworms. Extensive in vitro kinetic analysis of enzyme catalysis has been done on Bm-

iAANAT and Bm-iAANAT3 and both are capable of synthesizing N-acetyldopamine (NADA). However, 

it was shown Bm-iAANAT3 exclusively accepted shorter chain acyl-CoA substrates and Bm-iAANAT 

much more promiscuous in its acceptance of longer chain CoA thioesters [35, 38]. These data would 

support a claim that Bm-iAANAT3 aids in the formation of NADA for the process of lighter 

pigmentation, especially in the first days of silkworm life.  

4.8.b Novel panel of fatty acid amides quantified for Bombyx mori life stages 

 Total ion chromatograms (TIC) from all Bombyx mori purified extracts were searched for m/z 

values and retention times corresponding to pure, fatty acid amide standards. Current literature shows an 

acceptable error range for retention times to be within ± 0.2 minutes from the standard, while all m/z 

within ± 0.05 of the standard are considered a matching metabolite. For example, the detection of N-

palmitoyldopamine in the first instar larvae can be seen in Figure 4.3. 
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Figure 4.3 Identification of N-palmitoyldopamine in Bombyx mori first instar larvae by LC-QToF-MS; 
A.) Extracted ion chromatogram for the N-palmitoyldopamine standard. B.) Mass spectra for N-
palmitoyldopamine standard. C) Extracted ion chromatogram for B. mori first instar larvae extract. D) 
Mass spectra for B. mori first instar larvae extract. The retention and m/z found in the B. mori first instar, 
purified extract closely matches that of the N-palmitoyldopamine standard.  
 

 Furthermore, all retention times and m/z of fatty acid amides detected in each instar and the pure, 

standard compounds can be seen in Tables 4.4 through 4.10. Quantification of all detected fatty acid 

amides was done by first converting integrated area intensity units from the mass spec to pmoles using 

standard curves generated from pure compounds. These values were then normalized based off the 

recovery of the internal standards spiked into each solution. 
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Table 4.4 Comparison of retention times and m/z values of Bombyx mori first instar larvae (Bmi1) and the 
pure standards used for detection. 

 

 

 
Table 4.5 Comparison of retention times and m/z values of Bombyx mori second instar larvae (Bmi2) and 

the pure standards used for detection. 
 

Fatty Acid Amide m/z Retention Time (mins) 

Standard Bmi2 Standard Bmi2 

N-palmitoylglycine 314.2701 314.2667 5.902 5.898 

N-Palmitoyldopamine 392.3177 392.3195 6.068 6.105 

N-Oleoylglycine 340.2858 340.2844 5.993 5.839 

 

 

 

 

 

 

Fatty Acid Amide m/z Retention Time (mins) 

Standard Bmi1 Standard Bmi1 

N-Palmitoylglycine 314.2709 314.2675 5.917 5.912 

N-Palmitoyldopamine  392.3181 392.3129 6.084 6.079 

Palmitamide 256.2593 256.2569 6.184 6.181 

N-Oleoylethanolamine 326.3002 326.2992 6.059 6.046 

N-Oleoyldopamine 418.3247 418.3194 6.200 6.204 

N-Oleoyltryptamine 425.3548 425.3691 6.583 6.577 
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Table 4.6 Comparison of retention times and m/z values of Bombyx mori third instar larvae (Bmi3) and 
the pure standards used for detection. 

 

Fatty Acid Amide m/z Retention Time (mins) 

Standard Bmi3 Standard Bmi3 

N-Palmitoylglycine 314.2639 314.2601 5.972 5.971 

N-Palmitoyldopamine  392.3095 392.3078 6.125 6.129 

Palmitoleamide 254.2438 254.2411 5.830 5.830 

Palmitamide 256.2593 256.2569 6.184 6.181 

N-Oleoylethanolamine 326.3002 326.2992 6.059 6.046 

N-Oleoyldopamine 418.3247 418.3194 6.200 6.204 

N-Oleoylserotonin 441.3399 441.3142 6.229 6.295 

Oleamide 282.2746 282.2715 6.254 6.254 

N-Linoleoylglycine 338.2638 338.3091 5.806 5.797 

N-Linoleamide 280.2590 280.2547 5.963 6.043 

 

Table 4.7 Comparison of retention times and m/z values of Bombyx mori fourth instar larvae (Bmi4) and 
the pure standards used for detection. 

 
Fatty Acid Amide m/z Retention Time (mins) 

Standard Bmi4 Standard Bmi4 
Palmitamide 256.2645 256.2631 6.214 6.213 

N-Palmitoylserotonin 415.3322 415.2882 6.187 6.125 

Palmitoleamide 254.2456 254.2463 5.857 5.859 

N-Stearoylserotonin 443.3638 443.3505 6.542 6.576 

Oleamide 282.2796 282.2786 6.289 6.277 

N-Oleoyldopamine 418.3315 418.3306 6.248 6.246 

N-Oleoylethanolamine 326.3057 3.26.3049 6.077 6.074 

N-Oleoylglycine 340.2846 340.2847 6.094 5.945 

N-Oleoylserotonin 441.3479 441.3483 6.262 6.322 

Linoleamide 280.2643 280.2616 5.979 6.027 

N-Arachidonoylserotonin 463.3326 463.3337 6.071 6.069 
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Table 4.8 Comparison of retention times and m/z values of Bombyx mori fifth instar larvae (Bmi5) and the 
pure standards used for detection. 

 

Fatty Acid Amide m/z Retention Time (min) 

Standard Bmi5 Standard Bmi5 

N-Palmitoylglycine 314.2689 314.2975 5.899 6.001 

N-Palmitoyldopamine 392.3163 392.3153 6.065 5.951 

Palmitoleamide 254.2482 254.2445 5.757 5.777 

N-Oleoylglycine 340.2848 340.3185 5.990 5.918 

N-Oleoylethanolamine 326.3063 326.2927 5.982 5.986 

N-Oleoyldopamine 418.3316 418.3356 6.140 6.124 

Oleamide 282.2794 282.2749 6.173 6.167 

 

Table 4.9 Comparison of retention times and m/z values of Bombyx mori pupae and the pure standards 
used for detection. 

 

Fatty Acid Amide m/z Retention Time (mins) 

Standard Bm-Pupae Standard Bm-Pupae 

N-Palmitoylglycine 314.2681 314.2670 5.926 5.9299 

N-Palmitoyldopamine 392.3157 392.3156 6.096 6.093 

N-Palmitoylserotonin 415.3318 415.3221 6.125 6.074 

N-Oleoyldopamine 418.3303 418.3292 6.167 6.161 

N-Oleoyltryptamine 425.3523 425.3339 6.587 6.617 

N-Stearoylserotonin 443.3626 443.3415 6.471 6.475 
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Table 4.10 Comparison of retention times and m/z values of Bombyx mori moth and the pure standards 
used for detection. 

 

Fatty Acid Amide m/z Retention Time (mins) 

Standard Bm-Moth Standard Bm-Moth 

N-Palmitoyldopamine  392.3168 392.3146 6.082 5.966 

N-Palmitoylserotonin 415.3333 415.3558 6.115 6.087 

N-Oleoylethanolamine 326.3071 326.3058 6.003 5.982 

N-Arachidonoylserotonin 463.3299 463.3395 6.174 6.054 

Linoleamide 280.2647 280.2633 5.908 5.896 

 

 Finally, the pmoles were divided by the mass of starting tissue to give a final unit of pmole/g. 

Any fatty acid amide characterized/quantified within each instar’s extract was placed into Table 4.11.  

 

Table 4.11 Quantification of fatty acid amides from different life stages of Bombyx mori   

  pmoles/g 

Fatty Acid 

Amide Instar 1 Instar 2 Instar 3 Instar 4 Instar 5 Pupae Moth 

PalmGly 2.88 ± 0.92 11.3 ± 2.3 15.3 ± 0.40 N.D. 5.68 ± 1.3 2.08 ± 0.12 3.69 ± 1.5 

PalmDop 5.46 ± 0.54 2.77 ± 1.1 N.D. N.D. 1.12 ± 0.13 0.606 ± 0.29  N.D. 

PalmSer N.D. N.D. N.D. 9.85 ± 0.62 N.D. 0.927 ± 0.12 6.04 ± 4.4 

Palmle N.D. N.D. 6.45 ± 1.2 21.6 ± 13 1.06 ± 0.32 N.D. N.D. 

Palm N.D. N.D. 21.8 ± 8.7 27.5 ± 19 N.D. N.D. N.D. 

OleGly N.D. 29.7 ± 11 N.D. N.D. 31.9 ± 25 N.D. N.D. 

OleEth 1.62 ± 0.45 N.D. 2.48 ± 0.68 19.9 ± 15 4.52 ± 1.3 N.D. 0.225 ± 0.13 
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Table 4.11 Quantification of fatty acid amides from different life stages of Bombyx mori   

OleDop 1.74 ± 1.0 N.D. 6.96 ± 5.5 5.96 ± 0.29 N.D. 2.97 ± 2.5 N.D. 

OleSer N.D. N.D. 3.03 ± 0.81 3.51 ± 0.61 N.D. N.D. N.D. 

OleTrp 1.90 ± 0.24 N.D. N.D. N.D. N.D. 0.431 ± 0.10 N.D. 

Ole N.D. N.D. 661 ± 135 N.D. 119 ± 93 N.D. N.D. 

AracSer N.D. N.D. N.D. 13.8 ± 2.9 N.D. N.D. 0.924 ± 0.66 

LinGly N.D. N.D. 28.2 ± 7.2 N.D. N.D. N.D. N.D. 

Lino N.D. N.D. 9.23 ± 1.6 22.1 ± 14 N.D. N.D. N.D. 

SteSer N.D. N.D. N.D. N.D. N.D. 0.503 ± 0.10 6.06 ± 2.7 

N.D. denotes the fatty acid amide not being detected in that instar using the above identification methods 

 

Due to the wide and varying spread of fatty acid amides detected in the different instars, it is 

difficult to confidently ascertain if any change in abundance of lipids corresponds to a change in iAANAT 

abundance of any three of the B.mori enzymes. There were no definitive changes of fatty acid amide 

abundance due to a lower expression of any of the iAANATs. However, this does not conclude fatty acid 

amides are not biosynthesized by any of these iAANAT’s in vivo. The concerted effort of different 

iAANAT within insects would appear to be a very complicated mechanism, which was not resolved by 

our data. Yet these fatty acid amides have only just begun to be researched in insects, and our main focus 

for these experiments was on general detection, as no fatty acid amides have yet been detected in any life 

stage of the silkworm until the emergence of this data. There has yet to be genetic manipulation 

experiments, like CRISPR, done on these iAANATs in the silkworm and seeing which instar provides the 

highest abundance of metabolites is useful knowledge for further experimentation on the catalytic 

capabilities of Bm-iAANATs. If a knockdown of a Bm-iAANAT were to be completed to check for a 

change in metabolites, it would appear knocking down iAANAT and extracting the fatty acid amides 

from the third or fourth instar would yield results with the most information on long chain fatty acid 

amide biosynthesis. This is because iAANAT has been shown to be more promiscuous in its acceptance 
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of long chain thioester substrates and the third and fourth instars seemingly have the highest abundance of 

fatty acid amides. 
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N-Fatty Acylglycines: Underappreciated endocannabinoid-like fatty acid amides? 
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Abstract 

Long-chain N-fatty acylglycines, R-CO-NH-CH2-COOH, are found in mammals and insects and are 

structurally related to the cell-signaling, lipid-like, N-fatty acylethanolamines, R-CO-NH-CH2-CH2-OH.  

Accumulating evidence demonstrates that the N-fatty acylglycines have important cellular functions, but 

much work remains in order to fully appreciate and understand these biomolecules including: (a) more 

work on their functions in vivo, (b) measuring their concentrations in the cell, (c) defining the pathways for 

the biosynthesis and degradation, and (d) understanding the metabolic interconversion(s) between the N-

fatty acylglycines and other fatty acid amides.  Our purpose in reviewing the current state-of-knowledge 

about the N-fatty acylglycines is to stimulate future research about this intriguing family of biomolecules. 

 
Keywords 

N-arachidonoylglycine, N-oleoylglycine, N-palmitoylglycine, N-linoleoylglycine,  
N-myrisotylglycine, N-fatty acylethanolamine, fatty acid amide hydrolase, oxidative metabolism, metabolic 
interconversion 
 

1. Long Chain N-Fatty Acylglycines are Endocannabinoid-Like Compounds: 

Endocannabinoids quickly became a popular focus of research after the discovery of anandamide 

(N-arachidonoylethanolamide) as the endogenous ligand for the cannabinoid receptor-1 (CB1) [1]. The N-

acylglycines  are  a subgroup  of  the family of N-acetyl- and  

N-acylamino acids exhibiting bioactivity in different cell types within a myriad of different organisms.  

Although there are a multitude of possible N-acylamino acids (copious combinations of different acyl 

chains covalently attached to the -amino group of different amino acids), this review will focus on the N-

fatty acylglycines, endocannibinoid-like fatty acid amides consisting of a glycine N-conjugated to an acyl 

chain containing at least 14 carbon atoms, R-(CH2)n-CO-NH-CH2-COOH (n ≥ 12).  The acyl group attached 

to glycine can be saturated, monounsaturated, or polyunsaturated.   We include in the commentary a 

discussion on the metabolism and function of the N-fatty acylglycines and a section on the N-myristoylation 

of proteins.   In sum, we demonstrate the N-fatty acylglycines are noteworthy, yet understudied 

endocannabinoid-like fatty acid amides.   
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2. Biosynthesis of the N-Fatty Acylglycines 

N-Fatty acylglycines have been isolated from both invertebrates and vertebrates and are, therefore, 

likely common in eukaryotes [2-6].  Examples include the identification of N-myristoylglycine and N-

palmitoylglycine in human urine [6], N-palmitoyglycine, N-oleoylglycine, N-stearoylglycine, N-

linoleoylglycine, N-arachidonoylglycine, and N-docosahexaenoylglycine from the CNS and tissues of the 

rat [3], and N-palmitoyglycine, N-oleoylglycine, N-stearoylglycine, and N-linoleoylglycine from 

Drosophila melanogaster [4, 5].   The pathways proposed for the biosynthesis of the N-fatty acylglycines 

fall broadly into two categories – the glycine-dependent pathway and the glycine-independent pathway 

(Fig. 1).  Within the glycine-dependent pathway, one route to the N-fatty acylglycines is the reaction 

between glycine and a fatty acyl-CoA, catalyzed by a glycine N-acyltransferase (GLYAT, also called acyl-

CoA:glycine N-acyltransferase or glycine-N-acylase) [7-9].  Acyl-CoA synthetases catalyze the ATP-

dependent formation of the acyl-CoAs from coenzyme A and the corresponding fatty acid.  A family of 

acyl-CoA synthetases have been described, each with a different acyl chain preference [10].   The GLYAT-

catalyzed formation of N-fatty acylglycines was, at first, controversial because the only GLYATs known at 

the time of our proposal would not accept long-chain acyl-CoAs as substrates [11,12].  More recent work 

has identified GLYATs that will accept long-chain acyl-CoAs as substrates [8,13].  In addition, we have 

shown the RNAi-mediated knockdown of GLYAT-like-3 (GLYATL3) in cultured mouse N18TG2 cells 

resulted in a reduction in the levels of N-palmitoylglycine and N-oleoylglycine produced by these cells [9]. 
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Fig. 1: N-fatty acylglycine biosynthesis. The number in the brackets refers to the appropriate references for 

the individual reactions.  

 

The GLYAT-catalyzed formation of N-fatty acylglycines is not the only chemistry proposed to 

account for N-fatty acylglycine biosynthesis in vivo.  Mueller and coworkers reported that cytochrome c 

catalyzed the H2O2-dependent formation of N-fatty acylglycines from the corresponding long-chain acyl-

CoA and glycine [14, 15] – a reaction similar to the GLYAT-catalyzed reaction.  Mueller and coworkers 

report further that the cytochrome c would accept other long-chain acyl-CoAs and amino acids to potentially 

yield a diversity of N-fatty acylamino acids [14, 16].  A different, but related, reaction to explain N-fatty 

acylglycine production is the direct conjugation of glycine to an inactivated fatty acid [17].  While 

thermodynamically unfavorable under biological conditions (pH ~ 7.0 and relatively low concentrations of 

the fatty acids and glycine), there is evidence supporting this chemistry.  In fact, there are reports that fatty 

acid amide hydrolase (FAAH) will catalyze the direct conjugation reaction [18].  Explanations to account 

for these reports include a low, steady-state level of an acyl-CoA with the fatty acid moiety being supplied 

by the FAAH (or another hydrolase) catalyzed hydrolysis of a fatty acid amide or the possibility of different 

activated fatty acid, like a fatty acyl-adenylate, serving as an intermediate in N-fatty acylglycine 

biosynthesis.   



71 

The glycine-independent reactions involve a set of oxidation reactions between the N-fatty 

acylglycines and the N-fatty acylethanolamines (Fig. 1).   In vitro studies demonstrate that alcohol 

dehydrogenase will catalyze the NAD+-dependent oxidation of the N-fatty acylethanolamines to the N-fatty 

acylglycinals [19, 20].  Subsequent conversation of the N-fatty acylglycinal to the N-fatty acylglycine could 

occur either by the NAD+-dependent oxidation as catalyzed by an aldehyde dehydrogenase or aldehyde 

dismutation as catalyzed by an alcohol dehydrogenase [21].  Studies in cultured cells demonstrate 

anandamide can serve as a precursor to N-arachidonoylglycine [22, 23], providing evidence that this 

chemistry could take place in vivo.   

The multiple proposed pathways for the biosynthesis of the N-fatty acylglycines are not mutually 

exclusive.  It is possible different organisms and/or tissues utilize different pathways to produce the N-fatty 

acylglycines or that the glycine-dependent pathway is the predominate route to one set of N-fatty 

acylglycines and the glycine-independent pathway is the predominate route to a different set of N-fatty 

acylglycines.  Furthermore, it has been shown that both the glycine-dependent and glycine-independent 

pathways exist in cultured human endometrial HEC-1B cells [24] and in cultured C6 glioma cells where 

the dual pathways function to produce a constant level of N-arachidonoylglycine [23].  Inhibition of the 

glycine-dependent pathway in the C6 glioma cells did not result in a decrease in N-arachidonoylglycine, 

hinting at an effective “shunting” of N-arachidonoylglycine production to the glycine-independent pathway.  

In contrast to the C6 glioma cells, the glycine-dependent pathway is predominant, and potentially the sole 

pathway, for the production of the N-fatty acylglycines in cultured mouse macrophage RAW 267.4 cells 

[23] and mouse neuroblastoma N18TG2 cells [9].  Clearly more research is needed to fully understand the 

biosynthesis of the N-fatty acylglycines.  The existence of multiple pathways for their biosynthesis and the 

results from the C6 glioma cells demonstrating a link between the different pathways to maintain cellular 

levels of N-arachidonoylglycine all point towards important function(s) for the N-fatty acylglycines in vivo.   

 

3. Degradation and Metabolism of the N-Fatty Acylglycines  
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One key reaction in N-fatty acylglycine degradation is hydrolysis to the glycine and the fatty acid 

in a reaction catalyzed by FAAH:  R-(CH2)n-CO-NH-CH2-COOH + H2O → R-(CH2)n-COOH + H2N-CH2-

COOH [23].    To the best of our knowledge, N-fatty acylglycines have not been evaluated as potential 

substrates for other hydrolases that might function in N-fatty acylglycine degradation, including N-

acylethanolamine-hydrolyzing acid amidase (NAAA) and ceramidase.   

Reactions detailing the metabolic conversion of the N-fatty acylglycines to other fatty acid amides 

have been reported.  Oxidative cleavage of the N-fatty acylglycines to the primary fatty acid amides in a 

reaction catalyzed by peptidylglycine -amidating monooxygenase (PAM) in vitro was first described by 

Merkler et al. [7] (Fig. 2).  Subsequent work in cultured N18TG2 cells found the inhibition of PAM led to 

an accumulation of the N-fatty acylglycines and a decrease in the primary fatty acid amides, strong support 

that PAM does have a cellular role in the conversion of the N-fatty acylglycines to the primary fatty acid 

amides [25].  Reduction of expression of GLYATL3 in the N18TG2 cells resulted in a decrease in the cellular 

levels of the both the N-fatty acylglycines and the primary fatty acid amides [9], further evidence that the 

N-fatty acylglycines are metabolic precursors for the primary fatty acid amides.  In addition, Farrell et al. 

[26] demonstrated the metabolic flux of N-tridecanoylethanolamine, CH3-(CH2)10-CO-CH2-CH2-OH, to 

tridecanamide, CH3-(CH2)10-CO-NH2, in N18TG2 and sheep choroid plexus (SCP) cells, data consistent with 

N-tridecanoylglycine serving as an intermediate between the  

N-acylethanolamine and the primary fatty acid amide. 

 

Fig 2: The PAM-mediated Oxidation of N-Fatty Acylglycines to the Primary Fatty Acid Amides. 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=5878051_nihms953130f2.jpg
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The fatty acid moiety of N-palmitoylglycine and N-arachidonoylglycine are enzymatically 

oxidized, similar to the oxidative modifications of palmitate and arachidonate.  N-Palmitoylglycine is an 

excellent substrate for cytochrome P450 BM-3 from Bacillus megaterium [27], yielding the -1, -2, and 

-3 monohydroxylated palmitoyl-derivatives in a reaction that requires NADPH (Fig. 3).  There are no 

other reports of N-palmitoylglycine serving as a substrate for a cytochrome P450 from other organisms and 

no data regarding the biological importance of this chemistry. 

 

Fig. 3: The Cytochrome P450 BM-3 PAM-mediated Oxidation of N-Palmitoylglycine. 

 

N-Arachidonoylglycine is oxidized by cytochrome P450, lipoxygenase, and cyclooxygenase to 

yield a number of different hydroxylated and epoxylated products, nicely summarized in a review by 

Rouzer and Marnet [28] (Fig. 4).  With regard to the specific oxygenation of N-arachidonoylglycine, little 

is known about the in vivo significance of this chemistry.  There is no evidence this chemistry occurs in 

vivo and the biological activity of the products of N-arachidonoylglycine oxidation are unknown.  As 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=5878051_nihms953130f3.jpg
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discussed in reviews by Rouzer and Marnet [28] and Maccarone [29], accumulating evidence shows 

anandamide and 2-arachidonoylglycerol oxidation does occur in vivo and that the oxidation products have 

biological activities distinct from anandamide and 2-arachidonoylglycerol [30, 31].  Future work on the 

oxidation of N-arachidonoylglycine and N-palmitoylglycine and their respective oxidation products are 

likely to demonstrate the in vivo significance of this chemistry. 

 

Fig 4: The Oxidative Metabolism of N-Arachidonoylglycine. COX-2 is cyclooxygenase-2, 12-LOX is 12-

lipoxygenase, and 15-LOX is 15-lipoxygenase 

 

The cellular concentrations for the N-fatty acylglycines is difficult to estimate from available data. 

Data from the N18TG2 cells is reported as pmoles N-fatty acylglycine per 107 cells. Assuming a 

mammalian cell volume of 2 pL [32], the concentration of N-oleoylglycine in the N18TG2 cells is 60 ± 40 

μM and that for N-palmitoylglycine is 12 ± 2 μM [9]. Other data on the cellular abundance of the N-fatty 

acylglycines are reported as pmoles/gram of tissue (or gram of dry weight of tissue) – measurements that 

are challenging to convert to a cellular concentration in molarity. Assuming the dry weight of a mammalian 

cell is ~50% of the wet weight and the weight of a mammalian cell is ~3.5 ng [32], the cellular concentration 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=5878051_nihms953130f4.jpg
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of N-arachidonoylglycine in the rat spinal cord cells is ~100 nM [2]. The cellular concentrations of the N-

fatty acylglycines listed here are estimates, due to the experimental uncertainties in each of the 

measurements. Most likely, the cellular concentrations of the N-fatty acylglycines are in the high nM to 

low μM range. 

 

4. Physiological Functions of N-Fatty Acylglycines 

N-Arachidonoylglycine is the best studied of the N-fatty acylglycines due to its structural similarity 

to anandamide.  Cellular functions attributed to N-arachidonoylglycine include anti-inflammatory activity 

[32], analgesia [33], vasorelaxation [34], modulation of electrical signaling [35], and inhibition of T-

channel currents (glycine and calcium) [36, 37]. The activities described for N-arachidonoylglycine must 

result from its binding to a receptor and/or another non-receptor protein.   

N-Arachidonoylglycine binds to FAAH [38], the glycine T2 transporter [39, 40], GPR55 [41], 

GPR92 [42], and the GABAA [43] receptor with relatively low affinity, Kd values = 1-10 μM.  N-

Arachidonoylglycine is either an inhibitor [2, 38, 44] or a poor substrate [23] for FAAH; its binding to 

FAAH results in an increase in the cellular concentration of anandamide [45] – the “entourage effect”.  

Some of the activities ascribed to N-arachidonoylglycine may result from the increase in the cellular 

concentration of anandamide.  It is difficult to assess the biological significance of the low affinity 

interactions of N-arachidonoylglycine with these proteins since the in vivo concentration of N-

arachidonoylglycine in the CNS is ≤50 nM [2].  N-Arachidonoylglycine does not bind to either CB1 [46] or 

CB2 [38], but does bind with relatively high affinity, Kd ≤ 100 nM, to GPR18 [24, 41], an orphan G-protein 

coupled receptor.  The binding of N-arachidonoylglycine to GPR18 is saturable and may be responsible for 

much of the bioactivity of N-arachidonoylglycine [24, 47, 48].  However, the binding of N-

arachidonoylglycine to GPR18 is controversial because there are reports that N-arachidonoylglycine is not 

a ligand for GPR18 [49].   Less has been reported about potential biological functions of the other known 

N-fatty acylglycines relative to N-arachidonoylglycine.  N-Oleoylglycine is an inhibitor of the glycine T2 

transporter (Kd = 0.5-1.0 μM) [40] and paraoxonase (Kd ≈ 1.0 μM) [50], is a weak agonist for the PPAR-α 
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receptor [51], and has activities that overlap with oleamide: regulating body temperature and locomotion 

[52].  In fact, Chaturvedi et al. [52] report  N-oleoylglycine and oleamide are equipotent in decreasing body 

temperature and locomotion in rats.   N-Oleoylglycine is more potent than N-arachidonoylglycine as an 

inhibitor of the glycine T2 transporter by a factor of 5-10, based on the ratio of their estimated Kd values.   

The activities of N-oleoylglycine may result from its binding to the CB1 receptor [53, 54]; however, there 

are no reports for the Kd value for the binding of N-oleoylglycine to CB1.  As detailed by Bradshaw et al. 

[3], N-palmitoylglycine may have a role in sensory neuronal signaling, resulting, perhaps, from its binding 

to the TRPC5 receptor [55].  N-Linoleoylglycine is reported to exhibit anti-inflammatory activity using the 

mouse peritonitis assay [56].   

Also, the N-fatty acylglycines may prove useful as health-related biomarkers.  Elevated biofluid 

levels of short chain N-acylglycines are indicators of inborn errors of metabolism [57, 58].   Examples 

include elevated levels of N-palmitoylglycine and N-myristoylglycine identified in the urine of women 

suffering from primary dysmenorrhea [6]. 

 

Protein Myristoylation 

Our discussion has focused on the N-fatty acylglycines as individual molecules, rather than as a 

component of a larger biomolecule like an acylated protein. N-Myristoyltransferase (NMT) catalyzes the 

myristoyl-CoA-dependent myristoylation of an N-terminal glycine, an important co- or post-translational 

modification found in a number of proteins [59].  Glycine is not a substrate for NMT; thus, NMT cannot 

catalyze the production of N-myristoylglycine [60].  However, an enzyme, IpaJ from Shigella flexneri [61], 

has been identified that will release N-myristoylglycine from a myristoylated protein. Because of the 

potential to generate N-myristoylglycine from proteins myristoylated at the N-terminus, we have included 

a brief section on protein myristoylation.  Myristoylation at the N-terminus serves to anchor the protein to 

the cell membrane and, also, regulates protein function, protein-protein interactions, protein stability, and 

cell metabolism [59].  Palmitoylation of an N-terminal glycine has been reported [62] and such 

palmitoylated proteins might provide a source for N-palmitoylglycine.  The significance of N-terminal 
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palmitoylation is unclear because this modification may be an artifact resulting from intramolecular  

S- to N-transfer during sample preparation [63].  S-Palmitoylation at a Cys residue is a well characterized 

post-translation modifcation [59,64].   

 

5. Conclusions 

Much work remains to fully appreciate the biological significance of the N-fatty acylglycines; the 

work certainly suggests these are an important family of molecules.  In moving forward, it is crucial to 

define the cellular concentrations of the N-fatty acylglycines to provide context for their reported activities.  

The design, synthesis, and implementation of reactive analogs of the N-fatty acylglycines as activity-based 

profiling probes, similar to the approach of Niphakis et al. [65] using analogs of the N-acylethanolamines, 

could prove especially useful in future studies to define receptors and other proteins that bind individual N-

fatty acylglycines.  

One final comment that relates to the metabolic conversions discussed herein.  The conversion of 

the N-fatty acylethanolamines to the N-fatty acylglycines and then the N-fatty acylglycines to the primary 

fatty acid amides points towards a potential regulatory mechanism.  If each of the metabolically linked fatty 

acid amides has a different function, then the reactions shown in Figs. 2, 3, and 4 are not just reactions in a 

biosynthetic pathway, but also serve to alter the function of a specific N-fatty acylated amine.    
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Summary 

Herein, we detail the successful expression, purification, and characterization of an arylalkylamine N-

acyltransferase from Bombyx mori (Bm-iAANAT) in E. coli.  Our in vitro determination of substrate 

specificity for Bm-iAANAT demonstrates that this enzyme will accept long-chain fatty acyl-CoA thioesters 

as substrates leading to the formation of long chain N-acylarylalkylamides.  In addition, we show that Bm-

iAANAT is, most likely, responsible for the in vivo biosynthesis of such metabolites in B. mori due to the 

detection of the Bm-iAANAT transcripts along with the identification and quantification of several long 

chain N-acylarylalkylamides and other long chain fatty acid amides in B. mori.  

 

Abstract 

The purpose of this research is to unravel the substrate specificity and kinetic properties of an insect 

arylalkylamine N-acyltransferase from Bombyx mori (Bm-iAANAT) and to determine if this enzyme will 

catalyze the formation of long chain N-acylarylalkylamides in vitro. However, the determination of 

substrates and products for Bm-iAANAT in vitro is no guarantee that these same molecules are substrates 

and products for the enzyme in the organism. Therefore, RT-PCR was performed to detect the Bm-iAANAT 

transcripts and liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS) 

analysis was performed on purified lipid extracts from B. mori larvae (fourth instar, Bmi4) to determine if 

long chain fatty acid amides are produced in B. mori.  Ultimately, we found that recombinant Bm-iAANAT 

will utilize long-chain acyl-CoA thioesters as substrates and identified Bm-iAANAT transcripts and long-

chain fatty acid amides in Bmi4.  Together, these data show Bm-iAANAT will catalyze the formation of 

long-chain N-acylarylalkylamides in vitro and provide evidence Bm-iAANAT has a role in fatty acid amide 

biosynthesis in B. mori, as well. 

 

Keywords 

Arylalkylamine N-acyltransferase  
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1. Introduction 

Fatty acid amides are a family of structurally related lipids, R-CO-NH-R’ (the acyl moiety, R-

CO-, is derived from a fatty acid and the R’-NH- moiety is derived from an amine), found in both 

vertebrates and invertebrates [1], [2], [3]. The existence of the N-acylamide bond in biology traces back to 

the identification of hippurate (N-benzoylglycine) as a metabolite derived from benzoate in the early 

1840s [4], [5] and the fatty acid amide bond traces back to the 1870s to the work of Thudicum 

on sphingomyelin and other brain ceramides [6]. The best understood member of the fatty acid amide 

family is N-arachidonoylethanolamine (anandamide), the endogenous ligand to the 

mammalian cannabinoid receptor, CB1[7], [8]. Based on our knowledge about anandamide [9], [10], it is 

generally thought the fatty acid amides are neuroactive [2], [11]. This is consistent with the discovery 

of oleamide, a sleep-inducing lipid amide, and the existence of a family of long-chain N-

acylethanolamines in the mammalian brain [12], [13], [14]. Fatty acid amides are found in invertebrates, 

as well [15], [16], [17], [18], [19], [20], but likely serve different functions in these organisms relative to 

mammals. For example, Drosophila melanogaster do produce fatty acid amides [17], [18], [19], but do 

not express the cannabinoid receptors [21]. 

Much remains unknown about the fatty acid amides: many have no clearly defined physiological 

function, details regarding their metabolism remain elusive (biosynthesis, degradation, and cellular 

transport), and the receptor(s) targeted by most are unidentified [1], [2], [3], [22]. One focus of our 

research has been on the identification and characterization of enzymes involved in fatty acid amide 

biosynthesis and melding in vitro substrate specificity data with metabolomicdata [23], [24]. We have 

proposed N-acyltransferases operate in fatty acid amide biosynthesis: acyl-CoA + amine → N-

acylamide + CoA-SH (Fig. 1) [25]. Such N-acyltransferases are likely members of the GCN5-related 

superfamily of N-acetyltransferases (GNATs) [26], [27], which would accept long-chain acyl-
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CoA thioesters as substrates. Examples of GNAT enzymes utilizing long-chain acyl-CoA thioesters as 

substrates include N-myristoyl transferase [28], glycineN-acyltransferase-like 2 [29], 

and arylalkylamine N-acyltransferase-like 2 (AANATL2) [23]. 

 

 

Fig. 1. Proposed Role of N-Acyltransferases in Fatty Acid Amide Biosynthesis. 

 

We have employed Drosophila melanogaster and mouse neuroblastomaN18TG2 cells in our 

previous work on the fatty acid amides. Each of these produce fatty acid 

amides [1], [16], [17], [18], [24], [30], [31] and both express an N-acyltransferase that could have a role in 

fatty acid amide biosynthesis [23], [24]. In D. melanogaster, we found the expression profiles of 

AANATL2 matched well with the metabolomic data showing the presence of the long-chain N-

acyldopamines and N-acylserotonins. Work carried out in vitro demonstrated D. 

melanogaster AANATL2 would catalyze the production of long-chain N-acyldopamines and N-

acylserotonins [23]. In the N18TG2 cells, we demonstrated that siRNA-mediated knock-down of 

glycine N-acyltransferase like 3 (GLYATL3) results in the accumulation of long-chain N-acylglycines in 

these cells. These results are consistent with limited in vitro substrate specificity data available for 

GLYATL3 [24]. In sum, our work and that of Waluk et al. [29]strongly suggest N-acyltransferases do 

catalyze key reactions in the fatty acid amide biosynthetic pathway. 

We decided to add Bombyx mori, the domesticated silkworm, as a model organism for our fatty 

acid amide studies. B. mori is known to express Bm-iAANAT, an enzyme catalyzing the acetyl-CoA-

dependent N-acetylation of amines and exhibiting a wide tissue distribution [32]. Mutation of Bm-

iAANAT led to melanism and to the accumulation of dopamine in the silkworm [33], [34]. A more 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/long-chain-3-hydroxyacyl-coenzyme-a-dehydrogenase-deficiency
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/thioesters
https://www.sciencedirect.com/topics/medicine-and-dentistry/transferase
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0028
https://www.sciencedirect.com/topics/medicine-and-dentistry/glycine
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0029
https://www.sciencedirect.com/topics/medicine-and-dentistry/arylalkylamine
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0023
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fatty-acid-amide
https://www.sciencedirect.com/topics/medicine-and-dentistry/neuroblastoma
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0001
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0016
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0017
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0018
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0024
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0030
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0031
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0023
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0024
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/gene-expression-profiling
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0023
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0024
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0029
https://www.sciencedirect.com/topics/medicine-and-dentistry/morus-plant
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0032
https://www.sciencedirect.com/topics/medicine-and-dentistry/melanism
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dopamine
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0033
https://www.sciencedirect.com/science/article/pii/S0952327818300383?via%3Dihub#bib0034


88 

complete analysis of the substrate specificities of Bm-iAANAT seemed warranted to determine if long-

chain acyl-CoA thioesters were substrates for this enzyme. If so, the availability of mutants and its broad 

tissue distribution data point to straightforward metabolomic experiments to evaluate the in vivorole 

of Bm-iAANAT in fatty acid amide biosynthesis. 

We report, herein, long-chain acyl-CoA thioesters like palmitoyl- and oleoyl-CoA are substrates 

for Bm-iAANAT leading to the formation of fatty acid amides in vitro. Also, we find Bm-iAANAT 

accepts many amines as substrates, significantly expanding the list of amine substrates reported for this 

enzyme [32]. Bm-iAANAT is, thus, a “promiscuous generalist” with regards to the acyl-CoA and amine 

substrates. We identified a set of fatty acid amides in 4th instar larvae of B. mori, the first report of these 

lipid amides in these insects and found Bm-iAANAT is expressed in 4th instar larvae. The combination of 

all our data are consistent with Bm-iAANAT functioning in the biosynthesis of fatty acid amides, at least 

in 4th instar larvae of B. mori. 

 

2. Materials and methods 

2.1. Materials 

Unless otherwise noted, all reagents were obtained from commercial sources. Codon-

optimized Bm-iAANAT was purchased from Genscript. Oligonucleotideswere purchased from Eurofins 

MWG Operon BL21 (DE3) E. coli cells, XL-10 competent cells, and the pET28a(+) vector were 

purchased from Novagen. PfuUltra High-Fidelity DNA polymerase was purchased from 

Agilent. XhoI, NdeI, Antarctic phosphatase, and T4 DNA ligase were purchased from New England 

Biolabs. Kanamycin monosulfate and IPTG were purchased from Gold Biotechnology. ProBond nickel-

chelating resin was purchased from Invitrogen. Long and short-chain acyl-CoA thioesters and amine 

substrates were purchased from Sigma-Aldrich. N-Oleoyltryptamine was synthesized 

from oleoylchloride and tryptamine essentially as described for the synthesis of N-

heptanoyltryptamine [35]. All other supplies and materials were of the highest quality available from 
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either Sigma or Fisher Scientific. Spectrophotometric analyses were performed on a Cary 300 Bio UV–

Visible spectrophotometer. 

 

2.1. Cloning of Bm-iAANAT 

Bm-iAANAT (Accession No. NM_001079654.2) was codon optimized for expression in E. coli, 

with 5′-NdeI and 3′-XhoI restriction sites, included an N-terminal His6-tag separated from the N-

terminal methionine of wildtype enzyme with a 10-amino acid linker (SSGLVPRGSH), and synthesized 

into a pUC57vector. The full-length gene was excised from the pUC57 vector and ligated into the NdeI 

and XhoI restriction sites of the pET-28a vector. The Bm-iAANAT- pET28a vector was then transformed 

into E. coli XL-10 competent cells, plated on a Luria Broth (LB) agar plate supplemented with 50 µg/mL 

kanamycin and grown overnight at 37°C. A single colony from each vector transformation was cultured 

overnight in LB media supplemented with 50 µg/mL kanamycin overnight at 37 °C. The Bm-iAANAT-

pET28a plasmid was purified from the overnight cultures using the Promega Wizard Plus 

SV Minipreps DNA purification kit, sequenced by Eurofins MWG Operon to confirm correct gene 

insertion, and finally transformed into E. coli BL-21 (DE3) cells for the expression of Bm-iAANAT. 

 

2.2. Expression and purification of Bm-iAANAT 

The E. coli BL-21 (DE3) competent cells containing the Bm-iAANAT-pET28avector were 

cultured in LB media supplemented with 50 µg/mL kanamycin at 37 °C. Once the cultures reached an 

absorbance of 0.6 at 600 nm, cells were induced with the addition of 1.0 mM isopropyl β-D-

thiogalactopyranoside (IPTG) for 4 hours at 37°C. The final cultures were harvested by centrifugation at 

6,000 × g for 10 min at 4°C, and pellets were frozen at −80°C for later analysis. Cell pellets were thawed 

and suspended in Binding buffer: 20 mM Tris pH 7.9, 500 mM NaCl, and 5 mM imidazole. Cells were 

lysed by sonication and the cellular debris was pelleted by centrifugation at 16,000 × g for 20 min at 4°C. 

The supernatant was retained and loaded onto a 5 mL column of ProBond nickel-chelating resin. The 

column was washed with 5 column volumes (CVs) of Binding buffer, followed by 10 CVs of Wash 
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buffer: 20 mM Tris pH 7.9, 500 mM NaCl, and 60 mM imidazole. Finally, purified enzyme 

was eluted from the column in 1 mL fractions with 2–3 CVs of Elution buffer: 20 mM Tris pH 7.9, 

500 mM NaCl, and 500 mM imidazole. Fractions were evaluated for purity and protein concentration 

using 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels and Bradford 

binding assay, respectively. Fractions containing the purified Bm-iAANAT were pooled, dialyzed 

overnight in 20 mM Tris pH 7.4, 200 mM NaCl, and stored at −80 °C. 

 

2.3. Identification of the amine substrates for Bm-iAANAT 

To identify amine substrates, Bm-iAANAT activity was measured using either acetyl-

CoA (representative of a short-chain acyl-CoA) or oleoyl-CoA (representative of a long-chain acyl-CoA) 

separately along with sets of different amines grouped together. The amines included in each group are 

listed in Table S1 (Supplementary Material). The assay solutions used to measure Bm-iAANAT activity 

from the groups of amines consisted of 300 mM Tris pH 8.0, 150 µM DTNB (5,5′-dithiobis (2-nitro-

benzoic acid), Ellman's reagent), 500 µM of either acetyl- or oleoyl-CoA and the all the amines grouped 

together as shown in Table S1 (Supplementary Material, each amine at 60 mM) at 22 °C. Initial velocities 

were determined by measuring the release of CoA-SH at 412 nm (Ɛ412 = 13,600 M−1 cm−1) [36], with the 

reported velocities calculated as the background acyl-CoA thioester hydrolysis rate subtracted from the 

observed velocity. The rates of background acyl-CoA hydrolysis were determined in absence of Bm-

iAANAT or after adding heat-denatured (boiled) Bm-iAANAT. The background rates of acyl-CoA 

hydrolysis were the same, within experimental error, for the two control experiments. Any combination of 

amine group and acyl-CoA displaying a background-corrected rate ≥0.1 µmoles/min/mg was considered a 

“hit”, exhibiting a rate of CoA-SH release ≥3-fold the above background rate. The individual amines 

within an amine group showing a “hit” were then individually interrogated further at 60 mM in solution 

with 300 mM Tris pH 8.0, 150 µM DTNB, and 500 µM acetyl-CoA or 500 µM oleoyl-CoA to determine 

which amines with the group were substrates for Bm-iAANAT. Individual amines were considered Bm-
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iAANAT substrates if the rate of CoA-SH release was ≥0.1 µmoles/min/mg above background acyl-CoA 

hydrolysis rate. 

 

2.4. Determination of steady-state kinetic constants 

Steady-state kinetic characterization of Bm-iAANAT was assayed by measuring the release of 

CoA-SH at 412 nm at 22 °C under the following conditions: 300 mM Tris pH 8.0, 150 µM DTNB, and 

different initial concentrations of the substrates: an amine and an acyl-CoA. To determine the apparent 

kinetic constants for the acyl-CoA thioester substrates, the initial tryptamine concentration was 60 mM 

while the initial concentration of the desired acyl-CoA was varied. To determine the apparent kinetic 

constants for an amine substrate, the initial acyl-CoA concentration was 100 µM while the initial 

concentration of the amine was varied. The apparent kinetic constants were determined by fitting the 

resulting initial rate vs. [substrate] data to Eq. (1) using SigmaPlot 12.0: vorepresents initial velocity, 

Vmax,app is the apparent maximal velocity, Km,app is the apparent Michaelis constant, and [S] is the substrate 

concentration. Assays were performed in triplicate. The uncertainty for the (kcat/Km)app values were 

calculated using Eq. (2), where σ is the standard error of the kcat,app and Km,app values [37]. 

 

Equation 1 

𝜈𝑜 =  𝑉𝑚𝑎𝑥,𝑎𝑝𝑝[𝑆]𝐾𝑚,𝑎𝑝𝑝 + [𝑆] 
 

Equation 2 

𝜎(𝑦𝑥) =   √(𝜎𝑥𝑥 )2 + (𝜎𝑦𝑦 )2𝑦𝑥  
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2.5 Characterization of the product generated by Bm-iAANAT by LC-QToF-MS 

The use of Ellman's reagent to measure CoA-SH release from acetyl-CoA or oleoyl-CoA is no 

guarantee of N-acylamide formation. To confirm N-acylamide product formation in a reaction catalyzed 

by Bm-iAANAT, 1 mM tryptamine and 500 µM oleoyl-CoA were incubated with 100 µg of purified 

enzyme for 1 h in 300 mM Tris pH 8.0. A control lacking enzyme was run in parallel. We determined this 

ratio of [oleoyl-CoA]/[tryptamine] was ideal for N-acylamide production after several optimization 

experiments because Bm-iAANAT can be inhibited by a high concentration of the amine substrate [32]. 

Following the 1 hr. incubation, the reaction mixture was then passed through a 10 kDa ultrafilter 

(Millipore) to remove Bm-iAANAT. Aliquots (20 µL) of the resulting flow-through solution containing 

the putative N-oleoyltryptamine product from the experiment with enzyme and the control lacking 

enzyme were injected separately on an Agilent 6540 liquid chromatography/quadrupole time-of-flight 

mass spectrometer (LC-QTOF-MS) in positive ion mode. The N-oleoyltryptamine standard and 

the enzymatic reaction product characterizations were completed on a Kinetex 2.6 µm C18 100 Å 

(50 × 2.1 mm) reverse phase column with the following mobile phase gradient with a flow rate of 

0.6 mL/min: mobile phase A was 0.1% (v/v) formic acid in water, while mobile phase B was 0.1% (v/v) 

formic acid in acetonitrile. A linear gradient of 10% mobile phase B increased to 100% B over 5 min, 

followed by a hold of 3 min at 100% B for the analysis of the product. The column was then equilibrated 

with 10% mobile phase B for 10 min before subsequent injections. The column was thoroughly washed 

between injections using the same solvent gradient, but at a flow rate of 1.0 mL/min. 

 

2.6. Detection of Bm-iAANAT transcripts in 4th instar larvae of B. mori via RT-PCR 

2.6.1. Silkworm culture and isolation of mRNA 

B. mori eggs were purchased from Carolina Biological and immediately placed into a petri dish 

upon arrival. Silkworms were cultured with Silkworm Artificial Dry Diet from Carolina Biological and 

allowed to grow until the fourth instar: after the larvae had molted three times from their original hatch. 

Total RNA was extracted using the PureLink® RNA Mini Kit from Invitrogen and the mRNA was then 
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isolated via PolyATtract® mRNA Isolation Systems III from Promega. After the elution of mRNA in 

nuclease-free water, a 10 kDa centrifugal filter was used to concentrate the heavier nucleic acids (15 min 

at 12,000 × g). Any traces of remaining genomic DNA were removed using DNase I from Thermo Fisher 

with the modifications to the recommended protocol, as outlined in Table 1. The reaction mixture was 

briefly centrifuged, heated at 37°C for 30 min, followed by the addition of 2 µL of 50 mM EDTA, and, 

lastly, heating for another 10 min at 65°C to inactivate the DNase I. 

 

Table 1. Method for the DNase I-mediated degradation of genomic DNA. 

Reagent Recommended protocola Modified protocol 

mRNA 1 µg 1 µg 

DNase I 1 µL 2 µL 

DNase I Buffer with MgCl2 1 µL 2 µL 

Nuclease-Free Water to 10 µL to 18 µL 

aAs recommended by the manufacturer. 

 

2.6.2. Generation of cDNA library and transcripts for Bm-iAANAT and Bm-Alpha Tubulin (TUA1) 

A cDNA library from Bmi4 larvae was generated via incubation of isolated mRNA at 45°C for 

45 min with reverse transcriptase (MMLV-RT from Promega). PCR was carried out using the thermal 

cycling conditions noted in Jeffries et al. [19] at an annealing temperature of 60 °C for all amplicons. 

TUA1 (NM_001043419) was chosen as an endogenous control for the RT-PCRexperiments because this 

protein is ubiquitously expressed throughout the life of B. mori[38]. Forward and reverse primers for 

TUA1 and Bm-iAANAT were designed and ordered from Eurofins Genomics and amplify 99 and 119 bp 

regions respectively, within the open reading frame of the appropriate gene (Table 2). Separate, one-step 

RT-PCR reactions for TUA1 and Bm-iAANAT were prepared. Each RT-PCR reaction solution contained 
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25 µL of Access Quick Master Mix from Promega, 320 nM forward primer, 320 nM reverse primer, 

250 ng fourth instar larval mRNA, 200 units MMLV reverse transcriptase from Promega, and sufficient 

nuclease-free water to bring the reaction volume to 50 µL. A no reverse transcriptase control was 

included to confirm the removal of genomic DNA. 

 

Table 2. Primers used to amplify TUA1 and Bm-iAANAT. 

Primer Primer sequence 

TUA 1 Forward Primer AGATGCCCACAGACAAGACC 

TUA 1 Reverse Primer CAAGATCGACGAAGAGAGCA 

Bm-iAANAT Forward Primer CAAAATGTCCGTTCCAGCTT 

Bm-iAANAT Forward Primer GATTGACGGCGAGATTCATT 

 

2.6.3. Analysis of the cDNA products 

An aliquot (10 µL) of Blue DNA Loading Dye from New England Biolabs (NEB) was added to 

each cDNA reaction and the resulting 60 µL RT-PCR reaction solutions were loaded into separate lanes 

of a 1.8% agarose gel containing ethidium bromide. One lane of the gel was loaded with the 100 bp ladder 

from NEB. Electrophoresis in 1 × TAE buffer from NEB (diluted from a 50 × stock) allowed for the 

migration of cDNA products at 50 V over a duration of 90  min. The cDNA bands (Fig. 2) were excised 

from the gel with a clean razor blade, and the cDNA extracted from the agarose gel slice using the Gel 
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Extraction Wizard from Promega. The isolated cDNA was then sequenced commercially by Eurofins 

Genomics. 

 

Fig. 2. RT-PCR of Bm-iAANAT and Bm-TUA1 in the 4th Instar of B. mori. Lane 1 contains 100 bp 

ladder; the band on the bottom denotes 100 bp standard. Lane 2 was loaded with the RT-PCR product 

for Bm-TUA1 (99 bp). Lane 3 was loaded with RT-PCR product for  Bm-iAANAT (119 bp). 

The amplicon product extracted from lane 2 matched the sequence for Bm-TUA1, while the amplicon 

product extracted from lane 3 matched the sequence for Bm-iAANAT. 

 

2.7. Extraction and purification of fatty acid amides from 4th instar larvae of B. mori 

Bmi4 larvae (3.0 g) were collected on the same day for both mRNA extraction 

and metabolomic analysis and both collections were carefully assessed to be nearly identical in size and 

development. The Bmi4 larvae were flash frozen with liquid N2 and stored at −80 °C until after 

completion of the RT-PCR experiments. The frozen larvae were ground to a paste in 61 mL of methanol 

using a mortar and pestle and then were homogenized for 5 min in a clean, glass beaker using a Heidolph 

Silent Crusher homogenizer at maximum speed (26,000 rpm). The homogenate was divided into three 

separate samples of equal mass and volume into clean, previously unused vials and all were separately re-

homogenized for 5 min at maximum speed. The fatty acid amideswere extracted and purified from these 

samples using the method of Sultana and Johnson [39], as modified by Jeffries et al. [19]. Blanks were 
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prepared and treated exactly in the same manner starting with 61 mL of methanol in a clean mortar and 

pestle without any addition of Bmi4. 

 

2.8. Identification and quantitation of fatty acid amides via LC-QToF-MS 

2.8.1. Generation of fatty acid amide standard curves 

With the exception of palmitamide-d31, the fatty acid amides used as internal standards, N-

arachidonoylglycine-d8, N-arachidonoylethanolamide-d8, palmiticacid-d31, and N-oleoylserotonin-d17, 

were all from Cayman Chemical. Palmitamide-d31 was synthesized from palmitic acid-d31 as 

described [1]. Mass spectral analysis of all the deuterated fatty acid amides, obtained commercially or 

synthesized in-house, were contaminated by <1% of the corresponding unlabeled fatty acid amide (Figure 

S1, Supplementary Material). Standard curves were made using pure compounds for each fatty acid 

amide and internal standards at concentrations ranging from 0.1–10 pmoles in methanol:acetonitrile (1:1) 

(v/v) per 20 µL injection on the LC-QToF-MS. A mixture was made containing 1 µM of each deuterated 

standard in methanol:acetonitrile (1:1) (v/v). 

 

2.8.2. Sample preparation for LC-QToF-MS 

The fatty acid amide-containing extracts from Bmi4 larvae were concentrated using 100 µL 

C18 Zip Tips from Thermo Fisher with the following modifications to the manufacturer's recommended 

protocol: 0.1% (v/v) trifluoroacetic acid (TFA) was substituted for 0.1% TFA: methanol:acetonitrile 

(8:1:1) (v/v/v) and the fatty acid amides eluted from the tips in 90 µL of acetonitrile:0.1% (v/v) TFA 

(95:5). The eluent from the Zip Tip was collected in LC vials with spring inserts and 10 µL of the internal 

standard mixture was added to make a total volume of 100 µL. Samples were analyzed by LC-QToF-MS 

as described in Section 2.5. The extraction blank was also prepared in the same manner in order to 

subtract background concentrations of fatty acid amides that may have accrued during the extraction 

process or unintentionally added from non-deuterated contaminants of the deuterated internal standards. 
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2.8.3. Identification and quantification of fatty acid amides in the Bmi4 extracts 

All total ion chromatograms for the Bmi4 larval extracts were scanned for m/zcorresponding to 

fatty acid amides. The retention times and m/z values for metabolites detected in the Bmi4 extracts were 

compared to those of known standards evaluated under the exact same conditions. The LC column was 

thoroughly washed (using the same LC method) before the injection of Bmi4 extracts to eliminate false 

positives. All retention times of detected fatty acid amides were found to be accurate to ±0.1 min of the 

standard, acceptable deviation of random error from the instrument and the sample matrix effects. These 

intensity units for each fatty acid amide were converted to pmoles/(gram of tissue) using the standard 

curves prepared as described in Section 2.8.1. 

 

3. Results 

3.1. Cloning, expression, and purification of Bm-iAANAT 

Bm-iAANAT from Bombyx mori was successfully cloned and expressed in E.coli. 

The recombinant Bm-iAANAT we designed possessed a his6-tag on the N-terminus, allowing for a 

convenient and facile purification by Ni-chelation chromatography. Our yield of purified Bm-iAANAT 

was 17–18 mg of purified protein per liter of E. coli culture. Purity was ≥95% as assessed 10% SDS-

PAGE gel (Figure S2, Supplementary Material) and the molecular weight from SDS-PAGE analysis was 

in good agreement with their predicted mass of Bm-iAANAT of 29.6 kDa. 

 

3.2. Substrate specificity of Bm-iAANAT 

A screening protocol was used to identify substrates for Bm-iAANAT. We pooled together a set 

of amines (Table S1, Supplementary Material) and evaluated the entire group, at once, for CoA-

SH release using a short-chain or long-chain acyl-CoA substrate. The concentration of the individual 

amines within the pool was high, 60 mM, because of the relatively high Km (or Km,app) value for the amine 

substrates for some of the GNAT enzymes. For example, the Km,app for glycine for mouse glycine N-

acyltransferase is 6 mM [40]. A similar protocol could be employed to identify acyl-CoA substrates 
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for Bm-AANAT by evaluating groups of acyl-CoA thioesters against an amine co-substrate for CoA-SH 

releases, but the acyl-CoA thioesters are expensive and long-chain acyl-CoAthioesters can be inhibitors 

for N-acetyltransferases [41], [42]. As a compromise, we individually screened the amine pools for CoA-

SH release using a short-chain or a long-chain acyl-CoA thioester, acetyl-CoA or oleoyl-CoA, as the acyl 

donor substrate. The benefits of our screening protocol are clear: any combination of pooled amines and 

acyl-CoA showing no CoA-SH release activity could be reasonably disregarded for further investigation. 

A false negative is possible if one of the amines in the pool is a Bm-iAANAT inhibitor and the degree 

inhibition by the inhibitor amine is sufficient to mask CoA-SH release activity from a different amine 

substrate in the pool. A false negative seems unlikely because the complete elimination of CoA-SH 

release activity would require a balance between [amine inhibitor]/Ki ratio, the [amine substrate]/Km ratio, 

and would, most likely, occur if the amine substrate exhibits a low kcat value. Conversely, any 

combination of pooled amines and acyl-CoA that exhibit CoA-SH release can be investigated individually 

to define the substrate specificity. The application of our screening protocol to Bm-iAANAT revealed 

significant velocities of CoA-SH release from 5 of the amine pools with acetyl-CoA as the acyl donor and 

3 of the amine pools with oleoyl-CoA as the acyl donor (Table S2, Supplementary Material). A 

significant velocity is defined as any rate of CoA-SH release that is ≥3-fold higher than the background 

rate of acyl-CoA hydrolysis, 0.1 µmoles/min/mg. The background rate of acyl-CoA hydrolysis was the 

same, within experimental error, for two controls: no added Bm-iAANAT or the reaction initiated by the 

addition of heat-denatured Bm-iAANAT. In addition to the amine substrates identified by Tsugehara 

et al. [32](dopamine, octopamine, norepinephrine, serotonin, tryptamine, and tyramine), we found 

that Bm-iAANAT would accept lysine, histamine, alanine, tyramine, ethanolamine, as well as 

several polyamines (spermidine, agmatine, cadaverine, and putrescine) as substrates. Because of limited 

sensitivity of our assay (detection limit of CoA-SH release being ≤1 µM), we could not accurately 

determine the kinetic constants for the remainder of the newly discovered amine substrates for Bm-

iAANAT with acetyl-CoA as the co-substrate, due to either a low value for either the Km,app or the kcat,app. 
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Tsugehara et al. [32] employed a more sensitive radiochemical assay with [14C]-acetyl-CoA as a substrate 

and reported a Km,app value of 0.31 µM for acetyl-CoA. 

We repeated the evaluation of the amine pools using oleoyl-CoA as the co-substrate and found 

that three of the eight amine groups yielded rates of CoA-SH release significantly above background 

(Table S2, Supplementary Material). Individual interrogation of these groups revealed four amines, 

tryptamine, tyramine, serotonin, and octopamine, would serve as co-substrates with oleoyl-CoA. With the 

initial concentration of oleoyl-CoA fixed at 100 µM, tryptamine was the amine with the highest 

(kcat/Km)app value, (1.0 ± 0.07) × 102 M−1 s−1. Tyramine and octopamine displayed significantly lower 

(kcat/Km)app values than tryptamine, attributed both to high Km,app values and lower kcat,app values (Table 3). 

Qualitatively, the release of CoA-SH was evident when Bm-iAANAT was incubated with oleoyl-CoA and 

serotonin. At the relatively high concentrations of serotonin required to properly measure the formation 

of N-oleoylserotonin, a precipitate formed preventing the accurate quantification of CoA-SH 

using Ellman's reagent. Thus, we were unable to measure kinetic constants for the Bm-iAANAT-

catalyzed formation of N-oleoylserotonin from serotonin and oleoyl-CoA. 

 

Table 3. Steady-state kinetic constants for different Amine substrates with Oleoyl-CoA as the Acyl 

Donor.a,b 

Aminec Km,app (mM) kcat,app (s−1) (kcat /Km)app (M−1 s−1) 

Tryptamine 7.0 ± 0.5 0.72 ± 0.01 (1.0 ± 0.07) × 102 

Tyramine 84 ± 12 2.7 ± 0.19 32 ± 5.3 

Octopamine 65 ± 16 0.31 ± 0.04 4.7 ± 1.2 

a Reaction conditions were 300 mM Tris pH 8.0, 150 µM DTNB, 100 µM oleoyl-CoA, and varied initial 

concentrations of the indicated amine. 

b Kinetic constants are reported with the standard error (n = 3). 
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c Serotonin is an amine substrate when oleoyl-CoA is the acyl donor. However, a precipitate formed 

during catalysis which interfered with the assay and prevented the accurate determination of the kinetic 

constants for serotonin. 

We employed only acetyl- and oleoyl-CoA in our identification of new amine substrates for Bm-

iAANAT. There are many potential acyl-CoA substrates for Bm-iAANAT and we chose to focus on the 

unbranched, long chain acyl-CoA substrates that are representative of acyl chains found in biologically-

occurring fatty acid amides. With tryptamine held at a constant initial concentration of 60 mM, we found 

that lauroyl-, myristoyl-, palmitoyl-, and arachidonoyl-CoA (all at an initial concentration of 100 µM) 

were substrates, yielding a rate of CoA-SH release significantly above the background rate of non-

enzymatic acyl-CoA hydrolysis. The kinetic constants for these long-chain acyl-CoA substrates are 

presented in Table 4. We observed a 6.2-fold decrease in the (kcat/Km)app value as the length of the acyl 

chain increased from lauroyl-CoA to arachidonoyl-CoA. The decrease in (kcat/Km)app values was largely a 

result in a decrease in the kcat,app value because we found the Km,app values were approximately the same 

for this set of acyl-CoA substrates, ∼1 µM. 

 

Table 4. Steady-state kinetic constants for long-\chain acyl-CoA substrates with tryptamineas the acyl 

acceptor.a,b 

Acyl-CoA Km,app (µM) kcat,app (s−1) (kcat /Km)app (M−1 s−1) 

Lauroyl-CoA 0.97 ± 0.12 1.3 ± 0.01 (1.4 ± 0.2) × 105 

Myristoyl-CoA 0.92 ± 0.20 0.66 ± 0.01 (7.2 ± 1.5) × 105 

Palmitoyl-CoA 1.1 ± 0.30 0.51 ± 0.01 (4.9 ± 1.4) × 105 

Oleoyl-CoA 1.7 ± 0.51 0.42 ± 0.02 (2.4 ± 0.70) × 105 

Arachidonoyl-CoA 1.2 ± 0.67 0.27 ± 0.02 (2.4 ± 1.3) × 105 
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a Reaction conditions were 300 mM Tris pH 8.0, 150 µM DTNB, 60 mM tryptamine, and varied initial 

concentrations of the acyl-CoA. 

bKinetic constants are reported with the standard error (n = 3). 

 

To further explore the observed chain length dependence in the kinetic constants, we determined 

the kinetic constants for tryptamine while holding the initial concentration of several long-chain acyl-CoA 

thioesters constant at 100 µM (Table S3, Supplementary Material). We observed a similar pattern in the 

data. The (Km, tryptamine)app values are all comparable, ranging from 2.5 mM to 7.0 mM. The 

(kcat/Km)tryptamine, app was highest when the thioester substrate was lauroryl-CoA and declined ∼3-fold as the 

acyl chain length increased to oleoyl-CoA. 

 

3.3. Product characterization of a Bm-iAANAT-catalyzed reaction 

The use of Ellman's reagent to detect CoA-SH release does not prove Bm-iAANAT has catalyzed 

the formation of an N-acylamide from an acyl-CoA and an amine. While unlikely, CoA-SH release could 

reflect the amine activation of Bm-iAANAT-catalyzed thioester hydrolysis: CoA-S-CO-R + H2O → R-

COOH + CoA-SH. We compared a synthetic standard of N-oleoyltryptamine against the product 

generated by the incubation of Bm-iAANAT with tryptamine and oleoyl-CoA. The analysis of the 

enzymatic product corroborated our kinetic data: the N-oleoyltryptamine produced by Bm-iAANAT 

catalysis is consistent with the [M+H]+ peak and retention time (±0.2 min reported error for the LC-

QToF-MS) vs. the  N-oleoyltryptamine standard (Table 5). We did not detect any compounds with the 

retention time or m/z of N-oleoyltryptamine in the no enzyme-containing (blank) samples. 

Table 5. Characterization of the Bm-iAANAT-catalyzed reaction via LC-QTOF-MS analysis. 
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Sample Retention time (min) [M+H]+ (m/z) 

N-Oleoyltryptamine Standard 6.489 425.2588 

Bm-iAANAT Product 6.503 425.2574 

 

3.4. Detection of Bm-iAANAT transcript in 4th instar larvae of B. mori via RT-PCR 

Our in vitro studies of purified, recombinant Bm-iAANAT suggest this enzyme could have a role 

in the biosynthesis of fatty acid amides. Our next steps were to determine if fatty acid amides are 

produced by B. mori and, if so, does the presence of these molecules in  B. mori correlate, at all, to the 

expression of Bm-iAANAT. We identified the presence of Bm-iAANAT transcripts by RT-

PCR. Primers were prepared to generate a 119 bp Bm-iAANAT-derived RT-PCR product and a 

99 bp Bm-TUA1-derived product (as a control) from a 4th instar larvae B. mori cDNA library. 

After the migration of cDNA products on an agarose gel containing ethidium bromide, the gel was 

viewed under UV light to illuminate the RT-PCR products. The RT-PCR products match the expected 

sizes for the Bm-iAANAT and  Bm-TUA1 transcripts, respectively (Fig. 2). 

 

3.5. Detection of a panel of fatty acid amides from Bmi4 via LC-QToF-MS 

All total ion chromatograms (TIC) for the 4th instar larvae were scanned for m/zsimilar to the 

fatty acid amides found in D. melanogaster[19]. The retention times and m/z values for metabolites 

detected in the Bmi4 extracts were compared to those of known standards evaluated under the exact same 

conditions. The intensities for the m/z values corresponding to a specific fatty acid amide were converted 

to pmoles/(gram of tissue) based on standard curves prepared with corresponding authentic fatty acid 

amide. The fatty acid amides identified from Bmi4 larvae are shown in Table 6. 

Table 6. Fatty acid amides detected in 4th instar larvae of  B. mori. 
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Fatty Acid Amide Standard 

(m/z) 

4th Instar 

(m/z) 

Standard 

(Retention 

time) 

4th Instar 

(Retention 

time) 

Amount 

extracted 

(pmoles/g)a 

Palmitamide 256.2645 256.2631 6.214 min. 6.213 min. 28 ± 19 

N-Palmitoylserotonin 415.3322 415.2882 6.187 min. 6.125 min. 9.8 ± 0.6 

Palmitoleamide 254.2456 254.2463 5.857 min. 5.859 min. 22 ± 13 

N-Stearoylserotonin 443.3638 443.3505 6.542 min. 6.576 min. 1.1 ± 0.4 

Oleamide 282.2796 282.2786 6.289 min. 6.277 min. 33 ± 2.9 

N-Oleoyldopamine 418.3315 418.3306 6.248 min. 6.246 min 6.0 ± 0.3 

N-Oleoylethanolamine 326.3057 3.26.3049 6.077 min. 6.074 min 20 ± 15 

N-Oleoylglycine 340.2846 340.2847 6.094 min. 5.945 min. 14 ± 1.5 

N-Oleoylserotonin 441.3479 441.3483 6.262 min. 6.322 min 3.5 ± 0.6 

Linoleamide 280.2643 280.2616 5.979 min. 6.027 min. 22 ± 14 

N-

Arachidonoylserotonin 

463.3326 463.3337 6.071 min. 6.069 min. 14 ± 2.9 

a Average ± standard deviation for 3 separate measurements. 

 

4. Discussion and conclusions 

In this study, we have successfully cloned, expressed, purified, and characterized Bm-iAANAT, 

an arylalkylamine N-acyltransferase from Bombyx mori. The characterization of Bm-iAANAT 

contributes to the body of knowledge leading to a pest-specific iAANAT inhibitor, important because 

iAANATs are suggested as new targets for the development of insecticides [43], [44], [45], [46]. The 
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most important finding from our work was that Bm-iAANAT will accept long chain acyl 

CoA thioesters as substrates. This result coupled to our demonstration that the enzyme is expressed in 4th 

instar larvae and to our identification of fatty acid amides in the 4th instar larvae of B. mori suggests, but 

does not prove, Bm-iAANAT has a role in the biosynthesis of, at least, a few members of the fatty acid 

amide family in this insect. We have long thought an acyltransferase could function in fatty acid amide 

production in vivo[25]. Bm-iAANAT is one of few known acyl-CoA-dependent transferases accepting 

fatty acyl-CoA thioesters as substrates for the enzymatic production of fatty acid amides; the others being 

human glycine N-acyltransferase like-2 [29], human glycine N-acyltransferase like-3 [24], and D. 

melanogaster arylalkylamine N-acyltransferase like-2 (AANATL2) [23]. In addition, N-

myristoyltransferase (NMT) utilizes myristoyl-CoA as the myristoyl donor for the myristoylation of 

the N-terminus of proteins [28]. The direct conjugation of an amine to an inactivated fatty acid, while 

thermodynamically unfavorable under biological conditions, has been attributed to the biosynthesis of 

fatty acid amides [47], [48]. This includes the conjugation of linolenic acid to L-glutamine to yield N-

linolenoyl-L-glutamine in the caterpillars of Manduca sexta[49]. 

Based on our current understanding of the substrate specificity of Bm-iAANAT 

(Tables 3 and 4 and ref. [32]) and the fatty acid amides identified in Bmi4 (Table 6), Bm-iAANAT could 

serve in vivo to generate the N-fatty acyl -serotonins and -dopamines. The possibility of Bm-iAANAT 

having a broader role in the biosynthesis of other N-fatty acylamides, based on its amine specificity, 

awaits further work: the identification of other N-fatty acylamides in B. moriand/or alternations in the 

fatty acid amidome after the knock down of Bm-iAANAT expression. The CRISPR/cas9 system has been 

used in B. mori for the targeted elimination of a protein [50], [51]. We used targeted knockdown methods 

to demonstrate the glycine N-acyltransferase like-3 and peptidylglycine α-amidating 

monooxygenase function sequentially in mouse neuroblastomaN18TG2 cells to convert fatty acyl-CoA 

thioesters to the fatty acid primary amides [24]. 

Another interesting outcome from our work on Bm-iAANAT is the influence acyl-CoA substrate 

chain length has on the affinity of the enzyme for the amine substrate. Km,app values are not 
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Kdissociation values and a discussion of the affinity of Bm-iAANAT for the amine substrates assumes that 

differences in Km,app values for the amines does, at least, approximate the influence of the acyl-CoA 

substrate on the Kdissociation values for an amine. Our work and that of Tsugehara et al. [32] show low 

Km,app values for the amine substrates when acetyl-CoA is the acyl donor. The Km,app value 

for tryptamine increases >1,000-fold when the acyl-CoA donor has an acyl chain of 12 carbons or longer 

(lauroyl-CoA to oleoyl-CoA) (Table 4). We have observed similar trends for other iAANATs, but the 

effect is more pronounced for Bm-iAANAT. For D. melanogaster AANATL7, we found the 

Km,app for histamine increased from 0.52 mM when acetyl-CoA was the acyl donor to 15 mM when 

hexanoyl-CoA was the acyl donor [42]. For D. melanogaster AANATL2, the Km,app  for serotonin 

increased from 7.2 µM for acetyl-CoA to 870 µM for palmitoyl-CoA [23]. We have recently shown the 

acetyl group of acetyl-CoA shifts the conformational ensemble of Bm-iAANAT3 to a high affinity, 

catalytically efficient conformation [52]. The data presented here on Bm-iAANAT is consistent with this 

conclusion and clearly demonstrates a long acyl chain in the acyl-CoA hinders the most effective 

positioning of the amine for nucleophilic attack at the thioester bond of the acyl-CoA. A more precise 

understanding of conformational dynamics and the effects of dynamics on substrate positioning and 

catalysis in the iAANATs requires structural information. Bm-iAANAT could prove the better enzyme in 

addressing these questions because the amine affinity is more strongly influenced by the length of the acyl 

chain in the acyl-CoA than in other iAANATs. 

Our identification of fatty acid amides in Bmi4 is the first report of these lipid amides in B. mori. 

Long-chain fatty acids are known in B. mori[53], [54], [55], [56] and the only report of a related N-

acylamide in B. mori is N-acetylglutamate [56]. Fatty acid amides have a long and underappreciated 

history in insects, starting with the discovery of volicitin, N-(17-hydroxylinolenoyl)-L-glutamine, 

from Spodoptera exigua[15]. Volicitin, volicitin analogs, and other fatty acid amides have been reported 

in insects other than B. mori, including D. melanogaster[16], [17], [18], [19], [20]. The function of many 

fatty acid amides in insects (and many other organisms) remains elusive. The apparent lack of 

the cannabinoid receptors in D. melanogaster[21] despite reports of endocannabinoid-like fatty acid 
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amides in D. melanogaster[17], [18], [19] hints that fatty acid amides serve a different role in insects (and 

other invertebrates) relative to their functions in vertebrates. This points to a fascinating evolutionary 

story for these molecules as vertebrates emerged from invertebrates. 
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