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1. Introduction

The solubility of long-chain fatty acids in aqueous solutions is
extremely low, i.e., in the range of 1–10 nM [1]. The presence of
proteins with the ability to bind fatty acids (for convenience used
to designate ‘long-chain fatty acids’) dramatically increases the
total amount of fatty acids that can be present in the aqueous
phase. For instance, albumin occurs in plasma and interstitium
at a concentration of 300–600 mM and can accommodate up to
1–2 mM fatty acids [2]. Likewise, cytoplasmic fatty acid-binding
protein (FABPc) is abundantly present in the soluble cytoplasm of
cells with an active fatty acid metabolism and can accommodate
up to 150–300 mM fatty acids [3,4]. As a result, albumin and FABPc

act as extracellular and intracellular buffers, respectively, for fatty
acids (Fig. 1). Consistent with this, the average concentration of
(non-protein bound) fatty acids in plasma from healthy subjects
ll rights reserved.
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was found to be 7.572.5 nM [5], indicating that of the total
amount of fatty acids in plasma only o1 part in 105 is present in
the aqueous phase.

The above data also indicate that under normal physiological
conditions, with a total plasma fatty acid concentration of
100–400 mM and a total cytosolic fatty acid concentration
o50 mM, both albumin and FABPc are in such abundance that
fluctuations in their presence will hardly affect their fatty acid
buffering function. Thus, studies on fatty acid uptake by hindlimb
muscle from mice lacking (heart-type) FABPc showed that a 65%
reduction in FABPc in heterozygous mice did not affect the rate of
muscle fatty acid uptake while the full ablation of FABPc

(homozygous null mice) decreased fatty acid uptake markedly
[6]. This latter study illustrates that FABPc inside the cell functions
as a sink for incoming fatty acids, yet plays a merely permissive
action in cellular fatty acid uptake.
2. Mechanism of transmembrane fatty acid transport

During the preceding two decades there has been considerable
discussion on the mechanism by which fatty acids enter cells,
particularly whether fatty acid transport across the plasma
membrane occurs by simple (‘passive’) diffusion, or whether fatty
acid uptake is facilitated by (one or more) membrane-associated
proteins (for review see [7,8]). While the various experimental
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Fig. 1. Quantitative comparison of the presence of albumin in the extracellular space, cytoplasmic fatty acid-binding protein (FABPc) inside cells, and fatty acid

concentrations under normal physiological conditions. Albumin and FABPc provide a buffer for the extremely low aqueous concentration of (long-chain) fatty acids.

Albumin has 3–6 binding sites for fatty acids. FABPc occurs in 9 distinct types of which liver-type FABPc has two ligand binding sites while all other types have only a single

ligand binding site [58,59].
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Fig. 2. Schematic representation of the current view of fatty acid transport across

the cell membrane. Because the exact mechanism of transmembrane translocation

of fatty acids is still unknown, different models have been suggested. (1) In view of

their hydrophobic nature, fatty acids could cross the membrane by simple

diffusion. (2) Alternatively, CD36 (88 kDa; also referred to as ‘fatty acid translo-

case’), alone or together with the peripheral membrane protein FABPpm (plasma

membrane-associated fatty acid-binding protein; 43 kDa) accepts fatty acids at the

cell surface to increase their local concentration and thus increase the number of

fatty acid diffusion events. (3) It is also possible that CD36 itself actively transports

fatty acids across the membrane. Once at the inner side of the membrane fatty

acids are bound by cytoplasmic FABP (FABPc) before entering metabolic or

signalling pathways. (4) Additionally, a minority of fatty acids are thought to be

transported by fatty acid transport proteins and rapidly activated by plasma

membrane acyl-CoA synthetase (ACS1) to form acyl-CoA esters. (5) Very-long-

chain fatty acids (4C22) are preferentially transported by FATPs and by action of

their synthetase activity directly converted into very-long-chain acyl-CoA esters

(uptake by vectorial acylation).

Adapted from [27].
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studies provide support for both of these possibilities, evidence in
support of a protein-mediated fatty acid uptake system is now
believed to be the dominant means by which fatty acids are taken
up by metabolically important tissues.

The amphipathic nature of the fatty acid molecule, with a
nonpolar chain and a polar head group, provides it with the
biophysical properties for entry into the phospholipid bilayer of
the cell membrane. Subsequent transfer of the fatty acid from the
outer leaflet of the bilayer to the inner leaflet (‘flip-flop’) is
hampered by the charge of the polar head group. However, in the
vicinity of the membrane the apparent pKa of the fatty acid shifts
from about 4.5 in aqueous solutions to about 7.6 (independent of
fatty acid type), as a result of which about half of the fatty acids
are present in the un-ionized, i.e., protonated, form [9]. This
uncharged species can then easily flip-flop to the inner leaflet of
the membrane, whereafter a proton is donated to the interior
solution and the fatty acid is available for desorption.

This mechanism suggests that biological membranes do not
form a barrier for fatty acids. Indeed, Hamilton and co-workers
have compared the permeabilities of various molecules and (long-
chain) fatty acids in a phospholipid bilayer to conclude that the
permeability of fatty acids is several orders of magnitude larger
than that of water, glucose, and other small non-electrolytes [10].
In addition, measured values of desorption kinetics revealed half-
times in the milliseconds to seconds time range for fatty acids,
which is fast enough to support intracellular metabolism.
Together, these data suggest that (i) fatty acids can rapidly pass
phospholipid bilayers without the help of membrane proteins and
(ii) membrane proteins are not needed for the purpose of
releasing fatty acids into the cytosol [11].

If fatty acids could freely diffuse across biological membranes,
the direction and rate of fatty acid movement would depend on
fatty acid delivery to the tissue and on the transmembrane
gradient of fatty acids. Such a mechanism would be difficult to
control and, moreover, may not meet (changes in) metabolic
demands in tissues, e.g., muscle upon the initiation of contraction.
Thus, from a physiological perspective it would be highly
desirable to regulate fatty acid entry into the cell, especially
(i) to ensure fatty acid uptake when its extracellular concentration
is low, (ii) to limit uptake when the extracellular concentration is
high, (iii) to potentially select for specific fatty acid types, and
(iv) to allow rapid adjustments in fatty acid provision to meet
fluctuations in metabolic demands [12].

Since the early 1980s several investigators have searched for
membrane-associated proteins able to bind fatty acids and that
may function to facilitate and/or regulate transmembrane fatty
acid transport. To date, various membrane proteins have been
identified that facilitate the cellular uptake of fatty acids (Fig. 2).
For convenience, these proteins are generally referred to as ‘fatty
acid transporters’. The prevalent view is that these fatty acid
transporters act as acceptors for fatty acids whereafter the fatty
acids make their way through the cell membrane by simple
diffusion (route 2 in Fig. 2). At the inner side of the membrane, the
(transmembrane) proteins may provide a docking site for FABPc or
for enzymes that act on fatty acids (such as acyl-CoA synthetase)
(Fig. 2). Thus, these proteins may function to sequester fatty acids
in the membrane, and help organize them within specific
membrane domains so as to make the fatty acids readily
available for subsequent aqueous transport and/or enzymatic
conversion.

The membrane-associated (putative) fatty acid transporters
CD36, FABPpm and FATPs (Fig. 2) differ in molecular mass
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and degree of post-translational modification; some show a
characteristic pattern of tissue distribution, while others are
ubiquitously expressed. Interestingly, the FATPs form a family of
6 proteins. For most of these proteins there is evidence from
studies in cell lines and/or in genetically altered animals that they
facilitate cellular long-chain fatty acid uptake [13].
3. Function of fatty acid transporters in muscle

In skeletal muscle CD36, FABPpm, FATP1, and FATP4 are co-
expressed. This makes this tissue suitable especially to compare
the significance of the various transporters for fatty acid uptake
and utilization, that is, to examine whether they all function as
membrane-bound transporters and whether they channel fatty
acids to specific intracellular targets, particularly oxidation and/or
esterification. A recent study compared the transport efficiencies
of these four proteins and their possible differential effects on
fatty acid utilization in rat skeletal muscle [14]. Because knock-
out animals show compensatory responses in the expression of
the other transporters, these animals could not be used for such
studies. Instead, the genes for each of these transporters were
upregulated independently in skeletal muscle only, under con-
trolled conditions and within a physiologically meaningful range.
For this, respective cDNAs cloned into plasmid DNAs were
electrotransfected in the intact tibialis anterior muscle of one
leg in vivo, while electrotransfection of the empty plasmid in
the contralateral muscle served as control [13]. After 2 weeks, the
respective fatty acid transporters were overexpressed by 1.5–2.2-
fold while in each case the muscle contents of the other
transporters remained unchanged. All transporters increased fatty
acid transport, but CD36 and FATP4 were 2.3- and 1.7-fold more
effective than FABPpm and FATP1, respectively (Fig. 3, panel A)
[14]. Overexpression of the transporters failed to alter the rates of
fatty acid esterification into triacylglyceroles, but increased the
rates of fatty acid oxidation (Fig. 3, panel B). Interestingly, the
effects of CD36 and FABPpm were 3-fold greater than for FATP1
and FATP4 (Fig. 3, panel B).

Thus, at least in skeletal muscle fatty acid transporters exhibit
different capacities for fatty acid transport and metabolism: in
vivo CD36 and FATP4 are the most effective plasmalemmal fatty
acid transporters, whereas CD36 and FABPpm are key players for
promoting fatty acid oxidation.
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4. Acute regulation of muscle fatty acid transport

The presence of CD36 not only on the cell membrane but also
in intracellular compartments, notably endosomes, triggered
studies to identify whether regulation of fatty acid transport
could occur by translocation of CD36 from endosomes to the cell
membrane to increase fatty acid uptake. Such a mechanism would
be analogous to the well-known regulation of glucose uptake
which involves the translocation of the glucose transporter GLUT4
from an intracellular storage depot to the cell membrane. A series
of studies showed that in heart and skeletal muscles both muscle
contraction and insulin stimulate, within minutes, the transloca-
tion of CD36 from an endosomal compartment to the cell
membrane to markedly (up to 2-fold) increase fatty acid uptake
[15–17]. The contraction-induced translocation is mediated by
AMP-kinase and occurs independently of the insulin-induced
translocation which is mediated by PI3-kinase. In each case, both
CD36 and GLUT4 are recruited in the same time frame resulting in
increased uptake rates for both fatty acids and glucose [15,18,19].
Similar to what is known for GLUT4, the translocation of CD36 is
rapid and reversible, with CD36 being internalized on the same
time scale (minutes) as its recruitment [15,20]. Taken together,
the regulation of fatty acid uptake by heart and muscle appears to
display a striking similarity with the regulation of glucose uptake,
in both cases involving the recycling of substrate transporters that
is under the control of (at least a number of) the same triggers
(Fig. 4).

Others have confirmed that contractile activity increases fatty
acid transport via the translocation of CD36 in muscle [21].
Muscle contraction also increases the translocation to the cell
membrane of FABPpm, FATP1, and FATP4 [22]. Nevertheless,
studies in heart and muscle obtained from CD36 knock-out
animals have indicated that CD36 is fundamental to enabling the
contraction-induced increase in fatty acid uptake, as its ablation
almost completely blunted this increase in rate of uptake [23,24].

Considerable effort is being made to unravel both the
signalling and trafficking pathways involved in the recycling of
CD36 in heart and muscle, in particular in relation to that of
GLUT4. Knowledge on the pathways involved is relevant (i) to
understand what triggers influence cellular substrate uptake
through substrate transporter recycling and (ii) to learn to what
extent CD36 and GLUT4 recycling share the same triggers and
trafficking machinery and what signals would selectively influ-
ence either CD36-mediated fatty acid uptake or GLUT4-mediated
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Fig. 4. Schematic representation illustrating the similarity between the regulation

of cellular fatty acid uptake by CD36 translocation and that of glucose uptake by

GLUT4 translocation. Both muscle contraction and insulin treatment stimulate the

simultaneous recruitment of CD36 and GLUT4 from recycling endosomal storage

compartments to the cell membrane to increase fatty acid and glucose uptake,

respectively. AMPK, AMP-activated kinase; PI3K, PI3-kinase.
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glucose uptake (which would alter substrate preference; see
below). With respect to the latter, it should be noted that selective
recruitment and/or internalization indeed can occur as in studies
with cardiac myocytes it was observed that the phosphodiester-
ase inhibitor dipyridamole mobilizes CD36 from contraction-
inducible storage depots while not affecting GLUT4 mobilization
[25], while conversely, the protein-sulfhydryl-modifying com-
pound arsenite stimulates GLUT4-mediated glucose uptake but
does not affect CD36-mediated fatty acid uptake [26]. Although
the intracellular targets of these pharmacological compounds are
not yet known, these data are proof of concept that selective
substrate transporter recycling is possible.

So far, the signalling pathways involved in CD36 and GLUT4
recycling appear to be very much alike (reviewed in [27]). In
contrast, preliminary evidence suggests that the trafficking path-
ways used for CD36 and for GLUT4 translocation show clear
differences with respect to vesicle-associated proteins involved.

Another interesting finding is that CD36 [24,28–30] and FATP1
[30] are also present at the mitochondrial membrane, suggesting
their possible involvement in mitochondrial fatty acid oxidation.
A number of recent studies have shown strong support for this
concept: (i) mitochondria isolated from human muscle following
2 h of aerobic exercise (bicycle ergometry) showed an increase in
mitochondrial CD36 content which correlated with an increased
rate of mitochondrial fatty acid oxidation [31], (ii) overexpression
of CD36 increased mitochondrial fatty acid oxidation [30], and
(iii) in CD36 knock-out animals the exercise-induced increase in
fatty acid oxidation is ablated [24]. These findings suggest that
CD36 translocation (from an as yet unidentified storage pool) to
the mitochondria is essential to increase fatty acid oxidation
during exercise. The precise mechanism by which CD36 and
FATP1 facilitate mitochondrial fatty acid oxidation remains to be
elucidated.
5. Trafficking machinery involved in membrane transporter
translocation

At present little is known about the mechanisms by which
fatty acid transporters travel between different intracellular
compartments. However, much effort has been made to unravel
proteins involved in the trafficking events responsible for the
migration of the glucose transporter GLUT4 from intracellular
storage compartments to the cell membrane and vice versa.
During recent years evidence has accumulated that the trafficking
machinery of CD36 might be closely related to that of GLUT4. For
example, morphological studies in Chinese Hamster ovary cells
revealed that GLUT4 and CD36 are shifted to the same
microdomains in the plasma membrane upon insulin stimulation
[20]. Additionally, the recycling of both GLUT4 and CD36 back into
their distinct intracellular storage compartments is dependent on
the action of the Rab-GTPase Rab11a [32]. Therefore, our current
knowledge about GLUT4 trafficking could give links to gain
further insight into the trafficking machinery of fatty acid
transport proteins like CD36.

One crucial step in insulin-mediated GLUT4 translocation is the
inhibition of AS160 by Akt. AS160 acts as a Rab-GTPase activating
protein (Rab-GAP) and restrains GLUT4 in its storage compartment
in the basal state [33]. It does so by promoting the inactive form of
different Rab-GTPases known to be involved in insulin stimulated
GLUT4 translocation [34,35]. Whether AS160 also functions in
insulin-induced translocation of fatty acid transporters is currently
not known. Interestingly, AS160 has been shown to also be a
substrate of AMPK. The inhibition of AS160 by AMPK is important
to stimulate glucose uptake during increased contractions, and
occurs additive to the inhibition by insulin [36].

Another family of trafficking proteins that are currently under
study are soluble N-ethylmaleimide-sensitive factor attachment
protein receptors (SNARES). These proteins are present at the
transport vesicle (v-SNAREs) and at the target membrane
(t-SNAREs), and are mediators of membrane fusion (reviewed in
[37]). This process is highly selective as a v-SNARE only interacts
with a specific subset of t-SNAREs to form a SNARE complex that
initiates fusion. For example, the insulin-responsive GLUT4 pool is
enriched with the v-SNARE VAMP2 [38]. At the plasma mem-
brane, VAMP2 interacts with the t-SNAREs syntaxin4 and SNAP23
to initiate membrane fusion [39]. A negative regulator of this
complex formation is Munc18c, which masks the SNAP23
interaction site on syntaxin4 and is moved aside upon insulin
stimulation [40]. In contrast to Munc18c, binding of DOC2B to
syntaxin4 promotes SNARE complex formation and fusion of
GLUT4 vesicles with the plasma membrane [41].

It is likely that similar mechanisms are involved in the
translocation of CD36 upon insulin stimulation or the transloca-
tion of CD36, FABPpm, FATP1, and FATP4 upon increased muscle
contraction.
6. Fatty acid transporters in pathological states

Whole-body lipid homeostasis requires a fine tuning of fatty
acid transport and utilization by metabolically active tissues.
Because of their facilitary and regulatory roles in cellular fatty
acid uptake and utilization, membrane fatty acid transporters
form an integral part of this homeostatic system. As a result,
aberrations in lipid metabolism likely will influence the function-
ing of fatty acid transporters, while changes in fatty acid
transporter content or functioning – for instance as induced by
dietary or pharmacological interventions – may have an impact
on whole-body lipid metabolism and potentially elicit a patho-
logical state.

In the last few years most attention has been given towards
examining a possible role for fatty acid transporters in insulin
resistance and type-2 diabetes because these are associated with
marked changes in lipid metabolism, including increased plasma
fatty acid concentrations [42] and increased intramuscular
triacylglycerol depots [43]. Excessive accumulation of intramyo-
cellular fatty acids and their metabolites is commonly referred to
as lipotoxicity, and is a main contributor to the pathophysiology
of insulin resistance and dysfunctioning of heart and skeletal
muscle [44,45].

In animal models of insulin resistance [46–49] and in humans
with insulin resistance and type-2 diabetes [50] it was found that
the intramuscular triacylglycerol accumulation is associated with an
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increased presence of CD36 at the sarcolemma. The latter is not due
to an increase in total tissue CD36 content, but rather to a
permanent relocalization of this transporter to the cell membrane.
Further studies in rat heart [48] and skeletal muscle (A. Bonen et al.,
unpublished data) have elucidated that this permanent relocaliza-
tion is an early event in the development of insulin resistance and its
progression towards diabetic cardiomyopathy, and, importantly,
appears to precede a change in glucose uptake. These combined
observations suggest that early in the development of insulin
resistance alterations occur in the signalling and/or trafficking
proteins specifically dedicated to CD36 recycling, which would
result in a selective and permanent relocation of CD36 to the
sarcolemma, without a concurrent change in the subcellular
distribution of GLUT4. The increased sarcolemmal CD36 abundance,
together with an increased plasma fatty acid concentration, would
elicit an increased rate of fatty acid uptake to an excessive level, in
turn leading to an increased rate of fatty acid esterification into
triacylglycerols and increased concentrations of fatty acid metabo-
lites such as diacylglycerols and ceramides, as has been shown
recently [49]. The latter compounds then will interfere with insulin-
induced GLUT4 translocation to the sarcolemma so that GLUT4 is
retained intracellularly and the rate of glucose uptake is lowered
(i.e., insulin resistance). Thus, in this scenario, based on our studies
in heart and skeletal muscle, it appears that CD36 can be regarded as
a key factor in the development of insulin resistance in cardiac and
skeletal muscle [51].
7. Conclusions and remaining issues

Although long-chain fatty acids can move across the cell
membrane by simple (‘passive’) diffusion, consensus is beginning
to appear that fatty acid-binding membrane proteins fulfil both a
facilatory and a regulatory role in the process of cellular fatty acid
uptake. In general, these membrane-associated proteins function
as acceptors for fatty acids, assist in organizing fatty acids within
membrane microdomains, and provide a site for desorption of
fatty acids for subsequent binding to carrier proteins in the
aqueous solution. Fatty acid transport across the cell membrane
thus appears to be a highly regulated process, involving various
membrane proteins (many of which are co-expressed in the same
tissue) which operate through several levels of regulation such as
the above-mentioned translocation from intracellular storage
sites to the cell membrane, but also by post-translational
modification (phosphorylation, palmitoylation, glycosylation)
and possibly protein–protein interactions (reviewed in [12,52–
54]). The membrane fatty acid transporters are now also
implicated in metabolic disease, particularly insulin resistance
and its progression to type-2 diabetes. As a corollary, fatty acid
transporters are being regarded as a promising therapeutic target
to re-direct lipid fluxes in the body in an organ-specific fashion.
The potential of such an approach is illustrated by the observation
that myocardial lipotoxicity and myocardial dysfunction induced
experimentally by PPARa overexpression could be rescued by
ablation of CD36 [55]. However, many aspects of the mechanisms
by which these fatty acid transporters function still need to be
uncovered in order to design therapies to selectively manipulate
their actions. These remaining issues include:
�
 further disclosing the signalling and trafficking pathways
involved in recycling of fatty acid transporters, especially in
relation to that of the glucose transporter GLUT4;

�
 establishing whether protein–protein interaction and post-

translational modifications among fatty acid transporters have
functional significance, and whether these aspects are changed
in the pathological state;
�
 unraveling the role of membrane microdomains (caveolae,
rafts) in the functioning of fatty acid transporters;

�
 examining whether, and if so, in what manner, fatty acid

transporters select for specific fatty acid types and/or target
fatty acids towards specific metabolic pathways (oxidation,
esterification) or signalling routes (activation of fatty acid
responsive genes).

Fatty acid uptake has been studied mostly in heart, muscle, and
adipose tissue. Uptake of fatty acids by the brain is less well
addressed, despite the fact that brain expresses CD36, FATP1,
FATP4 and several FABP isoforms [56,57]. It would be of much
interest to study whether these latter proteins are involved in the
special fatty acid handling that occurs in brain, for instance,
whether these proteins are involved in the preferential and very
high rates of uptake of the o-3 fatty acids (eicosapentaenoic acid
and docosahexaenoic acid) during brain development.
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